Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(246)

Unified Diff: src/ppc/macro-assembler-ppc.cc

Issue 571173003: PowerPC specific sub-directories (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Address comments Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/ppc/macro-assembler-ppc.h ('k') | src/ppc/regexp-macro-assembler-ppc.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/ppc/macro-assembler-ppc.cc
diff --git a/src/ppc/macro-assembler-ppc.cc b/src/ppc/macro-assembler-ppc.cc
new file mode 100644
index 0000000000000000000000000000000000000000..9dc6e42821ce96c381e0d53b680c55eb6a4d026a
--- /dev/null
+++ b/src/ppc/macro-assembler-ppc.cc
@@ -0,0 +1,4818 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <assert.h> // For assert
+#include <limits.h> // For LONG_MIN, LONG_MAX.
+
+#include "src/v8.h"
+
+#if V8_TARGET_ARCH_PPC
+
+#include "src/base/bits.h"
+#include "src/base/division-by-constant.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/cpu-profiler.h"
+#include "src/debug.h"
+#include "src/isolate-inl.h"
+#include "src/runtime/runtime.h"
+
+namespace v8 {
+namespace internal {
+
+MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size)
+ : Assembler(arg_isolate, buffer, size),
+ generating_stub_(false),
+ has_frame_(false) {
+ if (isolate() != NULL) {
+ code_object_ =
+ Handle<Object>(isolate()->heap()->undefined_value(), isolate());
+ }
+}
+
+
+void MacroAssembler::Jump(Register target) {
+ mtctr(target);
+ bctr();
+}
+
+
+void MacroAssembler::JumpToJSEntry(Register target) {
+ Move(ip, target);
+ Jump(ip);
+}
+
+
+void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
+ Condition cond, CRegister cr) {
+ Label skip;
+
+ if (cond != al) b(NegateCondition(cond), &skip, cr);
+
+ DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY);
+
+ mov(ip, Operand(target, rmode));
+ mtctr(ip);
+ bctr();
+
+ bind(&skip);
+}
+
+
+void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
+ CRegister cr) {
+ DCHECK(!RelocInfo::IsCodeTarget(rmode));
+ Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr);
+}
+
+
+void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
+ Condition cond) {
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ // 'code' is always generated ppc code, never THUMB code
+ AllowDeferredHandleDereference embedding_raw_address;
+ Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond);
+}
+
+
+int MacroAssembler::CallSize(Register target) { return 2 * kInstrSize; }
+
+
+void MacroAssembler::Call(Register target) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label start;
+ bind(&start);
+
+ // Statement positions are expected to be recorded when the target
+ // address is loaded.
+ positions_recorder()->WriteRecordedPositions();
+
+ // branch via link register and set LK bit for return point
+ mtctr(target);
+ bctrl();
+
+ DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start));
+}
+
+
+void MacroAssembler::CallJSEntry(Register target) {
+ DCHECK(target.is(ip));
+ Call(target);
+}
+
+
+int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode,
+ Condition cond) {
+ Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode);
+ return (2 + instructions_required_for_mov(mov_operand)) * kInstrSize;
+}
+
+
+int MacroAssembler::CallSizeNotPredictableCodeSize(Address target,
+ RelocInfo::Mode rmode,
+ Condition cond) {
+ return (2 + kMovInstructionsNoConstantPool) * kInstrSize;
+}
+
+
+void MacroAssembler::Call(Address target, RelocInfo::Mode rmode,
+ Condition cond) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(cond == al);
+
+#ifdef DEBUG
+ // Check the expected size before generating code to ensure we assume the same
+ // constant pool availability (e.g., whether constant pool is full or not).
+ int expected_size = CallSize(target, rmode, cond);
+ Label start;
+ bind(&start);
+#endif
+
+ // Statement positions are expected to be recorded when the target
+ // address is loaded.
+ positions_recorder()->WriteRecordedPositions();
+
+ // This can likely be optimized to make use of bc() with 24bit relative
+ //
+ // RecordRelocInfo(x.rmode_, x.imm_);
+ // bc( BA, .... offset, LKset);
+ //
+
+ mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode));
+ mtctr(ip);
+ bctrl();
+
+ DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
+}
+
+
+int MacroAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode,
+ TypeFeedbackId ast_id, Condition cond) {
+ AllowDeferredHandleDereference using_raw_address;
+ return CallSize(reinterpret_cast<Address>(code.location()), rmode, cond);
+}
+
+
+void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
+ TypeFeedbackId ast_id, Condition cond) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+
+#ifdef DEBUG
+ // Check the expected size before generating code to ensure we assume the same
+ // constant pool availability (e.g., whether constant pool is full or not).
+ int expected_size = CallSize(code, rmode, ast_id, cond);
+ Label start;
+ bind(&start);
+#endif
+
+ if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
+ SetRecordedAstId(ast_id);
+ rmode = RelocInfo::CODE_TARGET_WITH_ID;
+ }
+ AllowDeferredHandleDereference using_raw_address;
+ Call(reinterpret_cast<Address>(code.location()), rmode, cond);
+ DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start));
+}
+
+
+void MacroAssembler::Ret(Condition cond) {
+ DCHECK(cond == al);
+ blr();
+}
+
+
+void MacroAssembler::Drop(int count, Condition cond) {
+ DCHECK(cond == al);
+ if (count > 0) {
+ Add(sp, sp, count * kPointerSize, r0);
+ }
+}
+
+
+void MacroAssembler::Ret(int drop, Condition cond) {
+ Drop(drop, cond);
+ Ret(cond);
+}
+
+
+void MacroAssembler::Call(Label* target) { b(target, SetLK); }
+
+
+void MacroAssembler::Push(Handle<Object> handle) {
+ mov(r0, Operand(handle));
+ push(r0);
+}
+
+
+void MacroAssembler::Move(Register dst, Handle<Object> value) {
+ AllowDeferredHandleDereference smi_check;
+ if (value->IsSmi()) {
+ LoadSmiLiteral(dst, reinterpret_cast<Smi*>(*value));
+ } else {
+ DCHECK(value->IsHeapObject());
+ if (isolate()->heap()->InNewSpace(*value)) {
+ Handle<Cell> cell = isolate()->factory()->NewCell(value);
+ mov(dst, Operand(cell));
+ LoadP(dst, FieldMemOperand(dst, Cell::kValueOffset));
+ } else {
+ mov(dst, Operand(value));
+ }
+ }
+}
+
+
+void MacroAssembler::Move(Register dst, Register src, Condition cond) {
+ DCHECK(cond == al);
+ if (!dst.is(src)) {
+ mr(dst, src);
+ }
+}
+
+
+void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) {
+ if (!dst.is(src)) {
+ fmr(dst, src);
+ }
+}
+
+
+void MacroAssembler::MultiPush(RegList regs) {
+ int16_t num_to_push = NumberOfBitsSet(regs);
+ int16_t stack_offset = num_to_push * kPointerSize;
+
+ subi(sp, sp, Operand(stack_offset));
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ StoreP(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+
+void MacroAssembler::MultiPop(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ LoadP(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ addi(sp, sp, Operand(stack_offset));
+}
+
+
+void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index,
+ Condition cond) {
+ DCHECK(cond == al);
+ LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
+}
+
+
+void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index,
+ Condition cond) {
+ DCHECK(cond == al);
+ StoreP(source, MemOperand(kRootRegister, index << kPointerSizeLog2), r0);
+}
+
+
+void MacroAssembler::InNewSpace(Register object, Register scratch,
+ Condition cond, Label* branch) {
+ // N.B. scratch may be same register as object
+ DCHECK(cond == eq || cond == ne);
+ mov(r0, Operand(ExternalReference::new_space_mask(isolate())));
+ and_(scratch, object, r0);
+ mov(r0, Operand(ExternalReference::new_space_start(isolate())));
+ cmp(scratch, r0);
+ b(cond, branch);
+}
+
+
+void MacroAssembler::RecordWriteField(
+ Register object, int offset, Register value, Register dst,
+ LinkRegisterStatus lr_status, SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action, SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ DCHECK(IsAligned(offset, kPointerSize));
+
+ Add(dst, object, offset - kHeapObjectTag, r0);
+ if (emit_debug_code()) {
+ Label ok;
+ andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
+ beq(&ok, cr0);
+ stop("Unaligned cell in write barrier");
+ bind(&ok);
+ }
+
+ RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action,
+ OMIT_SMI_CHECK, pointers_to_here_check_for_value);
+
+ bind(&done);
+
+ // Clobber clobbered input registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4)));
+ mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8)));
+ }
+}
+
+
+// Will clobber 4 registers: object, map, dst, ip. The
+// register 'object' contains a heap object pointer.
+void MacroAssembler::RecordWriteForMap(Register object, Register map,
+ Register dst,
+ LinkRegisterStatus lr_status,
+ SaveFPRegsMode fp_mode) {
+ if (emit_debug_code()) {
+ LoadP(dst, FieldMemOperand(map, HeapObject::kMapOffset));
+ Cmpi(dst, Operand(isolate()->factory()->meta_map()), r0);
+ Check(eq, kWrongAddressOrValuePassedToRecordWrite);
+ }
+
+ if (!FLAG_incremental_marking) {
+ return;
+ }
+
+ if (emit_debug_code()) {
+ LoadP(ip, FieldMemOperand(object, HeapObject::kMapOffset));
+ cmp(ip, map);
+ Check(eq, kWrongAddressOrValuePassedToRecordWrite);
+ }
+
+ Label done;
+
+ // A single check of the map's pages interesting flag suffices, since it is
+ // only set during incremental collection, and then it's also guaranteed that
+ // the from object's page's interesting flag is also set. This optimization
+ // relies on the fact that maps can never be in new space.
+ CheckPageFlag(map,
+ map, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
+
+ addi(dst, object, Operand(HeapObject::kMapOffset - kHeapObjectTag));
+ if (emit_debug_code()) {
+ Label ok;
+ andi(r0, dst, Operand((1 << kPointerSizeLog2) - 1));
+ beq(&ok, cr0);
+ stop("Unaligned cell in write barrier");
+ bind(&ok);
+ }
+
+ // Record the actual write.
+ if (lr_status == kLRHasNotBeenSaved) {
+ mflr(r0);
+ push(r0);
+ }
+ RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
+ fp_mode);
+ CallStub(&stub);
+ if (lr_status == kLRHasNotBeenSaved) {
+ pop(r0);
+ mtlr(r0);
+ }
+
+ bind(&done);
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, dst);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 12)));
+ mov(map, Operand(bit_cast<intptr_t>(kZapValue + 16)));
+ }
+}
+
+
+// Will clobber 4 registers: object, address, scratch, ip. The
+// register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(
+ Register object, Register address, Register value,
+ LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action, SmiCheck smi_check,
+ PointersToHereCheck pointers_to_here_check_for_value) {
+ DCHECK(!object.is(value));
+ if (emit_debug_code()) {
+ LoadP(r0, MemOperand(address));
+ cmp(r0, value);
+ Check(eq, kWrongAddressOrValuePassedToRecordWrite);
+ }
+
+ if (remembered_set_action == OMIT_REMEMBERED_SET &&
+ !FLAG_incremental_marking) {
+ return;
+ }
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of smis and stores into the young generation.
+ Label done;
+
+ if (smi_check == INLINE_SMI_CHECK) {
+ JumpIfSmi(value, &done);
+ }
+
+ if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
+ CheckPageFlag(value,
+ value, // Used as scratch.
+ MemoryChunk::kPointersToHereAreInterestingMask, eq, &done);
+ }
+ CheckPageFlag(object,
+ value, // Used as scratch.
+ MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done);
+
+ // Record the actual write.
+ if (lr_status == kLRHasNotBeenSaved) {
+ mflr(r0);
+ push(r0);
+ }
+ RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
+ fp_mode);
+ CallStub(&stub);
+ if (lr_status == kLRHasNotBeenSaved) {
+ pop(r0);
+ mtlr(r0);
+ }
+
+ bind(&done);
+
+ // Count number of write barriers in generated code.
+ isolate()->counters()->write_barriers_static()->Increment();
+ IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip,
+ value);
+
+ // Clobber clobbered registers when running with the debug-code flag
+ // turned on to provoke errors.
+ if (emit_debug_code()) {
+ mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12)));
+ mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16)));
+ }
+}
+
+
+void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
+ Register address, Register scratch,
+ SaveFPRegsMode fp_mode,
+ RememberedSetFinalAction and_then) {
+ Label done;
+ if (emit_debug_code()) {
+ Label ok;
+ JumpIfNotInNewSpace(object, scratch, &ok);
+ stop("Remembered set pointer is in new space");
+ bind(&ok);
+ }
+ // Load store buffer top.
+ ExternalReference store_buffer =
+ ExternalReference::store_buffer_top(isolate());
+ mov(ip, Operand(store_buffer));
+ LoadP(scratch, MemOperand(ip));
+ // Store pointer to buffer and increment buffer top.
+ StoreP(address, MemOperand(scratch));
+ addi(scratch, scratch, Operand(kPointerSize));
+ // Write back new top of buffer.
+ StoreP(scratch, MemOperand(ip));
+ // Call stub on end of buffer.
+ // Check for end of buffer.
+ mov(r0, Operand(StoreBuffer::kStoreBufferOverflowBit));
+ and_(r0, scratch, r0, SetRC);
+
+ if (and_then == kFallThroughAtEnd) {
+ beq(&done, cr0);
+ } else {
+ DCHECK(and_then == kReturnAtEnd);
+ beq(&done, cr0);
+ }
+ mflr(r0);
+ push(r0);
+ StoreBufferOverflowStub store_buffer_overflow(isolate(), fp_mode);
+ CallStub(&store_buffer_overflow);
+ pop(r0);
+ mtlr(r0);
+ bind(&done);
+ if (and_then == kReturnAtEnd) {
+ Ret();
+ }
+}
+
+
+void MacroAssembler::PushFixedFrame(Register marker_reg) {
+ mflr(r0);
+#if V8_OOL_CONSTANT_POOL
+ if (marker_reg.is_valid()) {
+ Push(r0, fp, kConstantPoolRegister, cp, marker_reg);
+ } else {
+ Push(r0, fp, kConstantPoolRegister, cp);
+ }
+#else
+ if (marker_reg.is_valid()) {
+ Push(r0, fp, cp, marker_reg);
+ } else {
+ Push(r0, fp, cp);
+ }
+#endif
+}
+
+
+void MacroAssembler::PopFixedFrame(Register marker_reg) {
+#if V8_OOL_CONSTANT_POOL
+ if (marker_reg.is_valid()) {
+ Pop(r0, fp, kConstantPoolRegister, cp, marker_reg);
+ } else {
+ Pop(r0, fp, kConstantPoolRegister, cp);
+ }
+#else
+ if (marker_reg.is_valid()) {
+ Pop(r0, fp, cp, marker_reg);
+ } else {
+ Pop(r0, fp, cp);
+ }
+#endif
+ mtlr(r0);
+}
+
+
+// Push and pop all registers that can hold pointers.
+void MacroAssembler::PushSafepointRegisters() {
+ // Safepoints expect a block of kNumSafepointRegisters values on the
+ // stack, so adjust the stack for unsaved registers.
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ DCHECK(num_unsaved >= 0);
+ if (num_unsaved > 0) {
+ subi(sp, sp, Operand(num_unsaved * kPointerSize));
+ }
+ MultiPush(kSafepointSavedRegisters);
+}
+
+
+void MacroAssembler::PopSafepointRegisters() {
+ const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
+ MultiPop(kSafepointSavedRegisters);
+ if (num_unsaved > 0) {
+ addi(sp, sp, Operand(num_unsaved * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) {
+ StoreP(src, SafepointRegisterSlot(dst));
+}
+
+
+void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) {
+ LoadP(dst, SafepointRegisterSlot(src));
+}
+
+
+int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
+ // The registers are pushed starting with the highest encoding,
+ // which means that lowest encodings are closest to the stack pointer.
+ RegList regs = kSafepointSavedRegisters;
+ int index = 0;
+
+ DCHECK(reg_code >= 0 && reg_code < kNumRegisters);
+
+ for (int16_t i = 0; i < reg_code; i++) {
+ if ((regs & (1 << i)) != 0) {
+ index++;
+ }
+ }
+
+ return index;
+}
+
+
+MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) {
+ return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize);
+}
+
+
+MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) {
+ // General purpose registers are pushed last on the stack.
+ int doubles_size = DoubleRegister::NumAllocatableRegisters() * kDoubleSize;
+ int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize;
+ return MemOperand(sp, doubles_size + register_offset);
+}
+
+
+void MacroAssembler::CanonicalizeNaN(const DoubleRegister dst,
+ const DoubleRegister src) {
+ Label done;
+
+ // Test for NaN
+ fcmpu(src, src);
+
+ if (dst.is(src)) {
+ bordered(&done);
+ } else {
+ Label is_nan;
+ bunordered(&is_nan);
+ fmr(dst, src);
+ b(&done);
+ bind(&is_nan);
+ }
+
+ // Replace with canonical NaN.
