Chromium Code Reviews| Index: src/ppc/codegen-ppc.cc |
| diff --git a/src/ppc/codegen-ppc.cc b/src/ppc/codegen-ppc.cc |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..222ef2487abbc74e8b22759b24b4eb01f22fbf17 |
| --- /dev/null |
| +++ b/src/ppc/codegen-ppc.cc |
| @@ -0,0 +1,675 @@ |
| +// Copyright 2012 the V8 project authors. All rights reserved. |
| +// Use of this source code is governed by a BSD-style license that can be |
| +// found in the LICENSE file. |
| + |
| +#include "src/v8.h" |
| + |
| +#if V8_TARGET_ARCH_PPC |
| + |
| +#include "src/codegen.h" |
| +#include "src/macro-assembler.h" |
| +#include "src/ppc/simulator-ppc.h" |
| + |
| +namespace v8 { |
| +namespace internal { |
| + |
| + |
| +#define __ masm. |
| + |
| + |
| +#if defined(USE_SIMULATOR) |
| +byte* fast_exp_ppc_machine_code = NULL; |
| +double fast_exp_simulator(double x) { |
| + return Simulator::current(Isolate::Current()) |
| + ->CallFPReturnsDouble(fast_exp_ppc_machine_code, x, 0); |
| +} |
| +#endif |
| + |
| + |
| +UnaryMathFunction CreateExpFunction() { |
| + if (!FLAG_fast_math) return &std::exp; |
| + size_t actual_size; |
| + byte* buffer = |
| + static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
| + if (buffer == NULL) return &std::exp; |
| + ExternalReference::InitializeMathExpData(); |
| + |
| + MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); |
| + |
| + { |
| + DoubleRegister input = d1; |
| + DoubleRegister result = d2; |
| + DoubleRegister double_scratch1 = d3; |
| + DoubleRegister double_scratch2 = d4; |
| + Register temp1 = r7; |
| + Register temp2 = r8; |
| + Register temp3 = r9; |
| + |
| +// Called from C |
| +#if ABI_USES_FUNCTION_DESCRIPTORS |
| + __ function_descriptor(); |
| +#endif |
| + |
| + __ Push(temp3, temp2, temp1); |
| + MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1, |
| + double_scratch2, temp1, temp2, temp3); |
| + __ Pop(temp3, temp2, temp1); |
| + __ fmr(d1, result); |
| + __ Ret(); |
| + } |
| + |
| + CodeDesc desc; |
| + masm.GetCode(&desc); |
| +#if !ABI_USES_FUNCTION_DESCRIPTORS |
| + DCHECK(!RelocInfo::RequiresRelocation(desc)); |
| +#endif |
| + |
| + CpuFeatures::FlushICache(buffer, actual_size); |
| + base::OS::ProtectCode(buffer, actual_size); |
| + |
| +#if !defined(USE_SIMULATOR) |
| + return FUNCTION_CAST<UnaryMathFunction>(buffer); |
| +#else |
| + fast_exp_ppc_machine_code = buffer; |
| + return &fast_exp_simulator; |
| +#endif |
| +} |
| + |
| + |
| +UnaryMathFunction CreateSqrtFunction() { |
| +#if defined(USE_SIMULATOR) |
| + return &std::sqrt; |
| +#else |
| + size_t actual_size; |
| + byte* buffer = |
| + static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true)); |
| + if (buffer == NULL) return &std::sqrt; |
| + |
| + MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size)); |
| + |
| +// Called from C |
| +#if ABI_USES_FUNCTION_DESCRIPTORS |
| + __ function_descriptor(); |
| +#endif |
| + |
| + __ MovFromFloatParameter(d1); |
| + __ fsqrt(d1, d1); |
| + __ MovToFloatResult(d1); |
| + __ Ret(); |
| + |
| + CodeDesc desc; |
| + masm.GetCode(&desc); |
| +#if !ABI_USES_FUNCTION_DESCRIPTORS |
| + DCHECK(!RelocInfo::RequiresRelocation(desc)); |
| +#endif |
| + |
| + CpuFeatures::FlushICache(buffer, actual_size); |
| + base::OS::ProtectCode(buffer, actual_size); |
| + return FUNCTION_CAST<UnaryMathFunction>(buffer); |
| +#endif |
| +} |
| + |
| +#undef __ |
| + |
| + |
