Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1037)

Side by Side Diff: src/ppc/regexp-macro-assembler-ppc.cc

Issue 571173003: PowerPC specific sub-directories (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Updated ppc sub-dirs to current V8 code levels Created 6 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
(Empty)
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 //
3 // Copyright IBM Corp. 2012, 2013. All rights reserved.
4 //
5 // Use of this source code is governed by a BSD-style license that can be
6 // found in the LICENSE file.
7
8 #include "src/v8.h"
9
10 #if V8_TARGET_ARCH_PPC
11
12 #include "src/base/bits.h"
13 #include "src/code-stubs.h"
14 #include "src/cpu-profiler.h"
15 #include "src/log.h"
16 #include "src/macro-assembler.h"
17 #include "src/regexp-macro-assembler.h"
18 #include "src/regexp-stack.h"
19 #include "src/unicode.h"
20
21 #include "src/ppc/regexp-macro-assembler-ppc.h"
22
23 namespace v8 {
24 namespace internal {
25
26 #ifndef V8_INTERPRETED_REGEXP
27 /*
28 * This assembler uses the following register assignment convention
29 * - r25: Temporarily stores the index of capture start after a matching pass
30 * for a global regexp.
31 * - r26: Pointer to current code object (Code*) including heap object tag.
32 * - r27: Current position in input, as negative offset from end of string.
33 * Please notice that this is the byte offset, not the character offset!
34 * - r28: Currently loaded character. Must be loaded using
35 * LoadCurrentCharacter before using any of the dispatch methods.
36 * - r29: Points to tip of backtrack stack
37 * - r30: End of input (points to byte after last character in input).
38 * - r31: Frame pointer. Used to access arguments, local variables and
39 * RegExp registers.
40 * - r12: IP register, used by assembler. Very volatile.
41 * - r1/sp : Points to tip of C stack.
42 *
43 * The remaining registers are free for computations.
44 * Each call to a public method should retain this convention.
45 *
46 * The stack will have the following structure:
47 * - fp[44] Isolate* isolate (address of the current isolate)
48 * - fp[40] secondary link/return address used by native call.
49 * - fp[36] lr save area (currently unused)
50 * - fp[32] backchain (currently unused)
51 * --- sp when called ---
52 * - fp[28] return address (lr).
53 * - fp[24] old frame pointer (r31).
54 * - fp[0..20] backup of registers r25..r30
55 * --- frame pointer ----
56 * - fp[-4] direct_call (if 1, direct call from JavaScript code,
57 * if 0, call through the runtime system).
58 * - fp[-8] stack_area_base (high end of the memory area to use as
59 * backtracking stack).
60 * - fp[-12] capture array size (may fit multiple sets of matches)
61 * - fp[-16] int* capture_array (int[num_saved_registers_], for output).
62 * - fp[-20] end of input (address of end of string).
63 * - fp[-24] start of input (address of first character in string).
64 * - fp[-28] start index (character index of start).
65 * - fp[-32] void* input_string (location of a handle containing the string).
66 * - fp[-36] success counter (only for global regexps to count matches).
67 * - fp[-40] Offset of location before start of input (effectively character
68 * position -1). Used to initialize capture registers to a
69 * non-position.
70 * - fp[-44] At start (if 1, we are starting at the start of the
71 * string, otherwise 0)
72 * - fp[-48] register 0 (Only positions must be stored in the first
73 * - register 1 num_saved_registers_ registers)
74 * - ...
75 * - register num_registers-1
76 * --- sp ---
77 *
78 * The first num_saved_registers_ registers are initialized to point to
79 * "character -1" in the string (i.e., char_size() bytes before the first
80 * character of the string). The remaining registers start out as garbage.
81 *
82 * The data up to the return address must be placed there by the calling
83 * code and the remaining arguments are passed in registers, e.g. by calling the
84 * code entry as cast to a function with the signature:
85 * int (*match)(String* input_string,
86 * int start_index,
87 * Address start,
88 * Address end,
89 * int* capture_output_array,
90 * byte* stack_area_base,
91 * Address secondary_return_address, // Only used by native call.
92 * bool direct_call = false)
93 * The call is performed by NativeRegExpMacroAssembler::Execute()
94 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
95 * in ppc/simulator-ppc.h.
96 * When calling as a non-direct call (i.e., from C++ code), the return address
97 * area is overwritten with the LR register by the RegExp code. When doing a
98 * direct call from generated code, the return address is placed there by
99 * the calling code, as in a normal exit frame.
100 */
101
102 #define __ ACCESS_MASM(masm_)
103
104 RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Mode mode,
105 int registers_to_save,
106 Zone* zone)
107 : NativeRegExpMacroAssembler(zone),
108 masm_(new MacroAssembler(zone->isolate(), NULL, kRegExpCodeSize)),
109 mode_(mode),
110 num_registers_(registers_to_save),
111 num_saved_registers_(registers_to_save),
112 entry_label_(),
113 start_label_(),
114 success_label_(),
115 backtrack_label_(),
116 exit_label_(),
117 internal_failure_label_() {
118 DCHECK_EQ(0, registers_to_save % 2);
119
120 // Called from C
121 #if ABI_USES_FUNCTION_DESCRIPTORS
122 __ function_descriptor();
123 #endif
124
125 __ b(&entry_label_); // We'll write the entry code later.
126 // If the code gets too big or corrupted, an internal exception will be
127 // raised, and we will exit right away.
128 __ bind(&internal_failure_label_);
129 __ li(r3, Operand(FAILURE));
130 __ Ret();
131 __ bind(&start_label_); // And then continue from here.
132 }
133
134
135 RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
136 delete masm_;
137 // Unuse labels in case we throw away the assembler without calling GetCode.