+ double nan_value = FixedDoubleArray::canonical_not_the_hole_nan_as_double();
+ LoadDoubleLiteral(dst, nan_value, r0);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::ConvertIntToDouble(Register src,
+ DoubleRegister double_dst) {
+ MovIntToDouble(double_dst, src, r0);
+ fcfid(double_dst, double_dst);
+}
+
+
+void MacroAssembler::ConvertUnsignedIntToDouble(Register src,
+ DoubleRegister double_dst) {
+ MovUnsignedIntToDouble(double_dst, src, r0);
+ fcfid(double_dst, double_dst);
+}
+
+
+void MacroAssembler::ConvertIntToFloat(const DoubleRegister dst,
+ const Register src,
+ const Register int_scratch) {
+ MovIntToDouble(dst, src, int_scratch);
+ fcfid(dst, dst);
+ frsp(dst, dst);
+}
+
+
+void MacroAssembler::ConvertDoubleToInt64(const DoubleRegister double_input,
+#if !V8_TARGET_ARCH_PPC64
+ const Register dst_hi,
+#endif
+ const Register dst,
+ const DoubleRegister double_dst,
+ FPRoundingMode rounding_mode) {
+ if (rounding_mode == kRoundToZero) {
+ fctidz(double_dst, double_input);
+ } else {
+ SetRoundingMode(rounding_mode);
+ fctid(double_dst, double_input);
+ ResetRoundingMode();
+ }
+
+ MovDoubleToInt64(
+#if !V8_TARGET_ARCH_PPC64
+ dst_hi,
+#endif
+ dst, double_dst);
+}
+
+
+#if V8_OOL_CONSTANT_POOL
+void MacroAssembler::LoadConstantPoolPointerRegister(
+ CodeObjectAccessMethod access_method, int ip_code_entry_delta) {
+ Register base;
+ int constant_pool_offset = Code::kConstantPoolOffset - Code::kHeaderSize;
+ if (access_method == CAN_USE_IP) {
+ base = ip;
+ constant_pool_offset += ip_code_entry_delta;
+ } else {
+ DCHECK(access_method == CONSTRUCT_INTERNAL_REFERENCE);
+ base = kConstantPoolRegister;
+ ConstantPoolUnavailableScope constant_pool_unavailable(this);
+
+ // CheckBuffer() is called too frequently. This will pre-grow
+ // the buffer if needed to avoid spliting the relocation and instructions
+ EnsureSpaceFor(kMovInstructionsNoConstantPool * kInstrSize);
+
+ uintptr_t code_start = reinterpret_cast<uintptr_t>(pc_) - pc_offset();
+ mov(base, Operand(code_start, RelocInfo::INTERNAL_REFERENCE));
+ }
+ LoadP(kConstantPoolRegister, MemOperand(base, constant_pool_offset));
+}
+#endif
+
+
+void MacroAssembler::StubPrologue(int prologue_offset) {
+ LoadSmiLiteral(r11, Smi::FromInt(StackFrame::STUB));
+ PushFixedFrame(r11);
+ // Adjust FP to point to saved FP.
+ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+#if V8_OOL_CONSTANT_POOL
+ // ip contains prologue address
+ LoadConstantPoolPointerRegister(CAN_USE_IP, -prologue_offset);
+ set_ool_constant_pool_available(true);
+#endif
+}
+
+
+void MacroAssembler::Prologue(bool code_pre_aging, int prologue_offset) {
+ {
+ PredictableCodeSizeScope predictible_code_size_scope(
+ this, kNoCodeAgeSequenceLength);
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(this);
+ // The following instructions must remain together and unmodified
+ // for code aging to work properly.
+ if (code_pre_aging) {
+ // Pre-age the code.
+ // This matches the code found in PatchPlatformCodeAge()
+ Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
+ intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
+ // Don't use Call -- we need to preserve ip and lr
+ nop(); // marker to detect sequence (see IsOld)
+ mov(r3, Operand(target));
+ Jump(r3);
+ for (int i = 0; i < kCodeAgingSequenceNops; i++) {
+ nop();
+ }
+ } else {
+ // This matches the code found in GetNoCodeAgeSequence()
+ PushFixedFrame(r4);
+ // Adjust fp to point to saved fp.
+ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+ for (int i = 0; i < kNoCodeAgeSequenceNops; i++) {
+ nop();
+ }
+ }
+ }
+#if V8_OOL_CONSTANT_POOL
+ // ip contains prologue address
+ LoadConstantPoolPointerRegister(CAN_USE_IP, -prologue_offset);
+ set_ool_constant_pool_available(true);
+#endif
+}
+
+
+void MacroAssembler::EnterFrame(StackFrame::Type type,
+ bool load_constant_pool_pointer_reg) {
+ if (FLAG_enable_ool_constant_pool && load_constant_pool_pointer_reg) {
+ PushFixedFrame();
+#if V8_OOL_CONSTANT_POOL
+ // This path should not rely on ip containing code entry.
+ LoadConstantPoolPointerRegister(CONSTRUCT_INTERNAL_REFERENCE);
+#endif
+ LoadSmiLiteral(ip, Smi::FromInt(type));
+ push(ip);
+ } else {
+ LoadSmiLiteral(ip, Smi::FromInt(type));
+ PushFixedFrame(ip);
+ }
+ // Adjust FP to point to saved FP.
+ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
+
+ mov(r0, Operand(CodeObject()));
+ push(r0);
+}
+
+
+int MacroAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) {
+#if V8_OOL_CONSTANT_POOL
+ ConstantPoolUnavailableScope constant_pool_unavailable(this);
+#endif
+ // r3: preserved
+ // r4: preserved
+ // r5: preserved
+
+ // Drop the execution stack down to the frame pointer and restore
+ // the caller frame pointer, return address and constant pool pointer.
+ int frame_ends;
+ LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset));
+ LoadP(ip, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
+#if V8_OOL_CONSTANT_POOL
+ const int exitOffset = ExitFrameConstants::kConstantPoolOffset;
+ const int standardOffset = StandardFrameConstants::kConstantPoolOffset;
+ const int offset = ((type == StackFrame::EXIT) ? exitOffset : standardOffset);
+ LoadP(kConstantPoolRegister, MemOperand(fp, offset));
+#endif
+ mtlr(r0);
+ frame_ends = pc_offset();
+ Add(sp, fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment, r0);
+ mr(fp, ip);
+ return frame_ends;
+}
+
+
+// ExitFrame layout (probably wrongish.. needs updating)
+//
+// SP -> previousSP
+// LK reserved
+// code
+// sp_on_exit (for debug?)
+// oldSP->prev SP
+// LK
+// <parameters on stack>
+
+// Prior to calling EnterExitFrame, we've got a bunch of parameters
+// on the stack that we need to wrap a real frame around.. so first
+// we reserve a slot for LK and push the previous SP which is captured
+// in the fp register (r31)
+// Then - we buy a new frame
+
+void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) {
+ // Set up the frame structure on the stack.
+ DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement);
+ DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset);
+ DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset);
+ DCHECK(stack_space > 0);
+
+ // This is an opportunity to build a frame to wrap
+ // all of the pushes that have happened inside of V8
+ // since we were called from C code
+
+ // replicate ARM frame - TODO make this more closely follow PPC ABI
+ mflr(r0);
+ Push(r0, fp);
+ mr(fp, sp);
+ // Reserve room for saved entry sp and code object.
+ subi(sp, sp, Operand(ExitFrameConstants::kFrameSize));
+
+ if (emit_debug_code()) {
+ li(r8, Operand::Zero());
+ StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset));
+ }
+#if V8_OOL_CONSTANT_POOL
+ StoreP(kConstantPoolRegister,
+ MemOperand(fp, ExitFrameConstants::kConstantPoolOffset));
+#endif
+ mov(r8, Operand(CodeObject()));
+ StoreP(r8, MemOperand(fp, ExitFrameConstants::kCodeOffset));
+
+ // Save the frame pointer and the context in top.
+ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+ StoreP(fp, MemOperand(r8));
+ mov(r8, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+ StoreP(cp, MemOperand(r8));
+
+ // Optionally save all volatile double registers.
+ if (save_doubles) {
+ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
+ // Note that d0 will be accessible at
+ // fp - ExitFrameConstants::kFrameSize -
+ // kNumVolatileRegisters * kDoubleSize,
+ // since the sp slot and code slot were pushed after the fp.
+ }
+
+ addi(sp, sp, Operand(-stack_space * kPointerSize));
+
+ // Allocate and align the frame preparing for calling the runtime
+ // function.
+ const int frame_alignment = ActivationFrameAlignment();
+ if (frame_alignment > kPointerSize) {
+ DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
+ }
+ li(r0, Operand::Zero());
+ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
+
+ // Set the exit frame sp value to point just before the return address
+ // location.
+ addi(r8, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
+ StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+
+void MacroAssembler::InitializeNewString(Register string, Register length,
+ Heap::RootListIndex map_index,
+ Register scratch1, Register scratch2) {
+ SmiTag(scratch1, length);
+ LoadRoot(scratch2, map_index);
+ StoreP(scratch1, FieldMemOperand(string, String::kLengthOffset), r0);
+ li(scratch1, Operand(String::kEmptyHashField));
+ StoreP(scratch2, FieldMemOperand(string, HeapObject::kMapOffset), r0);
+ StoreP(scratch1, FieldMemOperand(string, String::kHashFieldSlot), r0);
+}
+
+
+int MacroAssembler::ActivationFrameAlignment() {
+#if !defined(USE_SIMULATOR)
+ // Running on the real platform. Use the alignment as mandated by the local
+ // environment.
+ // Note: This will break if we ever start generating snapshots on one PPC
+ // platform for another PPC platform with a different alignment.
+ return base::OS::ActivationFrameAlignment();
+#else // Simulated
+ // If we are using the simulator then we should always align to the expected
+ // alignment. As the simulator is used to generate snapshots we do not know
+ // if the target platform will need alignment, so this is controlled from a
+ // flag.
+ return FLAG_sim_stack_alignment;
+#endif
+}
+
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
+ bool restore_context) {
+#if V8_OOL_CONSTANT_POOL
+ ConstantPoolUnavailableScope constant_pool_unavailable(this);
+#endif
+ // Optionally restore all double registers.
+ if (save_doubles) {
+ // Calculate the stack location of the saved doubles and restore them.
+ const int kNumRegs = DoubleRegister::kNumVolatileRegisters;
+ const int offset =
+ (ExitFrameConstants::kFrameSize + kNumRegs * kDoubleSize);
+ addi(r6, fp, Operand(-offset));
+ RestoreFPRegs(r6, 0, kNumRegs);
+ }
+
+ // Clear top frame.
+ li(r6, Operand::Zero());
+ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
+ StoreP(r6, MemOperand(ip));
+
+ // Restore current context from top and clear it in debug mode.
+ if (restore_context) {
+ mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+ LoadP(cp, MemOperand(ip));
+ }
+#ifdef DEBUG
+ mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate())));
+ StoreP(r6, MemOperand(ip));
+#endif
+
+ // Tear down the exit frame, pop the arguments, and return.
+ LeaveFrame(StackFrame::EXIT);
+
+ if (argument_count.is_valid()) {
+ ShiftLeftImm(argument_count, argument_count, Operand(kPointerSizeLog2));
+ add(sp, sp, argument_count);
+ }
+}
+
+
+void MacroAssembler::MovFromFloatResult(const DoubleRegister dst) {
+ Move(dst, d1);
+}
+
+
+void MacroAssembler::MovFromFloatParameter(const DoubleRegister dst) {
+ Move(dst, d1);
+}
+
+
+void MacroAssembler::InvokePrologue(const ParameterCount& expected,
+ const ParameterCount& actual,
+ Handle<Code> code_constant,
+ Register code_reg, Label* done,
+ bool* definitely_mismatches,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ bool definitely_matches = false;
+ *definitely_mismatches = false;
+ Label regular_invoke;
+
+ // Check whether the expected and actual arguments count match. If not,
+ // setup registers according to contract with ArgumentsAdaptorTrampoline:
+ // r3: actual arguments count
+ // r4: function (passed through to callee)
+ // r5: expected arguments count
+
+ // The code below is made a lot easier because the calling code already sets
+ // up actual and expected registers according to the contract if values are
+ // passed in registers.
+
+ // ARM has some sanity checks as per below, considering add them for PPC
+ // DCHECK(actual.is_immediate() || actual.reg().is(r3));
+ // DCHECK(expected.is_immediate() || expected.reg().is(r5));
+ // DCHECK((!code_constant.is_null() && code_reg.is(no_reg))
+ // || code_reg.is(r6));
+
+ if (expected.is_immediate()) {
+ DCHECK(actual.is_immediate());
+ if (expected.immediate() == actual.immediate()) {
+ definitely_matches = true;
+ } else {
+ mov(r3, Operand(actual.immediate()));
+ const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ if (expected.immediate() == sentinel) {
+ // Don't worry about adapting arguments for builtins that
+ // don't want that done. Skip adaption code by making it look
+ // like we have a match between expected and actual number of
+ // arguments.
+ definitely_matches = true;
+ } else {
+ *definitely_mismatches = true;
+ mov(r5, Operand(expected.immediate()));
+ }
+ }
+ } else {
+ if (actual.is_immediate()) {
+ cmpi(expected.reg(), Operand(actual.immediate()));
+ beq(&regular_invoke);
+ mov(r3, Operand(actual.immediate()));
+ } else {
+ cmp(expected.reg(), actual.reg());
+ beq(&regular_invoke);
+ }
+ }
+
+ if (!definitely_matches) {
+ if (!code_constant.is_null()) {
+ mov(r6, Operand(code_constant));
+ addi(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag));
+ }
+
+ Handle<Code> adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline();
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(adaptor));
+ Call(adaptor);
+ call_wrapper.AfterCall();
+ if (!*definitely_mismatches) {
+ b(done);
+ }
+ } else {
+ Jump(adaptor, RelocInfo::CODE_TARGET);
+ }
+ bind(&regular_invoke);
+ }
+}
+
+
+void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected,
+ const ParameterCount& actual, InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ Label done;
+ bool definitely_mismatches = false;
+ InvokePrologue(expected, actual, Handle<Code>::null(), code, &done,
+ &definitely_mismatches, flag, call_wrapper);
+ if (!definitely_mismatches) {
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(code));
+ CallJSEntry(code);
+ call_wrapper.AfterCall();
+ } else {
+ DCHECK(flag == JUMP_FUNCTION);
+ JumpToJSEntry(code);
+ }
+
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ bind(&done);
+ }
+}
+
+
+void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in r4.
+ DCHECK(fun.is(r4));
+
+ Register expected_reg = r5;
+ Register code_reg = ip;
+
+ LoadP(code_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
+ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
+ LoadWordArith(expected_reg,
+ FieldMemOperand(
+ code_reg, SharedFunctionInfo::kFormalParameterCountOffset));
+#if !defined(V8_TARGET_ARCH_PPC64)
+ SmiUntag(expected_reg);
+#endif
+ LoadP(code_reg, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
+
+ ParameterCount expected(expected_reg);
+ InvokeCode(code_reg, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Register function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a function without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ // Contract with called JS functions requires that function is passed in r4.
+ DCHECK(function.is(r4));
+
+ // Get the function and setup the context.
+ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
+
+ // We call indirectly through the code field in the function to
+ // allow recompilation to take effect without changing any of the
+ // call sites.
+ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
+ InvokeCode(ip, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
+ const ParameterCount& expected,
+ const ParameterCount& actual,
+ InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ Move(r4, function);
+ InvokeFunction(r4, expected, actual, flag, call_wrapper);
+}
+
+
+void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map,
+ Register scratch, Label* fail) {
+ LoadP(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
+ IsInstanceJSObjectType(map, scratch, fail);
+}
+
+
+void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch,
+ Label* fail) {
+ lbz(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ cmpi(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ blt(fail);
+ cmpi(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ bgt(fail);
+}
+
+
+void MacroAssembler::IsObjectJSStringType(Register object, Register scratch,
+ Label* fail) {
+ DCHECK(kNotStringTag != 0);
+
+ LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ andi(r0, scratch, Operand(kIsNotStringMask));
+ bne(fail, cr0);
+}
+
+
+void MacroAssembler::IsObjectNameType(Register object, Register scratch,
+ Label* fail) {
+ LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ cmpi(scratch, Operand(LAST_NAME_TYPE));
+ bgt(fail);
+}
+
+
+void MacroAssembler::DebugBreak() {
+ li(r3, Operand::Zero());
+ mov(r4, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
+ CEntryStub ces(isolate(), 1);
+ DCHECK(AllowThisStubCall(&ces));
+ Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
+}
+
+
+void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
+ int handler_index) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // For the JSEntry handler, we must preserve r1-r7, r0,r8-r15 are available.
+ // We want the stack to look like
+ // sp -> NextOffset
+ // CodeObject
+ // state
+ // context
+ // frame pointer
+
+ // Link the current handler as the next handler.
+ mov(r8, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ LoadP(r0, MemOperand(r8));
+ StorePU(r0, MemOperand(sp, -StackHandlerConstants::kSize));
+ // Set this new handler as the current one.
+ StoreP(sp, MemOperand(r8));
+
+ if (kind == StackHandler::JS_ENTRY) {
+ li(r8, Operand::Zero()); // NULL frame pointer.
+ StoreP(r8, MemOperand(sp, StackHandlerConstants::kFPOffset));
+ LoadSmiLiteral(r8, Smi::FromInt(0)); // Indicates no context.
+ StoreP(r8, MemOperand(sp, StackHandlerConstants::kContextOffset));
+ } else {
+ // still not sure if fp is right
+ StoreP(fp, MemOperand(sp, StackHandlerConstants::kFPOffset));
+ StoreP(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
+ }
+ unsigned state = StackHandler::IndexField::encode(handler_index) |
+ StackHandler::KindField::encode(kind);
+ LoadIntLiteral(r8, state);
+ StoreP(r8, MemOperand(sp, StackHandlerConstants::kStateOffset));
+ mov(r8, Operand(CodeObject()));
+ StoreP(r8, MemOperand(sp, StackHandlerConstants::kCodeOffset));
+}
+
+
+void MacroAssembler::PopTryHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ pop(r4);
+ mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ addi(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
+ StoreP(r4, MemOperand(ip));
+}
+
+
+// PPC - make use of ip as a temporary register
+void MacroAssembler::JumpToHandlerEntry() {
+// Compute the handler entry address and jump to it. The handler table is
+// a fixed array of (smi-tagged) code offsets.
+// r3 = exception, r4 = code object, r5 = state.
+#if V8_OOL_CONSTANT_POOL
+ ConstantPoolUnavailableScope constant_pool_unavailable(this);
+ LoadP(kConstantPoolRegister, FieldMemOperand(r4, Code::kConstantPoolOffset));
+#endif
+ LoadP(r6, FieldMemOperand(r4, Code::kHandlerTableOffset)); // Handler table.
+ addi(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
+ srwi(r5, r5, Operand(StackHandler::kKindWidth)); // Handler index.
+ slwi(ip, r5, Operand(kPointerSizeLog2));
+ add(ip, r6, ip);
+ LoadP(r5, MemOperand(ip)); // Smi-tagged offset.
+ addi(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start.
+ SmiUntag(ip, r5);
+ add(r0, r4, ip);
+ mtctr(r0);
+ bctr();
+}
+
+
+void MacroAssembler::Throw(Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+ Label skip;
+
+ // The exception is expected in r3.
+ if (!value.is(r3)) {
+ mr(r3, value);
+ }
+ // Drop the stack pointer to the top of the top handler.
+ mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ LoadP(sp, MemOperand(r6));
+ // Restore the next handler.