| +// ------------------------------------------------------------------------- |
| +// Platform-specific RuntimeCallHelper functions. |
| + |
| +void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { |
| + masm->EnterFrame(StackFrame::INTERNAL); |
| + DCHECK(!masm->has_frame()); |
| + masm->set_has_frame(true); |
| +} |
| + |
| + |
| +void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { |
| + masm->LeaveFrame(StackFrame::INTERNAL); |
| + DCHECK(masm->has_frame()); |
| + masm->set_has_frame(false); |
| +} |
| + |
| + |
| +// ------------------------------------------------------------------------- |
| +// Code generators |
| + |
| +#define __ ACCESS_MASM(masm) |
| + |
| +void ElementsTransitionGenerator::GenerateMapChangeElementsTransition( |
| + MacroAssembler* masm, Register receiver, Register key, Register value, |
| + Register target_map, AllocationSiteMode mode, |
| + Label* allocation_memento_found) { |
| + Register scratch_elements = r7; |
| + DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements)); |
| + |
| + if (mode == TRACK_ALLOCATION_SITE) { |
| + DCHECK(allocation_memento_found != NULL); |
| + __ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements, |
| + allocation_memento_found); |
| + } |
| + |
| + // Set transitioned map. |
| + __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| + __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r11, |
| + kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| + OMIT_SMI_CHECK); |
| +} |
| + |
| + |
| +void ElementsTransitionGenerator::GenerateSmiToDouble( |
| + MacroAssembler* masm, Register receiver, Register key, Register value, |
| + Register target_map, AllocationSiteMode mode, Label* fail) { |
| + // lr contains the return address |
| + Label loop, entry, convert_hole, gc_required, only_change_map, done; |
| + Register elements = r7; |
| + Register length = r8; |
| + Register array = r9; |
| + Register array_end = array; |
| + |
| + // target_map parameter can be clobbered. |
| + Register scratch1 = target_map; |
| + Register scratch2 = r11; |
| + |
| + // Verify input registers don't conflict with locals. |
| + DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array, |
| + scratch2)); |
| + |
| + if (mode == TRACK_ALLOCATION_SITE) { |
| + __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
| + } |
| + |
| + // Check for empty arrays, which only require a map transition and no changes |
| + // to the backing store. |
| + __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| + __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
| + __ beq(&only_change_map); |
| + |
| + // Preserve lr and use r17 as a temporary register. |
| + __ mflr(r0); |
| + __ Push(r0); |
| + |
| + __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| + // length: number of elements (smi-tagged) |
| + |
| + // Allocate new FixedDoubleArray. |
| + __ SmiToDoubleArrayOffset(r17, length); |
| + __ addi(r17, r17, Operand(FixedDoubleArray::kHeaderSize)); |
| + __ Allocate(r17, array, r10, scratch2, &gc_required, DOUBLE_ALIGNMENT); |
| + |
| + // Set destination FixedDoubleArray's length and map. |
| + __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex); |
| + __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
| + // Update receiver's map. |
| + __ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset)); |
| + |
| + __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| + __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, |
| + kLRHasBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| + OMIT_SMI_CHECK); |
| + // Replace receiver's backing store with newly created FixedDoubleArray. |
| + __ addi(scratch1, array, Operand(kHeapObjectTag)); |
| + __ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); |
| + __ RecordWriteField(receiver, JSObject::kElementsOffset, scratch1, scratch2, |
| + kLRHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| + OMIT_SMI_CHECK); |
| + |
| + // Prepare for conversion loop. |
| + __ addi(target_map, elements, |
| + Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| + __ addi(r10, array, Operand(FixedDoubleArray::kHeaderSize)); |
| + __ SmiToDoubleArrayOffset(array, length); |
| + __ add(array_end, r10, array); |
| +// Repurpose registers no longer in use. |
| +#if V8_TARGET_ARCH_PPC64 |
| + Register hole_int64 = elements; |
| +#else |
| + Register hole_lower = elements; |
| + Register hole_upper = length; |
| +#endif |
| + // scratch1: begin of source FixedArray element fields, not tagged |
| + // hole_lower: kHoleNanLower32 OR hol_int64 |
| + // hole_upper: kHoleNanUpper32 |
| + // array_end: end of destination FixedDoubleArray, not tagged |
| + // scratch2: begin of FixedDoubleArray element fields, not tagged |
| + |
| + __ b(&entry); |
| + |
| + __ bind(&only_change_map); |
| + __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| + __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2, |
| + kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| + OMIT_SMI_CHECK); |
| + __ b(&done); |
| + |
| + // Call into runtime if GC is required. |
| + __ bind(&gc_required); |
| + __ Pop(r0); |
| + __ mtlr(r0); |
| + __ b(fail); |
| + |
| + // Convert and copy elements. |
| + __ bind(&loop); |
| + __ LoadP(r11, MemOperand(scratch1)); |
| + __ addi(scratch1, scratch1, Operand(kPointerSize)); |
| + // r11: current element |
| + __ UntagAndJumpIfNotSmi(r11, r11, &convert_hole); |
| + |
| + // Normal smi, convert to double and store. |
| + __ ConvertIntToDouble(r11, d0); |
| + __ stfd(d0, MemOperand(scratch2, 0)); |
| + __ addi(r10, r10, Operand(8)); |
| + |
| + __ b(&entry); |
| + |
| + // Hole found, store the-hole NaN. |
| + __ bind(&convert_hole); |
| + if (FLAG_debug_code) { |
| + // Restore a "smi-untagged" heap object. |
| + __ LoadP(r11, MemOperand(r6, -kPointerSize)); |
| + __ CompareRoot(r11, Heap::kTheHoleValueRootIndex); |
| + __ Assert(eq, kObjectFoundInSmiOnlyArray); |
| + } |
| +#if V8_TARGET_ARCH_PPC64 |
| + __ std(hole_int64, MemOperand(r10, 0)); |
| +#else |
| + __ stw(hole_upper, MemOperand(r10, Register::kExponentOffset)); |
| + __ stw(hole_lower, MemOperand(r10, Register::kMantissaOffset)); |
| +#endif |
| + __ addi(r10, r10, Operand(8)); |
| + |
| + __ bind(&entry); |
| + __ cmp(r10, array_end); |
| + __ blt(&loop); |
| + |
| + __ Pop(r0); |
| + __ mtlr(r0); |
| + __ bind(&done); |
| +} |
| + |
| + |
| +void ElementsTransitionGenerator::GenerateDoubleToObject( |
| + MacroAssembler* masm, Register receiver, Register key, Register value, |
| + Register target_map, AllocationSiteMode mode, Label* fail) { |
| + // Register lr contains the return address. |
| + Label entry, loop, convert_hole, gc_required, only_change_map; |
| + Register elements = r7; |
| + Register array = r9; |
| + Register length = r8; |
| + Register scratch = r11; |
| + |
| + // Verify input registers don't conflict with locals. |
| + DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length, |
