| Index: src/ppc/simulator-ppc.cc
|
| diff --git a/src/ppc/simulator-ppc.cc b/src/ppc/simulator-ppc.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..2c01509de230d2ca6f00efaea720ce963a7a6493
|
| --- /dev/null
|
| +++ b/src/ppc/simulator-ppc.cc
|
| @@ -0,0 +1,3806 @@
|
| +// Copyright 2012 the V8 project authors. All rights reserved.
|
| +//
|
| +// Copyright IBM Corp. 2012, 2013. All rights reserved.
|
| +//
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include <stdarg.h>
|
| +#include <stdlib.h>
|
| +#include <cmath>
|
| +
|
| +#include "src/v8.h"
|
| +
|
| +#if V8_TARGET_ARCH_PPC
|
| +
|
| +#include "src/assembler.h"
|
| +#include "src/codegen.h"
|
| +#include "src/disasm.h"
|
| +#include "src/ppc/constants-ppc.h"
|
| +#include "src/ppc/frames-ppc.h"
|
| +#include "src/ppc/simulator-ppc.h"
|
| +
|
| +#if defined(USE_SIMULATOR)
|
| +
|
| +// Only build the simulator if not compiling for real PPC hardware.
|
| +namespace v8 {
|
| +namespace internal {
|
| +
|
| +// This macro provides a platform independent use of sscanf. The reason for
|
| +// SScanF not being implemented in a platform independent way through
|
| +// ::v8::internal::OS in the same way as SNPrintF is that the
|
| +// Windows C Run-Time Library does not provide vsscanf.
|
| +#define SScanF sscanf // NOLINT
|
| +
|
| +// The PPCDebugger class is used by the simulator while debugging simulated
|
| +// PowerPC code.
|
| +class PPCDebugger {
|
| + public:
|
| + explicit PPCDebugger(Simulator* sim) : sim_(sim) {}
|
| + ~PPCDebugger();
|
| +
|
| + void Stop(Instruction* instr);
|
| + void Info(Instruction* instr);
|
| + void Debug();
|
| +
|
| + private:
|
| + static const Instr kBreakpointInstr = (TWI | 0x1f * B21);
|
| + static const Instr kNopInstr = (ORI); // ori, 0,0,0
|
| +
|
| + Simulator* sim_;
|
| +
|
| + intptr_t GetRegisterValue(int regnum);
|
| + double GetRegisterPairDoubleValue(int regnum);
|
| + double GetFPDoubleRegisterValue(int regnum);
|
| + bool GetValue(const char* desc, intptr_t* value);
|
| + bool GetFPDoubleValue(const char* desc, double* value);
|
| +
|
| + // Set or delete a breakpoint. Returns true if successful.
|
| + bool SetBreakpoint(Instruction* break_pc);
|
| + bool DeleteBreakpoint(Instruction* break_pc);
|
| +
|
| + // Undo and redo all breakpoints. This is needed to bracket disassembly and
|
| + // execution to skip past breakpoints when run from the debugger.
|
| + void UndoBreakpoints();
|
| + void RedoBreakpoints();
|
| +};
|
| +
|
| +
|
| +PPCDebugger::~PPCDebugger() {}
|
| +
|
| +
|
| +#ifdef GENERATED_CODE_COVERAGE
|
| +static FILE* coverage_log = NULL;
|
| +
|
| +
|
| +static void InitializeCoverage() {
|
| + char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG");
|
| + if (file_name != NULL) {
|
| + coverage_log = fopen(file_name, "aw+");
|
| + }
|
| +}
|
| +
|
| +
|
| +void PPCDebugger::Stop(Instruction* instr) { // roohack need to fix for PPC
|
| + // Get the stop code.
|
| + uint32_t code = instr->SvcValue() & kStopCodeMask;
|
| + // Retrieve the encoded address, which comes just after this stop.
|
| + char** msg_address =
|
| + reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
|
| + char* msg = *msg_address;
|
| + DCHECK(msg != NULL);
|
| +
|
| + // Update this stop description.
|
| + if (isWatchedStop(code) && !watched_stops_[code].desc) {
|
| + watched_stops_[code].desc = msg;
|
| + }
|
| +
|
| + if (strlen(msg) > 0) {
|
| + if (coverage_log != NULL) {
|
| + fprintf(coverage_log, "%s\n", msg);
|
| + fflush(coverage_log);
|
| + }
|
| + // Overwrite the instruction and address with nops.
|
| + instr->SetInstructionBits(kNopInstr);
|
| + reinterpret_cast<Instruction*>(msg_address)->SetInstructionBits(kNopInstr);
|
| + }
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
|
| +}
|
| +
|
| +#else // ndef GENERATED_CODE_COVERAGE
|
| +
|
| +static void InitializeCoverage() {}
|
| +
|
| +
|
| +void PPCDebugger::Stop(Instruction* instr) {
|
| + // Get the stop code.
|
| + // use of kStopCodeMask not right on PowerPC
|
| + uint32_t code = instr->SvcValue() & kStopCodeMask;
|
| + // Retrieve the encoded address, which comes just after this stop.
|
| + char* msg =
|
| + *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
|
| + // Update this stop description.
|
| + if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) {
|
| + sim_->watched_stops_[code].desc = msg;
|
| + }
|
| + // Print the stop message and code if it is not the default code.
|
| + if (code != kMaxStopCode) {
|
| + PrintF("Simulator hit stop %u: %s\n", code, msg);
|
| + } else {
|
| + PrintF("Simulator hit %s\n", msg);
|
| + }
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
|
| + Debug();
|
| +}
|
| +#endif
|
| +
|
| +
|
| +void PPCDebugger::Info(Instruction* instr) {
|
| + // Retrieve the encoded address immediately following the Info breakpoint.
|
| + char* msg =
|
| + *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize);
|
| + PrintF("Simulator info %s\n", msg);
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize);
|
| +}
|
| +
|
| +
|
| +intptr_t PPCDebugger::GetRegisterValue(int regnum) {
|
| + return sim_->get_register(regnum);
|
| +}
|
| +
|
| +
|
| +double PPCDebugger::GetRegisterPairDoubleValue(int regnum) {
|
| + return sim_->get_double_from_register_pair(regnum);
|
| +}
|
| +
|
| +
|
| +double PPCDebugger::GetFPDoubleRegisterValue(int regnum) {
|
| + return sim_->get_double_from_d_register(regnum);
|
| +}
|
| +
|
| +
|
| +bool PPCDebugger::GetValue(const char* desc, intptr_t* value) {
|
| + int regnum = Registers::Number(desc);
|
| + if (regnum != kNoRegister) {
|
| + *value = GetRegisterValue(regnum);
|
| + return true;
|
| + } else {
|
| + if (strncmp(desc, "0x", 2) == 0) {
|
| + return SScanF(desc + 2, "%" V8PRIxPTR,
|
| + reinterpret_cast<uintptr_t*>(value)) == 1;
|
| + } else {
|
| + return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) ==
|
| + 1;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) {
|
| + int regnum = FPRegisters::Number(desc);
|
| + if (regnum != kNoRegister) {
|
| + *value = sim_->get_double_from_d_register(regnum);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +bool PPCDebugger::SetBreakpoint(Instruction* break_pc) {
|
| + // Check if a breakpoint can be set. If not return without any side-effects.
|
| + if (sim_->break_pc_ != NULL) {
|
| + return false;
|
| + }
|
| +
|
| + // Set the breakpoint.
|
| + sim_->break_pc_ = break_pc;
|
| + sim_->break_instr_ = break_pc->InstructionBits();
|
| + // Not setting the breakpoint instruction in the code itself. It will be set
|
| + // when the debugger shell continues.
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| + }
|
| +
|
| + sim_->break_pc_ = NULL;
|
| + sim_->break_instr_ = 0;
|
| + return true;
|
| +}
|
| +
|
| +
|
| +void PPCDebugger::UndoBreakpoints() {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
|
| + }
|
| +}
|
| +
|
| +
|
| +void PPCDebugger::RedoBreakpoints() {
|
| + if (sim_->break_pc_ != NULL) {
|
| + sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
|
| + }
|
| +}
|
| +
|
| +
|
| +void PPCDebugger::Debug() {
|
| + intptr_t last_pc = -1;
|
| + bool done = false;
|
| +
|
| +#define COMMAND_SIZE 63
|
| +#define ARG_SIZE 255
|
| +
|
| +#define STR(a) #a
|
| +#define XSTR(a) STR(a)
|
| +
|
| + char cmd[COMMAND_SIZE + 1];
|
| + char arg1[ARG_SIZE + 1];
|
| + char arg2[ARG_SIZE + 1];
|
| + char* argv[3] = {cmd, arg1, arg2};
|
| +
|
| + // make sure to have a proper terminating character if reaching the limit
|
| + cmd[COMMAND_SIZE] = 0;
|
| + arg1[ARG_SIZE] = 0;
|
| + arg2[ARG_SIZE] = 0;
|
| +
|
| + // Undo all set breakpoints while running in the debugger shell. This will
|
| + // make them invisible to all commands.
|
| + UndoBreakpoints();
|
| + // Disable tracing while simulating
|
| + bool trace = ::v8::internal::FLAG_trace_sim;
|
| + ::v8::internal::FLAG_trace_sim = false;
|
| +
|
| + while (!done && !sim_->has_bad_pc()) {
|
| + if (last_pc != sim_->get_pc()) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| + dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
|
| + PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start());
|
| + last_pc = sim_->get_pc();
|
| + }
|
| + char* line = ReadLine("sim> ");
|
| + if (line == NULL) {
|
| + break;
|
| + } else {
|
| + char* last_input = sim_->last_debugger_input();
|
| + if (strcmp(line, "\n") == 0 && last_input != NULL) {
|
| + line = last_input;
|
| + } else {
|
| + // Ownership is transferred to sim_;
|
| + sim_->set_last_debugger_input(line);
|
| + }
|
| + // Use sscanf to parse the individual parts of the command line. At the
|
| + // moment no command expects more than two parameters.
|
| + int argc = SScanF(line,
|
| + "%" XSTR(COMMAND_SIZE) "s "
|
| + "%" XSTR(ARG_SIZE) "s "
|
| + "%" XSTR(ARG_SIZE) "s",
|
| + cmd, arg1, arg2);
|
| + if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
|
| + intptr_t value;
|
| +
|
| + // If at a breakpoint, proceed past it.
|
| + if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
| + ->InstructionBits() == 0x7d821008) {
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
| + } else {
|
| + sim_->ExecuteInstruction(
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + }
|
| +
|
| + if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) {
|
| + for (int i = 1; i < value; i++) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| + dasm.InstructionDecode(buffer,
|
| + reinterpret_cast<byte*>(sim_->get_pc()));
|
| + PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(),
|
| + buffer.start());
|
| + sim_->ExecuteInstruction(
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + }
|
| + }
|
| + } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
|
| + // If at a breakpoint, proceed past it.
|
| + if ((reinterpret_cast<Instruction*>(sim_->get_pc()))
|
| + ->InstructionBits() == 0x7d821008) {
|
| + sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize);
|
| + } else {
|
| + // Execute the one instruction we broke at with breakpoints disabled.
|
| + sim_->ExecuteInstruction(
|
| + reinterpret_cast<Instruction*>(sim_->get_pc()));
|
| + }
|
| + // Leave the debugger shell.