+ pop(r5);
+ StoreP(r5, MemOperand(r6));
+
+ // Get the code object (r4) and state (r5). Restore the context and frame
+ // pointer.
+ pop(r4);
+ pop(r5);
+ pop(cp);
+ pop(fp);
+
+ // If the handler is a JS frame, restore the context to the frame.
+ // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
+ // or cp.
+ cmpi(cp, Operand::Zero());
+ beq(&skip);
+ StoreP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+ bind(&skip);
+
+ JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::ThrowUncatchable(Register value) {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
+
+ // The exception is expected in r3.
+ if (!value.is(r3)) {
+ mr(r3, value);
+ }
+ // Drop the stack pointer to the top of the top stack handler.
+ mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate())));
+ LoadP(sp, MemOperand(r6));
+
+ // Unwind the handlers until the ENTRY handler is found.
+ Label fetch_next, check_kind;
+ b(&check_kind);
+ bind(&fetch_next);
+ LoadP(sp, MemOperand(sp, StackHandlerConstants::kNextOffset));
+
+ bind(&check_kind);
+ STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
+ LoadP(r5, MemOperand(sp, StackHandlerConstants::kStateOffset));
+ andi(r0, r5, Operand(StackHandler::KindField::kMask));
+ bne(&fetch_next, cr0);
+
+ // Set the top handler address to next handler past the top ENTRY handler.
+ pop(r5);
+ StoreP(r5, MemOperand(r6));
+ // Get the code object (r4) and state (r5). Clear the context and frame
+ // pointer (0 was saved in the handler).
+ pop(r4);
+ pop(r5);
+ pop(cp);
+ pop(fp);
+
+ JumpToHandlerEntry();
+}
+
+
+void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
+ Register scratch, Label* miss) {
+ Label same_contexts;
+
+ DCHECK(!holder_reg.is(scratch));
+ DCHECK(!holder_reg.is(ip));
+ DCHECK(!scratch.is(ip));
+
+ // Load current lexical context from the stack frame.
+ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
+// In debug mode, make sure the lexical context is set.
+#ifdef DEBUG
+ cmpi(scratch, Operand::Zero());
+ Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
+#endif
+
+ // Load the native context of the current context.
+ int offset =
+ Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
+ LoadP(scratch, FieldMemOperand(scratch, offset));
+ LoadP(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ // Cannot use ip as a temporary in this verification code. Due to the fact
+ // that ip is clobbered as part of cmp with an object Operand.
+ push(holder_reg); // Temporarily save holder on the stack.
+ // Read the first word and compare to the native_context_map.
+ LoadP(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
+ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
+ cmp(holder_reg, ip);
+ Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
+ pop(holder_reg); // Restore holder.
+ }
+
+ // Check if both contexts are the same.
+ LoadP(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+ cmp(scratch, ip);
+ beq(&same_contexts);
+
+ // Check the context is a native context.
+ if (emit_debug_code()) {
+ // Cannot use ip as a temporary in this verification code. Due to the fact
+ // that ip is clobbered as part of cmp with an object Operand.
+ push(holder_reg); // Temporarily save holder on the stack.
+ mr(holder_reg, ip); // Move ip to its holding place.
+ LoadRoot(ip, Heap::kNullValueRootIndex);
+ cmp(holder_reg, ip);
+ Check(ne, kJSGlobalProxyContextShouldNotBeNull);
+
+ LoadP(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
+ LoadRoot(ip, Heap::kNativeContextMapRootIndex);
+ cmp(holder_reg, ip);
+ Check(eq, kJSGlobalObjectNativeContextShouldBeANativeContext);
+ // Restore ip is not needed. ip is reloaded below.
+ pop(holder_reg); // Restore holder.
+ // Restore ip to holder's context.
+ LoadP(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kNativeContextOffset));
+ }
+
+ // Check that the security token in the calling global object is
+ // compatible with the security token in the receiving global
+ // object.
+ int token_offset =
+ Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize;
+
+ LoadP(scratch, FieldMemOperand(scratch, token_offset));
+ LoadP(ip, FieldMemOperand(ip, token_offset));
+ cmp(scratch, ip);
+ bne(miss);
+
+ bind(&same_contexts);
+}
+
+
+// Compute the hash code from the untagged key. This must be kept in sync with
+// ComputeIntegerHash in utils.h and KeyedLoadGenericStub in
+// code-stub-hydrogen.cc
+void MacroAssembler::GetNumberHash(Register t0, Register scratch) {
+ // First of all we assign the hash seed to scratch.
+ LoadRoot(scratch, Heap::kHashSeedRootIndex);
+ SmiUntag(scratch);
+
+ // Xor original key with a seed.
+ xor_(t0, t0, scratch);
+
+ // Compute the hash code from the untagged key. This must be kept in sync
+ // with ComputeIntegerHash in utils.h.
+ //
+ // hash = ~hash + (hash << 15);
+ notx(scratch, t0);
+ slwi(t0, t0, Operand(15));
+ add(t0, scratch, t0);
+ // hash = hash ^ (hash >> 12);
+ srwi(scratch, t0, Operand(12));
+ xor_(t0, t0, scratch);
+ // hash = hash + (hash << 2);
+ slwi(scratch, t0, Operand(2));
+ add(t0, t0, scratch);
+ // hash = hash ^ (hash >> 4);
+ srwi(scratch, t0, Operand(4));
+ xor_(t0, t0, scratch);
+ // hash = hash * 2057;
+ mr(r0, t0);
+ slwi(scratch, t0, Operand(3));
+ add(t0, t0, scratch);
+ slwi(scratch, r0, Operand(11));
+ add(t0, t0, scratch);
+ // hash = hash ^ (hash >> 16);
+ srwi(scratch, t0, Operand(16));
+ xor_(t0, t0, scratch);
+}
+
+
+void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements,
+ Register key, Register result,
+ Register t0, Register t1,
+ Register t2) {
+ // Register use:
+ //
+ // elements - holds the slow-case elements of the receiver on entry.
+ // Unchanged unless 'result' is the same register.
+ //
+ // key - holds the smi key on entry.
+ // Unchanged unless 'result' is the same register.
+ //
+ // result - holds the result on exit if the load succeeded.
+ // Allowed to be the same as 'key' or 'result'.
+ // Unchanged on bailout so 'key' or 'result' can be used
+ // in further computation.
+ //
+ // Scratch registers:
+ //
+ // t0 - holds the untagged key on entry and holds the hash once computed.
+ //
+ // t1 - used to hold the capacity mask of the dictionary
+ //
+ // t2 - used for the index into the dictionary.
+ Label done;
+
+ GetNumberHash(t0, t1);
+
+ // Compute the capacity mask.
+ LoadP(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset));
+ SmiUntag(t1);
+ subi(t1, t1, Operand(1));
+
+ // Generate an unrolled loop that performs a few probes before giving up.
+ for (int i = 0; i < kNumberDictionaryProbes; i++) {
+ // Use t2 for index calculations and keep the hash intact in t0.
+ mr(t2, t0);
+ // Compute the masked index: (hash + i + i * i) & mask.
+ if (i > 0) {
+ addi(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i)));
+ }
+ and_(t2, t2, t1);
+
+ // Scale the index by multiplying by the element size.
+ DCHECK(SeededNumberDictionary::kEntrySize == 3);
+ slwi(ip, t2, Operand(1));
+ add(t2, t2, ip); // t2 = t2 * 3
+
+ // Check if the key is identical to the name.
+ slwi(t2, t2, Operand(kPointerSizeLog2));
+ add(t2, elements, t2);
+ LoadP(ip,
+ FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset));
+ cmp(key, ip);
+ if (i != kNumberDictionaryProbes - 1) {
+ beq(&done);
+ } else {
+ bne(miss);
+ }
+ }
+
+ bind(&done);
+ // Check that the value is a normal property.
+ // t2: elements + (index * kPointerSize)
+ const int kDetailsOffset =
+ SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
+ LoadP(t1, FieldMemOperand(t2, kDetailsOffset));
+ LoadSmiLiteral(ip, Smi::FromInt(PropertyDetails::TypeField::kMask));
+ and_(r0, t1, ip, SetRC);
+ bne(miss, cr0);
+
+ // Get the value at the masked, scaled index and return.
+ const int kValueOffset =
+ SeededNumberDictionary::kElementsStartOffset + kPointerSize;
+ LoadP(result, FieldMemOperand(t2, kValueOffset));
+}
+
+
+void MacroAssembler::Allocate(int object_size, Register result,
+ Register scratch1, Register scratch2,
+ Label* gc_required, AllocationFlags flags) {
+ DCHECK(object_size <= Page::kMaxRegularHeapObjectSize);
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ li(result, Operand(0x7091));
+ li(scratch1, Operand(0x7191));
+ li(scratch2, Operand(0x7291));
+ }
+ b(gc_required);
+ return;
+ }
+
+ DCHECK(!result.is(scratch1));
+ DCHECK(!result.is(scratch2));
+ DCHECK(!scratch1.is(scratch2));
+ DCHECK(!scratch1.is(ip));
+ DCHECK(!scratch2.is(ip));
+
+ // Make object size into bytes.
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ object_size *= kPointerSize;
+ }
+ DCHECK_EQ(0, static_cast<int>(object_size & kObjectAlignmentMask));
+
+ // Check relative positions of allocation top and limit addresses.
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+
+ intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
+ intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
+ DCHECK((limit - top) == kPointerSize);
+
+ // Set up allocation top address register.
+ Register topaddr = scratch1;
+ mov(topaddr, Operand(allocation_top));
+
+ // This code stores a temporary value in ip. This is OK, as the code below
+ // does not need ip for implicit literal generation.
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and allocation limit into ip.
+ LoadP(result, MemOperand(topaddr));
+ LoadP(ip, MemOperand(topaddr, kPointerSize));
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry. ip is used
+ // immediately below so this use of ip does not cause difference with
+ // respect to register content between debug and release mode.
+ LoadP(ip, MemOperand(topaddr));
+ cmp(result, ip);
+ Check(eq, kUnexpectedAllocationTop);
+ }
+ // Load allocation limit into ip. Result already contains allocation top.
+ LoadP(ip, MemOperand(topaddr, limit - top), r0);
+ }
+
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+#if V8_TARGET_ARCH_PPC64
+ STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
+#else
+ STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
+ andi(scratch2, result, Operand(kDoubleAlignmentMask));
+ Label aligned;
+ beq(&aligned, cr0);
+ if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+ cmpl(result, ip);
+ bge(gc_required);
+ }
+ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
+ stw(scratch2, MemOperand(result));
+ addi(result, result, Operand(kDoubleSize / 2));
+ bind(&aligned);
+#endif
+ }
+
+ // Calculate new top and bail out if new space is exhausted. Use result
+ // to calculate the new top.
+ sub(r0, ip, result);
+ if (is_int16(object_size)) {
+ cmpi(r0, Operand(object_size));
+ blt(gc_required);
+ addi(scratch2, result, Operand(object_size));
+ } else {
+ Cmpi(r0, Operand(object_size), scratch2);
+ blt(gc_required);
+ add(scratch2, result, scratch2);
+ }
+ StoreP(scratch2, MemOperand(topaddr));
+
+ // Tag object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ addi(result, result, Operand(kHeapObjectTag));
+ }
+}
+
+
+void MacroAssembler::Allocate(Register object_size, Register result,
+ Register scratch1, Register scratch2,
+ Label* gc_required, AllocationFlags flags) {
+ if (!FLAG_inline_new) {
+ if (emit_debug_code()) {
+ // Trash the registers to simulate an allocation failure.
+ li(result, Operand(0x7091));
+ li(scratch1, Operand(0x7191));
+ li(scratch2, Operand(0x7291));
+ }
+ b(gc_required);
+ return;
+ }
+
+ // Assert that the register arguments are different and that none of
+ // them are ip. ip is used explicitly in the code generated below.
+ DCHECK(!result.is(scratch1));
+ DCHECK(!result.is(scratch2));
+ DCHECK(!scratch1.is(scratch2));
+ DCHECK(!object_size.is(ip));
+ DCHECK(!result.is(ip));
+ DCHECK(!scratch1.is(ip));
+ DCHECK(!scratch2.is(ip));
+
+ // Check relative positions of allocation top and limit addresses.
+ ExternalReference allocation_top =
+ AllocationUtils::GetAllocationTopReference(isolate(), flags);
+ ExternalReference allocation_limit =
+ AllocationUtils::GetAllocationLimitReference(isolate(), flags);
+ intptr_t top = reinterpret_cast<intptr_t>(allocation_top.address());
+ intptr_t limit = reinterpret_cast<intptr_t>(allocation_limit.address());
+ DCHECK((limit - top) == kPointerSize);
+
+ // Set up allocation top address.
+ Register topaddr = scratch1;
+ mov(topaddr, Operand(allocation_top));
+
+ // This code stores a temporary value in ip. This is OK, as the code below
+ // does not need ip for implicit literal generation.
+ if ((flags & RESULT_CONTAINS_TOP) == 0) {
+ // Load allocation top into result and allocation limit into ip.
+ LoadP(result, MemOperand(topaddr));
+ LoadP(ip, MemOperand(topaddr, kPointerSize));
+ } else {
+ if (emit_debug_code()) {
+ // Assert that result actually contains top on entry. ip is used
+ // immediately below so this use of ip does not cause difference with
+ // respect to register content between debug and release mode.
+ LoadP(ip, MemOperand(topaddr));
+ cmp(result, ip);
+ Check(eq, kUnexpectedAllocationTop);
+ }
+ // Load allocation limit into ip. Result already contains allocation top.
+ LoadP(ip, MemOperand(topaddr, limit - top));
+ }
+
+ if ((flags & DOUBLE_ALIGNMENT) != 0) {
+ // Align the next allocation. Storing the filler map without checking top is
+ // safe in new-space because the limit of the heap is aligned there.
+ DCHECK((flags & PRETENURE_OLD_POINTER_SPACE) == 0);
+#if V8_TARGET_ARCH_PPC64
+ STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
+#else
+ STATIC_ASSERT(kPointerAlignment * 2 == kDoubleAlignment);
+ andi(scratch2, result, Operand(kDoubleAlignmentMask));
+ Label aligned;
+ beq(&aligned, cr0);
+ if ((flags & PRETENURE_OLD_DATA_SPACE) != 0) {
+ cmpl(result, ip);
+ bge(gc_required);
+ }
+ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map()));
+ stw(scratch2, MemOperand(result));
+ addi(result, result, Operand(kDoubleSize / 2));
+ bind(&aligned);
+#endif
+ }
+
+ // Calculate new top and bail out if new space is exhausted. Use result
+ // to calculate the new top. Object size may be in words so a shift is
+ // required to get the number of bytes.
+ sub(r0, ip, result);
+ if ((flags & SIZE_IN_WORDS) != 0) {
+ ShiftLeftImm(scratch2, object_size, Operand(kPointerSizeLog2));
+ cmp(r0, scratch2);
+ blt(gc_required);
+ add(scratch2, result, scratch2);
+ } else {
+ cmp(r0, object_size);
+ blt(gc_required);
+ add(scratch2, result, object_size);
+ }
+
+ // Update allocation top. result temporarily holds the new top.
+ if (emit_debug_code()) {
+ andi(r0, scratch2, Operand(kObjectAlignmentMask));
+ Check(eq, kUnalignedAllocationInNewSpace, cr0);
+ }
+ StoreP(scratch2, MemOperand(topaddr));
+
+ // Tag object if requested.
+ if ((flags & TAG_OBJECT) != 0) {
+ addi(result, result, Operand(kHeapObjectTag));
+ }
+}
+
+
+void MacroAssembler::UndoAllocationInNewSpace(Register object,
+ Register scratch) {
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+
+ // Make sure the object has no tag before resetting top.
+ mov(r0, Operand(~kHeapObjectTagMask));
+ and_(object, object, r0);
+// was.. and_(object, object, Operand(~kHeapObjectTagMask));
+#ifdef DEBUG
+ // Check that the object un-allocated is below the current top.
+ mov(scratch, Operand(new_space_allocation_top));
+ LoadP(scratch, MemOperand(scratch));
+ cmp(object, scratch);
+ Check(lt, kUndoAllocationOfNonAllocatedMemory);
+#endif
+ // Write the address of the object to un-allocate as the current top.
+ mov(scratch, Operand(new_space_allocation_top));
+ StoreP(object, MemOperand(scratch));
+}
+
+
+void MacroAssembler::AllocateTwoByteString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ DCHECK((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ slwi(scratch1, length, Operand(1)); // Length in bytes, not chars.
+ addi(scratch1, scratch1,
+ Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize));
+ mov(r0, Operand(~kObjectAlignmentMask));
+ and_(scratch1, scratch1, r0);
+
+ // Allocate two-byte string in new space.
+ Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateOneByteString(Register result, Register length,
+ Register scratch1, Register scratch2,
+ Register scratch3,
+ Label* gc_required) {
+ // Calculate the number of bytes needed for the characters in the string while
+ // observing object alignment.
+ DCHECK((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
+ DCHECK(kCharSize == 1);
+ addi(scratch1, length,
+ Operand(kObjectAlignmentMask + SeqOneByteString::kHeaderSize));
+ li(r0, Operand(~kObjectAlignmentMask));
+ and_(scratch1, scratch1, r0);
+
+ // Allocate one-byte string in new space.
+ Allocate(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT);
+
+ // Set the map, length and hash field.