138 entry_label_.Unuse();
139 start_label_.Unuse();
140 success_label_.Unuse();
141 backtrack_label_.Unuse();
142 exit_label_.Unuse();
143 check_preempt_label_.Unuse();
144 stack_overflow_label_.Unuse();
145 internal_failure_label_.Unuse();
146 }
147
148
149 int RegExpMacroAssemblerPPC::stack_limit_slack() {
150 return RegExpStack::kStackLimitSlack;
151 }
152
153
154 void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
155 if (by != 0) {
156 __ addi(current_input_offset(), current_input_offset(),
157 Operand(by * char_size()));
158 }
159 }
160
161
162 void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
163 DCHECK(reg >= 0);
164 DCHECK(reg < num_registers_);
165 if (by != 0) {
166 __ LoadP(r3, register_location(reg), r0);
167 __ mov(r0, Operand(by));
168 __ add(r3, r3, r0);
169 __ StoreP(r3, register_location(reg), r0);
170 }
171 }
172
173
174 void RegExpMacroAssemblerPPC::Backtrack() {
175 CheckPreemption();
176 // Pop Code* offset from backtrack stack, add Code* and jump to location.
177 Pop(r3);
178 __ add(r3, r3, code_pointer());
179 __ mtctr(r3);
180 __ bctr();
181 }
182
183
184 void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
185
186
187 void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
188 __ Cmpli(current_character(), Operand(c), r0);
189 BranchOrBacktrack(eq, on_equal);
190 }
191
192
193 void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
194 __ Cmpli(current_character(), Operand(limit), r0);
195 BranchOrBacktrack(gt, on_greater);
196 }
197
198
199 void RegExpMacroAssemblerPPC::CheckAtStart(Label* on_at_start) {
200 Label not_at_start;
201 // Did we start the match at the start of the string at all?
202 __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
203 __ cmpi(r3, Operand::Zero());
204 BranchOrBacktrack(ne, &not_at_start);
205
206 // If we did, are we still at the start of the input?
207 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
208 __ mr(r0, current_input_offset());
209 __ add(r3, end_of_input_address(), r0);
210 __ cmp(r4, r3);
211 BranchOrBacktrack(eq, on_at_start);
212 __ bind(&not_at_start);
213 }
214
215
216 void RegExpMacroAssemblerPPC::CheckNotAtStart(Label* on_not_at_start) {
217 // Did we start the match at the start of the string at all?
218 __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
219 __ cmpi(r3, Operand::Zero());
220 BranchOrBacktrack(ne, on_not_at_start);
221 // If we did, are we still at the start of the input?
222 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
223 __ add(r3, end_of_input_address(), current_input_offset());
224 __ cmp(r3, r4);
225 BranchOrBacktrack(ne, on_not_at_start);
226 }
227
228
229 void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
230 __ Cmpli(current_character(), Operand(limit), r0);
231 BranchOrBacktrack(lt, on_less);
232 }
233
234
235 void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
236 Label backtrack_non_equal;
237 __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
238 __ cmp(current_input_offset(), r3);
239 __ bne(&backtrack_non_equal);
240 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
241 Operand(kPointerSize));
242
243 __ bind(&backtrack_non_equal);
244 BranchOrBacktrack(eq, on_equal);
245 }
246
247
248 void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
249 int start_reg, Label* on_no_match) {
250 Label fallthrough;
251 __ LoadP(r3, register_location(start_reg), r0); // Index of start of capture
252 __ LoadP(r4, register_location(start_reg + 1), r0); // Index of end
253 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length of capture.
254
255 // If length is zero, either the capture is empty or it is not participating.
256 // In either case succeed immediately.
257 __ beq(&fallthrough, cr0);
258
259 // Check that there are enough characters left in the input.
260 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
261 // __ cmn(r1, Operand(current_input_offset()));
262 BranchOrBacktrack(gt, on_no_match, cr0);
263
264 if (mode_ == LATIN1) {
265 Label success;
266 Label fail;
267 Label loop_check;
268
269 // r3 - offset of start of capture
270 // r4 - length of capture
271 __ add(r3, r3, end_of_input_address());
272 __ add(r5, end_of_input_address(), current_input_offset());
273 __ add(r4, r3, r4);
274
275 // r3 - Address of start of capture.
276 // r4 - Address of end of capture
277 // r5 - Address of current input position.
278
279 Label loop;
280 __ bind(&loop);
281 __ lbz(r6, MemOperand(r3));
282 __ addi(r3, r3, Operand(char_size()));
283 __ lbz(r25, MemOperand(r5));
284 __ addi(r5, r5, Operand(char_size()));
285 __ cmp(r25, r6);
286 __ beq(&loop_check);
287
288 // Mismatch, try case-insensitive match (converting letters to lower-case).
289 __ ori(r6, r6, Operand(0x20)); // Convert capture character to lower-case.
290 __ ori(r25, r25, Operand(0x20)); // Also convert input character.
291 __ cmp(r25, r6);
292 __ bne(&fail);
293 __ subi(r6, r6, Operand('a'));
294 __ cmpli(r6, Operand('z' - 'a')); // Is r6 a lowercase letter?
295 __ ble(&loop_check); // In range 'a'-'z'.
296 // Latin-1: Check for values in range [224,254] but not 247.
297 __ subi(r6, r6, Operand(224 - 'a'));
298 __ cmpli(r6, Operand(254 - 224));
299 __ bgt(&fail); // Weren't Latin-1 letters.
300 __ cmpi(r6, Operand(247 - 224)); // Check for 247.
301 __ beq(&fail);
302
303 __ bind(&loop_check);
304 __ cmp(r3, r4);
305 __ blt(&loop);
306 __ b(&success);
307
308 __ bind(&fail);
309 BranchOrBacktrack(al, on_no_match);
310
311 __ bind(&success);
312 // Compute new value of character position after the matched part.
313 __ sub(current_input_offset(), r5, end_of_input_address());
314 } else {
315 DCHECK(mode_ == UC16);
316 int argument_count = 4;
317 __ PrepareCallCFunction(argument_count, r5);
318
319 // r3 - offset of start of capture
320 // r4 - length of capture
321
322 // Put arguments into arguments registers.