|
| + done = true;
|
| + } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
|
| + if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
|
| + intptr_t value;
|
| + double dvalue;
|
| + if (strcmp(arg1, "all") == 0) {
|
| + for (int i = 0; i < kNumRegisters; i++) {
|
| + value = GetRegisterValue(i);
|
| + PrintF(" %3s: %08" V8PRIxPTR, Registers::Name(i), value);
|
| + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
| + (i % 2) == 0) {
|
| + dvalue = GetRegisterPairDoubleValue(i);
|
| + PrintF(" (%f)\n", dvalue);
|
| + } else if (i != 0 && !((i + 1) & 3)) {
|
| + PrintF("\n");
|
| + }
|
| + }
|
| + PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
|
| + " "
|
| + "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
|
| + sim_->special_reg_pc_, sim_->special_reg_lr_,
|
| + sim_->special_reg_ctr_, sim_->special_reg_xer_,
|
| + sim_->condition_reg_);
|
| + } else if (strcmp(arg1, "alld") == 0) {
|
| + for (int i = 0; i < kNumRegisters; i++) {
|
| + value = GetRegisterValue(i);
|
| + PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR,
|
| + Registers::Name(i), value, value);
|
| + if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
|
| + (i % 2) == 0) {
|
| + dvalue = GetRegisterPairDoubleValue(i);
|
| + PrintF(" (%f)\n", dvalue);
|
| + } else if (!((i + 1) % 2)) {
|
| + PrintF("\n");
|
| + }
|
| + }
|
| + PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR
|
| + " "
|
| + "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n",
|
| + sim_->special_reg_pc_, sim_->special_reg_lr_,
|
| + sim_->special_reg_ctr_, sim_->special_reg_xer_,
|
| + sim_->condition_reg_);
|
| + } else if (strcmp(arg1, "allf") == 0) {
|
| + for (int i = 0; i < DoubleRegister::kNumRegisters; i++) {
|
| + dvalue = GetFPDoubleRegisterValue(i);
|
| + uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
| + PrintF("%3s: %f 0x%08x %08x\n", FPRegisters::Name(i), dvalue,
|
| + static_cast<uint32_t>(as_words >> 32),
|
| + static_cast<uint32_t>(as_words & 0xffffffff));
|
| + }
|
| + } else if (arg1[0] == 'r' &&
|
| + (arg1[1] >= '0' && arg1[1] <= '9' &&
|
| + (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' &&
|
| + arg1[3] == '\0')))) {
|
| + int regnum = strtoul(&arg1[1], 0, 10);
|
| + if (regnum != kNoRegister) {
|
| + value = GetRegisterValue(regnum);
|
| + PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
| + value);
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + if (GetValue(arg1, &value)) {
|
| + PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value,
|
| + value);
|
| + } else if (GetFPDoubleValue(arg1, &dvalue)) {
|
| + uint64_t as_words = bit_cast<uint64_t>(dvalue);
|
| + PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
|
| + static_cast<uint32_t>(as_words >> 32),
|
| + static_cast<uint32_t>(as_words & 0xffffffff));
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + }
|
| + } else {
|
| + PrintF("print <register>\n");
|
| + }
|
| + } else if ((strcmp(cmd, "po") == 0) ||
|
| + (strcmp(cmd, "printobject") == 0)) {
|
| + if (argc == 2) {
|
| + intptr_t value;
|
| + OFStream os(stdout);
|
| + if (GetValue(arg1, &value)) {
|
| + Object* obj = reinterpret_cast<Object*>(value);
|
| + os << arg1 << ": \n";
|
| +#ifdef DEBUG
|
| + obj->Print(os);
|
| + os << "\n";
|
| +#else
|
| + os << Brief(obj) << "\n";
|
| +#endif
|
| + } else {
|
| + os << arg1 << " unrecognized\n";
|
| + }
|
| + } else {
|
| + PrintF("printobject <value>\n");
|
| + }
|
| + } else if (strcmp(cmd, "setpc") == 0) {
|
| + intptr_t value;
|
| +
|
| + if (!GetValue(arg1, &value)) {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + continue;
|
| + }
|
| + sim_->set_pc(value);
|
| + } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
|
| + intptr_t* cur = NULL;
|
| + intptr_t* end = NULL;
|
| + int next_arg = 1;
|
| +
|
| + if (strcmp(cmd, "stack") == 0) {
|
| + cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp));
|
| + } else { // "mem"
|
| + intptr_t value;
|
| + if (!GetValue(arg1, &value)) {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + continue;
|
| + }
|
| + cur = reinterpret_cast<intptr_t*>(value);
|
| + next_arg++;
|
| + }
|
| +
|
| + intptr_t words; // likely inaccurate variable name for 64bit
|
| + if (argc == next_arg) {
|
| + words = 10;
|
| + } else {
|
| + if (!GetValue(argv[next_arg], &words)) {
|
| + words = 10;
|
| + }
|
| + }
|
| + end = cur + words;
|
| +
|
| + while (cur < end) {
|
| + PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR,
|
| + reinterpret_cast<intptr_t>(cur), *cur, *cur);
|
| + HeapObject* obj = reinterpret_cast<HeapObject*>(*cur);
|
| + intptr_t value = *cur;
|
| + Heap* current_heap = v8::internal::Isolate::Current()->heap();
|
| + if (((value & 1) == 0) || current_heap->Contains(obj)) {
|
| + PrintF(" (");
|
| + if ((value & 1) == 0) {
|
| + PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj));
|
| + } else {
|
| + obj->ShortPrint();
|
| + }
|
| + PrintF(")");
|
| + }
|
| + PrintF("\n");
|
| + cur++;
|
| + }
|
| + } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| +
|
| + byte* prev = NULL;
|
| + byte* cur = NULL;
|
| + byte* end = NULL;
|
| +
|
| + if (argc == 1) {
|
| + cur = reinterpret_cast<byte*>(sim_->get_pc());
|
| + end = cur + (10 * Instruction::kInstrSize);
|
| + } else if (argc == 2) {
|
| + int regnum = Registers::Number(arg1);
|
| + if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
|
| + // The argument is an address or a register name.
|
| + intptr_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + cur = reinterpret_cast<byte*>(value);
|
| + // Disassemble 10 instructions at <arg1>.
|
| + end = cur + (10 * Instruction::kInstrSize);
|
| + }
|
| + } else {
|
| + // The argument is the number of instructions.
|
| + intptr_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + cur = reinterpret_cast<byte*>(sim_->get_pc());
|
| + // Disassemble <arg1> instructions.
|
| + end = cur + (value * Instruction::kInstrSize);
|
| + }
|
| + }
|
| + } else {
|
| + intptr_t value1;
|
| + intptr_t value2;
|
| + if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
|
| + cur = reinterpret_cast<byte*>(value1);
|
| + end = cur + (value2 * Instruction::kInstrSize);
|
| + }
|
| + }
|
| +
|
| + while (cur < end) {
|
| + prev = cur;
|
| + cur += dasm.InstructionDecode(buffer, cur);
|
| + PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
|
| + buffer.start());
|
| + }
|
| + } else if (strcmp(cmd, "gdb") == 0) {
|
| + PrintF("relinquishing control to gdb\n");
|
| + v8::base::OS::DebugBreak();
|
| + PrintF("regaining control from gdb\n");
|
| + } else if (strcmp(cmd, "break") == 0) {
|
| + if (argc == 2) {
|
| + intptr_t value;
|
| + if (GetValue(arg1, &value)) {
|
| + if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
|
| + PrintF("setting breakpoint failed\n");
|
| + }
|
| + } else {
|
| + PrintF("%s unrecognized\n", arg1);
|
| + }
|
| + } else {
|
| + PrintF("break <address>\n");
|
| + }
|
| + } else if (strcmp(cmd, "del") == 0) {
|
| + if (!DeleteBreakpoint(NULL)) {
|
| + PrintF("deleting breakpoint failed\n");
|
| + }
|
| + } else if (strcmp(cmd, "cr") == 0) {
|
| + PrintF("Condition reg: %08x\n", sim_->condition_reg_);
|
| + } else if (strcmp(cmd, "lr") == 0) {
|
| + PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_);
|
| + } else if (strcmp(cmd, "ctr") == 0) {
|
| + PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_);
|
| + } else if (strcmp(cmd, "xer") == 0) {
|
| + PrintF("XER: %08x\n", sim_->special_reg_xer_);
|
| + } else if (strcmp(cmd, "fpscr") == 0) {
|
| + PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_);
|
| + } else if (strcmp(cmd, "stop") == 0) {
|
| + intptr_t value;
|
| + intptr_t stop_pc =
|
| + sim_->get_pc() - (Instruction::kInstrSize + kPointerSize);
|
| + Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
|
| + Instruction* msg_address =
|
| + reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize);
|
| + if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
|
| + // Remove the current stop.
|
| + if (sim_->isStopInstruction(stop_instr)) {
|
| + stop_instr->SetInstructionBits(kNopInstr);
|
| + msg_address->SetInstructionBits(kNopInstr);
|
| + } else {
|
| + PrintF("Not at debugger stop.\n");
|
| + }
|
| + } else if (argc == 3) {
|
| + // Print information about all/the specified breakpoint(s).
|
| + if (strcmp(arg1, "info") == 0) {
|
| + if (strcmp(arg2, "all") == 0) {
|
| + PrintF("Stop information:\n");
|
| + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
| + sim_->PrintStopInfo(i);
|
| + }
|
| + } else if (GetValue(arg2, &value)) {
|
| + sim_->PrintStopInfo(value);
|
| + } else {
|
| + PrintF("Unrecognized argument.\n");
|
| + }
|
| + } else if (strcmp(arg1, "enable") == 0) {
|
| + // Enable all/the specified breakpoint(s).
|
| + if (strcmp(arg2, "all") == 0) {
|
| + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
| + sim_->EnableStop(i);
|
| + }
|
| + } else if (GetValue(arg2, &value)) {
|
| + sim_->EnableStop(value);
|
| + } else {
|
| + PrintF("Unrecognized argument.\n");
|
| + }
|
| + } else if (strcmp(arg1, "disable") == 0) {
|
| + // Disable all/the specified breakpoint(s).
|
| + if (strcmp(arg2, "all") == 0) {
|
| + for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
|
| + sim_->DisableStop(i);
|
| + }
|
| + } else if (GetValue(arg2, &value)) {
|
| + sim_->DisableStop(value);
|
| + } else {
|
| + PrintF("Unrecognized argument.\n");
|
| + }
|
| + }
|
| + } else {
|
| + PrintF("Wrong usage. Use help command for more information.\n");
|
| + }
|
| + } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
|
| + ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
|
| + PrintF("Trace of executed instructions is %s\n",
|
| + ::v8::internal::FLAG_trace_sim ? "on" : "off");
|
| + } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
|
| + PrintF("cont\n");
|
| + PrintF(" continue execution (alias 'c')\n");
|
| + PrintF("stepi [num instructions]\n");
|
| + PrintF(" step one/num instruction(s) (alias 'si')\n");
|
| + PrintF("print <register>\n");
|
| + PrintF(" print register content (alias 'p')\n");
|
| + PrintF(" use register name 'all' to display all integer registers\n");
|
| + PrintF(
|
| + " use register name 'alld' to display integer registers "
|
| + "with decimal values\n");
|
| + PrintF(" use register name 'rN' to display register number 'N'\n");
|
| + PrintF(" add argument 'fp' to print register pair double values\n");
|
| + PrintF(
|
| + " use register name 'allf' to display floating-point "
|
| + "registers\n");
|
| + PrintF("printobject <register>\n");
|
| + PrintF(" print an object from a register (alias 'po')\n");
|
| + PrintF("cr\n");
|
| + PrintF(" print condition register\n");
|
| + PrintF("lr\n");
|
| + PrintF(" print link register\n");
|
| + PrintF("ctr\n");
|
| + PrintF(" print ctr register\n");
|
| + PrintF("xer\n");
|
| + PrintF(" print XER\n");
|
| + PrintF("fpscr\n");
|
| + PrintF(" print FPSCR\n");
|
| + PrintF("stack [<num words>]\n");
|
| + PrintF(" dump stack content, default dump 10 words)\n");
|
| + PrintF("mem <address> [<num words>]\n");
|
| + PrintF(" dump memory content, default dump 10 words)\n");
|
| + PrintF("disasm [<instructions>]\n");
|
| + PrintF("disasm [<address/register>]\n");
|
| + PrintF("disasm [[<address/register>] <instructions>]\n");
|
| + PrintF(" disassemble code, default is 10 instructions\n");
|
| + PrintF(" from pc (alias 'di')\n");
|
| + PrintF("gdb\n");
|
| + PrintF(" enter gdb\n");
|
| + PrintF("break <address>\n");
|
| + PrintF(" set a break point on the address\n");
|
| + PrintF("del\n");
|
| + PrintF(" delete the breakpoint\n");
|
| + PrintF("trace (alias 't')\n");
|
| + PrintF(" toogle the tracing of all executed statements\n");
|
| + PrintF("stop feature:\n");
|
| + PrintF(" Description:\n");
|
| + PrintF(" Stops are debug instructions inserted by\n");
|
| + PrintF(" the Assembler::stop() function.\n");
|
| + PrintF(" When hitting a stop, the Simulator will\n");
|
| + PrintF(" stop and and give control to the PPCDebugger.\n");
|
| + PrintF(" The first %d stop codes are watched:\n",
|
| + Simulator::kNumOfWatchedStops);
|
| + PrintF(" - They can be enabled / disabled: the Simulator\n");
|
| + PrintF(" will / won't stop when hitting them.\n");
|
| + PrintF(" - The Simulator keeps track of how many times they \n");
|
| + PrintF(" are met. (See the info command.) Going over a\n");
|
| + PrintF(" disabled stop still increases its counter. \n");
|
| + PrintF(" Commands:\n");
|
| + PrintF(" stop info all/<code> : print infos about number <code>\n");
|
| + PrintF(" or all stop(s).\n");
|
| + PrintF(" stop enable/disable all/<code> : enables / disables\n");
|
| + PrintF(" all or number <code> stop(s)\n");
|
| + PrintF(" stop unstop\n");
|
| + PrintF(" ignore the stop instruction at the current location\n");
|
| + PrintF(" from now on\n");
|
| + } else {
|
| + PrintF("Unknown command: %s\n", cmd);
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Add all the breakpoints back to stop execution and enter the debugger
|
| + // shell when hit.
|
| + RedoBreakpoints();
|
| + // Restore tracing
|
| + ::v8::internal::FLAG_trace_sim = trace;
|
| +
|
| +#undef COMMAND_SIZE
|
| +#undef ARG_SIZE
|
| +
|
| +#undef STR
|
| +#undef XSTR
|
| +}
|
| +
|
| +
|
| +static bool ICacheMatch(void* one, void* two) {
|
| + DCHECK((reinterpret_cast<intptr_t>(one) & CachePage::kPageMask) == 0);
|
| + DCHECK((reinterpret_cast<intptr_t>(two) & CachePage::kPageMask) == 0);
|
| + return one == two;
|
| +}
|
| +
|
| +
|
| +static uint32_t ICacheHash(void* key) {
|
| + return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
|
| +}
|
| +
|
| +
|
| +static bool AllOnOnePage(uintptr_t start, int size) {
|
| + intptr_t start_page = (start & ~CachePage::kPageMask);
|
| + intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
|
| + return start_page == end_page;
|
| +}
|
| +
|
| +
|
| +void Simulator::set_last_debugger_input(char* input) {
|
| + DeleteArray(last_debugger_input_);
|
| + last_debugger_input_ = input;
|
| +}
|
| +
|
| +
|
| +void Simulator::FlushICache(v8::internal::HashMap* i_cache, void* start_addr,
|
| + size_t size) {
|
| + intptr_t start = reinterpret_cast<intptr_t>(start_addr);
|
| + int intra_line = (start & CachePage::kLineMask);
|
| + start -= intra_line;
|
| + size += intra_line;
|
| + size = ((size - 1) | CachePage::kLineMask) + 1;
|
| + int offset = (start & CachePage::kPageMask);
|
| + while (!AllOnOnePage(start, size - 1)) {
|
| + int bytes_to_flush = CachePage::kPageSize - offset;
|
| + FlushOnePage(i_cache, start, bytes_to_flush);
|
| + start += bytes_to_flush;
|
| + size -= bytes_to_flush;
|
| + DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask));
|
| + offset = 0;
|
| + }
|
| + if (size != 0) {
|
| + FlushOnePage(i_cache, start, size);
|
| + }
|
| +}
|
| +
|
| +
|
| +CachePage* Simulator::GetCachePage(v8::internal::HashMap* i_cache, void* page) {
|
| + v8::internal::HashMap::Entry* entry =
|
| + i_cache->Lookup(page, ICacheHash(page), true);
|
| + if (entry->value == NULL) {
|
| + CachePage* new_page = new CachePage();
|
| + entry->value = new_page;
|
| + }
|
| + return reinterpret_cast<CachePage*>(entry->value);
|
| +}
|
| +
|
| +
|
| +// Flush from start up to and not including start + size.