+ InitializeNewString(result, length, Heap::kOneByteStringMapRootIndex,
+ scratch1, scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteConsString(Register result, Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateOneByteConsString(Register result, Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result, length, Heap::kConsOneByteStringMapRootIndex,
+ scratch1, scratch2);
+}
+
+
+void MacroAssembler::AllocateTwoByteSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1,
+ scratch2);
+}
+
+
+void MacroAssembler::AllocateOneByteSlicedString(Register result,
+ Register length,
+ Register scratch1,
+ Register scratch2,
+ Label* gc_required) {
+ Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
+ TAG_OBJECT);
+
+ InitializeNewString(result, length, Heap::kSlicedOneByteStringMapRootIndex,
+ scratch1, scratch2);
+}
+
+
+void MacroAssembler::CompareObjectType(Register object, Register map,
+ Register type_reg, InstanceType type) {
+ const Register temp = type_reg.is(no_reg) ? r0 : type_reg;
+
+ LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(map, temp, type);
+}
+
+
+void MacroAssembler::CheckObjectTypeRange(Register object, Register map,
+ InstanceType min_type,
+ InstanceType max_type,
+ Label* false_label) {
+ STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
+ STATIC_ASSERT(LAST_TYPE < 256);
+ LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset));
+ lbz(ip, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ subi(ip, ip, Operand(min_type));
+ cmpli(ip, Operand(max_type - min_type));
+ bgt(false_label);
+}
+
+
+void MacroAssembler::CompareInstanceType(Register map, Register type_reg,
+ InstanceType type) {
+ STATIC_ASSERT(Map::kInstanceTypeOffset < 4096);
+ STATIC_ASSERT(LAST_TYPE < 256);
+ lbz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ cmpi(type_reg, Operand(type));
+}
+
+
+void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) {
+ DCHECK(!obj.is(r0));
+ LoadRoot(r0, index);
+ cmp(obj, r0);
+}
+
+
+void MacroAssembler::CheckFastElements(Register map, Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ STATIC_ASSERT(Map::kMaximumBitField2FastHoleyElementValue < 0x8000);
+ cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
+ bgt(fail);
+}
+
+
+void MacroAssembler::CheckFastObjectElements(Register map, Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ STATIC_ASSERT(FAST_ELEMENTS == 2);
+ STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
+ lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+ ble(fail);
+ cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue));
+ bgt(fail);
+}
+
+
+void MacroAssembler::CheckFastSmiElements(Register map, Register scratch,
+ Label* fail) {
+ STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
+ STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
+ lbz(scratch, FieldMemOperand(map, Map::kBitField2Offset));
+ cmpli(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
+ bgt(fail);
+}
+
+
+void MacroAssembler::StoreNumberToDoubleElements(
+ Register value_reg, Register key_reg, Register elements_reg,
+ Register scratch1, DoubleRegister double_scratch, Label* fail,
+ int elements_offset) {
+ Label smi_value, store;
+
+ // Handle smi values specially.
+ JumpIfSmi(value_reg, &smi_value);
+
+ // Ensure that the object is a heap number
+ CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail,
+ DONT_DO_SMI_CHECK);
+
+ lfd(double_scratch, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
+ // Force a canonical NaN.
+ CanonicalizeNaN(double_scratch);
+ b(&store);
+
+ bind(&smi_value);
+ SmiToDouble(double_scratch, value_reg);
+
+ bind(&store);
+ SmiToDoubleArrayOffset(scratch1, key_reg);
+ add(scratch1, elements_reg, scratch1);
+ stfd(double_scratch, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize -
+ elements_offset));
+}
+
+
+void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch) {
+ DCHECK(!dst.is(overflow_dst));
+ DCHECK(!dst.is(scratch));
+ DCHECK(!overflow_dst.is(scratch));
+ DCHECK(!overflow_dst.is(left));
+ DCHECK(!overflow_dst.is(right));
+
+ // C = A+B; C overflows if A/B have same sign and C has diff sign than A
+ if (dst.is(left)) {
+ mr(scratch, left); // Preserve left.
+ add(dst, left, right); // Left is overwritten.
+ xor_(scratch, dst, scratch); // Original left.
+ xor_(overflow_dst, dst, right);
+ } else if (dst.is(right)) {
+ mr(scratch, right); // Preserve right.
+ add(dst, left, right); // Right is overwritten.
+ xor_(scratch, dst, scratch); // Original right.
+ xor_(overflow_dst, dst, left);
+ } else {
+ add(dst, left, right);
+ xor_(overflow_dst, dst, left);
+ xor_(scratch, dst, right);
+ }
+ and_(overflow_dst, scratch, overflow_dst, SetRC);
+}
+
+
+void MacroAssembler::AddAndCheckForOverflow(Register dst, Register left,
+ intptr_t right,
+ Register overflow_dst,
+ Register scratch) {
+ Register original_left = left;
+ DCHECK(!dst.is(overflow_dst));
+ DCHECK(!dst.is(scratch));
+ DCHECK(!overflow_dst.is(scratch));
+ DCHECK(!overflow_dst.is(left));
+
+ // C = A+B; C overflows if A/B have same sign and C has diff sign than A
+ if (dst.is(left)) {
+ // Preserve left.
+ original_left = overflow_dst;
+ mr(original_left, left);
+ }
+ Add(dst, left, right, scratch);
+ xor_(overflow_dst, dst, original_left);
+ if (right >= 0) {
+ and_(overflow_dst, overflow_dst, dst, SetRC);
+ } else {
+ andc(overflow_dst, overflow_dst, dst, SetRC);
+ }
+}
+
+
+void MacroAssembler::SubAndCheckForOverflow(Register dst, Register left,
+ Register right,
+ Register overflow_dst,
+ Register scratch) {
+ DCHECK(!dst.is(overflow_dst));
+ DCHECK(!dst.is(scratch));
+ DCHECK(!overflow_dst.is(scratch));
+ DCHECK(!overflow_dst.is(left));
+ DCHECK(!overflow_dst.is(right));
+
+ // C = A-B; C overflows if A/B have diff signs and C has diff sign than A
+ if (dst.is(left)) {
+ mr(scratch, left); // Preserve left.
+ sub(dst, left, right); // Left is overwritten.
+ xor_(overflow_dst, dst, scratch);
+ xor_(scratch, scratch, right);
+ and_(overflow_dst, overflow_dst, scratch, SetRC);
+ } else if (dst.is(right)) {
+ mr(scratch, right); // Preserve right.
+ sub(dst, left, right); // Right is overwritten.
+ xor_(overflow_dst, dst, left);
+ xor_(scratch, left, scratch);
+ and_(overflow_dst, overflow_dst, scratch, SetRC);
+ } else {
+ sub(dst, left, right);
+ xor_(overflow_dst, dst, left);
+ xor_(scratch, left, right);
+ and_(overflow_dst, scratch, overflow_dst, SetRC);
+ }
+}
+
+
+void MacroAssembler::CompareMap(Register obj, Register scratch, Handle<Map> map,
+ Label* early_success) {
+ LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ CompareMap(scratch, map, early_success);
+}
+
+
+void MacroAssembler::CompareMap(Register obj_map, Handle<Map> map,
+ Label* early_success) {
+ mov(r0, Operand(map));
+ cmp(obj_map, r0);
+}
+
+
+void MacroAssembler::CheckMap(Register obj, Register scratch, Handle<Map> map,
+ Label* fail, SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+
+ Label success;
+ CompareMap(obj, scratch, map, &success);
+ bne(fail);
+ bind(&success);
+}
+
+
+void MacroAssembler::CheckMap(Register obj, Register scratch,
+ Heap::RootListIndex index, Label* fail,
+ SmiCheckType smi_check_type) {
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, fail);
+ }
+ LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ LoadRoot(r0, index);
+ cmp(scratch, r0);
+ bne(fail);
+}
+
+
+void MacroAssembler::DispatchMap(Register obj, Register scratch,
+ Handle<Map> map, Handle<Code> success,
+ SmiCheckType smi_check_type) {
+ Label fail;
+ if (smi_check_type == DO_SMI_CHECK) {
+ JumpIfSmi(obj, &fail);
+ }
+ LoadP(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
+ mov(r0, Operand(map));
+ cmp(scratch, r0);
+ bne(&fail);
+ Jump(success, RelocInfo::CODE_TARGET, al);
+ bind(&fail);
+}
+
+
+void MacroAssembler::TryGetFunctionPrototype(Register function, Register result,
+ Register scratch, Label* miss,
+ bool miss_on_bound_function) {
+ Label non_instance;
+ if (miss_on_bound_function) {
+ // Check that the receiver isn't a smi.
+ JumpIfSmi(function, miss);
+
+ // Check that the function really is a function. Load map into result reg.
+ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
+ bne(miss);
+
+ LoadP(scratch,
+ FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
+ lwz(scratch,
+ FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
+ TestBit(scratch,
+#if V8_TARGET_ARCH_PPC64
+ SharedFunctionInfo::kBoundFunction,
+#else
+ SharedFunctionInfo::kBoundFunction + kSmiTagSize,
+#endif
+ r0);
+ bne(miss, cr0);
+
+ // Make sure that the function has an instance prototype.
+ lbz(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
+ andi(r0, scratch, Operand(1 << Map::kHasNonInstancePrototype));
+ bne(&non_instance, cr0);
+ }
+
+ // Get the prototype or initial map from the function.
+ LoadP(result,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // If the prototype or initial map is the hole, don't return it and
+ // simply miss the cache instead. This will allow us to allocate a
+ // prototype object on-demand in the runtime system.
+ LoadRoot(r0, Heap::kTheHoleValueRootIndex);
+ cmp(result, r0);
+ beq(miss);
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ CompareObjectType(result, scratch, scratch, MAP_TYPE);
+ bne(&done);
+
+ // Get the prototype from the initial map.
+ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
+
+ if (miss_on_bound_function) {
+ b(&done);
+
+ // Non-instance prototype: Fetch prototype from constructor field
+ // in initial map.
+ bind(&non_instance);
+ LoadP(result, FieldMemOperand(result, Map::kConstructorOffset));
+ }
+
+ // All done.
+ bind(&done);
+}
+
+
+void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id,
+ Condition cond) {
+ DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
+ Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id, cond);
+}
+
+
+void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) {
+ Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond);
+}
+
+
+static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
+ return ref0.address() - ref1.address();
+}
+
+
+void MacroAssembler::CallApiFunctionAndReturn(
+ Register function_address, ExternalReference thunk_ref, int stack_space,
+ MemOperand return_value_operand, MemOperand* context_restore_operand) {
+ ExternalReference next_address =
+ ExternalReference::handle_scope_next_address(isolate());
+ const int kNextOffset = 0;
+ const int kLimitOffset = AddressOffset(
+ ExternalReference::handle_scope_limit_address(isolate()), next_address);
+ const int kLevelOffset = AddressOffset(
+ ExternalReference::handle_scope_level_address(isolate()), next_address);
+
+ DCHECK(function_address.is(r4) || function_address.is(r5));
+ Register scratch = r6;
+
+ Label profiler_disabled;
+ Label end_profiler_check;
+ mov(scratch, Operand(ExternalReference::is_profiling_address(isolate())));
+ lbz(scratch, MemOperand(scratch, 0));
+ cmpi(scratch, Operand::Zero());
+ beq(&profiler_disabled);
+
+ // Additional parameter is the address of the actual callback.
+ mov(scratch, Operand(thunk_ref));
+ jmp(&end_profiler_check);
+
+ bind(&profiler_disabled);
+ mr(scratch, function_address);
+ bind(&end_profiler_check);
+
+ // Allocate HandleScope in callee-save registers.
+ // r17 - next_address
+ // r14 - next_address->kNextOffset
+ // r15 - next_address->kLimitOffset
+ // r16 - next_address->kLevelOffset
+ mov(r17, Operand(next_address));
+ LoadP(r14, MemOperand(r17, kNextOffset));
+ LoadP(r15, MemOperand(r17, kLimitOffset));
+ lwz(r16, MemOperand(r17, kLevelOffset));
+ addi(r16, r16, Operand(1));
+ stw(r16, MemOperand(r17, kLevelOffset));
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ PrepareCallCFunction(1, r3);
+ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ // Native call returns to the DirectCEntry stub which redirects to the
+ // return address pushed on stack (could have moved after GC).
+ // DirectCEntry stub itself is generated early and never moves.
+ DirectCEntryStub stub(isolate());
+ stub.GenerateCall(this, scratch);
+
+ if (FLAG_log_timer_events) {
+ FrameScope frame(this, StackFrame::MANUAL);
+ PushSafepointRegisters();
+ PrepareCallCFunction(1, r3);
+ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
+ PopSafepointRegisters();
+ }
+
+ Label promote_scheduled_exception;
+ Label exception_handled;
+ Label delete_allocated_handles;
+ Label leave_exit_frame;
+ Label return_value_loaded;
+
+ // load value from ReturnValue
+ LoadP(r3, return_value_operand);
+ bind(&return_value_loaded);
+ // No more valid handles (the result handle was the last one). Restore
+ // previous handle scope.
+ StoreP(r14, MemOperand(r17, kNextOffset));
+ if (emit_debug_code()) {
+ lwz(r4, MemOperand(r17, kLevelOffset));
+ cmp(r4, r16);
+ Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
+ }
+ subi(r16, r16, Operand(1));
+ stw(r16, MemOperand(r17, kLevelOffset));
+ LoadP(r0, MemOperand(r17, kLimitOffset));
+ cmp(r15, r0);
+ bne(&delete_allocated_handles);
+
+ // Check if the function scheduled an exception.
+ bind(&leave_exit_frame);
+ LoadRoot(r14, Heap::kTheHoleValueRootIndex);
+ mov(r15, Operand(ExternalReference::scheduled_exception_address(isolate())));
+ LoadP(r15, MemOperand(r15));
+ cmp(r14, r15);
+ bne(&promote_scheduled_exception);
+ bind(&exception_handled);
+
+ bool restore_context = context_restore_operand != NULL;
+ if (restore_context) {
+ LoadP(cp, *context_restore_operand);
+ }
+ // LeaveExitFrame expects unwind space to be in a register.
+ mov(r14, Operand(stack_space));
+ LeaveExitFrame(false, r14, !restore_context);
+ blr();
+
+ bind(&promote_scheduled_exception);
+ {
+ FrameScope frame(this, StackFrame::INTERNAL);
+ CallExternalReference(
+ ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0);
+ }
+ jmp(&exception_handled);
+
+ // HandleScope limit has changed. Delete allocated extensions.
+ bind(&delete_allocated_handles);
+ StoreP(r15, MemOperand(r17, kLimitOffset));
+ mr(r14, r3);
+ PrepareCallCFunction(1, r15);
+ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
+ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()),
+ 1);
+ mr(r3, r14);
+ b(&leave_exit_frame);
+}
+
+
+bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
+ return has_frame_ || !stub->SometimesSetsUpAFrame();
+}
+
+
+void MacroAssembler::IndexFromHash(Register hash, Register index) {
+ // If the hash field contains an array index pick it out. The assert checks
+ // that the constants for the maximum number of digits for an array index
+ // cached in the hash field and the number of bits reserved for it does not
+ // conflict.
+ DCHECK(TenToThe(String::kMaxCachedArrayIndexLength) <
+ (1 << String::kArrayIndexValueBits));
+ DecodeFieldToSmi<String::ArrayIndexValueBits>(index, hash);
+}
+
+
+void MacroAssembler::SmiToDouble(DoubleRegister value, Register smi) {
+ SmiUntag(ip, smi);
+ ConvertIntToDouble(ip, value);
+}
+
+
+void MacroAssembler::TestDoubleIsInt32(DoubleRegister double_input,
+ Register scratch1, Register scratch2,
+ DoubleRegister double_scratch) {
+ TryDoubleToInt32Exact(scratch1, double_input, scratch2, double_scratch);
+}
+
+
+void MacroAssembler::TryDoubleToInt32Exact(Register result,
+ DoubleRegister double_input,
+ Register scratch,
+ DoubleRegister double_scratch) {
+ Label done;
+ DCHECK(!double_input.is(double_scratch));
+
+ ConvertDoubleToInt64(double_input,
+#if !V8_TARGET_ARCH_PPC64
+ scratch,
+#endif
+ result, double_scratch);
+
+#if V8_TARGET_ARCH_PPC64
+ TestIfInt32(result, scratch, r0);
+#else
+ TestIfInt32(scratch, result, r0);
+#endif
+ bne(&done);
+
+ // convert back and compare
+ fcfid(double_scratch, double_scratch);
+ fcmpu(double_scratch, double_input);
+ bind(&done);
+}
+
+
+void MacroAssembler::TryInt32Floor(Register result, DoubleRegister double_input,
+ Register input_high, Register scratch,
+ DoubleRegister double_scratch, Label* done,
+ Label* exact) {
+ DCHECK(!result.is(input_high));
+ DCHECK(!double_input.is(double_scratch));
+ Label exception;
+
+ MovDoubleHighToInt(input_high, double_input);
+
+ // Test for NaN/Inf
+ ExtractBitMask(result, input_high, HeapNumber::kExponentMask);
+ cmpli(result, Operand(0x7ff));
+ beq(&exception);
+
+ // Convert (rounding to -Inf)
+ ConvertDoubleToInt64(double_input,
+#if !V8_TARGET_ARCH_PPC64
+ scratch,
+#endif
+ result, double_scratch, kRoundToMinusInf);
+
+// Test for overflow
+#if V8_TARGET_ARCH_PPC64
+ TestIfInt32(result, scratch, r0);
+#else
+ TestIfInt32(scratch, result, r0);
+#endif
+ bne(&exception);
+
+ // Test for exactness
+ fcfid(double_scratch, double_scratch);
+ fcmpu(double_scratch, double_input);
+ beq(exact);
+ b(done);
+
+ bind(&exception);
+}
+
+
+void MacroAssembler::TryInlineTruncateDoubleToI(Register result,
+ DoubleRegister double_input,
+ Label* done) {
+ DoubleRegister double_scratch = kScratchDoubleReg;
+ Register scratch = ip;
+
+ ConvertDoubleToInt64(double_input,
+#if !V8_TARGET_ARCH_PPC64
+ scratch,
+#endif
+ result, double_scratch);
+
+// Test for overflow
+#if V8_TARGET_ARCH_PPC64
+ TestIfInt32(result, scratch, r0);
+#else
+ TestIfInt32(scratch, result, r0);
+#endif
+ beq(done);
+}
+
+
+void MacroAssembler::TruncateDoubleToI(Register result,
+ DoubleRegister double_input) {
+ Label done;
+
+ TryInlineTruncateDoubleToI(result, double_input, &done);
+
+ // If we fell through then inline version didn't succeed - call stub instead.
+ mflr(r0);
+ push(r0);
+ // Put input on stack.
+ stfdu(double_input, MemOperand(sp, -kDoubleSize));
+
+ DoubleToIStub stub(isolate(), sp, result, 0, true, true);
+ CallStub(&stub);
+
+ addi(sp, sp, Operand(kDoubleSize));
+ pop(r0);
+ mtlr(r0);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::TruncateHeapNumberToI(Register result, Register object) {
+ Label done;
+ DoubleRegister double_scratch = kScratchDoubleReg;
+ DCHECK(!result.is(object));
+
+ lfd(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
+ TryInlineTruncateDoubleToI(result, double_scratch, &done);
+
+ // If we fell through then inline version didn't succeed - call stub instead.