323 // Parameters are
324 // r3: Address byte_offset1 - Address captured substring's start.
325 // r4: Address byte_offset2 - Address of current character position.
326 // r5: size_t byte_length - length of capture in bytes(!)
327 // r6: Isolate* isolate
328
329 // Address of start of capture.
330 __ add(r3, r3, end_of_input_address());
331 // Length of capture.
332 __ mr(r5, r4);
333 // Save length in callee-save register for use on return.
334 __ mr(r25, r4);
335 // Address of current input position.
336 __ add(r4, current_input_offset(), end_of_input_address());
337 // Isolate.
338 __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
339
340 {
341 AllowExternalCallThatCantCauseGC scope(masm_);
342 ExternalReference function =
343 ExternalReference::re_case_insensitive_compare_uc16(isolate());
344 __ CallCFunction(function, argument_count);
345 }
346
347 // Check if function returned non-zero for success or zero for failure.
348 __ cmpi(r3, Operand::Zero());
349 BranchOrBacktrack(eq, on_no_match);
350 // On success, increment position by length of capture.
351 __ add(current_input_offset(), current_input_offset(), r25);
352 }
353
354 __ bind(&fallthrough);
355 }
356
357
358 void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
359 Label* on_no_match) {
360 Label fallthrough;
361 Label success;
362
363 // Find length of back-referenced capture.
364 __ LoadP(r3, register_location(start_reg), r0);
365 __ LoadP(r4, register_location(start_reg + 1), r0);
366 __ sub(r4, r4, r3, LeaveOE, SetRC); // Length to check.
367 // Succeed on empty capture (including no capture).
368 __ beq(&fallthrough, cr0);
369
370 // Check that there are enough characters left in the input.
371 __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
372 BranchOrBacktrack(gt, on_no_match, cr0);
373
374 // Compute pointers to match string and capture string
375 __ add(r3, r3, end_of_input_address());
376 __ add(r5, end_of_input_address(), current_input_offset());
377 __ add(r4, r4, r3);
378
379 Label loop;
380 __ bind(&loop);
381 if (mode_ == LATIN1) {
382 __ lbz(r6, MemOperand(r3));
383 __ addi(r3, r3, Operand(char_size()));
384 __ lbz(r25, MemOperand(r5));
385 __ addi(r5, r5, Operand(char_size()));
386 } else {
387 DCHECK(mode_ == UC16);
388 __ lhz(r6, MemOperand(r3));
389 __ addi(r3, r3, Operand(char_size()));
390 __ lhz(r25, MemOperand(r5));
391 __ addi(r5, r5, Operand(char_size()));
392 }
393 __ cmp(r6, r25);
394 BranchOrBacktrack(ne, on_no_match);
395 __ cmp(r3, r4);
396 __ blt(&loop);
397
398 // Move current character position to position after match.
399 __ sub(current_input_offset(), r5, end_of_input_address());
400 __ bind(&fallthrough);
401 }
402
403
404 void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
405 Label* on_not_equal) {
406 __ Cmpli(current_character(), Operand(c), r0);
407 BranchOrBacktrack(ne, on_not_equal);
408 }
409
410
411 void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
412 Label* on_equal) {
413 __ mov(r0, Operand(mask));
414 if (c == 0) {
415 __ and_(r3, current_character(), r0, SetRC);
416 } else {
417 __ and_(r3, current_character(), r0);
418 __ Cmpli(r3, Operand(c), r0, cr0);
419 }
420 BranchOrBacktrack(eq, on_equal, cr0);
421 }
422
423
424 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
425 unsigned mask,
426 Label* on_not_equal) {
427 __ mov(r0, Operand(mask));
428 if (c == 0) {
429 __ and_(r3, current_character(), r0, SetRC);
430 } else {
431 __ and_(r3, current_character(), r0);
432 __ Cmpli(r3, Operand(c), r0, cr0);
433 }
434 BranchOrBacktrack(ne, on_not_equal, cr0);
435 }
436
437
438 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
439 uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
440 DCHECK(minus < String::kMaxUtf16CodeUnit);
441 __ subi(r3, current_character(), Operand(minus));
442 __ mov(r0, Operand(mask));
443 __ and_(r3, r3, r0);
444 __ Cmpli(r3, Operand(c), r0);
445 BranchOrBacktrack(ne, on_not_equal);
446 }
447
448
449 void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
450 Label* on_in_range) {
451 __ mov(r0, Operand(from));
452 __ sub(r3, current_character(), r0);
453 __ Cmpli(r3, Operand(to - from), r0);
454 BranchOrBacktrack(le, on_in_range); // Unsigned lower-or-same condition.
455 }
456
457
458 void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
459 Label* on_not_in_range) {
460 __ mov(r0, Operand(from));
461 __ sub(r3, current_character(), r0);
462 __ Cmpli(r3, Operand(to - from), r0);
463 BranchOrBacktrack(gt, on_not_in_range); // Unsigned higher condition.
464 }
465
466
467 void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
468 Label* on_bit_set) {
469 __ mov(r3, Operand(table));
470 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
471 __ andi(r4, current_character(), Operand(kTableSize - 1));
472 __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
473 } else {
474 __ addi(r4, current_character(),
475 Operand(ByteArray::kHeaderSize - kHeapObjectTag));
476 }
477 __ lbzx(r3, MemOperand(r3, r4));
478 __ cmpi(r3, Operand::Zero());
479 BranchOrBacktrack(ne, on_bit_set);
480 }
481
482
483 bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
484 Label* on_no_match) {
485 // Range checks (c in min..max) are generally implemented by an unsigned
486 // (c - min) <= (max - min) check
487 switch (type) {
488 case 's':
489 // Match space-characters
490 if (mode_ == LATIN1) {
491 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
492 Label success;
493 __ cmpi(current_character(), Operand(' '));
494 __ beq(&success);
495 // Check range 0x09..0x0d
496 __ subi(r3, current_character(), Operand('\t'));
497 __ cmpli(r3, Operand('\r' - '\t'));
498 __ ble(&success);
499 // \u00a0 (NBSP).
