Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: src/ppc/code-stubs-ppc.cc

Issue 571173003: PowerPC specific sub-directories (Closed) Base URL: http://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Updated ppc sub-dirs to current V8 code levels Created 6 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
OLDNEW
1 // Copyright 2012 the V8 project authors. All rights reserved. 1 // Copyright 2012 the V8 project authors. All rights reserved.
2 //
3 // Copyright IBM Corp. 2012, 2013. All rights reserved.
4 //
2 // Use of this source code is governed by a BSD-style license that can be 5 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 6 // found in the LICENSE file.
4 7
5 #include "src/v8.h" 8 #include "src/v8.h"
6 9
7 #if V8_TARGET_ARCH_ARM 10 #if V8_TARGET_ARCH_PPC
8 11
9 #include "src/base/bits.h" 12 #include "src/base/bits.h"
10 #include "src/bootstrapper.h" 13 #include "src/bootstrapper.h"
11 #include "src/code-stubs.h" 14 #include "src/code-stubs.h"
12 #include "src/codegen.h" 15 #include "src/codegen.h"
13 #include "src/ic/handler-compiler.h" 16 #include "src/ic/handler-compiler.h"
17 #include "src/ic/ic.h"
14 #include "src/isolate.h" 18 #include "src/isolate.h"
15 #include "src/jsregexp.h" 19 #include "src/jsregexp.h"
16 #include "src/regexp-macro-assembler.h" 20 #include "src/regexp-macro-assembler.h"
17 #include "src/runtime.h" 21 #include "src/runtime.h"
18 22
19 namespace v8 { 23 namespace v8 {
20 namespace internal { 24 namespace internal {
21 25
22 26
23 static void InitializeArrayConstructorDescriptor( 27 static void InitializeArrayConstructorDescriptor(
24 Isolate* isolate, CodeStubDescriptor* descriptor, 28 Isolate* isolate, CodeStubDescriptor* descriptor,
25 int constant_stack_parameter_count) { 29 int constant_stack_parameter_count) {
26 Address deopt_handler = Runtime::FunctionForId( 30 Address deopt_handler =
27 Runtime::kArrayConstructor)->entry; 31 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry;
28 32
29 if (constant_stack_parameter_count == 0) { 33 if (constant_stack_parameter_count == 0) {
30 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, 34 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
31 JS_FUNCTION_STUB_MODE); 35 JS_FUNCTION_STUB_MODE);
32 } else { 36 } else {
33 descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count, 37 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
34 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); 38 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
35 } 39 }
36 } 40 }
37 41
38 42
39 static void InitializeInternalArrayConstructorDescriptor( 43 static void InitializeInternalArrayConstructorDescriptor(
40 Isolate* isolate, CodeStubDescriptor* descriptor, 44 Isolate* isolate, CodeStubDescriptor* descriptor,
41 int constant_stack_parameter_count) { 45 int constant_stack_parameter_count) {
42 Address deopt_handler = Runtime::FunctionForId( 46 Address deopt_handler =
43 Runtime::kInternalArrayConstructor)->entry; 47 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry;
44 48
45 if (constant_stack_parameter_count == 0) { 49 if (constant_stack_parameter_count == 0) {
46 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, 50 descriptor->Initialize(deopt_handler, constant_stack_parameter_count,
47 JS_FUNCTION_STUB_MODE); 51 JS_FUNCTION_STUB_MODE);
48 } else { 52 } else {
49 descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count, 53 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count,
50 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); 54 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS);
51 } 55 }
52 } 56 }
53 57
54 58
55 void ArrayNoArgumentConstructorStub::InitializeDescriptor( 59 void ArrayNoArgumentConstructorStub::InitializeDescriptor(
56 CodeStubDescriptor* descriptor) { 60 CodeStubDescriptor* descriptor) {
57 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); 61 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0);
58 } 62 }
59 63
(...skipping 24 matching lines...) Expand all
84 88
85 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( 89 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor(
86 CodeStubDescriptor* descriptor) { 90 CodeStubDescriptor* descriptor) {
87 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); 91 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1);
88 } 92 }
89 93
90 94
91 #define __ ACCESS_MASM(masm) 95 #define __ ACCESS_MASM(masm)
92 96
93 97
94 static void EmitIdenticalObjectComparison(MacroAssembler* masm, 98 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
95 Label* slow,
96 Condition cond); 99 Condition cond);
97 static void EmitSmiNonsmiComparison(MacroAssembler* masm, 100 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
98 Register lhs, 101 Register rhs, Label* lhs_not_nan,
99 Register rhs, 102 Label* slow, bool strict);
100 Label* lhs_not_nan, 103 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
101 Label* slow,
102 bool strict);
103 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
104 Register lhs,
105 Register rhs); 104 Register rhs);
106 105
107 106
108 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, 107 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm,
109 ExternalReference miss) { 108 ExternalReference miss) {
110 // Update the static counter each time a new code stub is generated. 109 // Update the static counter each time a new code stub is generated.