| + scratch)); |
| + |
| + if (mode == TRACK_ALLOCATION_SITE) { |
| + __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail); |
| + } |
| + |
| + // Check for empty arrays, which only require a map transition and no changes |
| + // to the backing store. |
| + __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| + __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); |
| + __ beq(&only_change_map); |
| + |
| + __ Push(target_map, receiver, key, value); |
| + __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| + // elements: source FixedDoubleArray |
| + // length: number of elements (smi-tagged) |
| + |
| + // Allocate new FixedArray. |
| + // Re-use value and target_map registers, as they have been saved on the |
| + // stack. |
| + Register array_size = value; |
| + Register allocate_scratch = target_map; |
| + __ li(array_size, Operand(FixedDoubleArray::kHeaderSize)); |
| + __ SmiToPtrArrayOffset(r0, length); |
| + __ add(array_size, array_size, r0); |
| + __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required, |
| + NO_ALLOCATION_FLAGS); |
| + // array: destination FixedArray, not tagged as heap object |
| + // Set destination FixedDoubleArray's length and map. |
| + __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex); |
| + __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset)); |
| + __ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset)); |
| + |
| + // Prepare for conversion loop. |
| + Register src_elements = elements; |
| + Register dst_elements = target_map; |
| + Register dst_end = length; |
| + Register heap_number_map = scratch; |
| + __ addi(src_elements, elements, |
| + Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| + __ addi(dst_elements, array, Operand(FixedArray::kHeaderSize)); |
| + __ addi(array, array, Operand(kHeapObjectTag)); |
| + __ SmiToPtrArrayOffset(length, length); |
| + __ add(dst_end, dst_elements, length); |
| + __ LoadRoot(r10, Heap::kTheHoleValueRootIndex); |
| + __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| + // Using offsetted addresses in src_elements to fully take advantage of |
| + // post-indexing. |
| + // dst_elements: begin of destination FixedArray element fields, not tagged |
| + // src_elements: begin of source FixedDoubleArray element fields, |
| + // not tagged, +4 |
| + // dst_end: end of destination FixedArray, not tagged |
| + // array: destination FixedArray |
| + // r10: the-hole pointer |
| + // heap_number_map: heap number map |
| + __ b(&entry); |
| + |
| + // Call into runtime if GC is required. |
| + __ bind(&gc_required); |
| + __ Pop(target_map, receiver, key, value); |
| + __ b(fail); |
| + |
| + __ bind(&loop); |
| + Register upper_bits = key; |
| + __ lwz(upper_bits, MemOperand(src_elements, Register::kExponentOffset)); |
| + __ addi(src_elements, src_elements, Operand(kDoubleSize)); |
| + // upper_bits: current element's upper 32 bit |
| + // src_elements: address of next element's upper 32 bit |
| + __ Cmpi(upper_bits, Operand(kHoleNanUpper32), r0); |
| + __ beq(&convert_hole); |
| + |
| + // Non-hole double, copy value into a heap number. |
| + Register heap_number = receiver; |
| + Register scratch2 = value; |
| + __ AllocateHeapNumber(heap_number, scratch2, r11, heap_number_map, |
| + &gc_required); |
| +// heap_number: new heap number |
|
danno
2014/10/20 08:28:43
Indentation?
andrew_low
2014/11/07 18:03:17
Done.