500 __ cmpi(r3, Operand(0x00a0 - '\t'));
501 BranchOrBacktrack(ne, on_no_match);
502 __ bind(&success);
503 return true;
504 }
505 return false;
506 case 'S':
507 // The emitted code for generic character classes is good enough.
508 return false;
509 case 'd':
510 // Match ASCII digits ('0'..'9')
511 __ subi(r3, current_character(), Operand('0'));
512 __ cmpli(r3, Operand('9' - '0'));
513 BranchOrBacktrack(gt, on_no_match);
514 return true;
515 case 'D':
516 // Match non ASCII-digits
517 __ subi(r3, current_character(), Operand('0'));
518 __ cmpli(r3, Operand('9' - '0'));
519 BranchOrBacktrack(le, on_no_match);
520 return true;
521 case '.': {
522 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
523 __ xori(r3, current_character(), Operand(0x01));
524 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
525 __ subi(r3, r3, Operand(0x0b));
526 __ cmpli(r3, Operand(0x0c - 0x0b));
527 BranchOrBacktrack(le, on_no_match);
528 if (mode_ == UC16) {
529 // Compare original value to 0x2028 and 0x2029, using the already
530 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
531 // 0x201d (0x2028 - 0x0b) or 0x201e.
532 __ subi(r3, r3, Operand(0x2028 - 0x0b));
533 __ cmpli(r3, Operand(1));
534 BranchOrBacktrack(le, on_no_match);
535 }
536 return true;
537 }
538 case 'n': {
539 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
540 __ xori(r3, current_character(), Operand(0x01));
541 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
542 __ subi(r3, r3, Operand(0x0b));
543 __ cmpli(r3, Operand(0x0c - 0x0b));
544 if (mode_ == LATIN1) {
545 BranchOrBacktrack(gt, on_no_match);
546 } else {
547 Label done;
548 __ ble(&done);
549 // Compare original value to 0x2028 and 0x2029, using the already
550 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
551 // 0x201d (0x2028 - 0x0b) or 0x201e.
552 __ subi(r3, r3, Operand(0x2028 - 0x0b));
553 __ cmpli(r3, Operand(1));
554 BranchOrBacktrack(gt, on_no_match);
555 __ bind(&done);
556 }
557 return true;
558 }
559 case 'w': {
560 if (mode_ != LATIN1) {
561 // Table is 256 entries, so all Latin1 characters can be tested.
562 __ cmpi(current_character(), Operand('z'));
563 BranchOrBacktrack(gt, on_no_match);
564 }
565 ExternalReference map = ExternalReference::re_word_character_map();
566 __ mov(r3, Operand(map));
567 __ lbzx(r3, MemOperand(r3, current_character()));
568 __ cmpli(r3, Operand::Zero());
569 BranchOrBacktrack(eq, on_no_match);
570 return true;
571 }
572 case 'W': {
573 Label done;
574 if (mode_ != LATIN1) {
575 // Table is 256 entries, so all Latin1 characters can be tested.
576 __ cmpli(current_character(), Operand('z'));
577 __ bgt(&done);
578 }
579 ExternalReference map = ExternalReference::re_word_character_map();
580 __ mov(r3, Operand(map));
581 __ lbzx(r3, MemOperand(r3, current_character()));
582 __ cmpli(r3, Operand::Zero());
583 BranchOrBacktrack(ne, on_no_match);
584 if (mode_ != LATIN1) {
585 __ bind(&done);
586 }
587 return true;
588 }
589 case '*':
590 // Match any character.
591 return true;
592 // No custom implementation (yet): s(UC16), S(UC16).
593 default:
594 return false;
595 }
596 }
597
598
599 void RegExpMacroAssemblerPPC::Fail() {
600 __ li(r3, Operand(FAILURE));
601 __ b(&exit_label_);
602 }
603
604
605 Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
606 Label return_r3;
607
608 if (masm_->has_exception()) {
609 // If the code gets corrupted due to long regular expressions and lack of
610 // space on trampolines, an internal exception flag is set. If this case
611 // is detected, we will jump into exit sequence right away.
612 __ bind_to(&entry_label_, internal_failure_label_.pos());
613 } else {
614 // Finalize code - write the entry point code now we know how many
615 // registers we need.
616
617 // Entry code:
618 __ bind(&entry_label_);
619
620 // Tell the system that we have a stack frame. Because the type
621 // is MANUAL, no is generated.
622 FrameScope scope(masm_, StackFrame::MANUAL);
623
624 // Ensure register assigments are consistent with callee save mask
625 DCHECK(r25.bit() & kRegExpCalleeSaved);
626 DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
627 DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
628 DCHECK(current_character().bit() & kRegExpCalleeSaved);
629 DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
630 DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
631 DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
632
633 // Actually emit code to start a new stack frame.
634 // Push arguments
635 // Save callee-save registers.
636 // Start new stack frame.
637 // Store link register in existing stack-cell.
638 // Order here should correspond to order of offset constants in header file.
639 RegList registers_to_retain = kRegExpCalleeSaved;
640 RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
641 r7.bit() | r8.bit() | r9.bit() | r10.bit();
642 __ mflr(r0);
643 __ push(r0);
644 __ MultiPush(argument_registers | registers_to_retain);
645 // Set frame pointer in space for it if this is not a direct call
646 // from generated code.
647 __ addi(frame_pointer(), sp, Operand(8 * kPointerSize));
648 __ li(r3, Operand::Zero());
649 __ push(r3); // Make room for success counter and initialize it to 0.
650 __ push(r3); // Make room for "position - 1" constant (value is irrelevant)
651 // Check if we have space on the stack for registers.