111 isolate()->counters()->code_stubs()->Increment(); 110 isolate()->counters()->code_stubs()->Increment();
112 111
113 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); 112 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor();
114 int param_count = descriptor.GetEnvironmentParameterCount(); 113 int param_count = descriptor.GetEnvironmentParameterCount();
115 { 114 {
116 // Call the runtime system in a fresh internal frame. 115 // Call the runtime system in a fresh internal frame.
117 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); 116 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
118 DCHECK(param_count == 0 || 117 DCHECK(param_count == 0 ||
119 r0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1))); 118 r3.is(descriptor.GetEnvironmentParameterRegister(param_count - 1)));
120 // Push arguments 119 // Push arguments
121 for (int i = 0; i < param_count; ++i) { 120 for (int i = 0; i < param_count; ++i) {
122 __ push(descriptor.GetEnvironmentParameterRegister(i)); 121 __ push(descriptor.GetEnvironmentParameterRegister(i));
123 } 122 }
124 __ CallExternalReference(miss, param_count); 123 __ CallExternalReference(miss, param_count);
125 } 124 }
126 125
127 __ Ret(); 126 __ Ret();
128 } 127 }
129 128
130 129
131 void DoubleToIStub::Generate(MacroAssembler* masm) { 130 void DoubleToIStub::Generate(MacroAssembler* masm) {
132 Label out_of_range, only_low, negate, done; 131 Label out_of_range, only_low, negate, done, fastpath_done;
133 Register input_reg = source(); 132 Register input_reg = source();
134 Register result_reg = destination(); 133 Register result_reg = destination();
135 DCHECK(is_truncating()); 134 DCHECK(is_truncating());
136 135
137 int double_offset = offset(); 136 int double_offset = offset();
138 // Account for saved regs if input is sp.
139 if (input_reg.is(sp)) double_offset += 3 * kPointerSize;
140 137
138 // Immediate values for this stub fit in instructions, so it's safe to use ip.
141 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); 139 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg);
142 Register scratch_low = 140 Register scratch_low =
143 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); 141 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch);
144 Register scratch_high = 142 Register scratch_high =
145 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); 143 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low);
146 LowDwVfpRegister double_scratch = kScratchDoubleReg; 144 DoubleRegister double_scratch = kScratchDoubleReg;
147 145
148 __ Push(scratch_high, scratch_low, scratch); 146 __ push(scratch);
147 // Account for saved regs if input is sp.
148 if (input_reg.is(sp)) double_offset += kPointerSize;
149 149
150 if (!skip_fastpath()) { 150 if (!skip_fastpath()) {
151 // Load double input. 151 // Load double input.
152 __ vldr(double_scratch, MemOperand(input_reg, double_offset)); 152 __ lfd(double_scratch, MemOperand(input_reg, double_offset));
153 __ vmov(scratch_low, scratch_high, double_scratch);
154 153
155 // Do fast-path convert from double to int. 154 // Do fast-path convert from double to int.
156 __ vcvt_s32_f64(double_scratch.low(), double_scratch); 155 __ ConvertDoubleToInt64(double_scratch,
157 __ vmov(result_reg, double_scratch.low()); 156 #if !V8_TARGET_ARCH_PPC64
157 scratch,
158 #endif
159 result_reg, d0);
158 160
159 // If result is not saturated (0x7fffffff or 0x80000000), we are done. 161 // Test for overflow
160 __ sub(scratch, result_reg, Operand(1)); 162 #if V8_TARGET_ARCH_PPC64
161 __ cmp(scratch, Operand(0x7ffffffe)); 163 __ TestIfInt32(result_reg, scratch, r0);
162 __ b(lt, &done); 164 #else
163 } else { 165 __ TestIfInt32(scratch, result_reg, r0);
164 // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we 166 #endif
165 // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate. 167 __ beq(&fastpath_done);
166 if (double_offset == 0) {
167 __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit());
168 } else {
169 __ ldr(scratch_low, MemOperand(input_reg, double_offset));
170 __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize));
171 }
172 } 168 }
173 169
174 __ Ubfx(scratch, scratch_high, 170 __ Push(scratch_high, scratch_low);
175 HeapNumber::kExponentShift, HeapNumber::kExponentBits); 171 // Account for saved regs if input is sp.
172 if (input_reg.is(sp)) double_offset += 2 * kPointerSize;
173
174 __ lwz(scratch_high,
175 MemOperand(input_reg, double_offset + Register::kExponentOffset));
176 __ lwz(scratch_low,
177 MemOperand(input_reg, double_offset + Register::kMantissaOffset));
178
179 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
176 // Load scratch with exponent - 1. This is faster than loading 180 // Load scratch with exponent - 1. This is faster than loading
177 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. 181 // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
178 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); 182 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
179 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); 183 __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
180 // If exponent is greater than or equal to 84, the 32 less significant 184 // If exponent is greater than or equal to 84, the 32 less significant
181 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), 185 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
182 // the result is 0. 186 // the result is 0.