|
| +void Simulator::FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
|
| + int size) {
|
| + DCHECK(size <= CachePage::kPageSize);
|
| + DCHECK(AllOnOnePage(start, size - 1));
|
| + DCHECK((start & CachePage::kLineMask) == 0);
|
| + DCHECK((size & CachePage::kLineMask) == 0);
|
| + void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
|
| + int offset = (start & CachePage::kPageMask);
|
| + CachePage* cache_page = GetCachePage(i_cache, page);
|
| + char* valid_bytemap = cache_page->ValidityByte(offset);
|
| + memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
|
| +}
|
| +
|
| +
|
| +void Simulator::CheckICache(v8::internal::HashMap* i_cache,
|
| + Instruction* instr) {
|
| + intptr_t address = reinterpret_cast<intptr_t>(instr);
|
| + void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
|
| + void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
|
| + int offset = (address & CachePage::kPageMask);
|
| + CachePage* cache_page = GetCachePage(i_cache, page);
|
| + char* cache_valid_byte = cache_page->ValidityByte(offset);
|
| + bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
|
| + char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
|
| + if (cache_hit) {
|
| + // Check that the data in memory matches the contents of the I-cache.
|
| + CHECK_EQ(0,
|
| + memcmp(reinterpret_cast<void*>(instr),
|
| + cache_page->CachedData(offset), Instruction::kInstrSize));
|
| + } else {
|
| + // Cache miss. Load memory into the cache.
|
| + memcpy(cached_line, line, CachePage::kLineLength);
|
| + *cache_valid_byte = CachePage::LINE_VALID;
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::Initialize(Isolate* isolate) {
|
| + if (isolate->simulator_initialized()) return;
|
| + isolate->set_simulator_initialized(true);
|
| + ::v8::internal::ExternalReference::set_redirector(isolate,
|
| + &RedirectExternalReference);
|
| +}
|
| +
|
| +
|
| +Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
|
| + i_cache_ = isolate_->simulator_i_cache();
|
| + if (i_cache_ == NULL) {
|
| + i_cache_ = new v8::internal::HashMap(&ICacheMatch);
|
| + isolate_->set_simulator_i_cache(i_cache_);
|
| + }
|
| + Initialize(isolate);
|
| +// Set up simulator support first. Some of this information is needed to
|
| +// setup the architecture state.
|
| +#if V8_TARGET_ARCH_PPC64
|
| + size_t stack_size = 2 * 1024 * 1024; // allocate 2MB for stack
|
| +#else
|
| + size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack
|
| +#endif
|
| + stack_ = reinterpret_cast<char*>(malloc(stack_size));
|
| + pc_modified_ = false;
|
| + icount_ = 0;
|
| + break_pc_ = NULL;
|
| + break_instr_ = 0;
|
| +
|
| + // Set up architecture state.
|
| + // All registers are initialized to zero to start with.
|
| + for (int i = 0; i < kNumGPRs; i++) {
|
| + registers_[i] = 0;
|
| + }
|
| + condition_reg_ = 0;
|
| + fp_condition_reg_ = 0;
|
| + special_reg_pc_ = 0;
|
| + special_reg_lr_ = 0;
|
| + special_reg_ctr_ = 0;
|
| +
|
| + // Initializing FP registers.
|
| + for (int i = 0; i < kNumFPRs; i++) {
|
| + fp_registers_[i] = 0.0;
|
| + }
|
| +
|
| + // The sp is initialized to point to the bottom (high address) of the
|
| + // allocated stack area. To be safe in potential stack underflows we leave
|
| + // some buffer below.
|
| + registers_[sp] = reinterpret_cast<intptr_t>(stack_) + stack_size - 64;
|
| + InitializeCoverage();
|
| +
|
| + last_debugger_input_ = NULL;
|
| +}
|
| +
|
| +
|
| +Simulator::~Simulator() {}
|
| +
|
| +
|
| +// When the generated code calls an external reference we need to catch that in
|
| +// the simulator. The external reference will be a function compiled for the
|
| +// host architecture. We need to call that function instead of trying to
|
| +// execute it with the simulator. We do that by redirecting the external
|
| +// reference to a svc (Supervisor Call) instruction that is handled by
|
| +// the simulator. We write the original destination of the jump just at a known
|
| +// offset from the svc instruction so the simulator knows what to call.
|
| +class Redirection {
|
| + public:
|
| + Redirection(void* external_function, ExternalReference::Type type)
|
| + : external_function_(external_function),
|
| + swi_instruction_(rtCallRedirInstr | kCallRtRedirected),
|
| + type_(type),
|
| + next_(NULL) {
|
| + Isolate* isolate = Isolate::Current();
|
| + next_ = isolate->simulator_redirection();
|
| + Simulator::current(isolate)->FlushICache(
|
| + isolate->simulator_i_cache(),
|
| + reinterpret_cast<void*>(&swi_instruction_), Instruction::kInstrSize);
|
| + isolate->set_simulator_redirection(this);
|
| + }
|
| +
|
| + void* address_of_swi_instruction() {
|
| + return reinterpret_cast<void*>(&swi_instruction_);
|
| + }
|
| +
|
| + void* external_function() { return external_function_; }
|
| + ExternalReference::Type type() { return type_; }
|
| +
|
| + static Redirection* Get(void* external_function,
|
| + ExternalReference::Type type) {
|
| + Isolate* isolate = Isolate::Current();
|
| + Redirection* current = isolate->simulator_redirection();
|
| + for (; current != NULL; current = current->next_) {
|
| + if (current->external_function_ == external_function) {
|
| + DCHECK_EQ(current->type(), type);
|
| + return current;
|
| + }
|
| + }
|
| + return new Redirection(external_function, type);
|
| + }
|
| +
|
| + static Redirection* FromSwiInstruction(Instruction* swi_instruction) {
|
| + char* addr_of_swi = reinterpret_cast<char*>(swi_instruction);
|
| + char* addr_of_redirection =
|
| + addr_of_swi - OFFSET_OF(Redirection, swi_instruction_);
|
| + return reinterpret_cast<Redirection*>(addr_of_redirection);
|
| + }
|
| +
|
| + static void* ReverseRedirection(intptr_t reg) {
|
| + Redirection* redirection = FromSwiInstruction(
|
| + reinterpret_cast<Instruction*>(reinterpret_cast<void*>(reg)));
|
| + return redirection->external_function();
|
| + }
|
| +
|
| + private:
|
| + void* external_function_;
|
| + uint32_t swi_instruction_;
|
| + ExternalReference::Type type_;
|
| + Redirection* next_;
|
| +};
|
| +
|
| +
|
| +void* Simulator::RedirectExternalReference(void* external_function,
|
| + ExternalReference::Type type) {
|
| + Redirection* redirection = Redirection::Get(external_function, type);
|
| + return redirection->address_of_swi_instruction();
|
| +}
|
| +
|
| +
|
| +// Get the active Simulator for the current thread.
|
| +Simulator* Simulator::current(Isolate* isolate) {
|
| + v8::internal::Isolate::PerIsolateThreadData* isolate_data =
|
| + isolate->FindOrAllocatePerThreadDataForThisThread();
|
| + DCHECK(isolate_data != NULL);
|
| +
|
| + Simulator* sim = isolate_data->simulator();
|
| + if (sim == NULL) {
|
| + // TODO(146): delete the simulator object when a thread/isolate goes away.
|
| + sim = new Simulator(isolate);
|
| + isolate_data->set_simulator(sim);
|
| + }
|
| + return sim;
|
| +}
|
| +
|
| +
|
| +// Sets the register in the architecture state.
|
| +void Simulator::set_register(int reg, intptr_t value) {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs));
|
| + registers_[reg] = value;
|
| +}
|
| +
|
| +
|
| +// Get the register from the architecture state.
|
| +intptr_t Simulator::get_register(int reg) const {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs));
|
| + // Stupid code added to avoid bug in GCC.
|
| + // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
|
| + if (reg >= kNumGPRs) return 0;
|
| + // End stupid code.
|
| + return registers_[reg];
|
| +}
|
| +
|
| +
|
| +double Simulator::get_double_from_register_pair(int reg) {
|
| + DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0));
|
| +
|
| + double dm_val = 0.0;
|
| +#if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode
|
| + // Read the bits from the unsigned integer register_[] array
|
| + // into the double precision floating point value and return it.
|
| + char buffer[sizeof(fp_registers_[0])];
|
| + memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0]));
|
| + memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
|
| +#endif
|
| + return (dm_val);
|
| +}
|
| +
|
| +
|
| +// Raw access to the PC register.
|
| +void Simulator::set_pc(intptr_t value) {
|
| + pc_modified_ = true;
|
| + special_reg_pc_ = value;
|
| +}
|
| +
|
| +
|
| +bool Simulator::has_bad_pc() const {
|
| + return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc));
|
| +}
|
| +
|
| +
|
| +// Raw access to the PC register without the special adjustment when reading.
|
| +intptr_t Simulator::get_pc() const { return special_reg_pc_; }
|
| +
|
| +
|
| +// Runtime FP routines take:
|
| +// - two double arguments
|
| +// - one double argument and zero or one integer arguments.
|
| +// All are consructed here from d1, d2 and r3.
|
| +void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) {
|
| + *x = get_double_from_d_register(1);
|
| + *y = get_double_from_d_register(2);
|
| + *z = get_register(3);
|
| +}
|
| +
|
| +
|
| +// The return value is in d1.
|
| +void Simulator::SetFpResult(const double& result) { fp_registers_[1] = result; }
|
| +
|
| +
|
| +void Simulator::TrashCallerSaveRegisters() {
|
| +// We don't trash the registers with the return value.
|
| +#if 0 // A good idea to trash volatile registers, needs to be done
|
| + registers_[2] = 0x50Bad4U;
|
| + registers_[3] = 0x50Bad4U;
|
| + registers_[12] = 0x50Bad4U;
|
| +#endif
|
| +}
|
| +
|
| +
|
| +uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) {
|
| + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) {
|
| + int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) {
|
| + uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) {
|
| + int32_t* ptr = reinterpret_cast<int32_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +
|
| +uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) {
|
| + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) {
|
| + int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) {
|
| + uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) {
|
| + int16_t* ptr = reinterpret_cast<int16_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +
|
| +uint8_t Simulator::ReadBU(intptr_t addr) {
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +int8_t Simulator::ReadB(intptr_t addr) {
|
| + int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
| + return *ptr;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteB(intptr_t addr, uint8_t value) {
|
| + uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
|
| + *ptr = value;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteB(intptr_t addr, int8_t value) {
|
| + int8_t* ptr = reinterpret_cast<int8_t*>(addr);
|
| + *ptr = value;
|
| +}
|
| +
|
| +
|
| +intptr_t* Simulator::ReadDW(intptr_t addr) {
|
| + intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
|
| + return ptr;
|
| +}
|
| +
|
| +
|
| +void Simulator::WriteDW(intptr_t addr, int64_t value) {
|
| + int64_t* ptr = reinterpret_cast<int64_t*>(addr);
|
| + *ptr = value;
|
| + return;
|
| +}
|
| +
|
| +
|
| +// Returns the limit of the stack area to enable checking for stack overflows.
|
| +uintptr_t Simulator::StackLimit() const {
|
| + // Leave a safety margin of 1024 bytes to prevent overrunning the stack when
|
| + // pushing values.
|
| + return reinterpret_cast<uintptr_t>(stack_) + 1024;
|
| +}
|
| +
|
| +
|
| +// Unsupported instructions use Format to print an error and stop execution.
|
| +void Simulator::Format(Instruction* instr, const char* format) {
|
| + PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
|
| + reinterpret_cast<intptr_t>(instr), format);
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +
|
| +// Calculate C flag value for additions.
|
| +bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
|
| + uint32_t uleft = static_cast<uint32_t>(left);
|
| + uint32_t uright = static_cast<uint32_t>(right);
|
| + uint32_t urest = 0xffffffffU - uleft;
|
| +
|
| + return (uright > urest) ||
|
| + (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
|
| +}
|
| +
|
| +
|
| +// Calculate C flag value for subtractions.
|
| +bool Simulator::BorrowFrom(int32_t left, int32_t right) {
|
| + uint32_t uleft = static_cast<uint32_t>(left);
|
| + uint32_t uright = static_cast<uint32_t>(right);
|
| +
|
| + return (uright > uleft);
|
| +}
|
| +
|
| +
|
| +// Calculate V flag value for additions and subtractions.
|
| +bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
|
| + bool addition) {
|
| + bool overflow;
|
| + if (addition) {
|
| + // operands have the same sign
|
| + overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
|
| + // and operands and result have different sign
|
| + &&
|
| + ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
| + } else {
|
| + // operands have different signs
|
| + overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
|
| + // and first operand and result have different signs
|
| + &&
|
| + ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
|
| + }
|
| + return overflow;
|
| +}
|
| +
|
| +
|
| +#if !V8_TARGET_ARCH_PPC64
|
| +// Calls into the V8 runtime are based on this very simple interface.