652 Label stack_limit_hit;
653 Label stack_ok;
654
655 ExternalReference stack_limit =
656 ExternalReference::address_of_stack_limit(isolate());
657 __ mov(r3, Operand(stack_limit));
658 __ LoadP(r3, MemOperand(r3));
659 __ sub(r3, sp, r3, LeaveOE, SetRC);
660 // Handle it if the stack pointer is already below the stack limit.
661 __ ble(&stack_limit_hit, cr0);
662 // Check if there is room for the variable number of registers above
663 // the stack limit.
664 __ Cmpli(r3, Operand(num_registers_ * kPointerSize), r0);
665 __ bge(&stack_ok);
666 // Exit with OutOfMemory exception. There is not enough space on the stack
667 // for our working registers.
668 __ li(r3, Operand(EXCEPTION));
669 __ b(&return_r3);
670
671 __ bind(&stack_limit_hit);
672 CallCheckStackGuardState(r3);
673 __ cmpi(r3, Operand::Zero());
674 // If returned value is non-zero, we exit with the returned value as result.
675 __ bne(&return_r3);
676
677 __ bind(&stack_ok);
678
679 // Allocate space on stack for registers.
680 __ Add(sp, sp, -num_registers_ * kPointerSize, r0);
681 // Load string end.
682 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
683 // Load input start.
684 __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
685 // Find negative length (offset of start relative to end).
686 __ sub(current_input_offset(), r3, end_of_input_address());
687 // Set r3 to address of char before start of the input string
688 // (effectively string position -1).
689 __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
690 __ subi(r3, current_input_offset(), Operand(char_size()));
691 if (mode_ == UC16) {
692 __ ShiftLeftImm(r0, r4, Operand(1));
693 __ sub(r3, r3, r0);
694 } else {
695 __ sub(r3, r3, r4);
696 }
697 // Store this value in a local variable, for use when clearing
698 // position registers.
699 __ StoreP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
700
701 // Initialize code pointer register
702 __ mov(code_pointer(), Operand(masm_->CodeObject()));
703
704 Label load_char_start_regexp, start_regexp;
705 // Load newline if index is at start, previous character otherwise.
706 __ cmpi(r4, Operand::Zero());
707 __ bne(&load_char_start_regexp);
708 __ li(current_character(), Operand('\n'));
709 __ b(&start_regexp);
710
711 // Global regexp restarts matching here.
712 __ bind(&load_char_start_regexp);
713 // Load previous char as initial value of current character register.
714 LoadCurrentCharacterUnchecked(-1, 1);
715 __ bind(&start_regexp);
716
717 // Initialize on-stack registers.
718 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
719 // Fill saved registers with initial value = start offset - 1
720 if (num_saved_registers_ > 8) {
721 // One slot beyond address of register 0.
722 __ addi(r4, frame_pointer(), Operand(kRegisterZero + kPointerSize));
723 __ li(r5, Operand(num_saved_registers_));
724 __ mtctr(r5);
725 Label init_loop;
726 __ bind(&init_loop);
727 __ StorePU(r3, MemOperand(r4, -kPointerSize));
728 __ bdnz(&init_loop);
729 } else {
730 for (int i = 0; i < num_saved_registers_; i++) {
731 __ StoreP(r3, register_location(i), r0);
732 }
733 }
734 }
735
736 // Initialize backtrack stack pointer.
737 __ LoadP(backtrack_stackpointer(),
738 MemOperand(frame_pointer(), kStackHighEnd));
739
740 __ b(&start_label_);
741
742 // Exit code:
743 if (success_label_.is_linked()) {
744 // Save captures when successful.
745 __ bind(&success_label_);
746 if (num_saved_registers_ > 0) {
747 // copy captures to output
748 __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
749 __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
750 __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
751 __ sub(r4, end_of_input_address(), r4);
752 // r4 is length of input in bytes.
753 if (mode_ == UC16) {
754 __ ShiftRightImm(r4, r4, Operand(1));
755 }
756 // r4 is length of input in characters.
757 __ add(r4, r4, r5);
758 // r4 is length of string in characters.
759
760 DCHECK_EQ(0, num_saved_registers_ % 2);
761 // Always an even number of capture registers. This allows us to
762 // unroll the loop once to add an operation between a load of a register
763 // and the following use of that register.
764 for (int i = 0; i < num_saved_registers_; i += 2) {
765 __ LoadP(r5, register_location(i), r0);
766 __ LoadP(r6, register_location(i + 1), r0);
767 if (i == 0 && global_with_zero_length_check()) {
768 // Keep capture start in r25 for the zero-length check later.
769 __ mr(r25, r5);
770 }
771 if (mode_ == UC16) {
772 __ ShiftRightArithImm(r5, r5, 1);
773 __ add(r5, r4, r5);
774 __ ShiftRightArithImm(r6, r6, 1);
775 __ add(r6, r4, r6);
776 } else {
777 __ add(r5, r4, r5);
778 __ add(r6, r4, r6);
779 }
780 __ stw(r5, MemOperand(r3));
781 __ addi(r3, r3, Operand(kIntSize));
782 __ stw(r6, MemOperand(r3));
783 __ addi(r3, r3, Operand(kIntSize));
784 }
785 }
786
787 if (global()) {
788 // Restart matching if the regular expression is flagged as global.
789 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
790 __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
791 __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
792 // Increment success counter.
793 __ addi(r3, r3, Operand(1));
794 __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
795 // Capture results have been stored, so the number of remaining global
796 // output registers is reduced by the number of stored captures.
797 __ subi(r4, r4, Operand(num_saved_registers_));
798 // Check whether we have enough room for another set of capture results.
799 __ cmpi(r4, Operand(num_saved_registers_));
800 __ blt(&return_r3);
801
802 __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
803 // Advance the location for output.
804 __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
805 __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
806
807 // Prepare r3 to initialize registers with its value in the next run.
808 __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
809
810 if (global_with_zero_length_check()) {
811 // Special case for zero-length matches.
812 // r25: capture start index
813 __ cmp(current_input_offset(), r25);
814 // Not a zero-length match, restart.