183 // Compare exponent with 84 (compare exponent - 1 with 83). 187 // Compare exponent with 84 (compare exponent - 1 with 83).
184 __ cmp(scratch, Operand(83)); 188 __ cmpi(scratch, Operand(83));
185 __ b(ge, &out_of_range); 189 __ bge(&out_of_range);
186 190
187 // If we reach this code, 31 <= exponent <= 83. 191 // If we reach this code, 31 <= exponent <= 83.
188 // So, we don't have to handle cases where 0 <= exponent <= 20 for 192 // So, we don't have to handle cases where 0 <= exponent <= 20 for
189 // which we would need to shift right the high part of the mantissa. 193 // which we would need to shift right the high part of the mantissa.
190 // Scratch contains exponent - 1. 194 // Scratch contains exponent - 1.
191 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). 195 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
192 __ rsb(scratch, scratch, Operand(51), SetCC); 196 __ subfic(scratch, scratch, Operand(51));
193 __ b(ls, &only_low); 197 __ cmpi(scratch, Operand::Zero());
198 __ ble(&only_low);
194 // 21 <= exponent <= 51, shift scratch_low and scratch_high 199 // 21 <= exponent <= 51, shift scratch_low and scratch_high
195 // to generate the result. 200 // to generate the result.
196 __ mov(scratch_low, Operand(scratch_low, LSR, scratch)); 201 __ srw(scratch_low, scratch_low, scratch);
197 // Scratch contains: 52 - exponent. 202 // Scratch contains: 52 - exponent.
198 // We needs: exponent - 20. 203 // We needs: exponent - 20.
199 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. 204 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
200 __ rsb(scratch, scratch, Operand(32)); 205 __ subfic(scratch, scratch, Operand(32));
201 __ Ubfx(result_reg, scratch_high, 206 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
202 0, HeapNumber::kMantissaBitsInTopWord);
203 // Set the implicit 1 before the mantissa part in scratch_high. 207 // Set the implicit 1 before the mantissa part in scratch_high.
204 __ orr(result_reg, result_reg, 208 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
205 Operand(1 << HeapNumber::kMantissaBitsInTopWord)); 209 __ oris(result_reg, result_reg,
206 __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch)); 210 Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16)));
211 __ slw(r0, result_reg, scratch);
212 __ orx(result_reg, scratch_low, r0);
207 __ b(&negate); 213 __ b(&negate);
208 214
209 __ bind(&out_of_range); 215 __ bind(&out_of_range);
210 __ mov(result_reg, Operand::Zero()); 216 __ mov(result_reg, Operand::Zero());
211 __ b(&done); 217 __ b(&done);
212 218
213 __ bind(&only_low); 219 __ bind(&only_low);
214 // 52 <= exponent <= 83, shift only scratch_low. 220 // 52 <= exponent <= 83, shift only scratch_low.
215 // On entry, scratch contains: 52 - exponent. 221 // On entry, scratch contains: 52 - exponent.
216 __ rsb(scratch, scratch, Operand::Zero()); 222 __ neg(scratch, scratch);
217 __ mov(result_reg, Operand(scratch_low, LSL, scratch)); 223 __ slw(result_reg, scratch_low, scratch);
218 224
219 __ bind(&negate); 225 __ bind(&negate);
220 // If input was positive, scratch_high ASR 31 equals 0 and 226 // If input was positive, scratch_high ASR 31 equals 0 and
221 // scratch_high LSR 31 equals zero. 227 // scratch_high LSR 31 equals zero.
222 // New result = (result eor 0) + 0 = result. 228 // New result = (result eor 0) + 0 = result.
223 // If the input was negative, we have to negate the result. 229 // If the input was negative, we have to negate the result.
224 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. 230 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1.
225 // New result = (result eor 0xffffffff) + 1 = 0 - result. 231 // New result = (result eor 0xffffffff) + 1 = 0 - result.
226 __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31)); 232 __ srawi(r0, scratch_high, 31);
227 __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31)); 233 #if V8_TARGET_ARCH_PPC64
234 __ srdi(r0, r0, Operand(32));
235 #endif
236 __ xor_(result_reg, result_reg, r0);
237 __ srwi(r0, scratch_high, Operand(31));
238 __ add(result_reg, result_reg, r0);
228 239
229 __ bind(&done); 240 __ bind(&done);
241 __ Pop(scratch_high, scratch_low);
230 242
231 __ Pop(scratch_high, scratch_low, scratch); 243 __ bind(&fastpath_done);
244 __ pop(scratch);
245
232 __ Ret(); 246 __ Ret();
233 } 247 }
234 248
235 249
250 #if 0 // more unused code, kept for easy compare to ARM
236 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime( 251 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(
237 Isolate* isolate) { 252 Isolate* isolate) {
238 WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2); 253 WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2);
239 WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3); 254 WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3);
240 stub1.GetCode(); 255 stub1.GetCode();
241 stub2.GetCode(); 256 stub2.GetCode();
242 } 257 }
243 258
244 259
245 // See comment for class. 260 // See comment for class.