|
| +// Note: To be able to return two values from some calls the code in runtime.cc
|
| +// uses the ObjectPair which is essentially two 32-bit values stuffed into a
|
| +// 64-bit value. With the code below we assume that all runtime calls return
|
| +// 64 bits of result. If they don't, the r4 result register contains a bogus
|
| +// value, which is fine because it is caller-saved.
|
| +typedef int64_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
|
| + intptr_t arg2, intptr_t arg3,
|
| + intptr_t arg4, intptr_t arg5);
|
| +#else
|
| +// For 64-bit, we need to be more explicit.
|
| +typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1,
|
| + intptr_t arg2, intptr_t arg3,
|
| + intptr_t arg4, intptr_t arg5);
|
| +struct ObjectPair {
|
| + intptr_t x;
|
| + intptr_t y;
|
| +};
|
| +
|
| +typedef struct ObjectPair (*SimulatorRuntimeObjectPairCall)(
|
| + intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4,
|
| + intptr_t arg5);
|
| +#endif
|
| +
|
| +// These prototypes handle the four types of FP calls.
|
| +typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1);
|
| +typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1);
|
| +typedef double (*SimulatorRuntimeFPCall)(double darg0);
|
| +typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0);
|
| +
|
| +// This signature supports direct call in to API function native callback
|
| +// (refer to InvocationCallback in v8.h).
|
| +typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0);
|
| +typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1);
|
| +
|
| +// This signature supports direct call to accessor getter callback.
|
| +typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1);
|
| +typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0,
|
| + intptr_t arg1, void* arg2);
|
| +
|
| +// Software interrupt instructions are used by the simulator to call into the
|
| +// C-based V8 runtime.
|
| +void Simulator::SoftwareInterrupt(Instruction* instr) {
|
| + int svc = instr->SvcValue();
|
| + switch (svc) {
|
| + case kCallRtRedirected: {
|
| + // Check if stack is aligned. Error if not aligned is reported below to
|
| + // include information on the function called.
|
| + bool stack_aligned =
|
| + (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
|
| + 0;
|
| + Redirection* redirection = Redirection::FromSwiInstruction(instr);
|
| + const int kArgCount = 6;
|
| + int arg0_regnum = 3;
|
| +#if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
|
| + intptr_t result_buffer = 0;
|
| + if (redirection->type() == ExternalReference::BUILTIN_OBJECTPAIR_CALL) {
|
| + result_buffer = get_register(r3);
|
| + arg0_regnum++;
|
| + }
|
| +#endif
|
| + intptr_t arg[kArgCount];
|
| + for (int i = 0; i < kArgCount; i++) {
|
| + arg[i] = get_register(arg0_regnum + i);
|
| + }
|
| + bool fp_call =
|
| + (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
|
| + (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
|
| + (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
|
| + (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
|
| + // This is dodgy but it works because the C entry stubs are never moved.
|
| + // See comment in codegen-arm.cc and bug 1242173.
|
| + intptr_t saved_lr = special_reg_lr_;
|
| + intptr_t external =
|
| + reinterpret_cast<intptr_t>(redirection->external_function());
|
| + if (fp_call) {
|
| + double dval0, dval1; // one or two double parameters
|
| + intptr_t ival; // zero or one integer parameters
|
| + int iresult = 0; // integer return value
|
| + double dresult = 0; // double return value
|
| + GetFpArgs(&dval0, &dval1, &ival);
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + SimulatorRuntimeCall generic_target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + switch (redirection->type()) {
|
| + case ExternalReference::BUILTIN_FP_FP_CALL:
|
| + case ExternalReference::BUILTIN_COMPARE_CALL:
|
| + PrintF("Call to host function at %p with args %f, %f",
|
| + FUNCTION_ADDR(generic_target), dval0, dval1);
|
| + break;
|
| + case ExternalReference::BUILTIN_FP_CALL:
|
| + PrintF("Call to host function at %p with arg %f",
|
| + FUNCTION_ADDR(generic_target), dval0);
|
| + break;
|
| + case ExternalReference::BUILTIN_FP_INT_CALL:
|
| + PrintF("Call to host function at %p with args %f, %" V8PRIdPTR,
|
| + FUNCTION_ADDR(generic_target), dval0, ival);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + switch (redirection->type()) {
|
| + case ExternalReference::BUILTIN_COMPARE_CALL: {
|
| + SimulatorRuntimeCompareCall target =
|
| + reinterpret_cast<SimulatorRuntimeCompareCall>(external);
|
| + iresult = target(dval0, dval1);
|
| + set_register(r3, iresult);
|
| + break;
|
| + }
|
| + case ExternalReference::BUILTIN_FP_FP_CALL: {
|
| + SimulatorRuntimeFPFPCall target =
|
| + reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
|
| + dresult = target(dval0, dval1);
|
| + SetFpResult(dresult);
|
| + break;
|
| + }
|
| + case ExternalReference::BUILTIN_FP_CALL: {
|
| + SimulatorRuntimeFPCall target =
|
| + reinterpret_cast<SimulatorRuntimeFPCall>(external);
|
| + dresult = target(dval0);
|
| + SetFpResult(dresult);
|
| + break;
|
| + }
|
| + case ExternalReference::BUILTIN_FP_INT_CALL: {
|
| + SimulatorRuntimeFPIntCall target =
|
| + reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
|
| + dresult = target(dval0, ival);
|
| + SetFpResult(dresult);
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + switch (redirection->type()) {
|
| + case ExternalReference::BUILTIN_COMPARE_CALL:
|
| + PrintF("Returned %08x\n", iresult);
|
| + break;
|
| + case ExternalReference::BUILTIN_FP_FP_CALL:
|
| + case ExternalReference::BUILTIN_FP_CALL:
|
| + case ExternalReference::BUILTIN_FP_INT_CALL:
|
| + PrintF("Returned %f\n", dresult);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
|
| + // See callers of MacroAssembler::CallApiFunctionAndReturn for
|
| + // explanation of register usage.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeDirectApiCall target =
|
| + reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
|
| + target(arg[0]);
|
| + } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
|
| + // See callers of MacroAssembler::CallApiFunctionAndReturn for
|
| + // explanation of register usage.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR
|
| + " %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0], arg[1]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeProfilingApiCall target =
|
| + reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
|
| + target(arg[0], Redirection::ReverseRedirection(arg[1]));
|
| + } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
|
| + // See callers of MacroAssembler::CallApiFunctionAndReturn for
|
| + // explanation of register usage.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR
|
| + " %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0], arg[1]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeDirectGetterCall target =
|
| + reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
|
| +#if !ABI_PASSES_HANDLES_IN_REGS
|
| + arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
| +#endif
|
| + target(arg[0], arg[1]);
|
| + } else if (redirection->type() ==
|
| + ExternalReference::PROFILING_GETTER_CALL) {
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + PrintF("Call to host function at %p args %08" V8PRIxPTR
|
| + " %08" V8PRIxPTR " %08" V8PRIxPTR,
|
| + reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| + SimulatorRuntimeProfilingGetterCall target =
|
| + reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
|
| +#if !ABI_PASSES_HANDLES_IN_REGS
|
| + arg[0] = *(reinterpret_cast<intptr_t*>(arg[0]));
|
| +#endif
|
| + target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2]));
|
| + } else {
|
| + // builtin call.
|
| + if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
|
| + SimulatorRuntimeCall target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + PrintF(
|
| + "Call to host function at %p,\n"
|
| + "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR
|
| + ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR,
|
| + FUNCTION_ADDR(target), arg[0], arg[1], arg[2], arg[3], arg[4],
|
| + arg[5]);
|
| + if (!stack_aligned) {
|
| + PrintF(" with unaligned stack %08" V8PRIxPTR "\n",
|
| + get_register(sp));
|
| + }
|
| + PrintF("\n");
|
| + }
|
| + CHECK(stack_aligned);
|
| +#if !V8_TARGET_ARCH_PPC64
|
| + DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL);
|
| + SimulatorRuntimeCall target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + int64_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
| + int32_t lo_res = static_cast<int32_t>(result);
|
| + int32_t hi_res = static_cast<int32_t>(result >> 32);
|
| +#if V8_TARGET_BIG_ENDIAN
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned %08x\n", hi_res);
|
| + }
|
| + set_register(r3, hi_res);
|
| + set_register(r4, lo_res);
|
| +#else
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned %08x\n", lo_res);
|
| + }
|
| + set_register(r3, lo_res);
|
| + set_register(r4, hi_res);
|
| +#endif
|
| +#else
|
| + if (redirection->type() == ExternalReference::BUILTIN_CALL) {
|
| + SimulatorRuntimeCall target =
|
| + reinterpret_cast<SimulatorRuntimeCall>(external);
|
| + intptr_t result =
|
| + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned %08" V8PRIxPTR "\n", result);
|
| + }
|
| + set_register(r3, result);
|
| + } else {
|
| + DCHECK(redirection->type() ==
|
| + ExternalReference::BUILTIN_OBJECTPAIR_CALL);
|
| + SimulatorRuntimeObjectPairCall target =
|
| + reinterpret_cast<SimulatorRuntimeObjectPairCall>(external);
|
| + struct ObjectPair result =
|
| + target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]);
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + PrintF("Returned %08" V8PRIxPTR ", %08" V8PRIxPTR "\n", result.x,
|
| + result.y);
|
| + }
|
| +#if ABI_RETURNS_OBJECT_PAIRS_IN_REGS
|
| + set_register(r3, result.x);
|
| + set_register(r4, result.y);
|
| +#else
|
| + memcpy(reinterpret_cast<void*>(result_buffer), &result,
|
| + sizeof(struct ObjectPair));
|
| +#endif
|
| + }
|
| +#endif
|
| + }
|
| + set_pc(saved_lr);
|
| + break;
|
| + }
|
| + case kBreakpoint: {
|
| + PPCDebugger dbg(this);
|
| + dbg.Debug();
|
| + break;
|
| + }
|
| + case kInfo: {
|
| + PPCDebugger dbg(this);
|
| + dbg.Info(instr);
|
| + break;
|
| + }
|
| + // stop uses all codes greater than 1 << 23.
|
| + default: {
|
| + if (svc >= (1 << 23)) {
|
| + uint32_t code = svc & kStopCodeMask;
|
| + if (isWatchedStop(code)) {
|
| + IncreaseStopCounter(code);
|
| + }
|
| + // Stop if it is enabled, otherwise go on jumping over the stop
|
| + // and the message address.
|
| + if (isEnabledStop(code)) {
|
| + PPCDebugger dbg(this);
|
| + dbg.Stop(instr);
|
| + } else {
|
| + set_pc(get_pc() + Instruction::kInstrSize + kPointerSize);
|
| + }
|
| + } else {
|
| + // This is not a valid svc code.
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +// Stop helper functions.
|
| +bool Simulator::isStopInstruction(Instruction* instr) {
|
| + return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
|
| +}
|
| +
|
| +
|
| +bool Simulator::isWatchedStop(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + return code < kNumOfWatchedStops;
|
| +}
|
| +
|
| +
|
| +bool Simulator::isEnabledStop(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + // Unwatched stops are always enabled.
|
| + return !isWatchedStop(code) ||
|
| + !(watched_stops_[code].count & kStopDisabledBit);
|
| +}
|
| +
|
| +
|
| +void Simulator::EnableStop(uint32_t code) {
|
| + DCHECK(isWatchedStop(code));
|
| + if (!isEnabledStop(code)) {
|
| + watched_stops_[code].count &= ~kStopDisabledBit;
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::DisableStop(uint32_t code) {
|
| + DCHECK(isWatchedStop(code));
|
| + if (isEnabledStop(code)) {
|
| + watched_stops_[code].count |= kStopDisabledBit;
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::IncreaseStopCounter(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + DCHECK(isWatchedStop(code));
|
| + if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) {
|
| + PrintF(
|
| + "Stop counter for code %i has overflowed.\n"
|
| + "Enabling this code and reseting the counter to 0.\n",
|
| + code);
|
| + watched_stops_[code].count = 0;
|
| + EnableStop(code);
|
| + } else {
|
| + watched_stops_[code].count++;
|
| + }
|
| +}
|
| +
|
| +
|
| +// Print a stop status.
|
| +void Simulator::PrintStopInfo(uint32_t code) {
|
| + DCHECK(code <= kMaxStopCode);
|
| + if (!isWatchedStop(code)) {
|
| + PrintF("Stop not watched.");
|
| + } else {
|
| + const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
|
| + int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
|
| + // Don't print the state of unused breakpoints.
|
| + if (count != 0) {
|
| + if (watched_stops_[code].desc) {
|
| + PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
|
| + state, count, watched_stops_[code].desc);
|
| + } else {
|
| + PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
|
| + count);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::SetCR0(intptr_t result, bool setSO) {
|
| + int bf = 0;
|
| + if (result < 0) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (result > 0) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (result == 0) {
|
| + bf |= 0x20000000;
|
| + }
|
| + if (setSO) {
|
| + bf |= 0x10000000;
|
| + }
|
| + condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
|
| +}
|
| +
|
| +
|
| +void Simulator::ExecuteBranchConditional(Instruction* instr) {
|
| + int bo = instr->Bits(25, 21) << 21;
|
| + int offset = (instr->Bits(15, 2) << 18) >> 16;
|
| + int condition_bit = instr->Bits(20, 16);
|
| + int condition_mask = 0x80000000 >> condition_bit;
|
| + switch (bo) {
|
| + case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false
|
| + case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false
|
| + UNIMPLEMENTED();
|
| + case BF: { // Branch if condition false
|
| + if (!(condition_reg_ & condition_mask)) {
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = get_pc() + 4;
|
| + }
|
| + set_pc(get_pc() + offset);
|
| + }
|
| + break;
|
| + }
|
| + case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true
|
| + case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true
|
| + UNIMPLEMENTED();
|
| + case BT: { // Branch if condition true
|
| + if (condition_reg_ & condition_mask) {
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = get_pc() + 4;
|
| + }
|
| + set_pc(get_pc() + offset);
|
| + }
|
| + break;
|
| + }
|
| + case DCBNZ: // Decrement CTR; branch if CTR != 0
|
| + case DCBEZ: // Decrement CTR; branch if CTR == 0
|
| + special_reg_ctr_ -= 1;
|
| + if ((special_reg_ctr_ == 0) == (bo == DCBEZ)) {
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = get_pc() + 4;
|
| + }
|
| + set_pc(get_pc() + offset);
|
| + }
|
| + break;
|
| + case BA: { // Branch always
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = get_pc() + 4;
|
| + }
|
| + set_pc(get_pc() + offset);
|
| + break;
|
| + }
|
| + default:
|
| + UNIMPLEMENTED(); // Invalid encoding
|
| + }
|
| +}
|
| +
|
| +
|
| +// Handle execution based on instruction types.