815 __ bne(&load_char_start_regexp);
816 // Offset from the end is zero if we already reached the end.
817 __ cmpi(current_input_offset(), Operand::Zero());
818 __ beq(&exit_label_);
819 // Advance current position after a zero-length match.
820 __ addi(current_input_offset(), current_input_offset(),
821 Operand((mode_ == UC16) ? 2 : 1));
822 }
823
824 __ b(&load_char_start_regexp);
825 } else {
826 __ li(r3, Operand(SUCCESS));
827 }
828 }
829
830 // Exit and return r3
831 __ bind(&exit_label_);
832 if (global()) {
833 __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
834 }
835
836 __ bind(&return_r3);
837 // Skip sp past regexp registers and local variables..
838 __ mr(sp, frame_pointer());
839 // Restore registers r25..r31 and return (restoring lr to pc).
840 __ MultiPop(registers_to_retain);
841 __ pop(r0);
842 __ mtctr(r0);
843 __ bctr();
844
845 // Backtrack code (branch target for conditional backtracks).
846 if (backtrack_label_.is_linked()) {
847 __ bind(&backtrack_label_);
848 Backtrack();
849 }
850
851 Label exit_with_exception;
852
853 // Preempt-code
854 if (check_preempt_label_.is_linked()) {
855 SafeCallTarget(&check_preempt_label_);
856
857 CallCheckStackGuardState(r3);
858 __ cmpi(r3, Operand::Zero());
859 // If returning non-zero, we should end execution with the given
860 // result as return value.
861 __ bne(&return_r3);
862
863 // String might have moved: Reload end of string from frame.
864 __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
865 SafeReturn();
866 }
867
868 // Backtrack stack overflow code.
869 if (stack_overflow_label_.is_linked()) {
870 SafeCallTarget(&stack_overflow_label_);
871 // Reached if the backtrack-stack limit has been hit.
872 Label grow_failed;
873
874 // Call GrowStack(backtrack_stackpointer(), &stack_base)
875 static const int num_arguments = 3;
876 __ PrepareCallCFunction(num_arguments, r3);
877 __ mr(r3, backtrack_stackpointer());
878 __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
879 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
880 ExternalReference grow_stack =
881 ExternalReference::re_grow_stack(isolate());
882 __ CallCFunction(grow_stack, num_arguments);
883 // If return NULL, we have failed to grow the stack, and
884 // must exit with a stack-overflow exception.
885 __ cmpi(r3, Operand::Zero());
886 __ beq(&exit_with_exception);
887 // Otherwise use return value as new stack pointer.
888 __ mr(backtrack_stackpointer(), r3);
889 // Restore saved registers and continue.
890 SafeReturn();
891 }
892
893 if (exit_with_exception.is_linked()) {
894 // If any of the code above needed to exit with an exception.
895 __ bind(&exit_with_exception);
896 // Exit with Result EXCEPTION(-1) to signal thrown exception.
897 __ li(r3, Operand(EXCEPTION));
898 __ b(&return_r3);
899 }
900 }
901
902 CodeDesc code_desc;
903 masm_->GetCode(&code_desc);
904 Handle<Code> code = isolate()->factory()->NewCode(
905 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
906 PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
907 return Handle<HeapObject>::cast(code);
908 }
909
910
911 void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
912
913
914 void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
915 Label* if_ge) {
916 __ LoadP(r3, register_location(reg), r0);
917 __ Cmpi(r3, Operand(comparand), r0);
918 BranchOrBacktrack(ge, if_ge);
919 }
920
921
922 void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
923 Label* if_lt) {
924 __ LoadP(r3, register_location(reg), r0);
925 __ Cmpi(r3, Operand(comparand), r0);
926 BranchOrBacktrack(lt, if_lt);
927 }
928
929
930 void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
931 __ LoadP(r3, register_location(reg), r0);
932 __ cmp(r3, current_input_offset());
933 BranchOrBacktrack(eq, if_eq);
934 }
935
936
937 RegExpMacroAssembler::IrregexpImplementation
938 RegExpMacroAssemblerPPC::Implementation() {
939 return kPPCImplementation;
940 }
941
942
943 void RegExpMacroAssemblerPPC::LoadCurrentCharacter(int cp_offset,
944 Label* on_end_of_input,
945 bool check_bounds,
946 int characters) {
947 DCHECK(cp_offset >= -1); // ^ and \b can look behind one character.
948 DCHECK(cp_offset < (1 << 30)); // Be sane! (And ensure negation works)
949 if (check_bounds) {
950 CheckPosition(cp_offset + characters - 1, on_end_of_input);
951 }
952 LoadCurrentCharacterUnchecked(cp_offset, characters);
953 }
954
955
956 void RegExpMacroAssemblerPPC::PopCurrentPosition() {
957 Pop(current_input_offset());
958 }
959
960
961 void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
962 Pop(r3);
963 __ StoreP(r3, register_location(register_index), r0);
964 }
965
966
967 void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
968 __ mov_label_offset(r3, label);
969 Push(r3);
970 CheckStackLimit();
971 }
972
973
974 void RegExpMacroAssemblerPPC::PushCurrentPosition() {
975 Push(current_input_offset());
976 }
977
978
979 void RegExpMacroAssemblerPPC::PushRegister(int register_index,
980 StackCheckFlag check_stack_limit) {
981 __ LoadP(r3, register_location(register_index), r0);
982 Push(r3);
983 if (check_stack_limit) CheckStackLimit();
984 }
985
986
987 void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
988 __ LoadP(current_input_offset(), register_location(reg), r0);
989 }
990
991
992 void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
993 __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
994 __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
995 __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
996 }
997
998
999 void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
1000 Label after_position;
1001 __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
1002 __ bge(&after_position);
1003 __ mov(current_input_offset(), Operand(-by * char_size()));
1004 // On RegExp code entry (where this operation is used), the character before
1005 // the current position is expected to be already loaded.
1006 // We have advanced the position, so it's safe to read backwards.