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after
279 // a double because it uses a sign bit instead of using two's complement. 294 // a double because it uses a sign bit instead of using two's complement.
280 // The actual mantissa bits stored are all 0 because the implicit most 295 // The actual mantissa bits stored are all 0 because the implicit most
281 // significant 1 bit is not stored. 296 // significant 1 bit is not stored.
282 non_smi_exponent += 1 << HeapNumber::kExponentShift; 297 non_smi_exponent += 1 << HeapNumber::kExponentShift;
283 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); 298 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent));
284 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset)); 299 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
285 __ mov(ip, Operand::Zero()); 300 __ mov(ip, Operand::Zero());
286 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset)); 301 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
287 __ Ret(); 302 __ Ret();
288 } 303 }
289 304 #endif // roohack
290 305
291 // Handle the case where the lhs and rhs are the same object. 306 // Handle the case where the lhs and rhs are the same object.
292 // Equality is almost reflexive (everything but NaN), so this is a test 307 // Equality is almost reflexive (everything but NaN), so this is a test
293 // for "identity and not NaN". 308 // for "identity and not NaN".
294 static void EmitIdenticalObjectComparison(MacroAssembler* masm, 309 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow,
295 Label* slow,
296 Condition cond) { 310 Condition cond) {
297 Label not_identical; 311 Label not_identical;
298 Label heap_number, return_equal; 312 Label heap_number, return_equal;
299 __ cmp(r0, r1); 313 __ cmp(r3, r4);
300 __ b(ne, &not_identical); 314 __ bne(&not_identical);
301 315
302 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), 316 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
303 // so we do the second best thing - test it ourselves. 317 // so we do the second best thing - test it ourselves.
304 // They are both equal and they are not both Smis so both of them are not 318 // They are both equal and they are not both Smis so both of them are not
305 // Smis. If it's not a heap number, then return equal. 319 // Smis. If it's not a heap number, then return equal.
306 if (cond == lt || cond == gt) { 320 if (cond == lt || cond == gt) {
307 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE); 321 __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE);
308 __ b(ge, slow); 322 __ bge(slow);
309 } else { 323 } else {
310 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); 324 __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE);
311 __ b(eq, &heap_number); 325 __ beq(&heap_number);
312 // Comparing JS objects with <=, >= is complicated. 326 // Comparing JS objects with <=, >= is complicated.
313 if (cond != eq) { 327 if (cond != eq) {
314 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE)); 328 __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE));
315 __ b(ge, slow); 329 __ bge(slow);
316 // Normally here we fall through to return_equal, but undefined is 330 // Normally here we fall through to return_equal, but undefined is
317 // special: (undefined == undefined) == true, but 331 // special: (undefined == undefined) == true, but
318 // (undefined <= undefined) == false! See ECMAScript 11.8.5. 332 // (undefined <= undefined) == false! See ECMAScript 11.8.5.
319 if (cond == le || cond == ge) { 333 if (cond == le || cond == ge) {
320 __ cmp(r4, Operand(ODDBALL_TYPE)); 334 __ cmpi(r7, Operand(ODDBALL_TYPE));
321 __ b(ne, &return_equal); 335 __ bne(&return_equal);
322 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 336 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
323 __ cmp(r0, r2); 337 __ cmp(r3, r5);
324 __ b(ne, &return_equal); 338 __ bne(&return_equal);
325 if (cond == le) { 339 if (cond == le) {
326 // undefined <= undefined should fail. 340 // undefined <= undefined should fail.
327 __ mov(r0, Operand(GREATER)); 341 __ li(r3, Operand(GREATER));
328 } else { 342 } else {
329 // undefined >= undefined should fail. 343 // undefined >= undefined should fail.
330 __ mov(r0, Operand(LESS)); 344 __ li(r3, Operand(LESS));
331 } 345 }
332 __ Ret(); 346 __ Ret();
333 } 347 }
334 } 348 }
335 } 349 }
336 350
337 __ bind(&return_equal); 351 __ bind(&return_equal);
338 if (cond == lt) { 352 if (cond == lt) {
339 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. 353 __ li(r3, Operand(GREATER)); // Things aren't less than themselves.
340 } else if (cond == gt) { 354 } else if (cond == gt) {
341 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. 355 __ li(r3, Operand(LESS)); // Things aren't greater than themselves.