|
| +void Simulator::ExecuteExt1(Instruction* instr) {
|
| + switch (instr->Bits(10, 1) << 1) {
|
| + case MCRF:
|
| + UNIMPLEMENTED(); // Not used by V8.
|
| + case BCLRX: {
|
| + // need to check BO flag
|
| + intptr_t old_pc = get_pc();
|
| + set_pc(special_reg_lr_);
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = old_pc + 4;
|
| + }
|
| + break;
|
| + }
|
| + case BCCTRX: {
|
| + // need to check BO flag
|
| + intptr_t old_pc = get_pc();
|
| + set_pc(special_reg_ctr_);
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = old_pc + 4;
|
| + }
|
| + break;
|
| + }
|
| + case CRNOR:
|
| + case RFI:
|
| + case CRANDC:
|
| + UNIMPLEMENTED();
|
| + case ISYNC: {
|
| + // todo - simulate isync
|
| + break;
|
| + }
|
| + case CRXOR: {
|
| + int bt = instr->Bits(25, 21);
|
| + int ba = instr->Bits(20, 16);
|
| + int bb = instr->Bits(15, 11);
|
| + int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
|
| + int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
|
| + int bt_val = ba_val ^ bb_val;
|
| + bt_val = bt_val << (31 - bt); // shift bit to correct destination
|
| + condition_reg_ &= ~(0x80000000 >> bt);
|
| + condition_reg_ |= bt_val;
|
| + break;
|
| + }
|
| + case CREQV: {
|
| + int bt = instr->Bits(25, 21);
|
| + int ba = instr->Bits(20, 16);
|
| + int bb = instr->Bits(15, 11);
|
| + int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1;
|
| + int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1;
|
| + int bt_val = 1 - (ba_val ^ bb_val);
|
| + bt_val = bt_val << (31 - bt); // shift bit to correct destination
|
| + condition_reg_ &= ~(0x80000000 >> bt);
|
| + condition_reg_ |= bt_val;
|
| + break;
|
| + }
|
| + case CRNAND:
|
| + case CRAND:
|
| + case CRORC:
|
| + case CROR:
|
| + default: {
|
| + UNIMPLEMENTED(); // Not used by V8.
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +bool Simulator::ExecuteExt2_10bit(Instruction* instr) {
|
| + bool found = true;
|
| +
|
| + int opcode = instr->Bits(10, 1) << 1;
|
| + switch (opcode) {
|
| + case SRWX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + uint32_t rs_val = get_register(rs);
|
| + uintptr_t rb_val = get_register(rb);
|
| + intptr_t result = rs_val >> (rb_val & 0x3f);
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case SRDX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + uintptr_t rb_val = get_register(rb);
|
| + intptr_t result = rs_val >> (rb_val & 0x7f);
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case SRAW: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int32_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t result = rs_val >> (rb_val & 0x3f);
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case SRAD: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t result = rs_val >> (rb_val & 0x7f);
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case SRAWIX: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + int sh = instr->Bits(15, 11);
|
| + int32_t rs_val = get_register(rs);
|
| + intptr_t result = rs_val >> sh;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case EXTSW: {
|
| + const int shift = kBitsPerPointer - 32;
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t ra_val = (rs_val << shift) >> shift;
|
| + set_register(ra, ra_val);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(ra_val);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case EXTSH: {
|
| + const int shift = kBitsPerPointer - 16;
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t ra_val = (rs_val << shift) >> shift;
|
| + set_register(ra, ra_val);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(ra_val);
|
| + }
|
| + break;
|
| + }
|
| + case EXTSB: {
|
| + const int shift = kBitsPerPointer - 8;
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t ra_val = (rs_val << shift) >> shift;
|
| + set_register(ra, ra_val);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(ra_val);
|
| + }
|
| + break;
|
| + }
|
| + case LFSUX:
|
| + case LFSX: {
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + int32_t val = ReadW(ra_val + rb_val, instr);
|
| + float* fptr = reinterpret_cast<float*>(&val);
|
| + set_d_register_from_double(frt, static_cast<double>(*fptr));
|
| + if (opcode == LFSUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case LFDUX:
|
| + case LFDX: {
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + rb_val));
|
| + set_d_register_from_double(frt, *dptr);
|
| + if (opcode == LFDUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case STFSUX: {
|
| + case STFSX:
|
| + int frs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + float frs_val = static_cast<float>(get_double_from_d_register(frs));
|
| + int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
|
| + WriteW(ra_val + rb_val, *p, instr);
|
| + if (opcode == STFSUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case STFDUX: {
|
| + case STFDX:
|
| + int frs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + double frs_val = get_double_from_d_register(frs);
|
| + int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
|
| + WriteDW(ra_val + rb_val, *p);
|
| + if (opcode == STFDUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case SYNC: {
|
| + // todo - simulate sync
|
| + break;
|
| + }
|
| + case ICBI: {
|
| + // todo - simulate icbi
|
| + break;
|
| + }
|
| + default: {
|
| + found = false;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (found) return found;
|
| +
|
| + found = true;
|
| + opcode = instr->Bits(10, 2) << 2;
|
| + switch (opcode) {
|
| + case SRADIX: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t result = rs_val >> sh;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| + default: {
|
| + found = false;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + return found;
|
| +}
|
| +
|
| +
|
| +bool Simulator::ExecuteExt2_9bit_part1(Instruction* instr) {
|
| + bool found = true;
|
| +
|
| + int opcode = instr->Bits(9, 1) << 1;
|
| + switch (opcode) {
|
| + case TW: {
|
| + // used for call redirection in simulation mode
|
| + SoftwareInterrupt(instr);
|
| + break;
|
| + }
|
| + case CMP: {
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int cr = instr->Bits(25, 23);
|
| + uint32_t bf = 0;
|
| +#if V8_TARGET_ARCH_PPC64
|
| + int L = instr->Bit(21);
|
| + if (L) {
|
| +#endif
|
| + intptr_t ra_val = get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + if (ra_val < rb_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > rb_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == rb_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + } else {
|
| + int32_t ra_val = get_register(ra);
|
| + int32_t rb_val = get_register(rb);
|
| + if (ra_val < rb_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > rb_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == rb_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| + }
|
| +#endif
|
| + uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
| + uint32_t condition = bf >> (cr * 4);
|
| + condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
| + break;
|
| + }
|
| + case SUBFCX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + // int oe = instr->Bit(10);
|
| + uintptr_t ra_val = get_register(ra);
|
| + uintptr_t rb_val = get_register(rb);
|
| + uintptr_t alu_out = ~ra_val + rb_val + 1;
|
| + set_register(rt, alu_out);
|
| + // If the sign of rb and alu_out don't match, carry = 0
|
| + if ((alu_out ^ rb_val) & 0x80000000) {
|
| + special_reg_xer_ &= ~0xF0000000;
|
| + } else {
|
| + special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
|
| + }
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| + case ADDCX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + // int oe = instr->Bit(10);
|
| + uintptr_t ra_val = get_register(ra);
|
| + uintptr_t rb_val = get_register(rb);
|
| + uintptr_t alu_out = ra_val + rb_val;
|
| + // Check overflow
|
| + if (~ra_val < rb_val) {
|
| + special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
|
| + } else {
|
| + special_reg_xer_ &= ~0xF0000000;
|
| + }
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(static_cast<intptr_t>(alu_out));
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| + case MULHWX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
|
| + int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
|
| + int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val;
|
| + alu_out >>= 32;
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(static_cast<intptr_t>(alu_out));
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| + case NEGX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t ra_val = get_register(ra);
|
| + intptr_t alu_out = 1 + ~ra_val;
|
| +#if V8_TARGET_ARCH_PPC64
|
| + intptr_t one = 1; // work-around gcc
|
| + intptr_t kOverflowVal = (one << 63);
|
| +#else
|
| + intptr_t kOverflowVal = kMinInt;
|
| +#endif
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(10)) { // OE bit set
|
| + if (ra_val == kOverflowVal) {
|
| + special_reg_xer_ |= 0xC0000000; // set SO,OV
|
| + } else {
|
| + special_reg_xer_ &= ~0x40000000; // clear OV
|
| + }
|
| + }
|
| + if (instr->Bit(0)) { // RC bit set
|
| + bool setSO = (special_reg_xer_ & 0x80000000);
|
| + SetCR0(alu_out, setSO);
|
| + }
|
| + break;
|
| + }
|
| + case SLWX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + uint32_t rs_val = get_register(rs);
|
| + uintptr_t rb_val = get_register(rb);
|
| + uint32_t result = rs_val << (rb_val & 0x3f);
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case SLDX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + uintptr_t rb_val = get_register(rb);
|
| + uintptr_t result = rs_val << (rb_val & 0x7f);
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| + case MFVSRD: {
|
| + DCHECK(!instr->Bit(0));
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + double frt_val = get_double_from_d_register(frt);
|
| + int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
|
| + set_register(ra, *p);
|
| + break;
|
| + }
|
| + case MFVSRWZ: {
|
| + DCHECK(!instr->Bit(0));
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + double frt_val = get_double_from_d_register(frt);
|
| + int64_t* p = reinterpret_cast<int64_t*>(&frt_val);
|
| + set_register(ra, static_cast<uint32_t>(*p));
|
| + break;
|
| + }
|
| + case MTVSRD: {
|
| + DCHECK(!instr->Bit(0));
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int64_t ra_val = get_register(ra);
|
| + double* p = reinterpret_cast<double*>(&ra_val);
|
| + set_d_register_from_double(frt, *p);
|
| + break;
|
| + }
|
| + case MTVSRWA: {
|
| + DCHECK(!instr->Bit(0));
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int64_t ra_val = static_cast<int32_t>(get_register(ra));
|
| + double* p = reinterpret_cast<double*>(&ra_val);
|
| + set_d_register_from_double(frt, *p);
|
| + break;
|
| + }
|
| + case MTVSRWZ: {
|
| + DCHECK(!instr->Bit(0));
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + uint64_t ra_val = static_cast<uint32_t>(get_register(ra));
|
| + double* p = reinterpret_cast<double*>(&ra_val);
|
| + set_d_register_from_double(frt, *p);
|
| + break;
|
| + }
|
| +#endif
|
| + default: {
|
| + found = false;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + return found;
|
| +}
|
| +
|
| +
|
| +void Simulator::ExecuteExt2_9bit_part2(Instruction* instr) {
|
| + int opcode = instr->Bits(9, 1) << 1;
|
| + switch (opcode) {
|
| + case CNTLZWX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + uintptr_t count = 0;
|
| + int n = 0;
|
| + uintptr_t bit = 0x80000000;
|
| + for (; n < 32; n++) {
|
| + if (bit & rs_val) break;
|
| + count++;
|
| + bit >>= 1;
|
| + }
|
| + set_register(ra, count);
|
| + if (instr->Bit(0)) { // RC Bit set
|
| + int bf = 0;
|
| + if (count > 0) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (count == 0) {
|
| + bf |= 0x20000000;
|
| + }
|
| + condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case CNTLZDX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + uintptr_t count = 0;
|
| + int n = 0;
|
| + uintptr_t bit = 0x8000000000000000UL;
|
| + for (; n < 64; n++) {
|
| + if (bit & rs_val) break;
|
| + count++;
|
| + bit >>= 1;
|
| + }
|
| + set_register(ra, count);
|
| + if (instr->Bit(0)) { // RC Bit set
|
| + int bf = 0;
|
| + if (count > 0) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (count == 0) {
|
| + bf |= 0x20000000;
|
| + }
|
| + condition_reg_ = (condition_reg_ & ~0xF0000000) | bf;
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case ANDX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = rs_val & rb_val;
|
| + set_register(ra, alu_out);
|
| + if (instr->Bit(0)) { // RC Bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case ANDCX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = rs_val & ~rb_val;
|
| + set_register(ra, alu_out);
|
| + if (instr->Bit(0)) { // RC Bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case CMPL: {
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int cr = instr->Bits(25, 23);
|
| + uint32_t bf = 0;
|
| +#if V8_TARGET_ARCH_PPC64
|
| + int L = instr->Bit(21);
|
| + if (L) {
|
| +#endif
|
| + uintptr_t ra_val = get_register(ra);
|
| + uintptr_t rb_val = get_register(rb);
|
| + if (ra_val < rb_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > rb_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == rb_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + } else {
|
| + uint32_t ra_val = get_register(ra);
|
| + uint32_t rb_val = get_register(rb);
|
| + if (ra_val < rb_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > rb_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == rb_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| + }
|
| +#endif
|
| + uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
| + uint32_t condition = bf >> (cr * 4);
|
| + condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
| + break;
|
| + }
|
| + case SUBFX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + // int oe = instr->Bit(10);
|
| + intptr_t ra_val = get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = rb_val - ra_val;
|
| + // todo - figure out underflow
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC Bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| + case ADDZEX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t ra_val = get_register(ra);
|
| + if (special_reg_xer_ & 0x20000000) {
|
| + ra_val += 1;
|
| + }
|
| + set_register(rt, ra_val);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(ra_val);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| + case NORX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = ~(rs_val | rb_val);
|
| + set_register(ra, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case MULLW: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int32_t ra_val = (get_register(ra) & 0xFFFFFFFF);
|
| + int32_t rb_val = (get_register(rb) & 0xFFFFFFFF);
|
| + int32_t alu_out = ra_val * rb_val;
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case MULLD: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int64_t ra_val = get_register(ra);
|
| + int64_t rb_val = get_register(rb);
|
| + int64_t alu_out = ra_val * rb_val;
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| +#endif
|
| + case DIVW: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int32_t ra_val = get_register(ra);
|
| + int32_t rb_val = get_register(rb);
|
| + bool overflow = (ra_val == kMinInt && rb_val == -1);
|
| + // result is undefined if divisor is zero or if operation
|
| + // is 0x80000000 / -1.