1007 LoadCurrentCharacterUnchecked(-1, 1);
1008 __ bind(&after_position);
1009 }
1010
1011
1012 void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
1013 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1014 __ mov(r3, Operand(to));
1015 __ StoreP(r3, register_location(register_index), r0);
1016 }
1017
1018
1019 bool RegExpMacroAssemblerPPC::Succeed() {
1020 __ b(&success_label_);
1021 return global();
1022 }
1023
1024
1025 void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
1026 int cp_offset) {
1027 if (cp_offset == 0) {
1028 __ StoreP(current_input_offset(), register_location(reg), r0);
1029 } else {
1030 __ mov(r0, Operand(cp_offset * char_size()));
1031 __ add(r3, current_input_offset(), r0);
1032 __ StoreP(r3, register_location(reg), r0);
1033 }
1034 }
1035
1036
1037 void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
1038 DCHECK(reg_from <= reg_to);
1039 __ LoadP(r3, MemOperand(frame_pointer(), kInputStartMinusOne));
1040 for (int reg = reg_from; reg <= reg_to; reg++) {
1041 __ StoreP(r3, register_location(reg), r0);
1042 }
1043 }
1044
1045
1046 void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
1047 __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
1048 __ sub(r3, backtrack_stackpointer(), r4);
1049 __ StoreP(r3, register_location(reg), r0);
1050 }
1051
1052
1053 // Private methods:
1054
1055 void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
1056 int frame_alignment = masm_->ActivationFrameAlignment();
1057 int stack_space = kNumRequiredStackFrameSlots;
1058 int stack_passed_arguments = 1; // space for return address pointer
1059
1060 // The following stack manipulation logic is similar to
1061 // PrepareCallCFunction. However, we need an extra slot on the
1062 // stack to house the return address parameter.
1063 if (frame_alignment > kPointerSize) {
1064 // Make stack end at alignment and make room for stack arguments
1065 // -- preserving original value of sp.
1066 __ mr(scratch, sp);
1067 __ addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize));
1068 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
1069 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
1070 __ StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
1071 } else {
1072 // Make room for stack arguments
1073 stack_space += stack_passed_arguments;
1074 }
1075
1076 // Allocate frame with required slots to make ABI work.
1077 __ li(r0, Operand::Zero());
1078 __ StorePU(r0, MemOperand(sp, -stack_space * kPointerSize));
1079
1080 // RegExp code frame pointer.
1081 __ mr(r5, frame_pointer());
1082 // Code* of self.
1083 __ mov(r4, Operand(masm_->CodeObject()));
1084 // r3 will point to the return address, placed by DirectCEntry.
1085 __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kPointerSize));
1086
1087 ExternalReference stack_guard_check =
1088 ExternalReference::re_check_stack_guard_state(isolate());
1089 __ mov(ip, Operand(stack_guard_check));
1090 DirectCEntryStub stub(isolate());
1091 stub.GenerateCall(masm_, ip);
1092
1093 // Restore the stack pointer
1094 stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
1095 if (frame_alignment > kPointerSize) {
1096 __ LoadP(sp, MemOperand(sp, stack_space * kPointerSize));
1097 } else {
1098 __ addi(sp, sp, Operand(stack_space * kPointerSize));
1099 }
1100
1101 __ mov(code_pointer(), Operand(masm_->CodeObject()));
1102 }
1103
1104
1105 // Helper function for reading a value out of a stack frame.
1106 template <typename T>
1107 static T& frame_entry(Address re_frame, int frame_offset) {
1108 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1109 }
1110
1111
1112 int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
1113 Code* re_code,
1114 Address re_frame) {
1115 Isolate* isolate = frame_entry<Isolate*>(re_frame, kIsolate);
1116 StackLimitCheck check(isolate);
1117 if (check.JsHasOverflowed()) {
1118 isolate->StackOverflow();
1119 return EXCEPTION;
1120 }
1121
1122 // If not real stack overflow the stack guard was used to interrupt
1123 // execution for another purpose.
1124
1125 // If this is a direct call from JavaScript retry the RegExp forcing the call
1126 // through the runtime system. Currently the direct call cannot handle a GC.
1127 if (frame_entry<int>(re_frame, kDirectCall) == 1) {
1128 return RETRY;
1129 }
1130
1131 // Prepare for possible GC.
1132 HandleScope handles(isolate);
1133 Handle<Code> code_handle(re_code);
1134
1135 Handle<String> subject(frame_entry<String*>(re_frame, kInputString));
1136
1137 // Current string.
1138 bool is_one_byte = subject->IsOneByteRepresentationUnderneath();
1139
1140 DCHECK(re_code->instruction_start() <= *return_address);
1141 DCHECK(*return_address <=
1142 re_code->instruction_start() + re_code->instruction_size());
1143
1144 Object* result = isolate->stack_guard()->HandleInterrupts();
1145
1146 if (*code_handle != re_code) { // Return address no longer valid
1147 intptr_t delta = code_handle->address() - re_code->address();
1148 // Overwrite the return address on the stack.
1149 *return_address += delta;
1150 }
1151
1152 if (result->IsException()) {
1153 return EXCEPTION;
1154 }
1155
1156 Handle<String> subject_tmp = subject;
1157 int slice_offset = 0;
1158
1159 // Extract the underlying string and the slice offset.
1160 if (StringShape(*subject_tmp).IsCons()) {
1161 subject_tmp = Handle<String>(ConsString::cast(*subject_tmp)->first());
1162 } else if (StringShape(*subject_tmp).IsSliced()) {
1163 SlicedString* slice = SlicedString::cast(*subject_tmp);
1164 subject_tmp = Handle<String>(slice->parent());
1165 slice_offset = slice->offset();
1166 }
1167
1168 // String might have changed.
1169 if (subject_tmp->IsOneByteRepresentation() != is_one_byte) {
1170 // If we changed between an Latin1 and an UC16 string, the specialized
1171 // code cannot be used, and we need to restart regexp matching from
1172 // scratch (including, potentially, compiling a new version of the code).