|
| +#if V8_TARGET_ARCH_PPC64 |
| + __ ld(scratch2, MemOperand(src_elements, -kDoubleSize)); |
| + __ addi(upper_bits, heap_number, Operand(-1)); // subtract tag for std |
| + __ std(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset)); |
| +#else |
| + __ lwz(scratch2, |
| + MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize)); |
| + __ lwz(upper_bits, |
| + MemOperand(src_elements, Register::kExponentOffset - kDoubleSize)); |
| + __ stw(scratch2, FieldMemOperand(heap_number, HeapNumber::kMantissaOffset)); |
| + __ stw(upper_bits, FieldMemOperand(heap_number, HeapNumber::kExponentOffset)); |
| +#endif |
| + __ mr(scratch2, dst_elements); |
| + __ StoreP(heap_number, MemOperand(dst_elements)); |
| + __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| + __ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved, |
| + kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| + __ b(&entry); |
| + |
| + // Replace the-hole NaN with the-hole pointer. |
| + __ bind(&convert_hole); |
| + __ StoreP(r10, MemOperand(dst_elements)); |
| + __ addi(dst_elements, dst_elements, Operand(kPointerSize)); |
| + |
| + __ bind(&entry); |
| + __ cmpl(dst_elements, dst_end); |
| + __ blt(&loop); |
| + |
| + __ Pop(target_map, receiver, key, value); |
| + // Replace receiver's backing store with newly created and filled FixedArray. |
| + __ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset), r0); |
| + __ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch, |
| + kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, |
| + OMIT_SMI_CHECK); |
| + |
| + __ bind(&only_change_map); |
| + // Update receiver's map. |
| + __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset), r0); |
| + __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch, |
| + kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| + OMIT_SMI_CHECK); |
| +} |
| + |
| + |
| +// assume ip can be used as a scratch register below |
| +void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string, |
| + Register index, Register result, |
| + Label* call_runtime) { |
| + // Fetch the instance type of the receiver into result register. |
| + __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
| + __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
| + |
| + // We need special handling for indirect strings. |
| + Label check_sequential; |
| + __ andi(r0, result, Operand(kIsIndirectStringMask)); |
| + __ beq(&check_sequential, cr0); |
| + |
| + // Dispatch on the indirect string shape: slice or cons. |
| + Label cons_string; |
| + __ mov(ip, Operand(kSlicedNotConsMask)); |
| + __ and_(r0, result, ip, SetRC); |
| + __ beq(&cons_string, cr0); |
| + |
| + // Handle slices. |
| + Label indirect_string_loaded; |
| + __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset)); |
| + __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset)); |
| + __ SmiUntag(ip, result); |
| + __ add(index, index, ip); |
| + __ b(&indirect_string_loaded); |
| + |
| + // Handle cons strings. |
| + // Check whether the right hand side is the empty string (i.e. if |
| + // this is really a flat string in a cons string). If that is not |
| + // the case we would rather go to the runtime system now to flatten |
| + // the string. |
| + __ bind(&cons_string); |
| + __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset)); |
| + __ CompareRoot(result, Heap::kempty_stringRootIndex); |
| + __ bne(call_runtime); |
| + // Get the first of the two strings and load its instance type. |
| + __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset)); |
| + |
| + __ bind(&indirect_string_loaded); |
| + __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset)); |
| + __ lbz(result, FieldMemOperand(result, Map::kInstanceTypeOffset)); |
| + |
| + // Distinguish sequential and external strings. Only these two string |
| + // representations can reach here (slices and flat cons strings have been |
| + // reduced to the underlying sequential or external string). |