+ mflr(r0);
+ push(r0);
+ DoubleToIStub stub(isolate(), object, result,
+ HeapNumber::kValueOffset - kHeapObjectTag, true, true);
+ CallStub(&stub);
+ pop(r0);
+ mtlr(r0);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::TruncateNumberToI(Register object, Register result,
+ Register heap_number_map,
+ Register scratch1, Label* not_number) {
+ Label done;
+ DCHECK(!result.is(object));
+
+ UntagAndJumpIfSmi(result, object, &done);
+ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
+ TruncateHeapNumberToI(result, object);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src,
+ int num_least_bits) {
+#if V8_TARGET_ARCH_PPC64
+ rldicl(dst, src, kBitsPerPointer - kSmiShift,
+ kBitsPerPointer - num_least_bits);
+#else
+ rlwinm(dst, src, kBitsPerPointer - kSmiShift,
+ kBitsPerPointer - num_least_bits, 31);
+#endif
+}
+
+
+void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src,
+ int num_least_bits) {
+ rlwinm(dst, src, 0, 32 - num_least_bits, 31);
+}
+
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
+ SaveFPRegsMode save_doubles) {
+ // All parameters are on the stack. r3 has the return value after call.
+
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ mov(r3, Operand(num_arguments));
+ mov(r4, Operand(ExternalReference(f, isolate())));
+ CEntryStub stub(isolate(),
+#if V8_TARGET_ARCH_PPC64
+ f->result_size,
+#else
+ 1,
+#endif
+ save_doubles);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::CallExternalReference(const ExternalReference& ext,
+ int num_arguments) {
+ mov(r3, Operand(num_arguments));
+ mov(r4, Operand(ext));
+
+ CEntryStub stub(isolate(), 1);
+ CallStub(&stub);
+}
+
+
+void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
+ int num_arguments,
+ int result_size) {
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ mov(r3, Operand(num_arguments));
+ JumpToExternalReference(ext);
+}
+
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments,
+ int result_size) {
+ TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments,
+ result_size);
+}
+
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
+ mov(r4, Operand(builtin));
+ CEntryStub stub(isolate(), 1);
+ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
+}
+
+
+void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag,
+ const CallWrapper& call_wrapper) {
+ // You can't call a builtin without a valid frame.
+ DCHECK(flag == JUMP_FUNCTION || has_frame());
+
+ GetBuiltinEntry(ip, id);
+ if (flag == CALL_FUNCTION) {
+ call_wrapper.BeforeCall(CallSize(ip));
+ CallJSEntry(ip);
+ call_wrapper.AfterCall();
+ } else {
+ DCHECK(flag == JUMP_FUNCTION);
+ JumpToJSEntry(ip);
+ }
+}
+
+
+void MacroAssembler::GetBuiltinFunction(Register target,
+ Builtins::JavaScript id) {
+ // Load the builtins object into target register.
+ LoadP(target,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ LoadP(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
+ // Load the JavaScript builtin function from the builtins object.
+ LoadP(target,
+ FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id)),
+ r0);
+}
+
+
+void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
+ DCHECK(!target.is(r4));
+ GetBuiltinFunction(r4, id);
+ // Load the code entry point from the builtins object.
+ LoadP(target, FieldMemOperand(r4, JSFunction::kCodeEntryOffset));
+}
+
+
+void MacroAssembler::SetCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(scratch1, Operand(value));
+ mov(scratch2, Operand(ExternalReference(counter)));
+ stw(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(scratch2, Operand(ExternalReference(counter)));
+ lwz(scratch1, MemOperand(scratch2));
+ addi(scratch1, scratch1, Operand(value));
+ stw(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
+ Register scratch1, Register scratch2) {
+ DCHECK(value > 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ mov(scratch2, Operand(ExternalReference(counter)));
+ lwz(scratch1, MemOperand(scratch2));
+ subi(scratch1, scratch1, Operand(value));
+ stw(scratch1, MemOperand(scratch2));
+ }
+}
+
+
+void MacroAssembler::Assert(Condition cond, BailoutReason reason,
+ CRegister cr) {
+ if (emit_debug_code()) Check(cond, reason, cr);
+}
+
+
+void MacroAssembler::AssertFastElements(Register elements) {
+ if (emit_debug_code()) {
+ DCHECK(!elements.is(r0));
+ Label ok;
+ push(elements);
+ LoadP(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
+ LoadRoot(r0, Heap::kFixedArrayMapRootIndex);
+ cmp(elements, r0);
+ beq(&ok);
+ LoadRoot(r0, Heap::kFixedDoubleArrayMapRootIndex);
+ cmp(elements, r0);
+ beq(&ok);
+ LoadRoot(r0, Heap::kFixedCOWArrayMapRootIndex);
+ cmp(elements, r0);
+ beq(&ok);
+ Abort(kJSObjectWithFastElementsMapHasSlowElements);
+ bind(&ok);
+ pop(elements);
+ }
+}
+
+
+void MacroAssembler::Check(Condition cond, BailoutReason reason, CRegister cr) {
+ Label L;
+ b(cond, &L, cr);
+ Abort(reason);
+ // will not return here
+ bind(&L);
+}
+
+
+void MacroAssembler::Abort(BailoutReason reason) {
+ Label abort_start;
+ bind(&abort_start);
+#ifdef DEBUG
+ const char* msg = GetBailoutReason(reason);
+ if (msg != NULL) {
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+ }
+
+ if (FLAG_trap_on_abort) {
+ stop(msg);
+ return;
+ }
+#endif
+
+ LoadSmiLiteral(r0, Smi::FromInt(reason));
+ push(r0);
+ // Disable stub call restrictions to always allow calls to abort.
+ if (!has_frame_) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NONE);
+ CallRuntime(Runtime::kAbort, 1);
+ } else {
+ CallRuntime(Runtime::kAbort, 1);
+ }
+ // will not return here
+}
+
+
+void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
+ if (context_chain_length > 0) {
+ // Move up the chain of contexts to the context containing the slot.
+ LoadP(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ for (int i = 1; i < context_chain_length; i++) {
+ LoadP(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
+ }
+ } else {
+ // Slot is in the current function context. Move it into the
+ // destination register in case we store into it (the write barrier
+ // cannot be allowed to destroy the context in esi).
+ mr(dst, cp);
+ }
+}
+
+
+void MacroAssembler::LoadTransitionedArrayMapConditional(
+ ElementsKind expected_kind, ElementsKind transitioned_kind,
+ Register map_in_out, Register scratch, Label* no_map_match) {
+ // Load the global or builtins object from the current context.
+ LoadP(scratch,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ LoadP(scratch, FieldMemOperand(scratch, GlobalObject::kNativeContextOffset));
+
+ // Check that the function's map is the same as the expected cached map.
+ LoadP(scratch,
+ MemOperand(scratch, Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX)));
+ size_t offset = expected_kind * kPointerSize + FixedArrayBase::kHeaderSize;
+ LoadP(scratch, FieldMemOperand(scratch, offset));
+ cmp(map_in_out, scratch);
+ bne(no_map_match);
+
+ // Use the transitioned cached map.
+ offset = transitioned_kind * kPointerSize + FixedArrayBase::kHeaderSize;
+ LoadP(map_in_out, FieldMemOperand(scratch, offset));
+}
+
+
+void MacroAssembler::LoadGlobalFunction(int index, Register function) {
+ // Load the global or builtins object from the current context.
+ LoadP(function,
+ MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
+ // Load the native context from the global or builtins object.
+ LoadP(function,
+ FieldMemOperand(function, GlobalObject::kNativeContextOffset));
+ // Load the function from the native context.
+ LoadP(function, MemOperand(function, Context::SlotOffset(index)), r0);
+}
+
+
+void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
+ Register map,
+ Register scratch) {
+ // Load the initial map. The global functions all have initial maps.
+ LoadP(map,
+ FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+ if (emit_debug_code()) {
+ Label ok, fail;
+ CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
+ b(&ok);
+ bind(&fail);
+ Abort(kGlobalFunctionsMustHaveInitialMap);
+ bind(&ok);
+ }
+}
+
+
+void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
+ Register reg, Register scratch, Label* not_power_of_two_or_zero) {
+ subi(scratch, reg, Operand(1));
+ cmpi(scratch, Operand::Zero());
+ blt(not_power_of_two_or_zero);
+ and_(r0, scratch, reg, SetRC);
+ bne(not_power_of_two_or_zero, cr0);
+}
+
+
+void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
+ Register scratch,
+ Label* zero_and_neg,
+ Label* not_power_of_two) {
+ subi(scratch, reg, Operand(1));
+ cmpi(scratch, Operand::Zero());
+ blt(zero_and_neg);
+ and_(r0, scratch, reg, SetRC);
+ bne(not_power_of_two, cr0);
+}
+
+#if !V8_TARGET_ARCH_PPC64
+void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) {
+ DCHECK(!reg.is(overflow));
+ mr(overflow, reg); // Save original value.
+ SmiTag(reg);
+ xor_(overflow, overflow, reg, SetRC); // Overflow if (value ^ 2 * value) < 0.
+}
+
+
+void MacroAssembler::SmiTagCheckOverflow(Register dst, Register src,
+ Register overflow) {
+ if (dst.is(src)) {
+ // Fall back to slower case.
+ SmiTagCheckOverflow(dst, overflow);
+ } else {
+ DCHECK(!dst.is(src));
+ DCHECK(!dst.is(overflow));
+ DCHECK(!src.is(overflow));
+ SmiTag(dst, src);
+ xor_(overflow, dst, src, SetRC); // Overflow if (value ^ 2 * value) < 0.
+ }
+}
+#endif
+
+void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2,
+ Label* on_not_both_smi) {
+ STATIC_ASSERT(kSmiTag == 0);
+ DCHECK_EQ(1, static_cast<int>(kSmiTagMask));
+ orx(r0, reg1, reg2, LeaveRC);
+ JumpIfNotSmi(r0, on_not_both_smi);
+}
+
+
+void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src,
+ Label* smi_case) {
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ TestBit(src, 0, r0);
+ SmiUntag(dst, src);
+ beq(smi_case, cr0);
+}
+
+
+void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, Register src,
+ Label* non_smi_case) {
+ STATIC_ASSERT(kSmiTag == 0);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ TestBit(src, 0, r0);
+ SmiUntag(dst, src);
+ bne(non_smi_case, cr0);
+}
+
+
+void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2,
+ Label* on_either_smi) {
+ STATIC_ASSERT(kSmiTag == 0);
+ JumpIfSmi(reg1, on_either_smi);
+ JumpIfSmi(reg2, on_either_smi);
+}
+
+
+void MacroAssembler::AssertNotSmi(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ TestIfSmi(object, r0);
+ Check(ne, kOperandIsASmi, cr0);
+ }
+}
+
+
+void MacroAssembler::AssertSmi(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ TestIfSmi(object, r0);
+ Check(eq, kOperandIsNotSmi, cr0);
+ }
+}
+
+
+void MacroAssembler::AssertString(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ TestIfSmi(object, r0);
+ Check(ne, kOperandIsASmiAndNotAString, cr0);
+ push(object);
+ LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(object, object, FIRST_NONSTRING_TYPE);
+ pop(object);
+ Check(lt, kOperandIsNotAString);
+ }
+}
+
+
+void MacroAssembler::AssertName(Register object) {
+ if (emit_debug_code()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ TestIfSmi(object, r0);
+ Check(ne, kOperandIsASmiAndNotAName, cr0);
+ push(object);
+ LoadP(object, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareInstanceType(object, object, LAST_NAME_TYPE);
+ pop(object);
+ Check(le, kOperandIsNotAName);
+ }
+}
+
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
+ Register scratch) {
+ if (emit_debug_code()) {
+ Label done_checking;
+ AssertNotSmi(object);
+ CompareRoot(object, Heap::kUndefinedValueRootIndex);
+ beq(&done_checking);
+ LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
+ Assert(eq, kExpectedUndefinedOrCell);
+ bind(&done_checking);
+ }
+}
+
+
+void MacroAssembler::AssertIsRoot(Register reg, Heap::RootListIndex index) {
+ if (emit_debug_code()) {
+ CompareRoot(reg, index);
+ Check(eq, kHeapNumberMapRegisterClobbered);
+ }
+}
+
+
+void MacroAssembler::JumpIfNotHeapNumber(Register object,
+ Register heap_number_map,
+ Register scratch,
+ Label* on_not_heap_number) {
+ LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
+ AssertIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
+ cmp(scratch, heap_number_map);
+ bne(on_not_heap_number);
+}
+
+
+void MacroAssembler::LookupNumberStringCache(Register object, Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ Label* not_found) {
+ // Use of registers. Register result is used as a temporary.
+ Register number_string_cache = result;
+ Register mask = scratch3;
+
+ // Load the number string cache.
+ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
+
+ // Make the hash mask from the length of the number string cache. It
+ // contains two elements (number and string) for each cache entry.
+ LoadP(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
+ // Divide length by two (length is a smi).
+ ShiftRightArithImm(mask, mask, kSmiTagSize + kSmiShiftSize + 1);
+ subi(mask, mask, Operand(1)); // Make mask.
+
+ // Calculate the entry in the number string cache. The hash value in the
+ // number string cache for smis is just the smi value, and the hash for
+ // doubles is the xor of the upper and lower words. See
+ // Heap::GetNumberStringCache.
+ Label is_smi;
+ Label load_result_from_cache;
+ JumpIfSmi(object, &is_smi);
+ CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
+ DONT_DO_SMI_CHECK);
+
+ STATIC_ASSERT(8 == kDoubleSize);
+ lwz(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
+ lwz(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
+ xor_(scratch1, scratch1, scratch2);
+ and_(scratch1, scratch1, mask);
+
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ ShiftLeftImm(scratch1, scratch1, Operand(kPointerSizeLog2 + 1));
+ add(scratch1, number_string_cache, scratch1);
+
+ Register probe = mask;
+ LoadP(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
+ JumpIfSmi(probe, not_found);
+ lfd(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
+ lfd(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
+ fcmpu(d0, d1);
+ bne(not_found); // The cache did not contain this value.
+ b(&load_result_from_cache);
+
+ bind(&is_smi);
+ Register scratch = scratch1;
+ SmiUntag(scratch, object);
+ and_(scratch, mask, scratch);
+ // Calculate address of entry in string cache: each entry consists
+ // of two pointer sized fields.
+ ShiftLeftImm(scratch, scratch, Operand(kPointerSizeLog2 + 1));
+ add(scratch, number_string_cache, scratch);
+
+ // Check if the entry is the smi we are looking for.
+ LoadP(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
+ cmp(object, probe);
+ bne(not_found);
+
+ // Get the result from the cache.
+ bind(&load_result_from_cache);
+ LoadP(result,
+ FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
+ IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
+ scratch1, scratch2);
+}
+
+
+void MacroAssembler::JumpIfNonSmisNotBothSequentialOneByteStrings(
+ Register first, Register second, Register scratch1, Register scratch2,
+ Label* failure) {
+ // Test that both first and second are sequential one-byte strings.
+ // Assume that they are non-smis.
+ LoadP(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
+ LoadP(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
+ lbz(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
+ lbz(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
+
+ JumpIfBothInstanceTypesAreNotSequentialOneByte(scratch1, scratch2, scratch1,
+ scratch2, failure);
+}
+
+void MacroAssembler::JumpIfNotBothSequentialOneByteStrings(Register first,
+ Register second,
+ Register scratch1,
+ Register scratch2,
+ Label* failure) {
+ // Check that neither is a smi.
+ and_(scratch1, first, second);
+ JumpIfSmi(scratch1, failure);
+ JumpIfNonSmisNotBothSequentialOneByteStrings(first, second, scratch1,
+ scratch2, failure);
+}
+
+
+void MacroAssembler::JumpIfNotUniqueNameInstanceType(Register reg,
+ Label* not_unique_name) {
+ STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
+ Label succeed;
+ andi(r0, reg, Operand(kIsNotStringMask | kIsNotInternalizedMask));
+ beq(&succeed, cr0);
+ cmpi(reg, Operand(SYMBOL_TYPE));
+ bne(not_unique_name);
+
+ bind(&succeed);
+}
+
+
+// Allocates a heap number or jumps to the need_gc label if the young space
+// is full and a scavenge is needed.
+void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1,
+ Register scratch2,
+ Register heap_number_map,
+ Label* gc_required,
+ TaggingMode tagging_mode,
+ MutableMode mode) {
+ // Allocate an object in the heap for the heap number and tag it as a heap
+ // object.
+ Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
+ tagging_mode == TAG_RESULT ? TAG_OBJECT : NO_ALLOCATION_FLAGS);
+
+ Heap::RootListIndex map_index = mode == MUTABLE
+ ? Heap::kMutableHeapNumberMapRootIndex
+ : Heap::kHeapNumberMapRootIndex;
+ AssertIsRoot(heap_number_map, map_index);
+
+ // Store heap number map in the allocated object.
+ if (tagging_mode == TAG_RESULT) {
+ StoreP(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset),
+ r0);
+ } else {
+ StoreP(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
+ }
+}
+
+
+void MacroAssembler::AllocateHeapNumberWithValue(
+ Register result, DoubleRegister value, Register scratch1, Register scratch2,
+ Register heap_number_map, Label* gc_required) {
+ AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required);
+ stfd(value, FieldMemOperand(result, HeapNumber::kValueOffset));
+}
+
+
+// Copies a fixed number of fields of heap objects from src to dst.
+void MacroAssembler::CopyFields(Register dst, Register src, RegList temps,
+ int field_count) {
+ // At least one bit set in the first 15 registers.
+ DCHECK((temps & ((1 << 15) - 1)) != 0);
+ DCHECK((temps & dst.bit()) == 0);
+ DCHECK((temps & src.bit()) == 0);
+ // Primitive implementation using only one temporary register.
+
+ Register tmp = no_reg;
+ // Find a temp register in temps list.