342 } else { 356 } else {
343 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. 357 __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves.
344 } 358 }
345 __ Ret(); 359 __ Ret();
346 360
347 // For less and greater we don't have to check for NaN since the result of 361 // For less and greater we don't have to check for NaN since the result of
348 // x < x is false regardless. For the others here is some code to check 362 // x < x is false regardless. For the others here is some code to check
349 // for NaN. 363 // for NaN.
350 if (cond != lt && cond != gt) { 364 if (cond != lt && cond != gt) {
351 __ bind(&heap_number); 365 __ bind(&heap_number);
352 // It is a heap number, so return non-equal if it's NaN and equal if it's 366 // It is a heap number, so return non-equal if it's NaN and equal if it's
353 // not NaN. 367 // not NaN.
354 368
355 // The representation of NaN values has all exponent bits (52..62) set, 369 // The representation of NaN values has all exponent bits (52..62) set,
356 // and not all mantissa bits (0..51) clear. 370 // and not all mantissa bits (0..51) clear.
357 // Read top bits of double representation (second word of value). 371 // Read top bits of double representation (second word of value).
358 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); 372 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset));
359 // Test that exponent bits are all set. 373 // Test that exponent bits are all set.
360 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); 374 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u);
361 // NaNs have all-one exponents so they sign extend to -1. 375 __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask);
362 __ cmp(r3, Operand(-1)); 376 __ cmpli(r6, Operand(0x7ff));
363 __ b(ne, &return_equal); 377 __ bne(&return_equal);
364 378
365 // Shift out flag and all exponent bits, retaining only mantissa. 379 // Shift out flag and all exponent bits, retaining only mantissa.
366 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); 380 __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord));
367 // Or with all low-bits of mantissa. 381 // Or with all low-bits of mantissa.
368 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); 382 __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
369 __ orr(r0, r3, Operand(r2), SetCC); 383 __ orx(r3, r6, r5);
370 // For equal we already have the right value in r0: Return zero (equal) 384 __ cmpi(r3, Operand::Zero());
385 // For equal we already have the right value in r3: Return zero (equal)
371 // if all bits in mantissa are zero (it's an Infinity) and non-zero if 386 // if all bits in mantissa are zero (it's an Infinity) and non-zero if
372 // not (it's a NaN). For <= and >= we need to load r0 with the failing 387 // not (it's a NaN). For <= and >= we need to load r0 with the failing
373 // value if it's a NaN. 388 // value if it's a NaN.
374 if (cond != eq) { 389 if (cond != eq) {
390 Label not_equal;
391 __ bne(&not_equal);
375 // All-zero means Infinity means equal. 392 // All-zero means Infinity means equal.
376 __ Ret(eq); 393 __ Ret();
394 __ bind(&not_equal);
377 if (cond == le) { 395 if (cond == le) {
378 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. 396 __ li(r3, Operand(GREATER)); // NaN <= NaN should fail.
379 } else { 397 } else {
380 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. 398 __ li(r3, Operand(LESS)); // NaN >= NaN should fail.
381 } 399 }
382 } 400 }
383 __ Ret(); 401 __ Ret();
384 } 402 }
385 // No fall through here. 403 // No fall through here.
386 404
387 __ bind(&not_identical); 405 __ bind(&not_identical);
388 } 406 }
389 407
390 408
391 // See comment at call site. 409 // See comment at call site.
392 static void EmitSmiNonsmiComparison(MacroAssembler* masm, 410 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs,
393 Register lhs, 411 Register rhs, Label* lhs_not_nan,
394 Register rhs, 412 Label* slow, bool strict) {
395 Label* lhs_not_nan, 413 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
396 Label* slow,
397 bool strict) {
398 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
399 (lhs.is(r1) && rhs.is(r0)));
400 414
401 Label rhs_is_smi; 415 Label rhs_is_smi;
402 __ JumpIfSmi(rhs, &rhs_is_smi); 416 __ JumpIfSmi(rhs, &rhs_is_smi);
403 417
404 // Lhs is a Smi. Check whether the rhs is a heap number. 418 // Lhs is a Smi. Check whether the rhs is a heap number.
405 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); 419 __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE);
406 if (strict) { 420 if (strict) {
407 // If rhs is not a number and lhs is a Smi then strict equality cannot 421 // If rhs is not a number and lhs is a Smi then strict equality cannot
408 // succeed. Return non-equal 422 // succeed. Return non-equal
409 // If rhs is r0 then there is already a non zero value in it. 423 // If rhs is r3 then there is already a non zero value in it.
410 if (!rhs.is(r0)) { 424 Label skip;
411 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); 425 __ beq(&skip);
426 if (!rhs.is(r3)) {
427 __ mov(r3, Operand(NOT_EQUAL));
412 } 428 }
413 __ Ret(ne); 429 __ Ret();
430 __ bind(&skip);
414 } else { 431 } else {
415 // Smi compared non-strictly with a non-Smi non-heap-number. Call 432 // Smi compared non-strictly with a non-Smi non-heap-number. Call
416 // the runtime. 433 // the runtime.