| + Label external_string, check_encoding; |
| + __ bind(&check_sequential); |
| + STATIC_ASSERT(kSeqStringTag == 0); |
| + __ andi(r0, result, Operand(kStringRepresentationMask)); |
| + __ bne(&external_string, cr0); |
| + |
| + // Prepare sequential strings |
| + STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
| + __ addi(string, string, |
| + Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
| + __ b(&check_encoding); |
| + |
| + // Handle external strings. |
| + __ bind(&external_string); |
| + if (FLAG_debug_code) { |
| + // Assert that we do not have a cons or slice (indirect strings) here. |
| + // Sequential strings have already been ruled out. |
| + __ andi(r0, result, Operand(kIsIndirectStringMask)); |
| + __ Assert(eq, kExternalStringExpectedButNotFound, cr0); |
| + } |
| + // Rule out short external strings. |
| + STATIC_ASSERT(kShortExternalStringTag != 0); |
| + __ andi(r0, result, Operand(kShortExternalStringMask)); |
| + __ bne(call_runtime, cr0); |
| + __ LoadP(string, |
| + FieldMemOperand(string, ExternalString::kResourceDataOffset)); |
| + |
| + Label one_byte, done; |
| + __ bind(&check_encoding); |
| + STATIC_ASSERT(kTwoByteStringTag == 0); |
| + __ andi(r0, result, Operand(kStringEncodingMask)); |
| + __ bne(&one_byte, cr0); |
| + // Two-byte string. |
| + __ ShiftLeftImm(result, index, Operand(1)); |
| + __ lhzx(result, MemOperand(string, result)); |
| + __ b(&done); |
| + __ bind(&one_byte); |
| + // One-byte string. |
| + __ lbzx(result, MemOperand(string, index)); |
| + __ bind(&done); |
| +} |
| + |
| + |
| +static MemOperand ExpConstant(int index, Register base) { |
| + return MemOperand(base, index * kDoubleSize); |
| +} |
| + |
| + |
| +void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input, |
| + DoubleRegister result, |
| + DoubleRegister double_scratch1, |
| + DoubleRegister double_scratch2, |
| + Register temp1, Register temp2, |
| + Register temp3) { |
| + DCHECK(!input.is(result)); |
| + DCHECK(!input.is(double_scratch1)); |
| + DCHECK(!input.is(double_scratch2)); |
| + DCHECK(!result.is(double_scratch1)); |
| + DCHECK(!result.is(double_scratch2)); |
| + DCHECK(!double_scratch1.is(double_scratch2)); |
| + DCHECK(!temp1.is(temp2)); |
| + DCHECK(!temp1.is(temp3)); |
| + DCHECK(!temp2.is(temp3)); |
| + DCHECK(ExternalReference::math_exp_constants(0).address() != NULL); |
| + DCHECK(!masm->serializer_enabled()); // External references not serializable. |
| + |
| + Label zero, infinity, done; |
| + |
| + __ mov(temp3, Operand(ExternalReference::math_exp_constants(0))); |
| + |
| + __ lfd(double_scratch1, ExpConstant(0, temp3)); |
| + __ fcmpu(double_scratch1, input); |
| + __ fmr(result, input); |
| + __ bunordered(&done); |
| + __ bge(&zero); |
| + |
| + __ lfd(double_scratch2, ExpConstant(1, temp3)); |
| + __ fcmpu(input, double_scratch2); |
| + __ bge(&infinity); |
| + |
| + __ lfd(double_scratch1, ExpConstant(3, temp3)); |
| + __ lfd(result, ExpConstant(4, temp3)); |
| + __ fmul(double_scratch1, double_scratch1, input); |
| + __ fadd(double_scratch1, double_scratch1, result); |
| + __ MovDoubleLowToInt(temp2, double_scratch1); |
| + __ fsub(double_scratch1, double_scratch1, result); |
| + __ lfd(result, ExpConstant(6, temp3)); |
| + __ lfd(double_scratch2, ExpConstant(5, temp3)); |
| + __ fmul(double_scratch1, double_scratch1, double_scratch2); |
| + __ fsub(double_scratch1, double_scratch1, input); |
| + __ fsub(result, result, double_scratch1); |
| + __ fmul(double_scratch2, double_scratch1, double_scratch1); |
| + __ fmul(result, result, double_scratch2); |
| + __ lfd(double_scratch2, ExpConstant(7, temp3)); |
| + __ fmul(result, result, double_scratch2); |
| + __ fsub(result, result, double_scratch1); |
| + __ lfd(double_scratch2, ExpConstant(8, temp3)); |
| + __ fadd(result, result, double_scratch2); |
| + __ srwi(temp1, temp2, Operand(11)); |
| + __ andi(temp2, temp2, Operand(0x7ff)); |