1173 return RETRY;
1174 }
1175
1176 // Otherwise, the content of the string might have moved. It must still
1177 // be a sequential or external string with the same content.
1178 // Update the start and end pointers in the stack frame to the current
1179 // location (whether it has actually moved or not).
1180 DCHECK(StringShape(*subject_tmp).IsSequential() ||
1181 StringShape(*subject_tmp).IsExternal());
1182
1183 // The original start address of the characters to match.
1184 const byte* start_address = frame_entry<const byte*>(re_frame, kInputStart);
1185
1186 // Find the current start address of the same character at the current string
1187 // position.
1188 int start_index = frame_entry<intptr_t>(re_frame, kStartIndex);
1189 const byte* new_address =
1190 StringCharacterPosition(*subject_tmp, start_index + slice_offset);
1191
1192 if (start_address != new_address) {
1193 // If there is a difference, update the object pointer and start and end
1194 // addresses in the RegExp stack frame to match the new value.
1195 const byte* end_address = frame_entry<const byte*>(re_frame, kInputEnd);
1196 int byte_length = static_cast<int>(end_address - start_address);
1197 frame_entry<const String*>(re_frame, kInputString) = *subject;
1198 frame_entry<const byte*>(re_frame, kInputStart) = new_address;
1199 frame_entry<const byte*>(re_frame, kInputEnd) = new_address + byte_length;
1200 } else if (frame_entry<const String*>(re_frame, kInputString) != *subject) {
1201 // Subject string might have been a ConsString that underwent
1202 // short-circuiting during GC. That will not change start_address but
1203 // will change pointer inside the subject handle.
1204 frame_entry<const String*>(re_frame, kInputString) = *subject;
1205 }
1206
1207 return 0;
1208 }
1209
1210
1211 MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
1212 DCHECK(register_index < (1 << 30));
1213 if (num_registers_ <= register_index) {
1214 num_registers_ = register_index + 1;
1215 }
1216 return MemOperand(frame_pointer(),
1217 kRegisterZero - register_index * kPointerSize);
1218 }
1219
1220
1221 void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
1222 Label* on_outside_input) {
1223 __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
1224 BranchOrBacktrack(ge, on_outside_input);
1225 }
1226
1227
1228 void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
1229 CRegister cr) {
1230 if (condition == al) { // Unconditional.
1231 if (to == NULL) {
1232 Backtrack();
1233 return;
1234 }
1235 __ b(to);
1236 return;
1237 }
1238 if (to == NULL) {
1239 __ b(condition, &backtrack_label_, cr);
1240 return;
1241 }
1242 __ b(condition, to, cr);
1243 }
1244
1245
1246 void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
1247 CRegister cr) {
1248 __ b(cond, to, cr, SetLK);
1249 }
1250
1251
1252 void RegExpMacroAssemblerPPC::SafeReturn() {
1253 __ pop(r0);
1254 __ mov(ip, Operand(masm_->CodeObject()));
1255 __ add(r0, r0, ip);
1256 __ mtlr(r0);
1257 __ blr();
1258 }
1259
1260
1261 void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
1262 __ bind(name);
1263 __ mflr(r0);
1264 __ mov(ip, Operand(masm_->CodeObject()));
1265 __ sub(r0, r0, ip);
1266 __ push(r0);
1267 }
1268
1269
1270 void RegExpMacroAssemblerPPC::Push(Register source) {
1271 DCHECK(!source.is(backtrack_stackpointer()));
1272 __ StorePU(source, MemOperand(backtrack_stackpointer(), -kPointerSize));
1273 }
1274
1275
1276 void RegExpMacroAssemblerPPC::Pop(Register target) {
1277 DCHECK(!target.is(backtrack_stackpointer()));
1278 __ LoadP(target, MemOperand(backtrack_stackpointer()));
1279 __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
1280 Operand(kPointerSize));
1281 }
1282
1283
1284 void RegExpMacroAssemblerPPC::CheckPreemption() {
1285 // Check for preemption.
1286 ExternalReference stack_limit =
1287 ExternalReference::address_of_stack_limit(isolate());
1288 __ mov(r3, Operand(stack_limit));
1289 __ LoadP(r3, MemOperand(r3));
1290 __ cmpl(sp, r3);
1291 SafeCall(&check_preempt_label_, le);
1292 }
1293
1294
1295 void RegExpMacroAssemblerPPC::CheckStackLimit() {
1296 ExternalReference stack_limit =
1297 ExternalReference::address_of_regexp_stack_limit(isolate());
1298 __ mov(r3, Operand(stack_limit));
1299 __ LoadP(r3, MemOperand(r3));
1300 __ cmpl(backtrack_stackpointer(), r3);
1301 SafeCall(&stack_overflow_label_, le);
1302 }
1303
1304
1305 bool RegExpMacroAssemblerPPC::CanReadUnaligned() {
1306 return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
1307 }
1308
1309
1310 void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
1311 int characters) {
1312 Register offset = current_input_offset();
1313 if (cp_offset != 0) {
1314 // r25 is not being used to store the capture start index at this point.
1315 __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
1316 offset = r25;
1317 }
1318 // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
1319 // and the operating system running on the target allow it.
1320 // We assume we don't want to do unaligned loads on PPC, so this function
1321 // must only be used to load a single character at a time.
1322
1323 DCHECK(characters == 1);
1324 __ add(current_character(), end_of_input_address(), offset);
1325 if (mode_ == LATIN1) {
1326 __ lbz(current_character(), MemOperand(current_character()));
1327 } else {
1328 DCHECK(mode_ == UC16);
1329 __ lhz(current_character(), MemOperand(current_character()));
1330 }
1331 }
1332
1333
1334 #undef __
1335
1336 #endif // V8_INTERPRETED_REGEXP
1337 }
1338 } // namespace v8::internal
1339
1340 #endif // V8_TARGET_ARCH_PPC
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698