| Index: src/math.js
|
| diff --git a/src/math.js b/src/math.js
|
| index 1f7e327582f2ff68099882fc19f9006a3222c527..efab63a186d4f8b924894dad9c1f0be59ef9846a 100644
|
| --- a/src/math.js
|
| +++ b/src/math.js
|
| @@ -79,7 +79,7 @@ function MathCeil(x) {
|
|
|
| // ECMA 262 - 15.8.2.7
|
| function MathCos(x) {
|
| - return MathCosImpl(x);
|
| + return %_MathCos(TO_NUMBER_INLINE(x));
|
| }
|
|
|
| // ECMA 262 - 15.8.2.8
|
| @@ -185,7 +185,7 @@ function MathRound(x) {
|
|
|
| // ECMA 262 - 15.8.2.16
|
| function MathSin(x) {
|
| - return MathSinImpl(x);
|
| + return %_MathSin(TO_NUMBER_INLINE(x));
|
| }
|
|
|
| // ECMA 262 - 15.8.2.17
|
| @@ -195,7 +195,7 @@ function MathSqrt(x) {
|
|
|
| // ECMA 262 - 15.8.2.18
|
| function MathTan(x) {
|
| - return MathSinImpl(x) / MathCosImpl(x);
|
| + return %_MathTan(TO_NUMBER_INLINE(x));
|
| }
|
|
|
| // Non-standard extension.
|
| @@ -204,68 +204,6 @@ function MathImul(x, y) {
|
| }
|
|
|
|
|
| -var MathSinImpl = function(x) {
|
| - InitTrigonometricFunctions();
|
| - return MathSinImpl(x);
|
| -}
|
| -
|
| -
|
| -var MathCosImpl = function(x) {
|
| - InitTrigonometricFunctions();
|
| - return MathCosImpl(x);
|
| -}
|
| -
|
| -
|
| -function InitTrigonometricFunctions() {
|
| - var samples = 2048; // Table size.
|
| - var pi = 3.1415926535897932;
|
| - var pi_half = pi / 2;
|
| - var inverse_pi_half = 1 / pi_half;
|
| - var two_pi = pi * 2;
|
| - var interval = pi_half / samples;
|
| - var inverse_interval = samples / pi_half;
|
| - var table_sin = new global.Float64Array(samples + 2);
|
| - var table_cos_interval = new global.Float64Array(samples + 2);
|
| -
|
| - %PopulateTrigonometricTable(table_sin, table_cos_interval, samples);
|
| -
|
| - // This implements the following algorithm.
|
| - // 1) Multiplication takes care of to-number conversion.
|
| - // 2) Reduce x to the first quadrant [0, pi/2].
|
| - // Conveniently enough, in case of +/-Infinity, we get NaN.
|
| - // 3) Replace x by (pi/2-x) if x was in the 2nd or 4th quadrant.
|
| - // 4) Do a table lookup for the closest samples to the left and right of x.
|
| - // 5) Find the derivatives at those sampling points by table lookup:
|
| - // dsin(x)/dx = cos(x) = sin(pi/2-x) for x in [0, pi/2].
|
| - // 6) Use cubic spline interpolation to approximate sin(x).
|
| - // 7) Negate the result if x was in the 3rd or 4th quadrant.
|
| - // 8) Get rid of -0 by adding 0.
|
| - MathSinImpl = function(x) {
|
| - var multiple = %_MathFloor(x * inverse_pi_half);
|
| - x = (multiple & 1) * pi_half +
|
| - (1 - ((multiple & 1) << 1)) * (x - multiple * pi_half);
|
| - var double_index = x * inverse_interval;
|
| - var index = double_index | 0;
|
| - var t1 = double_index - index;
|
| - var t2 = 1 - t1;
|
| - var y1 = table_sin[index];
|
| - var y2 = table_sin[index + 1];
|
| - var dy = y2 - y1;
|
| - return (t2 * y1 + t1 * y2 +
|
| - t1 * t2 * ((table_cos_interval[index] - dy) * t2 +
|
| - (dy - table_cos_interval[index + 1]) * t1)) *
|
| - (1 - (multiple & 2)) + 0;
|
| - };
|
| -
|
| - MathCosImpl = function(x) {
|
| - return MathSinImpl(x + pi_half);
|
| - };
|
| -
|
| - %SetInlineBuiltinFlag(MathSinImpl);
|
| - %SetInlineBuiltinFlag(MathCosImpl);
|
| -}
|
| -
|
| -
|
| // -------------------------------------------------------------------
|
|
|
| function SetUpMath() {
|
| @@ -338,10 +276,6 @@ function SetUpMath() {
|
| "min", MathMin,
|
| "imul", MathImul
|
| ));
|
| -
|
| - %SetInlineBuiltinFlag(MathSin);
|
| - %SetInlineBuiltinFlag(MathCos);
|
| - %SetInlineBuiltinFlag(MathTan);
|
| }
|
|
|
| SetUpMath();
|
|
|