| + __ addi(temp1, temp1, Operand(0x3ff)); |
| + |
| + // Must not call ExpConstant() after overwriting temp3! |
| + __ mov(temp3, Operand(ExternalReference::math_exp_log_table())); |
| + __ slwi(temp2, temp2, Operand(3)); |
| +#if V8_TARGET_ARCH_PPC64 |
| + __ ldx(temp2, MemOperand(temp3, temp2)); |
| + __ sldi(temp1, temp1, Operand(52)); |
| + __ orx(temp2, temp1, temp2); |
| + __ MovInt64ToDouble(double_scratch1, temp2); |
| +#else |
| + __ add(ip, temp3, temp2); |
| + __ lwz(temp3, MemOperand(ip, Register::kExponentOffset)); |
| + __ lwz(temp2, MemOperand(ip, Register::kMantissaOffset)); |
| + __ slwi(temp1, temp1, Operand(20)); |
| + __ orx(temp3, temp1, temp3); |
| + __ MovInt64ToDouble(double_scratch1, temp3, temp2); |
| +#endif |
| + |
| + __ fmul(result, result, double_scratch1); |
| + __ b(&done); |
| + |
| + __ bind(&zero); |
| + __ fmr(result, kDoubleRegZero); |
| + __ b(&done); |
| + |
| + __ bind(&infinity); |
| + __ lfd(result, ExpConstant(2, temp3)); |
| + |
| + __ bind(&done); |
| +} |
| + |
| +#undef __ |
| + |
| +CodeAgingHelper::CodeAgingHelper() { |
| + DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength); |
| + // Since patcher is a large object, allocate it dynamically when needed, |
| + // to avoid overloading the stack in stress conditions. |
| + // DONT_FLUSH is used because the CodeAgingHelper is initialized early in |
| + // the process, before ARM simulator ICache is setup. |
| + SmartPointer<CodePatcher> patcher(new CodePatcher( |
| + young_sequence_.start(), young_sequence_.length() / Assembler::kInstrSize, |
| + CodePatcher::DONT_FLUSH)); |
| + PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length()); |
| + patcher->masm()->PushFixedFrame(r4); |
| + patcher->masm()->addi(fp, sp, |
| + Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); |
| + for (int i = 0; i < kNoCodeAgeSequenceNops; i++) { |
| + patcher->masm()->nop(); |
| + } |
| +} |
| + |
| + |
| +#ifdef DEBUG |
| +bool CodeAgingHelper::IsOld(byte* candidate) const { |
| + return Assembler::IsNop(Assembler::instr_at(candidate)); |
| +} |
| +#endif |
| + |
| + |
| +bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) { |
| + bool result = isolate->code_aging_helper()->IsYoung(sequence); |
| + DCHECK(result || isolate->code_aging_helper()->IsOld(sequence)); |
| + return result; |
| +} |
| + |
| + |
| +void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age, |
| + MarkingParity* parity) { |
| + if (IsYoungSequence(isolate, sequence)) { |
| + *age = kNoAgeCodeAge; |
| + *parity = NO_MARKING_PARITY; |
| + } else { |
| + ConstantPoolArray* constant_pool = NULL; |
| + Address target_address = Assembler::target_address_at( |
| + sequence + kCodeAgingTargetDelta, constant_pool); |
| + Code* stub = GetCodeFromTargetAddress(target_address); |
| + GetCodeAgeAndParity(stub, age, parity); |
| + } |
| +} |
| + |
| + |
| +void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age, |
| + MarkingParity parity) { |
| + uint32_t young_length = isolate->code_aging_helper()->young_sequence_length(); |
| + if (age == kNoAgeCodeAge) { |
| + isolate->code_aging_helper()->CopyYoungSequenceTo(sequence); |
| + CpuFeatures::FlushICache(sequence, young_length); |
| + } else { |
| + // FIXED_SEQUENCE |
| + Code* stub = GetCodeAgeStub(isolate, age, parity); |
| + CodePatcher patcher(sequence, young_length / Assembler::kInstrSize); |
| + Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm()); |
| + intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start()); |
| + // Don't use Call -- we need to preserve ip and lr. |
| + // GenerateMakeCodeYoungAgainCommon for the stub code. |
| + patcher.masm()->nop(); // marker to detect sequence (see IsOld) |
| + patcher.masm()->mov(r3, Operand(target)); |
| + patcher.masm()->Jump(r3); |
| + for (int i = 0; i < kCodeAgingSequenceNops; i++) { |
| + patcher.masm()->nop(); |
| + } |
| + } |
| +} |
| +} |
| +} // namespace v8::internal |
| + |
| +#endif // V8_TARGET_ARCH_PPC |