+ for (int i = 0; i < 15; i++) {
+ if ((temps & (1 << i)) != 0) {
+ tmp.set_code(i);
+ break;
+ }
+ }
+ DCHECK(!tmp.is(no_reg));
+
+ for (int i = 0; i < field_count; i++) {
+ LoadP(tmp, FieldMemOperand(src, i * kPointerSize), r0);
+ StoreP(tmp, FieldMemOperand(dst, i * kPointerSize), r0);
+ }
+}
+
+
+void MacroAssembler::CopyBytes(Register src, Register dst, Register length,
+ Register scratch) {
+ Label align_loop, aligned, word_loop, byte_loop, byte_loop_1, done;
+
+ DCHECK(!scratch.is(r0));
+
+ cmpi(length, Operand::Zero());
+ beq(&done);
+
+ // Check src alignment and length to see whether word_loop is possible
+ andi(scratch, src, Operand(kPointerSize - 1));
+ beq(&aligned, cr0);
+ subfic(scratch, scratch, Operand(kPointerSize * 2));
+ cmp(length, scratch);
+ blt(&byte_loop);
+
+ // Align src before copying in word size chunks.
+ subi(scratch, scratch, Operand(kPointerSize));
+ mtctr(scratch);
+ bind(&align_loop);
+ lbz(scratch, MemOperand(src));
+ addi(src, src, Operand(1));
+ subi(length, length, Operand(1));
+ stb(scratch, MemOperand(dst));
+ addi(dst, dst, Operand(1));
+ bdnz(&align_loop);
+
+ bind(&aligned);
+
+ // Copy bytes in word size chunks.
+ if (emit_debug_code()) {
+ andi(r0, src, Operand(kPointerSize - 1));
+ Assert(eq, kExpectingAlignmentForCopyBytes, cr0);
+ }
+
+ ShiftRightImm(scratch, length, Operand(kPointerSizeLog2));
+ cmpi(scratch, Operand::Zero());
+ beq(&byte_loop);
+
+ mtctr(scratch);
+ bind(&word_loop);
+ LoadP(scratch, MemOperand(src));
+ addi(src, src, Operand(kPointerSize));
+ subi(length, length, Operand(kPointerSize));
+ if (CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) {
+ // currently false for PPC - but possible future opt
+ StoreP(scratch, MemOperand(dst));
+ addi(dst, dst, Operand(kPointerSize));
+ } else {
+#if V8_TARGET_LITTLE_ENDIAN
+ stb(scratch, MemOperand(dst, 0));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 1));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 2));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 3));
+#if V8_TARGET_ARCH_PPC64
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 4));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 5));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 6));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 7));
+#endif
+#else
+#if V8_TARGET_ARCH_PPC64
+ stb(scratch, MemOperand(dst, 7));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 6));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 5));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 4));
+ ShiftRightImm(scratch, scratch, Operand(8));
+#endif
+ stb(scratch, MemOperand(dst, 3));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 2));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 1));
+ ShiftRightImm(scratch, scratch, Operand(8));
+ stb(scratch, MemOperand(dst, 0));
+#endif
+ addi(dst, dst, Operand(kPointerSize));
+ }
+ bdnz(&word_loop);
+
+ // Copy the last bytes if any left.
+ cmpi(length, Operand::Zero());
+ beq(&done);
+
+ bind(&byte_loop);
+ mtctr(length);
+ bind(&byte_loop_1);
+ lbz(scratch, MemOperand(src));
+ addi(src, src, Operand(1));
+ stb(scratch, MemOperand(dst));
+ addi(dst, dst, Operand(1));
+ bdnz(&byte_loop_1);
+
+ bind(&done);
+}
+
+
+void MacroAssembler::InitializeNFieldsWithFiller(Register start_offset,
+ Register count,
+ Register filler) {
+ Label loop;
+ mtctr(count);
+ bind(&loop);
+ StoreP(filler, MemOperand(start_offset));
+ addi(start_offset, start_offset, Operand(kPointerSize));
+ bdnz(&loop);
+}
+
+void MacroAssembler::InitializeFieldsWithFiller(Register start_offset,
+ Register end_offset,
+ Register filler) {
+ Label done;
+ sub(r0, end_offset, start_offset, LeaveOE, SetRC);
+ beq(&done, cr0);
+ ShiftRightImm(r0, r0, Operand(kPointerSizeLog2));
+ InitializeNFieldsWithFiller(start_offset, r0, filler);
+ bind(&done);
+}
+
+
+void MacroAssembler::SaveFPRegs(Register location, int first, int count) {
+ DCHECK(count > 0);
+ int cur = first;
+ subi(location, location, Operand(count * kDoubleSize));
+ for (int i = 0; i < count; i++) {
+ DoubleRegister reg = DoubleRegister::from_code(cur++);
+ stfd(reg, MemOperand(location, i * kDoubleSize));
+ }
+}
+
+
+void MacroAssembler::RestoreFPRegs(Register location, int first, int count) {
+ DCHECK(count > 0);
+ int cur = first + count - 1;
+ for (int i = count - 1; i >= 0; i--) {
+ DoubleRegister reg = DoubleRegister::from_code(cur--);
+ lfd(reg, MemOperand(location, i * kDoubleSize));
+ }
+ addi(location, location, Operand(count * kDoubleSize));
+}
+
+
+void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialOneByte(
+ Register first, Register second, Register scratch1, Register scratch2,
+ Label* failure) {
+ const int kFlatOneByteStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ const int kFlatOneByteStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ andi(scratch1, first, Operand(kFlatOneByteStringMask));
+ andi(scratch2, second, Operand(kFlatOneByteStringMask));
+ cmpi(scratch1, Operand(kFlatOneByteStringTag));
+ bne(failure);
+ cmpi(scratch2, Operand(kFlatOneByteStringTag));
+ bne(failure);
+}
+
+
+void MacroAssembler::JumpIfInstanceTypeIsNotSequentialOneByte(Register type,
+ Register scratch,
+ Label* failure) {
+ const int kFlatOneByteStringMask =
+ kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
+ const int kFlatOneByteStringTag =
+ kStringTag | kOneByteStringTag | kSeqStringTag;
+ andi(scratch, type, Operand(kFlatOneByteStringMask));
+ cmpi(scratch, Operand(kFlatOneByteStringTag));
+ bne(failure);
+}
+
+static const int kRegisterPassedArguments = 8;
+
+
+int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments,
+ int num_double_arguments) {
+ int stack_passed_words = 0;
+ if (num_double_arguments > DoubleRegister::kNumRegisters) {
+ stack_passed_words +=
+ 2 * (num_double_arguments - DoubleRegister::kNumRegisters);
+ }
+ // Up to 8 simple arguments are passed in registers r3..r10.
+ if (num_reg_arguments > kRegisterPassedArguments) {
+ stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
+ }
+ return stack_passed_words;
+}
+
+
+void MacroAssembler::EmitSeqStringSetCharCheck(Register string, Register index,
+ Register value,
+ uint32_t encoding_mask) {
+ Label is_object;
+ TestIfSmi(string, r0);
+ Check(ne, kNonObject, cr0);
+
+ LoadP(ip, FieldMemOperand(string, HeapObject::kMapOffset));
+ lbz(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
+
+ andi(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
+ cmpi(ip, Operand(encoding_mask));
+ Check(eq, kUnexpectedStringType);
+
+// The index is assumed to be untagged coming in, tag it to compare with the
+// string length without using a temp register, it is restored at the end of
+// this function.
+#if !V8_TARGET_ARCH_PPC64
+ Label index_tag_ok, index_tag_bad;
+ JumpIfNotSmiCandidate(index, r0, &index_tag_bad);
+#endif
+ SmiTag(index, index);
+#if !V8_TARGET_ARCH_PPC64
+ b(&index_tag_ok);
+ bind(&index_tag_bad);
+ Abort(kIndexIsTooLarge);
+ bind(&index_tag_ok);
+#endif
+
+ LoadP(ip, FieldMemOperand(string, String::kLengthOffset));
+ cmp(index, ip);
+ Check(lt, kIndexIsTooLarge);
+
+ DCHECK(Smi::FromInt(0) == 0);
+ cmpi(index, Operand::Zero());
+ Check(ge, kIndexIsNegative);
+
+ SmiUntag(index, index);
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
+ int num_double_arguments,
+ Register scratch) {
+ int frame_alignment = ActivationFrameAlignment();
+ int stack_passed_arguments =
+ CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
+ int stack_space = kNumRequiredStackFrameSlots;
+
+ if (frame_alignment > kPointerSize) {
+ // Make stack end at alignment and make room for stack arguments
+ // -- preserving original value of sp.
+ mr(scratch, sp);
+ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
+ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
+ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ // Make room for stack arguments
+ stack_space += stack_passed_arguments;
+ }
+
+ // Allocate frame with required slots to make ABI work.
+ li(r0, Operand::Zero());
+ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
+}
+
+
+void MacroAssembler::PrepareCallCFunction(int num_reg_arguments,
+ Register scratch) {
+ PrepareCallCFunction(num_reg_arguments, 0, scratch);
+}
+
+
+void MacroAssembler::MovToFloatParameter(DoubleRegister src) { Move(d1, src); }
+
+
+void MacroAssembler::MovToFloatResult(DoubleRegister src) { Move(d1, src); }
+
+
+void MacroAssembler::MovToFloatParameters(DoubleRegister src1,
+ DoubleRegister src2) {
+ if (src2.is(d1)) {
+ DCHECK(!src1.is(d2));
+ Move(d2, src2);
+ Move(d1, src1);
+ } else {
+ Move(d1, src1);
+ Move(d2, src2);
+ }
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ mov(ip, Operand(function));
+ CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(Register function, int num_reg_arguments,
+ int num_double_arguments) {
+ CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
+}
+
+
+void MacroAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+
+void MacroAssembler::CallCFunction(Register function, int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+
+void MacroAssembler::CallCFunctionHelper(Register function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ DCHECK(has_frame());
+// Just call directly. The function called cannot cause a GC, or
+// allow preemption, so the return address in the link register
+// stays correct.
+#if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
+ // AIX uses a function descriptor. When calling C code be aware
+ // of this descriptor and pick up values from it
+ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(function, kPointerSize));
+ LoadP(ip, MemOperand(function, 0));
+ Register dest = ip;
+#elif ABI_TOC_ADDRESSABILITY_VIA_IP
+ Move(ip, function);
+ Register dest = ip;
+#else
+ Register dest = function;
+#endif
+
+ Call(dest);
+
+ // Remove frame bought in PrepareCallCFunction
+ int stack_passed_arguments =
+ CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
+ int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
+ if (ActivationFrameAlignment() > kPointerSize) {
+ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
+ } else {
+ addi(sp, sp, Operand(stack_space * kPointerSize));
+ }
+}
+
+
+void MacroAssembler::FlushICache(Register address, size_t size,
+ Register scratch) {
+ if (CpuFeatures::IsSupported(INSTR_AND_DATA_CACHE_COHERENCY)) {
+ sync();
+ icbi(r0, address);
+ isync();
+ return;
+ }
+
+ Label done;
+
+ dcbf(r0, address);
+ sync();
+ icbi(r0, address);
+ isync();
+
+ // This code handles ranges which cross a single cacheline boundary.
+ // scratch is last cacheline which intersects range.
+ const int kCacheLineSizeLog2 = WhichPowerOf2(CpuFeatures::cache_line_size());
+
+ DCHECK(size > 0 && size <= (size_t)(1 << kCacheLineSizeLog2));
+ addi(scratch, address, Operand(size - 1));
+ ClearRightImm(scratch, scratch, Operand(kCacheLineSizeLog2));
+ cmpl(scratch, address);
+ ble(&done);
+
+ dcbf(r0, scratch);
+ sync();
+ icbi(r0, scratch);
+ isync();
+
+ bind(&done);
+}
+
+
+void MacroAssembler::SetRelocatedValue(Register location, Register scratch,
+ Register new_value) {
+ lwz(scratch, MemOperand(location));
+
+#if V8_OOL_CONSTANT_POOL
+ if (emit_debug_code()) {
+// Check that the instruction sequence is a load from the constant pool
+#if V8_TARGET_ARCH_PPC64
+ And(scratch, scratch, Operand(kOpcodeMask | (0x1f * B16)));
+ Cmpi(scratch, Operand(ADDI), r0);
+ Check(eq, kTheInstructionShouldBeALi);
+ lwz(scratch, MemOperand(location, kInstrSize));
+#endif
+ ExtractBitMask(scratch, scratch, 0x1f * B16);
+ cmpi(scratch, Operand(kConstantPoolRegister.code()));
+ Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
+ // Scratch was clobbered. Restore it.
+ lwz(scratch, MemOperand(location));
+ }
+ // Get the address of the constant and patch it.
+ andi(scratch, scratch, Operand(kImm16Mask));
+ StorePX(new_value, MemOperand(kConstantPoolRegister, scratch));
+#else
+ // This code assumes a FIXED_SEQUENCE for lis/ori
+
+ // At this point scratch is a lis instruction.
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask | (0x1f * B16)));
+ Cmpi(scratch, Operand(ADDIS), r0);
+ Check(eq, kTheInstructionToPatchShouldBeALis);
+ lwz(scratch, MemOperand(location));
+ }
+
+// insert new high word into lis instruction
+#if V8_TARGET_ARCH_PPC64
+ srdi(ip, new_value, Operand(32));
+ rlwimi(scratch, ip, 16, 16, 31);
+#else
+ rlwimi(scratch, new_value, 16, 16, 31);
+#endif
+
+ stw(scratch, MemOperand(location));
+
+ lwz(scratch, MemOperand(location, kInstrSize));
+ // scratch is now ori.
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask));
+ Cmpi(scratch, Operand(ORI), r0);
+ Check(eq, kTheInstructionShouldBeAnOri);
+ lwz(scratch, MemOperand(location, kInstrSize));
+ }
+
+// insert new low word into ori instruction
+#if V8_TARGET_ARCH_PPC64
+ rlwimi(scratch, ip, 0, 16, 31);
+#else
+ rlwimi(scratch, new_value, 0, 16, 31);
+#endif
+ stw(scratch, MemOperand(location, kInstrSize));
+
+#if V8_TARGET_ARCH_PPC64
+ if (emit_debug_code()) {
+ lwz(scratch, MemOperand(location, 2 * kInstrSize));
+ // scratch is now sldi.
+ And(scratch, scratch, Operand(kOpcodeMask | kExt5OpcodeMask));
+ Cmpi(scratch, Operand(EXT5 | RLDICR), r0);
+ Check(eq, kTheInstructionShouldBeASldi);
+ }
+
+ lwz(scratch, MemOperand(location, 3 * kInstrSize));
+ // scratch is now ori.
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask));
+ Cmpi(scratch, Operand(ORIS), r0);
+ Check(eq, kTheInstructionShouldBeAnOris);
+ lwz(scratch, MemOperand(location, 3 * kInstrSize));
+ }
+
+ rlwimi(scratch, new_value, 16, 16, 31);
+ stw(scratch, MemOperand(location, 3 * kInstrSize));
+
+ lwz(scratch, MemOperand(location, 4 * kInstrSize));
+ // scratch is now ori.
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask));
+ Cmpi(scratch, Operand(ORI), r0);
+ Check(eq, kTheInstructionShouldBeAnOri);
+ lwz(scratch, MemOperand(location, 4 * kInstrSize));
+ }
+ rlwimi(scratch, new_value, 0, 16, 31);
+ stw(scratch, MemOperand(location, 4 * kInstrSize));
+#endif
+
+// Update the I-cache so the new lis and addic can be executed.
+#if V8_TARGET_ARCH_PPC64
+ FlushICache(location, 5 * kInstrSize, scratch);
+#else
+ FlushICache(location, 2 * kInstrSize, scratch);
+#endif
+#endif
+}
+
+
+void MacroAssembler::GetRelocatedValue(Register location, Register result,
+ Register scratch) {
+ lwz(result, MemOperand(location));
+
+#if V8_OOL_CONSTANT_POOL
+ if (emit_debug_code()) {
+// Check that the instruction sequence is a load from the constant pool
+#if V8_TARGET_ARCH_PPC64
+ And(result, result, Operand(kOpcodeMask | (0x1f * B16)));
+ Cmpi(result, Operand(ADDI), r0);
+ Check(eq, kTheInstructionShouldBeALi);
+ lwz(result, MemOperand(location, kInstrSize));
+#endif
+ ExtractBitMask(result, result, 0x1f * B16);
+ cmpi(result, Operand(kConstantPoolRegister.code()));
+ Check(eq, kTheInstructionToPatchShouldBeALoadFromConstantPool);
+ lwz(result, MemOperand(location));
+ }
+ // Get the address of the constant and retrieve it.
+ andi(result, result, Operand(kImm16Mask));
+ LoadPX(result, MemOperand(kConstantPoolRegister, result));
+#else
+ // This code assumes a FIXED_SEQUENCE for lis/ori
+ if (emit_debug_code()) {
+ And(result, result, Operand(kOpcodeMask | (0x1f * B16)));
+ Cmpi(result, Operand(ADDIS), r0);
+ Check(eq, kTheInstructionShouldBeALis);
+ lwz(result, MemOperand(location));
+ }
+
+ // result now holds a lis instruction. Extract the immediate.
+ slwi(result, result, Operand(16));
+
+ lwz(scratch, MemOperand(location, kInstrSize));
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask));
+ Cmpi(scratch, Operand(ORI), r0);
+ Check(eq, kTheInstructionShouldBeAnOri);
+ lwz(scratch, MemOperand(location, kInstrSize));
+ }
+ // Copy the low 16bits from ori instruction into result
+ rlwimi(result, scratch, 0, 16, 31);
+
+#if V8_TARGET_ARCH_PPC64
+ if (emit_debug_code()) {
+ lwz(scratch, MemOperand(location, 2 * kInstrSize));
+ // scratch is now sldi.
+ And(scratch, scratch, Operand(kOpcodeMask | kExt5OpcodeMask));
+ Cmpi(scratch, Operand(EXT5 | RLDICR), r0);
+ Check(eq, kTheInstructionShouldBeASldi);
+ }
+
+ lwz(scratch, MemOperand(location, 3 * kInstrSize));
+ // scratch is now ori.
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask));
+ Cmpi(scratch, Operand(ORIS), r0);
+ Check(eq, kTheInstructionShouldBeAnOris);
+ lwz(scratch, MemOperand(location, 3 * kInstrSize));
+ }
+ sldi(result, result, Operand(16));
+ rldimi(result, scratch, 0, 48);
+
+ lwz(scratch, MemOperand(location, 4 * kInstrSize));
+ // scratch is now ori.