|
| + int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val;
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(10)) { // OE bit set
|
| + if (overflow) {
|
| + special_reg_xer_ |= 0xC0000000; // set SO,OV
|
| + } else {
|
| + special_reg_xer_ &= ~0x40000000; // clear OV
|
| + }
|
| + }
|
| + if (instr->Bit(0)) { // RC bit set
|
| + bool setSO = (special_reg_xer_ & 0x80000000);
|
| + SetCR0(alu_out, setSO);
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case DIVD: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + int64_t ra_val = get_register(ra);
|
| + int64_t rb_val = get_register(rb);
|
| + int64_t one = 1; // work-around gcc
|
| + int64_t kMinLongLong = (one << 63);
|
| + // result is undefined if divisor is zero or if operation
|
| + // is 0x80000000_00000000 / -1.
|
| + int64_t alu_out =
|
| + (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1))
|
| + ? -1
|
| + : ra_val / rb_val;
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| +#endif
|
| + case ADDX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + // int oe = instr->Bit(10);
|
| + intptr_t ra_val = get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = ra_val + rb_val;
|
| + set_register(rt, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + // todo - handle OE bit
|
| + break;
|
| + }
|
| + case XORX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = rs_val ^ rb_val;
|
| + set_register(ra, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case ORX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t alu_out = rs_val | rb_val;
|
| + set_register(ra, alu_out);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(alu_out);
|
| + }
|
| + break;
|
| + }
|
| + case MFSPR: {
|
| + int rt = instr->RTValue();
|
| + int spr = instr->Bits(20, 11);
|
| + if (spr != 256) {
|
| + UNIMPLEMENTED(); // Only LRLR supported
|
| + }
|
| + set_register(rt, special_reg_lr_);
|
| + break;
|
| + }
|
| + case MTSPR: {
|
| + int rt = instr->RTValue();
|
| + intptr_t rt_val = get_register(rt);
|
| + int spr = instr->Bits(20, 11);
|
| + if (spr == 256) {
|
| + special_reg_lr_ = rt_val;
|
| + } else if (spr == 288) {
|
| + special_reg_ctr_ = rt_val;
|
| + } else if (spr == 32) {
|
| + special_reg_xer_ = rt_val;
|
| + } else {
|
| + UNIMPLEMENTED(); // Only LR supported
|
| + }
|
| + break;
|
| + }
|
| + case MFCR: {
|
| + int rt = instr->RTValue();
|
| + set_register(rt, condition_reg_);
|
| + break;
|
| + }
|
| + case STWUX:
|
| + case STWX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int32_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + WriteW(ra_val + rb_val, rs_val, instr);
|
| + if (opcode == STWUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case STBUX:
|
| + case STBX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int8_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + WriteB(ra_val + rb_val, rs_val);
|
| + if (opcode == STBUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case STHUX:
|
| + case STHX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int16_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + WriteH(ra_val + rb_val, rs_val, instr);
|
| + if (opcode == STHUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case LWZX:
|
| + case LWZUX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + set_register(rt, ReadWU(ra_val + rb_val, instr));
|
| + if (opcode == LWZUX) {
|
| + DCHECK(ra != 0 && ra != rt);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case LDX:
|
| + case LDUX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + intptr_t* result = ReadDW(ra_val + rb_val);
|
| + set_register(rt, *result);
|
| + if (opcode == LDUX) {
|
| + DCHECK(ra != 0 && ra != rt);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case STDX:
|
| + case STDUX: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rs_val = get_register(rs);
|
| + intptr_t rb_val = get_register(rb);
|
| + WriteDW(ra_val + rb_val, rs_val);
|
| + if (opcode == STDUX) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| + case LBZX:
|
| + case LBZUX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + set_register(rt, ReadBU(ra_val + rb_val) & 0xFF);
|
| + if (opcode == LBZUX) {
|
| + DCHECK(ra != 0 && ra != rt);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case LHZX:
|
| + case LHZUX: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int rb = instr->RBValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + intptr_t rb_val = get_register(rb);
|
| + set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF);
|
| + if (opcode == LHZUX) {
|
| + DCHECK(ra != 0 && ra != rt);
|
| + set_register(ra, ra_val + rb_val);
|
| + }
|
| + break;
|
| + }
|
| + case DCBF: {
|
| + // todo - simulate dcbf
|
| + break;
|
| + }
|
| + default: {
|
| + PrintF("Unimplemented: %08x\n", instr->InstructionBits());
|
| + UNIMPLEMENTED(); // Not used by V8.
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::ExecuteExt2(Instruction* instr) {
|
| + // Check first the 10-1 bit versions
|
| + if (ExecuteExt2_10bit(instr)) return;
|
| + // Now look at the lesser encodings
|
| + if (ExecuteExt2_9bit_part1(instr)) return;
|
| + ExecuteExt2_9bit_part2(instr);
|
| +}
|
| +
|
| +
|
| +void Simulator::ExecuteExt4(Instruction* instr) {
|
| + switch (instr->Bits(5, 1) << 1) {
|
| + case FDIV: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = fra_val / frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FSUB: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = fra_val - frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FADD: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = fra_val + frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FSQRT: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = std::sqrt(frb_val);
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FSEL: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + int frc = instr->RCValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frc_val = get_double_from_d_register(frc);
|
| + double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val);
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FMUL: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frc = instr->RCValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frc_val = get_double_from_d_register(frc);
|
| + double frt_val = fra_val * frc_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FMSUB: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + int frc = instr->RCValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frc_val = get_double_from_d_register(frc);
|
| + double frt_val = (fra_val * frc_val) - frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FMADD: {
|
| + int frt = instr->RTValue();
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + int frc = instr->RCValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frc_val = get_double_from_d_register(frc);
|
| + double frt_val = (fra_val * frc_val) + frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + }
|
| + int opcode = instr->Bits(10, 1) << 1;
|
| + switch (opcode) {
|
| + case FCMPU: {
|
| + int fra = instr->RAValue();
|
| + int frb = instr->RBValue();
|
| + double fra_val = get_double_from_d_register(fra);
|
| + double frb_val = get_double_from_d_register(frb);
|
| + int cr = instr->Bits(25, 23);
|
| + int bf = 0;
|
| + if (fra_val < frb_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (fra_val > frb_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (fra_val == frb_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| + if (std::isunordered(fra_val, frb_val)) {
|
| + bf |= 0x10000000;
|
| + }
|
| + int condition_mask = 0xF0000000 >> (cr * 4);
|
| + int condition = bf >> (cr * 4);
|
| + condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
| + return;
|
| + }
|
| + case FRSP: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + // frsp round 8-byte double-precision value to 8-byte
|
| + // single-precision value, ignore the round here
|
| + set_d_register_from_double(frt, frb_val);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + // UNIMPLEMENTED();
|
| + }
|
| + return;
|
| + }
|
| + case FCFID: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double t_val = get_double_from_d_register(frb);
|
| + int64_t* frb_val_p = reinterpret_cast<int64_t*>(&t_val);
|
| + double frt_val = static_cast<double>(*frb_val_p);
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FCTID: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + int64_t frt_val;
|
| + int64_t one = 1; // work-around gcc
|
| + int64_t kMinLongLong = (one << 63);
|
| + int64_t kMaxLongLong = kMinLongLong - 1;
|
| +
|
| + if (frb_val > kMaxLongLong) {
|
| + frt_val = kMaxLongLong;
|
| + } else if (frb_val < kMinLongLong) {
|
| + frt_val = kMinLongLong;
|
| + } else {
|
| + switch (fp_condition_reg_ & kFPRoundingModeMask) {
|
| + case kRoundToZero:
|
| + frt_val = (int64_t)frb_val;
|
| + break;
|
| + case kRoundToPlusInf:
|
| + frt_val = (int64_t)std::ceil(frb_val);
|
| + break;
|
| + case kRoundToMinusInf:
|
| + frt_val = (int64_t)std::floor(frb_val);
|
| + break;
|
| + default:
|
| + frt_val = (int64_t)frb_val;
|
| + UNIMPLEMENTED(); // Not used by V8.
|
| + break;
|
| + }
|
| + }
|
| + double* p = reinterpret_cast<double*>(&frt_val);
|
| + set_d_register_from_double(frt, *p);
|
| + return;
|
| + }
|
| + case FCTIDZ: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + int64_t frt_val;
|
| + int64_t one = 1; // work-around gcc
|
| + int64_t kMinLongLong = (one << 63);
|
| + int64_t kMaxLongLong = kMinLongLong - 1;
|
| +
|
| + if (frb_val > kMaxLongLong) {
|
| + frt_val = kMaxLongLong;
|
| + } else if (frb_val < kMinLongLong) {
|
| + frt_val = kMinLongLong;
|
| + } else {
|
| + frt_val = (int64_t)frb_val;
|
| + }
|
| + double* p = reinterpret_cast<double*>(&frt_val);
|
| + set_d_register_from_double(frt, *p);
|
| + return;
|
| + }
|
| + case FCTIW:
|
| + case FCTIWZ: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + int64_t frt_val;
|
| + if (frb_val > kMaxInt) {
|
| + frt_val = kMaxInt;
|
| + } else if (frb_val < kMinInt) {
|
| + frt_val = kMinInt;
|
| + } else {
|
| + if (opcode == FCTIWZ) {
|
| + frt_val = (int64_t)frb_val;
|
| + } else {
|
| + switch (fp_condition_reg_ & kFPRoundingModeMask) {
|
| + case kRoundToZero:
|
| + frt_val = (int64_t)frb_val;
|
| + break;
|
| + case kRoundToPlusInf:
|
| + frt_val = (int64_t)std::ceil(frb_val);
|
| + break;
|
| + case kRoundToMinusInf:
|
| + frt_val = (int64_t)std::floor(frb_val);
|
| + break;
|
| + case kRoundToNearest:
|
| + frt_val = (int64_t)lround(frb_val);
|
| +
|
| + // Round to even if exactly halfway. (lround rounds up)
|
| + if (std::fabs(static_cast<double>(frt_val) - frb_val) == 0.5 &&
|
| + (frt_val % 2)) {
|
| + frt_val += ((frt_val > 0) ? -1 : 1);
|
| + }
|
| +
|
| + break;
|
| + default:
|
| + DCHECK(false);
|
| + frt_val = (int64_t)frb_val;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + double* p = reinterpret_cast<double*>(&frt_val);
|
| + set_d_register_from_double(frt, *p);
|
| + return;
|
| + }
|
| + case FNEG: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = -frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FMR: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = frb_val;
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case MTFSFI: {
|
| + int bf = instr->Bits(25, 23);
|
| + int imm = instr->Bits(15, 12);
|
| + int fp_condition_mask = 0xF0000000 >> (bf * 4);
|
| + fp_condition_reg_ &= ~fp_condition_mask;
|
| + fp_condition_reg_ |= (imm << (28 - (bf * 4)));
|
| + if (instr->Bit(0)) { // RC bit set
|
| + condition_reg_ &= 0xF0FFFFFF;
|
| + condition_reg_ |= (imm << 23);
|
| + }
|
| + return;
|
| + }
|
| + case MTFSF: {
|
| + int frb = instr->RBValue();
|
| + double frb_dval = get_double_from_d_register(frb);
|
| + int64_t* p = reinterpret_cast<int64_t*>(&frb_dval);
|
| + int32_t frb_ival = static_cast<int32_t>((*p) & 0xffffffff);
|
| + int l = instr->Bits(25, 25);
|
| + if (l == 1) {
|
| + fp_condition_reg_ = frb_ival;
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + if (instr->Bit(0)) { // RC bit set
|
| + UNIMPLEMENTED();
|
| + // int w = instr->Bits(16, 16);
|
| + // int flm = instr->Bits(24, 17);
|
| + }
|
| + return;
|
| + }
|
| + case MFFS: {
|
| + int frt = instr->RTValue();
|
| + int64_t lval = static_cast<int64_t>(fp_condition_reg_);
|
| + double* p = reinterpret_cast<double*>(&lval);
|
| + set_d_register_from_double(frt, *p);
|
| + return;
|
| + }
|
| + case FABS: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + double frt_val = std::fabs(frb_val);
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + case FRIM: {
|
| + int frt = instr->RTValue();
|
| + int frb = instr->RBValue();
|
| + double frb_val = get_double_from_d_register(frb);
|
| + int64_t floor_val = (int64_t)frb_val;
|
| + if (floor_val > frb_val) floor_val--;
|
| + double frt_val = static_cast<double>(floor_val);
|
| + set_d_register_from_double(frt, frt_val);
|
| + return;
|
| + }
|
| + }
|
| + UNIMPLEMENTED(); // Not used by V8.