417 __ b(ne, slow); 434 __ bne(slow);
418 } 435 }
419 436
420 // Lhs is a smi, rhs is a number. 437 // Lhs is a smi, rhs is a number.
421 // Convert lhs to a double in d7. 438 // Convert lhs to a double in d7.
422 __ SmiToDouble(d7, lhs); 439 __ SmiToDouble(d7, lhs);
423 // Load the double from rhs, tagged HeapNumber r0, to d6. 440 // Load the double from rhs, tagged HeapNumber r3, to d6.
424 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); 441 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
425 442
426 // We now have both loaded as doubles but we can skip the lhs nan check 443 // We now have both loaded as doubles but we can skip the lhs nan check
427 // since it's a smi. 444 // since it's a smi.
428 __ jmp(lhs_not_nan); 445 __ b(lhs_not_nan);
429 446
430 __ bind(&rhs_is_smi); 447 __ bind(&rhs_is_smi);
431 // Rhs is a smi. Check whether the non-smi lhs is a heap number. 448 // Rhs is a smi. Check whether the non-smi lhs is a heap number.
432 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); 449 __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE);
433 if (strict) { 450 if (strict) {
434 // If lhs is not a number and rhs is a smi then strict equality cannot 451 // If lhs is not a number and rhs is a smi then strict equality cannot
435 // succeed. Return non-equal. 452 // succeed. Return non-equal.
436 // If lhs is r0 then there is already a non zero value in it. 453 // If lhs is r3 then there is already a non zero value in it.
437 if (!lhs.is(r0)) { 454 Label skip;
438 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); 455 __ beq(&skip);
456 if (!lhs.is(r3)) {
457 __ mov(r3, Operand(NOT_EQUAL));
439 } 458 }
440 __ Ret(ne); 459 __ Ret();
460 __ bind(&skip);
441 } else { 461 } else {
442 // Smi compared non-strictly with a non-smi non-heap-number. Call 462 // Smi compared non-strictly with a non-smi non-heap-number. Call
443 // the runtime. 463 // the runtime.
444 __ b(ne, slow); 464 __ bne(slow);
445 } 465 }
446 466
447 // Rhs is a smi, lhs is a heap number. 467 // Rhs is a smi, lhs is a heap number.
448 // Load the double from lhs, tagged HeapNumber r1, to d7. 468 // Load the double from lhs, tagged HeapNumber r4, to d7.
449 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); 469 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
450 // Convert rhs to a double in d6 . 470 // Convert rhs to a double in d6.
451 __ SmiToDouble(d6, rhs); 471 __ SmiToDouble(d6, rhs);
452 // Fall through to both_loaded_as_doubles. 472 // Fall through to both_loaded_as_doubles.
453 } 473 }
454 474
455 475
456 // See comment at call site. 476 // See comment at call site.
457 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, 477 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs,
458 Register lhs,
459 Register rhs) { 478 Register rhs) {
460 DCHECK((lhs.is(r0) && rhs.is(r1)) || 479 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
461 (lhs.is(r1) && rhs.is(r0)));
462 480
463 // If either operand is a JS object or an oddball value, then they are 481 // If either operand is a JS object or an oddball value, then they are
464 // not equal since their pointers are different. 482 // not equal since their pointers are different.
465 // There is no test for undetectability in strict equality. 483 // There is no test for undetectability in strict equality.
466 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); 484 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
467 Label first_non_object; 485 Label first_non_object;
468 // Get the type of the first operand into r2 and compare it with 486 // Get the type of the first operand into r5 and compare it with
469 // FIRST_SPEC_OBJECT_TYPE. 487 // FIRST_SPEC_OBJECT_TYPE.
470 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE); 488 __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE);
471 __ b(lt, &first_non_object); 489 __ blt(&first_non_object);
472 490
473 // Return non-zero (r0 is not zero) 491 // Return non-zero (r3 is not zero)
474 Label return_not_equal; 492 Label return_not_equal;
475 __ bind(&return_not_equal); 493 __ bind(&return_not_equal);
476 __ Ret(); 494 __ Ret();
477 495
478 __ bind(&first_non_object); 496 __ bind(&first_non_object);
479 // Check for oddballs: true, false, null, undefined. 497 // Check for oddballs: true, false, null, undefined.
480 __ cmp(r2, Operand(ODDBALL_TYPE)); 498 __ cmpi(r5, Operand(ODDBALL_TYPE));
481 __ b(eq, &return_not_equal); 499 __ beq(&return_not_equal);
482 500
483 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE); 501 __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE);
484 __ b(ge, &return_not_equal); 502 __ bge(&return_not_equal);
485 503
486 // Check for oddballs: true, false, null, undefined. 504 // Check for oddballs: true, false, null, undefined.