+ if (emit_debug_code()) {
+ And(scratch, scratch, Operand(kOpcodeMask));
+ Cmpi(scratch, Operand(ORI), r0);
+ Check(eq, kTheInstructionShouldBeAnOri);
+ lwz(scratch, MemOperand(location, 4 * kInstrSize));
+ }
+ sldi(result, result, Operand(16));
+ rldimi(result, scratch, 0, 48);
+#endif
+#endif
+}
+
+
+void MacroAssembler::CheckPageFlag(
+ Register object,
+ Register scratch, // scratch may be same register as object
+ int mask, Condition cc, Label* condition_met) {
+ DCHECK(cc == ne || cc == eq);
+ ClearRightImm(scratch, object, Operand(kPageSizeBits));
+ LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
+
+ And(r0, scratch, Operand(mask), SetRC);
+
+ if (cc == ne) {
+ bne(condition_met, cr0);
+ }
+ if (cc == eq) {
+ beq(condition_met, cr0);
+ }
+}
+
+
+void MacroAssembler::CheckMapDeprecated(Handle<Map> map, Register scratch,
+ Label* if_deprecated) {
+ if (map->CanBeDeprecated()) {
+ mov(scratch, Operand(map));
+ lwz(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
+ ExtractBitMask(scratch, scratch, Map::Deprecated::kMask, SetRC);
+ bne(if_deprecated, cr0);
+ }
+}
+
+
+void MacroAssembler::JumpIfBlack(Register object, Register scratch0,
+ Register scratch1, Label* on_black) {
+ HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
+ DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+}
+
+
+void MacroAssembler::HasColor(Register object, Register bitmap_scratch,
+ Register mask_scratch, Label* has_color,
+ int first_bit, int second_bit) {
+ DCHECK(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg));
+
+ GetMarkBits(object, bitmap_scratch, mask_scratch);
+
+ Label other_color, word_boundary;
+ lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ // Test the first bit
+ and_(r0, ip, mask_scratch, SetRC);
+ b(first_bit == 1 ? eq : ne, &other_color, cr0);
+ // Shift left 1
+ // May need to load the next cell
+ slwi(mask_scratch, mask_scratch, Operand(1), SetRC);
+ beq(&word_boundary, cr0);
+ // Test the second bit
+ and_(r0, ip, mask_scratch, SetRC);
+ b(second_bit == 1 ? ne : eq, has_color, cr0);
+ b(&other_color);
+
+ bind(&word_boundary);
+ lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kIntSize));
+ andi(r0, ip, Operand(1));
+ b(second_bit == 1 ? ne : eq, has_color, cr0);
+ bind(&other_color);
+}
+
+
+// Detect some, but not all, common pointer-free objects. This is used by the
+// incremental write barrier which doesn't care about oddballs (they are always
+// marked black immediately so this code is not hit).
+void MacroAssembler::JumpIfDataObject(Register value, Register scratch,
+ Label* not_data_object) {
+ Label is_data_object;
+ LoadP(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
+ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex);
+ beq(&is_data_object);
+ DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ lbz(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
+ STATIC_ASSERT((kIsIndirectStringMask | kIsNotStringMask) == 0x81);
+ andi(scratch, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask));
+ bne(not_data_object, cr0);
+ bind(&is_data_object);
+}
+
+
+void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg,
+ Register mask_reg) {
+ DCHECK(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg));
+ DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
+ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
+ and_(bitmap_reg, addr_reg, r0);
+ const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
+ ExtractBitRange(mask_reg, addr_reg, kLowBits - 1, kPointerSizeLog2);
+ ExtractBitRange(ip, addr_reg, kPageSizeBits - 1, kLowBits);
+ ShiftLeftImm(ip, ip, Operand(Bitmap::kBytesPerCellLog2));
+ add(bitmap_reg, bitmap_reg, ip);
+ li(ip, Operand(1));
+ slw(mask_reg, ip, mask_reg);
+}
+
+
+void MacroAssembler::EnsureNotWhite(Register value, Register bitmap_scratch,
+ Register mask_scratch,
+ Register load_scratch,
+ Label* value_is_white_and_not_data) {
+ DCHECK(!AreAliased(value, bitmap_scratch, mask_scratch, ip));
+ GetMarkBits(value, bitmap_scratch, mask_scratch);
+
+ // If the value is black or grey we don't need to do anything.
+ DCHECK(strcmp(Marking::kWhiteBitPattern, "00") == 0);
+ DCHECK(strcmp(Marking::kBlackBitPattern, "10") == 0);
+ DCHECK(strcmp(Marking::kGreyBitPattern, "11") == 0);
+ DCHECK(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
+
+ Label done;
+
+ // Since both black and grey have a 1 in the first position and white does
+ // not have a 1 there we only need to check one bit.
+ lwz(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ and_(r0, mask_scratch, load_scratch, SetRC);
+ bne(&done, cr0);
+
+ if (emit_debug_code()) {
+ // Check for impossible bit pattern.
+ Label ok;
+ // LSL may overflow, making the check conservative.
+ slwi(r0, mask_scratch, Operand(1));
+ and_(r0, load_scratch, r0, SetRC);
+ beq(&ok, cr0);
+ stop("Impossible marking bit pattern");
+ bind(&ok);
+ }
+
+ // Value is white. We check whether it is data that doesn't need scanning.
+ // Currently only checks for HeapNumber and non-cons strings.
+ Register map = load_scratch; // Holds map while checking type.
+ Register length = load_scratch; // Holds length of object after testing type.
+ Label is_data_object, maybe_string_object, is_string_object, is_encoded;
+#if V8_TARGET_ARCH_PPC64
+ Label length_computed;
+#endif
+
+
+ // Check for heap-number
+ LoadP(map, FieldMemOperand(value, HeapObject::kMapOffset));
+ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
+ bne(&maybe_string_object);
+ li(length, Operand(HeapNumber::kSize));
+ b(&is_data_object);
+ bind(&maybe_string_object);
+
+ // Check for strings.
+ DCHECK(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
+ DCHECK(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
+ // If it's a string and it's not a cons string then it's an object containing
+ // no GC pointers.
+ Register instance_type = load_scratch;
+ lbz(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ andi(r0, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask));
+ bne(value_is_white_and_not_data, cr0);
+ // It's a non-indirect (non-cons and non-slice) string.
+ // If it's external, the length is just ExternalString::kSize.
+ // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
+ // External strings are the only ones with the kExternalStringTag bit
+ // set.
+ DCHECK_EQ(0, kSeqStringTag & kExternalStringTag);
+ DCHECK_EQ(0, kConsStringTag & kExternalStringTag);
+ andi(r0, instance_type, Operand(kExternalStringTag));
+ beq(&is_string_object, cr0);
+ li(length, Operand(ExternalString::kSize));
+ b(&is_data_object);
+ bind(&is_string_object);
+
+ // Sequential string, either Latin1 or UC16.
+ // For Latin1 (char-size of 1) we untag the smi to get the length.
+ // For UC16 (char-size of 2):
+ // - (32-bit) we just leave the smi tag in place, thereby getting
+ // the length multiplied by 2.
+ // - (64-bit) we compute the offset in the 2-byte array
+ DCHECK(kOneByteStringTag == 4 && kStringEncodingMask == 4);
+ LoadP(ip, FieldMemOperand(value, String::kLengthOffset));
+ andi(r0, instance_type, Operand(kStringEncodingMask));
+ beq(&is_encoded, cr0);
+ SmiUntag(ip);
+#if V8_TARGET_ARCH_PPC64
+ b(&length_computed);
+#endif
+ bind(&is_encoded);
+#if V8_TARGET_ARCH_PPC64
+ SmiToShortArrayOffset(ip, ip);
+ bind(&length_computed);
+#else
+ DCHECK(kSmiShift == 1);
+#endif
+ addi(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask));
+ li(r0, Operand(~kObjectAlignmentMask));
+ and_(length, length, r0);
+
+ bind(&is_data_object);
+ // Value is a data object, and it is white. Mark it black. Since we know
+ // that the object is white we can make it black by flipping one bit.
+ lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+ orx(ip, ip, mask_scratch);
+ stw(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
+
+ mov(ip, Operand(~Page::kPageAlignmentMask));
+ and_(bitmap_scratch, bitmap_scratch, ip);
+ lwz(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+ add(ip, ip, length);
+ stw(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
+
+ bind(&done);
+}
+
+
+// Saturate a value into 8-bit unsigned integer
+// if input_value < 0, output_value is 0
+// if input_value > 255, output_value is 255
+// otherwise output_value is the input_value
+void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) {
+ Label done, negative_label, overflow_label;
+ int satval = (1 << 8) - 1;
+
+ cmpi(input_reg, Operand::Zero());
+ blt(&negative_label);
+
+ cmpi(input_reg, Operand(satval));
+ bgt(&overflow_label);
+ if (!output_reg.is(input_reg)) {
+ mr(output_reg, input_reg);
+ }
+ b(&done);
+
+ bind(&negative_label);
+ li(output_reg, Operand::Zero()); // set to 0 if negative
+ b(&done);
+
+
+ bind(&overflow_label); // set to satval if > satval
+ li(output_reg, Operand(satval));
+
+ bind(&done);
+}
+
+
+void MacroAssembler::SetRoundingMode(FPRoundingMode RN) { mtfsfi(7, RN); }
+
+
+void MacroAssembler::ResetRoundingMode() {
+ mtfsfi(7, kRoundToNearest); // reset (default is kRoundToNearest)
+}
+
+
+void MacroAssembler::ClampDoubleToUint8(Register result_reg,
+ DoubleRegister input_reg,
+ DoubleRegister double_scratch) {
+ Label above_zero;
+ Label done;
+ Label in_bounds;
+
+ LoadDoubleLiteral(double_scratch, 0.0, result_reg);
+ fcmpu(input_reg, double_scratch);
+ bgt(&above_zero);
+
+ // Double value is less than zero, NaN or Inf, return 0.
+ LoadIntLiteral(result_reg, 0);
+ b(&done);
+
+ // Double value is >= 255, return 255.
+ bind(&above_zero);
+ LoadDoubleLiteral(double_scratch, 255.0, result_reg);
+ fcmpu(input_reg, double_scratch);
+ ble(&in_bounds);
+ LoadIntLiteral(result_reg, 255);
+ b(&done);
+
+ // In 0-255 range, round and truncate.
+ bind(&in_bounds);
+
+ // round to nearest (default rounding mode)
+ fctiw(double_scratch, input_reg);
+ MovDoubleLowToInt(result_reg, double_scratch);
+ bind(&done);
+}
+
+
+void MacroAssembler::LoadInstanceDescriptors(Register map,
+ Register descriptors) {
+ LoadP(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
+}
+
+
+void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
+ lwz(dst, FieldMemOperand(map, Map::kBitField3Offset));
+ DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
+}
+
+
+void MacroAssembler::EnumLength(Register dst, Register map) {
+ STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
+ lwz(dst, FieldMemOperand(map, Map::kBitField3Offset));
+ ExtractBitMask(dst, dst, Map::EnumLengthBits::kMask);
+ SmiTag(dst);
+}
+
+
+void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) {
+ Register empty_fixed_array_value = r9;
+ LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
+ Label next, start;
+ mr(r5, r3);
+
+ // Check if the enum length field is properly initialized, indicating that
+ // there is an enum cache.
+ LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
+
+ EnumLength(r6, r4);
+ CmpSmiLiteral(r6, Smi::FromInt(kInvalidEnumCacheSentinel), r0);
+ beq(call_runtime);
+
+ b(&start);
+
+ bind(&next);
+ LoadP(r4, FieldMemOperand(r5, HeapObject::kMapOffset));
+
+ // For all objects but the receiver, check that the cache is empty.
+ EnumLength(r6, r4);
+ CmpSmiLiteral(r6, Smi::FromInt(0), r0);
+ bne(call_runtime);
+
+ bind(&start);
+
+ // Check that there are no elements. Register r5 contains the current JS
+ // object we've reached through the prototype chain.
+ Label no_elements;
+ LoadP(r5, FieldMemOperand(r5, JSObject::kElementsOffset));
+ cmp(r5, empty_fixed_array_value);
+ beq(&no_elements);
+
+ // Second chance, the object may be using the empty slow element dictionary.
+ CompareRoot(r5, Heap::kEmptySlowElementDictionaryRootIndex);
+ bne(call_runtime);
+
+ bind(&no_elements);
+ LoadP(r5, FieldMemOperand(r4, Map::kPrototypeOffset));
+ cmp(r5, null_value);
+ bne(&next);
+}
+
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// New MacroAssembler Interfaces added for PPC
+//
+////////////////////////////////////////////////////////////////////////////////
+void MacroAssembler::LoadIntLiteral(Register dst, int value) {
+ mov(dst, Operand(value));
+}
+
+
+void MacroAssembler::LoadSmiLiteral(Register dst, Smi* smi) {
+ mov(dst, Operand(smi));
+}
+
+
+void MacroAssembler::LoadDoubleLiteral(DoubleRegister result, double value,
+ Register scratch) {
+#if V8_OOL_CONSTANT_POOL
+ // TODO(mbrandy): enable extended constant pool usage for doubles.
+ // See ARM commit e27ab337 for a reference.
+ if (is_ool_constant_pool_available() && !is_constant_pool_full()) {
+ RelocInfo rinfo(pc_, value);
+ ConstantPoolAddEntry(rinfo);
+#if V8_TARGET_ARCH_PPC64
+ // We use 2 instruction sequence here for consistency with mov.
+ li(scratch, Operand::Zero());
+ lfdx(result, MemOperand(kConstantPoolRegister, scratch));
+#else
+ lfd(result, MemOperand(kConstantPoolRegister, 0));
+#endif
+ return;
+ }
+#endif
+
+ // avoid gcc strict aliasing error using union cast
+ union {
+ double dval;
+#if V8_TARGET_ARCH_PPC64
+ intptr_t ival;
+#else
+ intptr_t ival[2];
+#endif
+ } litVal;
+
+ litVal.dval = value;
+
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mov(scratch, Operand(litVal.ival));
+ mtfprd(result, scratch);
+ return;
+ }
+#endif
+
+ addi(sp, sp, Operand(-kDoubleSize));
+#if V8_TARGET_ARCH_PPC64
+ mov(scratch, Operand(litVal.ival));
+ std(scratch, MemOperand(sp));
+#else
+ LoadIntLiteral(scratch, litVal.ival[0]);
+ stw(scratch, MemOperand(sp, 0));
+ LoadIntLiteral(scratch, litVal.ival[1]);
+ stw(scratch, MemOperand(sp, 4));
+#endif
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lfd(result, MemOperand(sp, 0));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+void MacroAssembler::MovIntToDouble(DoubleRegister dst, Register src,
+ Register scratch) {
+// sign-extend src to 64-bit
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mtfprwa(dst, src);
+ return;
+ }
+#endif
+
+ DCHECK(!src.is(scratch));
+ subi(sp, sp, Operand(kDoubleSize));
+#if V8_TARGET_ARCH_PPC64
+ extsw(scratch, src);
+ std(scratch, MemOperand(sp, 0));
+#else
+ srawi(scratch, src, 31);
+ stw(scratch, MemOperand(sp, Register::kExponentOffset));
+ stw(src, MemOperand(sp, Register::kMantissaOffset));
+#endif
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lfd(dst, MemOperand(sp, 0));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+void MacroAssembler::MovUnsignedIntToDouble(DoubleRegister dst, Register src,
+ Register scratch) {
+// zero-extend src to 64-bit
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mtfprwz(dst, src);
+ return;
+ }
+#endif
+
+ DCHECK(!src.is(scratch));
+ subi(sp, sp, Operand(kDoubleSize));
+#if V8_TARGET_ARCH_PPC64
+ clrldi(scratch, src, Operand(32));
+ std(scratch, MemOperand(sp, 0));
+#else
+ li(scratch, Operand::Zero());
+ stw(scratch, MemOperand(sp, Register::kExponentOffset));
+ stw(src, MemOperand(sp, Register::kMantissaOffset));
+#endif
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lfd(dst, MemOperand(sp, 0));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+void MacroAssembler::MovInt64ToDouble(DoubleRegister dst,
+#if !V8_TARGET_ARCH_PPC64
+ Register src_hi,
+#endif
+ Register src) {
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mtfprd(dst, src);
+ return;
+ }
+#endif
+
+ subi(sp, sp, Operand(kDoubleSize));
+#if V8_TARGET_ARCH_PPC64
+ std(src, MemOperand(sp, 0));
+#else
+ stw(src_hi, MemOperand(sp, Register::kExponentOffset));
+ stw(src, MemOperand(sp, Register::kMantissaOffset));
+#endif
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lfd(dst, MemOperand(sp, 0));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+#if V8_TARGET_ARCH_PPC64
+void MacroAssembler::MovInt64ComponentsToDouble(DoubleRegister dst,
+ Register src_hi,
+ Register src_lo,
+ Register scratch) {
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ sldi(scratch, src_hi, Operand(32));
+ rldimi(scratch, src_lo, 0, 32);
+ mtfprd(dst, scratch);
+ return;
+ }
+
+ subi(sp, sp, Operand(kDoubleSize));
+ stw(src_hi, MemOperand(sp, Register::kExponentOffset));
+ stw(src_lo, MemOperand(sp, Register::kMantissaOffset));
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lfd(dst, MemOperand(sp));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+#endif
+
+
+void MacroAssembler::MovDoubleLowToInt(Register dst, DoubleRegister src) {
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mffprwz(dst, src);
+ return;
+ }
+#endif
+
+ subi(sp, sp, Operand(kDoubleSize));
+ stfd(src, MemOperand(sp));
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lwz(dst, MemOperand(sp, Register::kMantissaOffset));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+void MacroAssembler::MovDoubleHighToInt(Register dst, DoubleRegister src) {
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mffprd(dst, src);
+ srdi(dst, dst, Operand(32));
+ return;
+ }
+#endif
+
+ subi(sp, sp, Operand(kDoubleSize));
+ stfd(src, MemOperand(sp));
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+ lwz(dst, MemOperand(sp, Register::kExponentOffset));
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+void MacroAssembler::MovDoubleToInt64(
+#if !V8_TARGET_ARCH_PPC64
+ Register dst_hi,
+#endif
+ Register dst, DoubleRegister src) {
+#if V8_TARGET_ARCH_PPC64
+ if (CpuFeatures::IsSupported(FPR_GPR_MOV)) {
+ mffprd(dst, src);
+ return;
+ }
+#endif
+
+ subi(sp, sp, Operand(kDoubleSize));
+ stfd(src, MemOperand(sp));
+ nop(GROUP_ENDING_NOP); // LHS/RAW optimization
+#if V8_TARGET_ARCH_PPC64
+ ld(dst, MemOperand(sp, 0));
+#else
+ lwz(dst_hi, MemOperand(sp, Register::kExponentOffset));
+ lwz(dst, MemOperand(sp, Register::kMantissaOffset));
+#endif
+ addi(sp, sp, Operand(kDoubleSize));
+}
+
+
+void MacroAssembler::Add(Register dst, Register src, intptr_t value,
+ Register scratch) {
+ if (is_int16(value)) {
+ addi(dst, src, Operand(value));
+ } else {
+ mov(scratch, Operand(value));
+ add(dst, src, scratch);
+ }
+}
+
+
+void MacroAssembler::Cmpi(Register src1, const Operand& src2, Register scratch,
+ CRegister cr) {
+ intptr_t value = src2.immediate();
+ if (is_int16(value)) {
+ cmpi(src1, src2, cr);
+ } else {
+ mov(scratch, src2);
+ cmp(src1, scratch, cr);
+ }
+}
+
+
+void MacroAssembler::Cmpli(Register src1, const Operand& src2, Register scratch,
+ CRegister cr) {
+ intptr_t value = src2.immediate();
+ if (is_uint16(value)) {
+ cmpli(src1, src2, cr);
+ } else {
+ mov(scratch, src2);
+ cmpl(src1, scratch, cr);
+ }
+}
+
+
+void MacroAssembler::Cmpwi(Register src1, const Operand& src2, Register scratch,
+ CRegister cr) {
+ intptr_t value = src2.immediate();
+ if (is_int16(value)) {
+ cmpwi(src1, src2, cr);
+ } else {
+ mov(scratch, src2);
+ cmpw(src1, scratch, cr);
+ }
+}
+
+
+void MacroAssembler::Cmplwi(Register src1, const Operand& src2,
+ Register scratch, CRegister cr) {
+ intptr_t value = src2.immediate();
+ if (is_uint16(value)) {
+ cmplwi(src1, src2, cr);
+ } else {
+ mov(scratch, src2);
+ cmplw(src1, scratch, cr);
+ }
+}
+
+
+void MacroAssembler::And(Register ra, Register rs, const Operand& rb,
+ RCBit rc) {
+ if (rb.is_reg()) {
+ and_(ra, rs, rb.rm(), rc);
+ } else {
+ if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == SetRC) {
+ andi(ra, rs, rb);
+ } else {
+ // mov handles the relocation.