|
| +}
|
| +
|
| +#if V8_TARGET_ARCH_PPC64
|
| +void Simulator::ExecuteExt5(Instruction* instr) {
|
| + switch (instr->Bits(4, 2) << 2) {
|
| + case RLDICL: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
| + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
| + DCHECK(sh >= 0 && sh <= 63);
|
| + DCHECK(mb >= 0 && mb <= 63);
|
| + // rotate left
|
| + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
|
| + uintptr_t mask = 0xffffffffffffffff >> mb;
|
| + result &= mask;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + return;
|
| + }
|
| + case RLDICR: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
| + int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
| + DCHECK(sh >= 0 && sh <= 63);
|
| + DCHECK(me >= 0 && me <= 63);
|
| + // rotate left
|
| + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
|
| + uintptr_t mask = 0xffffffffffffffff << (63 - me);
|
| + result &= mask;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + return;
|
| + }
|
| + case RLDIC: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
| + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
| + DCHECK(sh >= 0 && sh <= 63);
|
| + DCHECK(mb >= 0 && mb <= 63);
|
| + // rotate left
|
| + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
|
| + uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh);
|
| + result &= mask;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + return;
|
| + }
|
| + case RLDIMI: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + intptr_t ra_val = get_register(ra);
|
| + int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5));
|
| + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
| + int me = 63 - sh;
|
| + // rotate left
|
| + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
|
| + uintptr_t mask = 0;
|
| + if (mb < me + 1) {
|
| + uintptr_t bit = 0x8000000000000000 >> mb;
|
| + for (; mb <= me; mb++) {
|
| + mask |= bit;
|
| + bit >>= 1;
|
| + }
|
| + } else if (mb == me + 1) {
|
| + mask = 0xffffffffffffffff;
|
| + } else { // mb > me+1
|
| + uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested
|
| + mask = 0xffffffffffffffff;
|
| + for (; me < mb; me++) {
|
| + mask ^= bit;
|
| + bit >>= 1;
|
| + }
|
| + }
|
| + result &= mask;
|
| + ra_val &= ~mask;
|
| + result |= ra_val;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + return;
|
| + }
|
| + }
|
| + switch (instr->Bits(4, 1) << 1) {
|
| + case RLDCL: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + int rb = instr->RBValue();
|
| + uintptr_t rs_val = get_register(rs);
|
| + uintptr_t rb_val = get_register(rb);
|
| + int sh = (rb_val & 0x3f);
|
| + int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5));
|
| + DCHECK(sh >= 0 && sh <= 63);
|
| + DCHECK(mb >= 0 && mb <= 63);
|
| + // rotate left
|
| + uintptr_t result = (rs_val << sh) | (rs_val >> (64 - sh));
|
| + uintptr_t mask = 0xffffffffffffffff >> mb;
|
| + result &= mask;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + return;
|
| + }
|
| + }
|
| + UNIMPLEMENTED(); // Not used by V8.
|
| +}
|
| +#endif
|
| +
|
| +
|
| +void Simulator::ExecuteGeneric(Instruction* instr) {
|
| + int opcode = instr->OpcodeValue() << 26;
|
| + switch (opcode) {
|
| + case SUBFIC: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t ra_val = get_register(ra);
|
| + int32_t im_val = instr->Bits(15, 0);
|
| + im_val = SIGN_EXT_IMM16(im_val);
|
| + intptr_t alu_out = im_val - ra_val;
|
| + set_register(rt, alu_out);
|
| + // todo - handle RC bit
|
| + break;
|
| + }
|
| + case CMPLI: {
|
| + int ra = instr->RAValue();
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + int cr = instr->Bits(25, 23);
|
| + uint32_t bf = 0;
|
| +#if V8_TARGET_ARCH_PPC64
|
| + int L = instr->Bit(21);
|
| + if (L) {
|
| +#endif
|
| + uintptr_t ra_val = get_register(ra);
|
| + if (ra_val < im_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > im_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == im_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + } else {
|
| + uint32_t ra_val = get_register(ra);
|
| + if (ra_val < im_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > im_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == im_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| + }
|
| +#endif
|
| + uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
| + uint32_t condition = bf >> (cr * 4);
|
| + condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
| + break;
|
| + }
|
| + case CMPI: {
|
| + int ra = instr->RAValue();
|
| + int32_t im_val = instr->Bits(15, 0);
|
| + im_val = SIGN_EXT_IMM16(im_val);
|
| + int cr = instr->Bits(25, 23);
|
| + uint32_t bf = 0;
|
| +#if V8_TARGET_ARCH_PPC64
|
| + int L = instr->Bit(21);
|
| + if (L) {
|
| +#endif
|
| + intptr_t ra_val = get_register(ra);
|
| + if (ra_val < im_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > im_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == im_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| +#if V8_TARGET_ARCH_PPC64
|
| + } else {
|
| + int32_t ra_val = get_register(ra);
|
| + if (ra_val < im_val) {
|
| + bf |= 0x80000000;
|
| + }
|
| + if (ra_val > im_val) {
|
| + bf |= 0x40000000;
|
| + }
|
| + if (ra_val == im_val) {
|
| + bf |= 0x20000000;
|
| + }
|
| + }
|
| +#endif
|
| + uint32_t condition_mask = 0xF0000000U >> (cr * 4);
|
| + uint32_t condition = bf >> (cr * 4);
|
| + condition_reg_ = (condition_reg_ & ~condition_mask) | condition;
|
| + break;
|
| + }
|
| + case ADDIC: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + uintptr_t ra_val = get_register(ra);
|
| + uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + uintptr_t alu_out = ra_val + im_val;
|
| + // Check overflow
|
| + if (~ra_val < im_val) {
|
| + special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000;
|
| + } else {
|
| + special_reg_xer_ &= ~0xF0000000;
|
| + }
|
| + set_register(rt, alu_out);
|
| + break;
|
| + }
|
| + case ADDI: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + intptr_t alu_out;
|
| + if (ra == 0) {
|
| + alu_out = im_val;
|
| + } else {
|
| + intptr_t ra_val = get_register(ra);
|
| + alu_out = ra_val + im_val;
|
| + }
|
| + set_register(rt, alu_out);
|
| + // todo - handle RC bit
|
| + break;
|
| + }
|
| + case ADDIS: {
|
| + int rt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int32_t im_val = (instr->Bits(15, 0) << 16);
|
| + intptr_t alu_out;
|
| + if (ra == 0) { // treat r0 as zero
|
| + alu_out = im_val;
|
| + } else {
|
| + intptr_t ra_val = get_register(ra);
|
| + alu_out = ra_val + im_val;
|
| + }
|
| + set_register(rt, alu_out);
|
| + break;
|
| + }
|
| + case BCX: {
|
| + ExecuteBranchConditional(instr);
|
| + break;
|
| + }
|
| + case BX: {
|
| + int offset = (instr->Bits(25, 2) << 8) >> 6;
|
| + if (instr->Bit(0) == 1) { // LK flag set
|
| + special_reg_lr_ = get_pc() + 4;
|
| + }
|
| + set_pc(get_pc() + offset);
|
| + // todo - AA flag
|
| + break;
|
| + }
|
| + case EXT1: {
|
| + ExecuteExt1(instr);
|
| + break;
|
| + }
|
| + case RLWIMIX: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + uint32_t rs_val = get_register(rs);
|
| + int32_t ra_val = get_register(ra);
|
| + int sh = instr->Bits(15, 11);
|
| + int mb = instr->Bits(10, 6);
|
| + int me = instr->Bits(5, 1);
|
| + // rotate left
|
| + uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh));
|
| + int mask = 0;
|
| + if (mb < me + 1) {
|
| + int bit = 0x80000000 >> mb;
|
| + for (; mb <= me; mb++) {
|
| + mask |= bit;
|
| + bit >>= 1;
|
| + }
|
| + } else if (mb == me + 1) {
|
| + mask = 0xffffffff;
|
| + } else { // mb > me+1
|
| + int bit = 0x80000000 >> (me + 1); // needs to be tested
|
| + mask = 0xffffffff;
|
| + for (; me < mb; me++) {
|
| + mask ^= bit;
|
| + bit >>= 1;
|
| + }
|
| + }
|
| + result &= mask;
|
| + ra_val &= ~mask;
|
| + result |= ra_val;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| + case RLWINMX:
|
| + case RLWNMX: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + uint32_t rs_val = get_register(rs);
|
| + int sh = 0;
|
| + if (opcode == RLWINMX) {
|
| + sh = instr->Bits(15, 11);
|
| + } else {
|
| + int rb = instr->RBValue();
|
| + uint32_t rb_val = get_register(rb);
|
| + sh = (rb_val & 0x1f);
|
| + }
|
| + int mb = instr->Bits(10, 6);
|
| + int me = instr->Bits(5, 1);
|
| + // rotate left
|
| + uint32_t result = (rs_val << sh) | (rs_val >> (32 - sh));
|
| + int mask = 0;
|
| + if (mb < me + 1) {
|
| + int bit = 0x80000000 >> mb;
|
| + for (; mb <= me; mb++) {
|
| + mask |= bit;
|
| + bit >>= 1;
|
| + }
|
| + } else if (mb == me + 1) {
|
| + mask = 0xffffffff;
|
| + } else { // mb > me+1
|
| + int bit = 0x80000000 >> (me + 1); // needs to be tested
|
| + mask = 0xffffffff;
|
| + for (; me < mb; me++) {
|
| + mask ^= bit;
|
| + bit >>= 1;
|
| + }
|
| + }
|
| + result &= mask;
|
| + set_register(ra, result);
|
| + if (instr->Bit(0)) { // RC bit set
|
| + SetCR0(result);
|
| + }
|
| + break;
|
| + }
|
| + case ORI: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + intptr_t alu_out = rs_val | im_val;
|
| + set_register(ra, alu_out);
|
| + break;
|
| + }
|
| + case ORIS: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + intptr_t alu_out = rs_val | (im_val << 16);
|
| + set_register(ra, alu_out);
|
| + break;
|
| + }
|
| + case XORI: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + intptr_t alu_out = rs_val ^ im_val;
|
| + set_register(ra, alu_out);
|
| + // todo - set condition based SO bit
|
| + break;
|
| + }
|
| + case XORIS: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + intptr_t alu_out = rs_val ^ (im_val << 16);
|
| + set_register(ra, alu_out);
|
| + break;
|
| + }
|
| + case ANDIx: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + intptr_t alu_out = rs_val & im_val;
|
| + set_register(ra, alu_out);
|
| + SetCR0(alu_out);
|
| + break;
|
| + }
|
| + case ANDISx: {
|
| + int rs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + intptr_t rs_val = get_register(rs);
|
| + uint32_t im_val = instr->Bits(15, 0);
|
| + intptr_t alu_out = rs_val & (im_val << 16);
|
| + set_register(ra, alu_out);
|
| + SetCR0(alu_out);
|
| + break;
|
| + }
|
| + case EXT2: {
|
| + ExecuteExt2(instr);
|
| + break;
|
| + }
|
| +
|
| + case LWZU:
|
| + case LWZ: {
|
| + int ra = instr->RAValue();
|
| + int rt = instr->RTValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + set_register(rt, ReadWU(ra_val + offset, instr));
|
| + if (opcode == LWZU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LBZU:
|
| + case LBZ: {
|
| + int ra = instr->RAValue();
|
| + int rt = instr->RTValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + set_register(rt, ReadB(ra_val + offset) & 0xFF);
|
| + if (opcode == LBZU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case STWU:
|
| + case STW: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int32_t rs_val = get_register(rs);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + WriteW(ra_val + offset, rs_val, instr);
|
| + if (opcode == STWU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + // printf("r%d %08x -> %08x\n", rs, rs_val, offset); // 0xdead
|
| + break;
|
| + }
|
| +
|
| + case STBU:
|
| + case STB: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int8_t rs_val = get_register(rs);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + WriteB(ra_val + offset, rs_val);
|
| + if (opcode == STBU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LHZU:
|
| + case LHZ: {
|
| + int ra = instr->RAValue();
|
| + int rt = instr->RTValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff;
|
| + set_register(rt, result);
|
| + if (opcode == LHZU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LHA:
|
| + case LHAU: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| +
|
| + case STHU:
|
| + case STH: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int16_t rs_val = get_register(rs);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + WriteH(ra_val + offset, rs_val, instr);
|
| + if (opcode == STHU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LMW:
|
| + case STMW: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| +
|
| + case LFSU:
|
| + case LFS: {
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int32_t val = ReadW(ra_val + offset, instr);
|
| + float* fptr = reinterpret_cast<float*>(&val);
|
| + set_d_register_from_double(frt, static_cast<double>(*fptr));
|
| + if (opcode == LFSU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case LFDU:
|
| + case LFD: {
|
| + int frt = instr->RTValue();
|
| + int ra = instr->RAValue();
|
| + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + double* dptr = reinterpret_cast<double*>(ReadDW(ra_val + offset));
|
| + set_d_register_from_double(frt, *dptr);
|
| + if (opcode == LFDU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case STFSU: {
|
| + case STFS:
|
| + int frs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + float frs_val = static_cast<float>(get_double_from_d_register(frs));
|
| + int32_t* p = reinterpret_cast<int32_t*>(&frs_val);
|
| + WriteW(ra_val + offset, *p, instr);
|
| + if (opcode == STFSU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case STFDU:
|
| + case STFD: {
|
| + int frs = instr->RSValue();
|
| + int ra = instr->RAValue();
|
| + int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0));
|
| + intptr_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + double frs_val = get_double_from_d_register(frs);
|
| + int64_t* p = reinterpret_cast<int64_t*>(&frs_val);
|
| + WriteDW(ra_val + offset, *p);
|
| + if (opcode == STFDU) {
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case EXT3:
|
| + UNIMPLEMENTED();
|
| + case EXT4: {
|
| + ExecuteExt4(instr);
|
| + break;
|
| + }
|
| +
|
| +#if V8_TARGET_ARCH_PPC64
|
| + case EXT5: {
|
| + ExecuteExt5(instr);
|
| + break;
|
| + }
|
| + case LD: {
|
| + int ra = instr->RAValue();
|
| + int rt = instr->RTValue();
|
| + int64_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
|
| + switch (instr->Bits(1, 0)) {
|
| + case 0: { // ld
|
| + intptr_t* result = ReadDW(ra_val + offset);
|
| + set_register(rt, *result);
|
| + break;
|
| + }
|
| + case 1: { // ldu
|
| + intptr_t* result = ReadDW(ra_val + offset);
|
| + set_register(rt, *result);
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + break;
|
| + }
|
| + case 2: { // lwa
|
| + intptr_t result = ReadW(ra_val + offset, instr);
|
| + set_register(rt, result);
|
| + break;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +
|
| + case STD: {
|
| + int ra = instr->RAValue();
|
| + int rs = instr->RSValue();
|
| + int64_t ra_val = ra == 0 ? 0 : get_register(ra);
|
| + int64_t rs_val = get_register(rs);
|
| + int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3);
|
| + WriteDW(ra_val + offset, rs_val);
|
| + if (instr->Bit(0) == 1) { // This is the STDU form
|
| + DCHECK(ra != 0);
|
| + set_register(ra, ra_val + offset);
|
| + }
|
| + break;
|
| + }
|
| +#endif
|
| +
|
| + case FAKE_OPCODE: {
|
| + if (instr->Bits(MARKER_SUBOPCODE_BIT, MARKER_SUBOPCODE_BIT) == 1) {
|
| + int marker_code = instr->Bits(STUB_MARKER_HIGH_BIT, 0);
|
| + DCHECK(marker_code < F_NEXT_AVAILABLE_STUB_MARKER);
|
| + PrintF("Hit stub-marker: %d (EMIT_STUB_MARKER)\n", marker_code);
|
| + } else {
|
| + int fake_opcode = instr->Bits(FAKE_OPCODE_HIGH_BIT, 0);
|
| + if (fake_opcode == fBKPT) {
|
| + PPCDebugger dbg(this);
|
| + PrintF("Simulator hit BKPT.\n");
|
| + dbg.Debug();
|
| + } else {
|
| + DCHECK(fake_opcode < fLastFaker);
|
| + PrintF("Hit ARM opcode: %d(FAKE_OPCODE defined in constant-ppc.h)\n",
|
| + fake_opcode);
|
| + UNIMPLEMENTED();
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +
|
| + default: {
|
| + UNIMPLEMENTED();
|
| + break;
|
| + }
|
| + }
|
| +} // NOLINT
|
| +
|
| +
|
| +void Simulator::Trace(Instruction* instr) {
|
| + disasm::NameConverter converter;
|
| + disasm::Disassembler dasm(converter);
|
| + // use a reasonably large buffer
|
| + v8::internal::EmbeddedVector<char, 256> buffer;
|
| + dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
|
| + PrintF("%05d %08" V8PRIxPTR " %s\n", icount_,
|
| + reinterpret_cast<intptr_t>(instr), buffer.start());
|
| +}
|
| +
|
| +
|
| +// Executes the current instruction.