487 __ cmp(r3, Operand(ODDBALL_TYPE)); 505 __ cmpi(r6, Operand(ODDBALL_TYPE));
488 __ b(eq, &return_not_equal); 506 __ beq(&return_not_equal);
489 507
490 // Now that we have the types we might as well check for 508 // Now that we have the types we might as well check for
491 // internalized-internalized. 509 // internalized-internalized.
492 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 510 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
493 __ orr(r2, r2, Operand(r3)); 511 __ orx(r5, r5, r6);
494 __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); 512 __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask));
495 __ b(eq, &return_not_equal); 513 __ beq(&return_not_equal, cr0);
496 } 514 }
497 515
498 516
499 // See comment at call site. 517 // See comment at call site.
500 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, 518 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs,
501 Register lhs,
502 Register rhs, 519 Register rhs,
503 Label* both_loaded_as_doubles, 520 Label* both_loaded_as_doubles,
504 Label* not_heap_numbers, 521 Label* not_heap_numbers, Label* slow) {
505 Label* slow) { 522 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
506 DCHECK((lhs.is(r0) && rhs.is(r1)) ||
507 (lhs.is(r1) && rhs.is(r0)));
508 523
509 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); 524 __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE);
510 __ b(ne, not_heap_numbers); 525 __ bne(not_heap_numbers);
511 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); 526 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset));
512 __ cmp(r2, r3); 527 __ cmp(r5, r6);
513 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. 528 __ bne(slow); // First was a heap number, second wasn't. Go slow case.
514 529
515 // Both are heap numbers. Load them up then jump to the code we have 530 // Both are heap numbers. Load them up then jump to the code we have
516 // for that. 531 // for that.
517 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); 532 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset));
518 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); 533 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset));
519 __ jmp(both_loaded_as_doubles); 534
535 __ b(both_loaded_as_doubles);
520 } 536 }
521 537
522 538
523 // Fast negative check for internalized-to-internalized equality. 539 // Fast negative check for internalized-to-internalized equality.
524 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, 540 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm,
525 Register lhs, 541 Register lhs, Register rhs,
526 Register rhs,
527 Label* possible_strings, 542 Label* possible_strings,
528 Label* not_both_strings) { 543 Label* not_both_strings) {
529 DCHECK((lhs.is(r0) && rhs.is(r1)) || 544 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3)));
530 (lhs.is(r1) && rhs.is(r0)));
531 545
532 // r2 is object type of rhs. 546 // r5 is object type of rhs.
533 Label object_test; 547 Label object_test;
534 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 548 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
535 __ tst(r2, Operand(kIsNotStringMask)); 549 __ andi(r0, r5, Operand(kIsNotStringMask));
536 __ b(ne, &object_test); 550 __ bne(&object_test, cr0);
537 __ tst(r2, Operand(kIsNotInternalizedMask)); 551 __ andi(r0, r5, Operand(kIsNotInternalizedMask));
538 __ b(ne, possible_strings); 552 __ bne(possible_strings, cr0);
539 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); 553 __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE);
540 __ b(ge, not_both_strings); 554 __ bge(not_both_strings);
541 __ tst(r3, Operand(kIsNotInternalizedMask)); 555 __ andi(r0, r6, Operand(kIsNotInternalizedMask));
542 __ b(ne, possible_strings); 556 __ bne(possible_strings, cr0);
543 557
544 // Both are internalized. We already checked they weren't the same pointer 558 // Both are internalized. We already checked they weren't the same pointer
545 // so they are not equal. 559 // so they are not equal.
546 __ mov(r0, Operand(NOT_EQUAL)); 560 __ li(r3, Operand(NOT_EQUAL));
547 __ Ret(); 561 __ Ret();
548 562
549 __ bind(&object_test); 563 __ bind(&object_test);
550 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE)); 564 __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE));
551 __ b(lt, not_both_strings); 565 __ blt(not_both_strings);
552 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE); 566 __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE);
553 __ b(lt, not_both_strings); 567 __ blt(not_both_strings);
554 // If both objects are undetectable, they are equal. Otherwise, they 568 // If both objects are undetectable, they are equal. Otherwise, they
555 // are not equal, since they are different objects and an object is not 569 // are not equal, since they are different objects and an object is not
556 // equal to undefined. 570 // equal to undefined.
