Index: test/mjsunit/sin-cos.js |
diff --git a/test/mjsunit/sin-cos.js b/test/mjsunit/sin-cos.js |
index b893cce936bd9f66cf73ed0b54c399b32817157b..e38dfdf814e18c7013b288a4d0c460a7a5355096 100644 |
--- a/test/mjsunit/sin-cos.js |
+++ b/test/mjsunit/sin-cos.js |
@@ -42,101 +42,9 @@ cosTest(); |
// By accident, the slow case for sine and cosine were both sine at |
// some point. This is a regression test for that issue. |
-var x = Math.pow(2, 30); |
+var x = Math.pow(2, 70); |
assertTrue(Math.sin(x) != Math.cos(x)); |
// Ensure that sine and log are not the same. |
x = 0.5; |
assertTrue(Math.sin(x) != Math.log(x)); |
- |
-// Test against approximation by series. |
-var factorial = [1]; |
-var accuracy = 50; |
-for (var i = 1; i < accuracy; i++) { |
- factorial[i] = factorial[i-1] * i; |
-} |
- |
-// We sum up in the reverse order for higher precision, as we expect the terms |
-// to grow smaller for x reasonably close to 0. |
-function precision_sum(array) { |
- var result = 0; |
- while (array.length > 0) { |
- result += array.pop(); |
- } |
- return result; |
-} |
- |
-function sin(x) { |
- var sign = 1; |
- var x2 = x*x; |
- var terms = []; |
- for (var i = 1; i < accuracy; i += 2) { |
- terms.push(sign * x / factorial[i]); |
- x *= x2; |
- sign *= -1; |
- } |
- return precision_sum(terms); |
-} |
- |
-function cos(x) { |
- var sign = -1; |
- var x2 = x*x; |
- x = x2; |
- var terms = [1]; |
- for (var i = 2; i < accuracy; i += 2) { |
- terms.push(sign * x / factorial[i]); |
- x *= x2; |
- sign *= -1; |
- } |
- return precision_sum(terms); |
-} |
- |
-function abs_error(fun, ref, x) { |
- return Math.abs(ref(x) - fun(x)); |
-} |
- |
-var test_inputs = []; |
-for (var i = -10000; i < 10000; i += 177) test_inputs.push(i/1257); |
-var epsilon = 0.000001; |
- |
-test_inputs.push(0); |
-test_inputs.push(0 + epsilon); |
-test_inputs.push(0 - epsilon); |
-test_inputs.push(Math.PI/2); |
-test_inputs.push(Math.PI/2 + epsilon); |
-test_inputs.push(Math.PI/2 - epsilon); |
-test_inputs.push(Math.PI); |
-test_inputs.push(Math.PI + epsilon); |
-test_inputs.push(Math.PI - epsilon); |
-test_inputs.push(- 2*Math.PI); |
-test_inputs.push(- 2*Math.PI + epsilon); |
-test_inputs.push(- 2*Math.PI - epsilon); |
- |
-var squares = []; |
-for (var i = 0; i < test_inputs.length; i++) { |
- var x = test_inputs[i]; |
- var err_sin = abs_error(Math.sin, sin, x); |
- var err_cos = abs_error(Math.cos, cos, x) |
- assertTrue(err_sin < 1E-13); |
- assertTrue(err_cos < 1E-13); |
- squares.push(err_sin*err_sin + err_cos*err_cos); |
-} |
- |
-// Sum squares up by adding them pairwise, to avoid losing precision. |
-while (squares.length > 1) { |
- var reduced = []; |
- if (squares.length % 2 == 1) reduced.push(squares.pop()); |
- // Remaining number of elements is even. |
- while(squares.length > 1) reduced.push(squares.pop() + squares.pop()); |
- squares = reduced; |
-} |
- |
-var err_rms = Math.sqrt(squares[0] / test_inputs.length / 2); |
-assertTrue(err_rms < 1E-14); |
- |
-assertEquals(-1, Math.cos({ valueOf: function() { return Math.PI; } })); |
-assertEquals(0, Math.sin("0x00000")); |
-assertTrue(isNaN(Math.sin(Infinity))); |
-assertTrue(isNaN(Math.cos("-Infinity"))); |
-assertEquals("Infinity", String(Math.tan(Math.PI/2))); |
-assertEquals("-Infinity", String(Math.tan(-Math.PI/2))); |