|
| +void Simulator::ExecuteInstruction(Instruction* instr) {
|
| + if (v8::internal::FLAG_check_icache) {
|
| + CheckICache(isolate_->simulator_i_cache(), instr);
|
| + }
|
| + pc_modified_ = false;
|
| + if (::v8::internal::FLAG_trace_sim) {
|
| + Trace(instr);
|
| + }
|
| + int opcode = instr->OpcodeValue() << 26;
|
| + if (opcode == TWI) {
|
| + SoftwareInterrupt(instr);
|
| + } else {
|
| + ExecuteGeneric(instr);
|
| + }
|
| + if (!pc_modified_) {
|
| + set_pc(reinterpret_cast<intptr_t>(instr) + Instruction::kInstrSize);
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::Execute() {
|
| + // Get the PC to simulate. Cannot use the accessor here as we need the
|
| + // raw PC value and not the one used as input to arithmetic instructions.
|
| + intptr_t program_counter = get_pc();
|
| +
|
| + if (::v8::internal::FLAG_stop_sim_at == 0) {
|
| + // Fast version of the dispatch loop without checking whether the simulator
|
| + // should be stopping at a particular executed instruction.
|
| + while (program_counter != end_sim_pc) {
|
| + Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
| + icount_++;
|
| + ExecuteInstruction(instr);
|
| + program_counter = get_pc();
|
| + }
|
| + } else {
|
| + // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
|
| + // we reach the particular instuction count.
|
| + while (program_counter != end_sim_pc) {
|
| + Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
|
| + icount_++;
|
| + if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
|
| + PPCDebugger dbg(this);
|
| + dbg.Debug();
|
| + } else {
|
| + ExecuteInstruction(instr);
|
| + }
|
| + program_counter = get_pc();
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Simulator::CallInternal(byte* entry) {
|
| +// Prepare to execute the code at entry
|
| +#if ABI_USES_FUNCTION_DESCRIPTORS
|
| + // entry is the function descriptor
|
| + set_pc(*(reinterpret_cast<intptr_t*>(entry)));
|
| +#else
|
| + // entry is the instruction address
|
| + set_pc(reinterpret_cast<intptr_t>(entry));
|
| +#endif
|
| +
|
| + // Put down marker for end of simulation. The simulator will stop simulation
|
| + // when the PC reaches this value. By saving the "end simulation" value into
|
| + // the LR the simulation stops when returning to this call point.
|
| + special_reg_lr_ = end_sim_pc;
|
| +
|
| + // Remember the values of non-volatile registers.
|
| + intptr_t r2_val = get_register(r2);
|
| + intptr_t r13_val = get_register(r13);
|
| + intptr_t r14_val = get_register(r14);
|
| + intptr_t r15_val = get_register(r15);
|
| + intptr_t r16_val = get_register(r16);
|
| + intptr_t r17_val = get_register(r17);
|
| + intptr_t r18_val = get_register(r18);
|
| + intptr_t r19_val = get_register(r19);
|
| + intptr_t r20_val = get_register(r20);
|
| + intptr_t r21_val = get_register(r21);
|
| + intptr_t r22_val = get_register(r22);
|
| + intptr_t r23_val = get_register(r23);
|
| + intptr_t r24_val = get_register(r24);
|
| + intptr_t r25_val = get_register(r25);
|
| + intptr_t r26_val = get_register(r26);
|
| + intptr_t r27_val = get_register(r27);
|
| + intptr_t r28_val = get_register(r28);
|
| + intptr_t r29_val = get_register(r29);
|
| + intptr_t r30_val = get_register(r30);
|
| + intptr_t r31_val = get_register(fp);
|
| +
|
| + // Set up the non-volatile registers with a known value. To be able to check
|
| + // that they are preserved properly across JS execution.
|
| + intptr_t callee_saved_value = icount_;
|
| + set_register(r2, callee_saved_value);
|
| + set_register(r13, callee_saved_value);
|
| + set_register(r14, callee_saved_value);
|
| + set_register(r15, callee_saved_value);
|
| + set_register(r16, callee_saved_value);
|
| + set_register(r17, callee_saved_value);
|
| + set_register(r18, callee_saved_value);
|
| + set_register(r19, callee_saved_value);
|
| + set_register(r20, callee_saved_value);
|
| + set_register(r21, callee_saved_value);
|
| + set_register(r22, callee_saved_value);
|
| + set_register(r23, callee_saved_value);
|
| + set_register(r24, callee_saved_value);
|
| + set_register(r25, callee_saved_value);
|
| + set_register(r26, callee_saved_value);
|
| + set_register(r27, callee_saved_value);
|
| + set_register(r28, callee_saved_value);
|
| + set_register(r29, callee_saved_value);
|
| + set_register(r30, callee_saved_value);
|
| + set_register(fp, callee_saved_value);
|
| +
|
| + // Start the simulation
|
| + Execute();
|
| +
|
| + // Check that the non-volatile registers have been preserved.
|
| + CHECK_EQ(callee_saved_value, get_register(r2));
|
| + CHECK_EQ(callee_saved_value, get_register(r13));
|
| + CHECK_EQ(callee_saved_value, get_register(r14));
|
| + CHECK_EQ(callee_saved_value, get_register(r15));
|
| + CHECK_EQ(callee_saved_value, get_register(r16));
|
| + CHECK_EQ(callee_saved_value, get_register(r17));
|
| + CHECK_EQ(callee_saved_value, get_register(r18));
|
| + CHECK_EQ(callee_saved_value, get_register(r19));
|
| + CHECK_EQ(callee_saved_value, get_register(r20));
|
| + CHECK_EQ(callee_saved_value, get_register(r21));
|
| + CHECK_EQ(callee_saved_value, get_register(r22));
|
| + CHECK_EQ(callee_saved_value, get_register(r23));
|
| + CHECK_EQ(callee_saved_value, get_register(r24));
|
| + CHECK_EQ(callee_saved_value, get_register(r25));
|
| + CHECK_EQ(callee_saved_value, get_register(r26));
|
| + CHECK_EQ(callee_saved_value, get_register(r27));
|
| + CHECK_EQ(callee_saved_value, get_register(r28));
|
| + CHECK_EQ(callee_saved_value, get_register(r29));
|
| + CHECK_EQ(callee_saved_value, get_register(r30));
|
| + CHECK_EQ(callee_saved_value, get_register(fp));
|
| +
|
| + // Restore non-volatile registers with the original value.
|
| + set_register(r2, r2_val);
|
| + set_register(r13, r13_val);
|
| + set_register(r14, r14_val);
|
| + set_register(r15, r15_val);
|
| + set_register(r16, r16_val);
|
| + set_register(r17, r17_val);
|
| + set_register(r18, r18_val);
|
| + set_register(r19, r19_val);
|
| + set_register(r20, r20_val);
|
| + set_register(r21, r21_val);
|
| + set_register(r22, r22_val);
|
| + set_register(r23, r23_val);
|
| + set_register(r24, r24_val);
|
| + set_register(r25, r25_val);
|
| + set_register(r26, r26_val);
|
| + set_register(r27, r27_val);
|
| + set_register(r28, r28_val);
|
| + set_register(r29, r29_val);
|
| + set_register(r30, r30_val);
|
| + set_register(fp, r31_val);
|
| +}
|
| +
|
| +
|
| +intptr_t Simulator::Call(byte* entry, int argument_count, ...) {
|
| + va_list parameters;
|
| + va_start(parameters, argument_count);
|
| + // Set up arguments
|
| +
|
| + // First eight arguments passed in registers r3-r10.
|
| + int reg_arg_count = (argument_count > 8) ? 8 : argument_count;
|
| + int stack_arg_count = argument_count - reg_arg_count;
|
| + for (int i = 0; i < reg_arg_count; i++) {
|
| + set_register(i + 3, va_arg(parameters, intptr_t));
|
| + }
|
| +
|
| + // Remaining arguments passed on stack.
|
| + intptr_t original_stack = get_register(sp);
|
| + // Compute position of stack on entry to generated code.
|
| + intptr_t entry_stack =
|
| + (original_stack -
|
| + (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t));
|
| + if (base::OS::ActivationFrameAlignment() != 0) {
|
| + entry_stack &= -base::OS::ActivationFrameAlignment();
|
| + }
|
| + // Store remaining arguments on stack, from low to high memory.
|
| + // +2 is a hack for the LR slot + old SP on PPC
|
| + intptr_t* stack_argument =
|
| + reinterpret_cast<intptr_t*>(entry_stack) + kStackFrameExtraParamSlot;
|
| + for (int i = 0; i < stack_arg_count; i++) {
|
| + stack_argument[i] = va_arg(parameters, intptr_t);
|
| + }
|
| + va_end(parameters);
|
| + set_register(sp, entry_stack);
|
| +
|
| + CallInternal(entry);
|
| +
|
| + // Pop stack passed arguments.
|
| + CHECK_EQ(entry_stack, get_register(sp));
|
| + set_register(sp, original_stack);
|
| +
|
| + intptr_t result = get_register(r3);
|
| + return result;
|
| +}
|
| +
|
| +
|
| +void Simulator::CallFP(byte* entry, double d0, double d1) {
|
| + set_d_register_from_double(1, d0);
|
| + set_d_register_from_double(2, d1);
|
| + CallInternal(entry);
|
| +}
|
| +
|
| +
|
| +int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) {
|
| + CallFP(entry, d0, d1);
|
| + int32_t result = get_register(r3);
|
| + return result;
|
| +}
|
| +
|
| +
|
| +double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) {
|
| + CallFP(entry, d0, d1);
|
| + return get_double_from_d_register(1);
|
| +}
|
| +
|
| +
|
| +uintptr_t Simulator::PushAddress(uintptr_t address) {
|
| + uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t);
|
| + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
|
| + *stack_slot = address;
|
| + set_register(sp, new_sp);
|
| + return new_sp;
|
| +}
|
| +
|
| +
|
| +uintptr_t Simulator::PopAddress() {
|
| + uintptr_t current_sp = get_register(sp);
|
| + uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
|
| + uintptr_t address = *stack_slot;
|
| + set_register(sp, current_sp + sizeof(uintptr_t));
|
| + return address;
|
| +}
|
| +}
|
| +} // namespace v8::internal
|
| +
|
| +#endif // USE_SIMULATOR
|
| +#endif // V8_TARGET_ARCH_PPC
|
|
|