+ DCHECK(!rs.is(r0));
+ mov(r0, rb);
+ and_(ra, rs, r0, rc);
+ }
+ }
+}
+
+
+void MacroAssembler::Or(Register ra, Register rs, const Operand& rb, RCBit rc) {
+ if (rb.is_reg()) {
+ orx(ra, rs, rb.rm(), rc);
+ } else {
+ if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) {
+ ori(ra, rs, rb);
+ } else {
+ // mov handles the relocation.
+ DCHECK(!rs.is(r0));
+ mov(r0, rb);
+ orx(ra, rs, r0, rc);
+ }
+ }
+}
+
+
+void MacroAssembler::Xor(Register ra, Register rs, const Operand& rb,
+ RCBit rc) {
+ if (rb.is_reg()) {
+ xor_(ra, rs, rb.rm(), rc);
+ } else {
+ if (is_uint16(rb.imm_) && RelocInfo::IsNone(rb.rmode_) && rc == LeaveRC) {
+ xori(ra, rs, rb);
+ } else {
+ // mov handles the relocation.
+ DCHECK(!rs.is(r0));
+ mov(r0, rb);
+ xor_(ra, rs, r0, rc);
+ }
+ }
+}
+
+
+void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch,
+ CRegister cr) {
+#if V8_TARGET_ARCH_PPC64
+ LoadSmiLiteral(scratch, smi);
+ cmp(src1, scratch, cr);
+#else
+ Cmpi(src1, Operand(smi), scratch, cr);
+#endif
+}
+
+
+void MacroAssembler::CmplSmiLiteral(Register src1, Smi* smi, Register scratch,
+ CRegister cr) {
+#if V8_TARGET_ARCH_PPC64
+ LoadSmiLiteral(scratch, smi);
+ cmpl(src1, scratch, cr);
+#else
+ Cmpli(src1, Operand(smi), scratch, cr);
+#endif
+}
+
+
+void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi,
+ Register scratch) {
+#if V8_TARGET_ARCH_PPC64
+ LoadSmiLiteral(scratch, smi);
+ add(dst, src, scratch);
+#else
+ Add(dst, src, reinterpret_cast<intptr_t>(smi), scratch);
+#endif
+}
+
+
+void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi,
+ Register scratch) {
+#if V8_TARGET_ARCH_PPC64
+ LoadSmiLiteral(scratch, smi);
+ sub(dst, src, scratch);
+#else
+ Add(dst, src, -(reinterpret_cast<intptr_t>(smi)), scratch);
+#endif
+}
+
+
+void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi,
+ Register scratch, RCBit rc) {
+#if V8_TARGET_ARCH_PPC64
+ LoadSmiLiteral(scratch, smi);
+ and_(dst, src, scratch, rc);
+#else
+ And(dst, src, Operand(smi), rc);
+#endif
+}
+
+
+// Load a "pointer" sized value from the memory location
+void MacroAssembler::LoadP(Register dst, const MemOperand& mem,
+ Register scratch) {
+ int offset = mem.offset();
+
+ if (!scratch.is(no_reg) && !is_int16(offset)) {
+ /* cannot use d-form */
+ LoadIntLiteral(scratch, offset);
+#if V8_TARGET_ARCH_PPC64
+ ldx(dst, MemOperand(mem.ra(), scratch));
+#else
+ lwzx(dst, MemOperand(mem.ra(), scratch));
+#endif
+ } else {
+#if V8_TARGET_ARCH_PPC64
+ int misaligned = (offset & 3);
+ if (misaligned) {
+ // adjust base to conform to offset alignment requirements
+ // Todo: enhance to use scratch if dst is unsuitable
+ DCHECK(!dst.is(r0));
+ addi(dst, mem.ra(), Operand((offset & 3) - 4));
+ ld(dst, MemOperand(dst, (offset & ~3) + 4));
+ } else {
+ ld(dst, mem);
+ }
+#else
+ lwz(dst, mem);
+#endif
+ }
+}
+
+
+// Store a "pointer" sized value to the memory location
+void MacroAssembler::StoreP(Register src, const MemOperand& mem,
+ Register scratch) {
+ int offset = mem.offset();
+
+ if (!scratch.is(no_reg) && !is_int16(offset)) {
+ /* cannot use d-form */
+ LoadIntLiteral(scratch, offset);
+#if V8_TARGET_ARCH_PPC64
+ stdx(src, MemOperand(mem.ra(), scratch));
+#else
+ stwx(src, MemOperand(mem.ra(), scratch));
+#endif
+ } else {
+#if V8_TARGET_ARCH_PPC64
+ int misaligned = (offset & 3);
+ if (misaligned) {
+ // adjust base to conform to offset alignment requirements
+ // a suitable scratch is required here
+ DCHECK(!scratch.is(no_reg));
+ if (scratch.is(r0)) {
+ LoadIntLiteral(scratch, offset);
+ stdx(src, MemOperand(mem.ra(), scratch));
+ } else {
+ addi(scratch, mem.ra(), Operand((offset & 3) - 4));
+ std(src, MemOperand(scratch, (offset & ~3) + 4));
+ }
+ } else {
+ std(src, mem);
+ }
+#else
+ stw(src, mem);
+#endif
+ }
+}
+
+void MacroAssembler::LoadWordArith(Register dst, const MemOperand& mem,
+ Register scratch) {
+ int offset = mem.offset();
+
+ if (!scratch.is(no_reg) && !is_int16(offset)) {
+ /* cannot use d-form */
+ LoadIntLiteral(scratch, offset);
+#if V8_TARGET_ARCH_PPC64
+ // lwax(dst, MemOperand(mem.ra(), scratch));
+ DCHECK(0); // lwax not yet implemented
+#else
+ lwzx(dst, MemOperand(mem.ra(), scratch));
+#endif
+ } else {
+#if V8_TARGET_ARCH_PPC64
+ int misaligned = (offset & 3);
+ if (misaligned) {
+ // adjust base to conform to offset alignment requirements
+ // Todo: enhance to use scratch if dst is unsuitable
+ DCHECK(!dst.is(r0));
+ addi(dst, mem.ra(), Operand((offset & 3) - 4));
+ lwa(dst, MemOperand(dst, (offset & ~3) + 4));
+ } else {
+ lwa(dst, mem);
+ }
+#else
+ lwz(dst, mem);
+#endif
+ }
+}
+
+
+// Variable length depending on whether offset fits into immediate field
+// MemOperand currently only supports d-form
+void MacroAssembler::LoadWord(Register dst, const MemOperand& mem,
+ Register scratch) {
+ Register base = mem.ra();
+ int offset = mem.offset();
+
+ if (!is_int16(offset)) {
+ LoadIntLiteral(scratch, offset);
+ lwzx(dst, MemOperand(base, scratch));
+ } else {
+ lwz(dst, mem);
+ }
+}
+
+
+// Variable length depending on whether offset fits into immediate field
+// MemOperand current only supports d-form
+void MacroAssembler::StoreWord(Register src, const MemOperand& mem,
+ Register scratch) {
+ Register base = mem.ra();
+ int offset = mem.offset();
+
+ if (!is_int16(offset)) {
+ LoadIntLiteral(scratch, offset);
+ stwx(src, MemOperand(base, scratch));
+ } else {
+ stw(src, mem);
+ }
+}
+
+
+// Variable length depending on whether offset fits into immediate field
+// MemOperand currently only supports d-form
+void MacroAssembler::LoadHalfWord(Register dst, const MemOperand& mem,
+ Register scratch) {
+ Register base = mem.ra();
+ int offset = mem.offset();
+
+ if (!is_int16(offset)) {
+ LoadIntLiteral(scratch, offset);
+ lhzx(dst, MemOperand(base, scratch));
+ } else {
+ lhz(dst, mem);
+ }
+}
+
+
+// Variable length depending on whether offset fits into immediate field
+// MemOperand current only supports d-form
+void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem,
+ Register scratch) {
+ Register base = mem.ra();
+ int offset = mem.offset();
+
+ if (!is_int16(offset)) {
+ LoadIntLiteral(scratch, offset);
+ sthx(src, MemOperand(base, scratch));
+ } else {
+ sth(src, mem);
+ }
+}
+
+
+// Variable length depending on whether offset fits into immediate field
+// MemOperand currently only supports d-form
+void MacroAssembler::LoadByte(Register dst, const MemOperand& mem,
+ Register scratch) {
+ Register base = mem.ra();
+ int offset = mem.offset();
+
+ if (!is_int16(offset)) {
+ LoadIntLiteral(scratch, offset);
+ lbzx(dst, MemOperand(base, scratch));
+ } else {
+ lbz(dst, mem);
+ }
+}
+
+
+// Variable length depending on whether offset fits into immediate field
+// MemOperand current only supports d-form
+void MacroAssembler::StoreByte(Register src, const MemOperand& mem,
+ Register scratch) {
+ Register base = mem.ra();
+ int offset = mem.offset();
+
+ if (!is_int16(offset)) {
+ LoadIntLiteral(scratch, offset);
+ stbx(src, MemOperand(base, scratch));
+ } else {
+ stb(src, mem);
+ }
+}
+
+
+void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem,
+ Representation r, Register scratch) {
+ DCHECK(!r.IsDouble());
+ if (r.IsInteger8()) {
+ LoadByte(dst, mem, scratch);
+ extsb(dst, dst);
+ } else if (r.IsUInteger8()) {
+ LoadByte(dst, mem, scratch);
+ } else if (r.IsInteger16()) {
+ LoadHalfWord(dst, mem, scratch);
+ extsh(dst, dst);
+ } else if (r.IsUInteger16()) {
+ LoadHalfWord(dst, mem, scratch);
+#if V8_TARGET_ARCH_PPC64
+ } else if (r.IsInteger32()) {
+ LoadWord(dst, mem, scratch);
+#endif
+ } else {
+ LoadP(dst, mem, scratch);
+ }
+}
+
+
+void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem,
+ Representation r, Register scratch) {
+ DCHECK(!r.IsDouble());
+ if (r.IsInteger8() || r.IsUInteger8()) {
+ StoreByte(src, mem, scratch);
+ } else if (r.IsInteger16() || r.IsUInteger16()) {
+ StoreHalfWord(src, mem, scratch);
+#if V8_TARGET_ARCH_PPC64
+ } else if (r.IsInteger32()) {
+ StoreWord(src, mem, scratch);
+#endif
+ } else {
+ if (r.IsHeapObject()) {
+ AssertNotSmi(src);
+ } else if (r.IsSmi()) {
+ AssertSmi(src);
+ }
+ StoreP(src, mem, scratch);
+ }
+}
+
+
+void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver_reg,
+ Register scratch_reg,
+ Label* no_memento_found) {
+ ExternalReference new_space_start =
+ ExternalReference::new_space_start(isolate());
+ ExternalReference new_space_allocation_top =
+ ExternalReference::new_space_allocation_top_address(isolate());
+ addi(scratch_reg, receiver_reg,
+ Operand(JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag));
+ Cmpi(scratch_reg, Operand(new_space_start), r0);
+ blt(no_memento_found);
+ mov(ip, Operand(new_space_allocation_top));
+ LoadP(ip, MemOperand(ip));
+ cmp(scratch_reg, ip);
+ bgt(no_memento_found);
+ LoadP(scratch_reg, MemOperand(scratch_reg, -AllocationMemento::kSize));
+ Cmpi(scratch_reg, Operand(isolate()->factory()->allocation_memento_map()),
+ r0);
+}
+
+
+Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
+ Register reg4, Register reg5,
+ Register reg6) {
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+
+ for (int i = 0; i < Register::NumAllocatableRegisters(); i++) {
+ Register candidate = Register::FromAllocationIndex(i);
+ if (regs & candidate.bit()) continue;
+ return candidate;
+ }
+ UNREACHABLE();
+ return no_reg;
+}
+
+
+void MacroAssembler::JumpIfDictionaryInPrototypeChain(Register object,
+ Register scratch0,
+ Register scratch1,
+ Label* found) {
+ DCHECK(!scratch1.is(scratch0));
+ Factory* factory = isolate()->factory();
+ Register current = scratch0;
+ Label loop_again;
+
+ // scratch contained elements pointer.
+ mr(current, object);
+
+ // Loop based on the map going up the prototype chain.
+ bind(&loop_again);
+ LoadP(current, FieldMemOperand(current, HeapObject::kMapOffset));
+ lbz(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
+ DecodeField<Map::ElementsKindBits>(scratch1);
+ cmpi(scratch1, Operand(DICTIONARY_ELEMENTS));
+ beq(found);
+ LoadP(current, FieldMemOperand(current, Map::kPrototypeOffset));
+ Cmpi(current, Operand(factory->null_value()), r0);
+ bne(&loop_again);
+}
+
+
+#ifdef DEBUG
+bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4,
+ Register reg5, Register reg6, Register reg7, Register reg8) {
+ int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() +
+ reg4.is_valid() + reg5.is_valid() + reg6.is_valid() +
+ reg7.is_valid() + reg8.is_valid();
+
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+ if (reg7.is_valid()) regs |= reg7.bit();
+ if (reg8.is_valid()) regs |= reg8.bit();
+ int n_of_non_aliasing_regs = NumRegs(regs);
+
+ return n_of_valid_regs != n_of_non_aliasing_regs;
+}
+#endif
+
+
+CodePatcher::CodePatcher(byte* address, int instructions,
+ FlushICache flush_cache)
+ : address_(address),
+ size_(instructions * Assembler::kInstrSize),
+ masm_(NULL, address, size_ + Assembler::kGap),
+ flush_cache_(flush_cache) {
+ // Create a new macro assembler pointing to the address of the code to patch.
+ // The size is adjusted with kGap on order for the assembler to generate size
+ // bytes of instructions without failing with buffer size constraints.
+ DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+CodePatcher::~CodePatcher() {
+ // Indicate that code has changed.
+ if (flush_cache_ == FLUSH) {
+ CpuFeatures::FlushICache(address_, size_);
+ }
+
+ // Check that the code was patched as expected.
+ DCHECK(masm_.pc_ == address_ + size_);
+ DCHECK(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
+}
+
+
+void CodePatcher::Emit(Instr instr) { masm()->emit(instr); }
+
+
+void CodePatcher::EmitCondition(Condition cond) {
+ Instr instr = Assembler::instr_at(masm_.pc_);
+ switch (cond) {
+ case eq:
+ instr = (instr & ~kCondMask) | BT;
+ break;
+ case ne:
+ instr = (instr & ~kCondMask) | BF;
+ break;
+ default:
+ UNIMPLEMENTED();
+ }
+ masm_.emit(instr);
+}
+
+
+void MacroAssembler::TruncatingDiv(Register result, Register dividend,
+ int32_t divisor) {
+ DCHECK(!dividend.is(result));
+ DCHECK(!dividend.is(r0));
+ DCHECK(!result.is(r0));
+ base::MagicNumbersForDivision<uint32_t> mag =
+ base::SignedDivisionByConstant(static_cast<uint32_t>(divisor));
+ mov(r0, Operand(mag.multiplier));
+ mulhw(result, dividend, r0);
+ bool neg = (mag.multiplier & (static_cast<uint32_t>(1) << 31)) != 0;
+ if (divisor > 0 && neg) {
+ add(result, result, dividend);
+ }
+ if (divisor < 0 && !neg && mag.multiplier > 0) {
+ sub(result, result, dividend);
+ }
+ if (mag.shift > 0) srawi(result, result, mag.shift);
+ ExtractBit(r0, dividend, 31);
+ add(result, result, r0);
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_PPC
« no previous file with comments | « src/ppc/macro-assembler-ppc.h ('k') | src/ppc/regexp-macro-assembler-ppc.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698