557 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); 571 __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset));
558 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); 572 __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset));
559 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); 573 __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset));
560 __ and_(r0, r2, Operand(r3)); 574 __ and_(r3, r5, r6);
561 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); 575 __ andi(r3, r3, Operand(1 << Map::kIsUndetectable));
562 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); 576 __ xori(r3, r3, Operand(1 << Map::kIsUndetectable));
563 __ Ret(); 577 __ Ret();
564 } 578 }
565 579
566 580
567 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, 581 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input,
568 Register scratch, 582 Register scratch,
569 CompareIC::State expected, 583 CompareICState::State expected,
570 Label* fail) { 584 Label* fail) {
571 Label ok; 585 Label ok;
572 if (expected == CompareIC::SMI) { 586 if (expected == CompareICState::SMI) {
573 __ JumpIfNotSmi(input, fail); 587 __ JumpIfNotSmi(input, fail);
574 } else if (expected == CompareIC::NUMBER) { 588 } else if (expected == CompareICState::NUMBER) {
575 __ JumpIfSmi(input, &ok); 589 __ JumpIfSmi(input, &ok);
576 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, 590 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail,
577 DONT_DO_SMI_CHECK); 591 DONT_DO_SMI_CHECK);
578 } 592 }
579 // We could be strict about internalized/non-internalized here, but as long as 593 // We could be strict about internalized/non-internalized here, but as long as
580 // hydrogen doesn't care, the stub doesn't have to care either. 594 // hydrogen doesn't care, the stub doesn't have to care either.
581 __ bind(&ok); 595 __ bind(&ok);
582 } 596 }
583 597
584 598
585 // On entry r1 and r2 are the values to be compared. 599 // On entry r4 and r5 are the values to be compared.
586 // On exit r0 is 0, positive or negative to indicate the result of 600 // On exit r3 is 0, positive or negative to indicate the result of
587 // the comparison. 601 // the comparison.
588 void CompareICStub::GenerateGeneric(MacroAssembler* masm) { 602 void CompareICStub::GenerateGeneric(MacroAssembler* masm) {
589 Register lhs = r1; 603 Register lhs = r4;
590 Register rhs = r0; 604 Register rhs = r3;
591 Condition cc = GetCondition(); 605 Condition cc = GetCondition();
592 606
593 Label miss; 607 Label miss;
594 CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss); 608 CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss);
595 CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss); 609 CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss);
596 610
597 Label slow; // Call builtin. 611 Label slow; // Call builtin.
598 Label not_smis, both_loaded_as_doubles, lhs_not_nan; 612 Label not_smis, both_loaded_as_doubles, lhs_not_nan;
599 613
600 Label not_two_smis, smi_done; 614 Label not_two_smis, smi_done;
601 __ orr(r2, r1, r0); 615 __ orx(r5, r4, r3);
602 __ JumpIfNotSmi(r2, &not_two_smis); 616 __ JumpIfNotSmi(r5, &not_two_smis);
603 __ mov(r1, Operand(r1, ASR, 1)); 617 __ SmiUntag(r4);
604 __ sub(r0, r1, Operand(r0, ASR, 1)); 618 __ SmiUntag(r3);
619 __ sub(r3, r4, r3);
605 __ Ret(); 620 __ Ret();
606 __ bind(&not_two_smis); 621 __ bind(&not_two_smis);
607 622
608 // NOTICE! This code is only reached after a smi-fast-case check, so 623 // NOTICE! This code is only reached after a smi-fast-case check, so
609 // it is certain that at least one operand isn't a smi. 624 // it is certain that at least one operand isn't a smi.
610 625
611 // Handle the case where the objects are identical. Either returns the answer 626 // Handle the case where the objects are identical. Either returns the answer
612 // or goes to slow. Only falls through if the objects were not identical. 627 // or goes to slow. Only falls through if the objects were not identical.
613 EmitIdenticalObjectComparison(masm, &slow, cc); 628 EmitIdenticalObjectComparison(masm, &slow, cc);
614 629
615 // If either is a Smi (we know that not both are), then they can only 630 // If either is a Smi (we know that not both are), then they can only
616 // be strictly equal if the other is a HeapNumber. 631 // be strictly equal if the other is a HeapNumber.
617 STATIC_ASSERT(kSmiTag == 0); 632 STATIC_ASSERT(kSmiTag == 0);
618 DCHECK_EQ(0, Smi::FromInt(0)); 633 DCHECK_EQ(0, Smi::FromInt(0));
619 __ and_(r2, lhs, Operand(rhs)); 634 __ and_(r5, lhs, rhs);
620 __ JumpIfNotSmi(r2, &not_smis); 635 __ JumpIfNotSmi(r5, &not_smis);
621 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: 636 // One operand is a smi. EmitSmiNonsmiComparison generates code that can:
622 // 1) Return the answer. 637 // 1) Return the answer.
623 // 2) Go to slow. 638 // 2) Go to slow.
624 // 3) Fall through to both_loaded_as_doubles. 639 // 3) Fall through to both_loaded_as_doubles.
625 // 4) Jump to lhs_not_nan. 640 // 4) Jump to lhs_not_nan.
626 // In cases 3 and 4 we have found out we were dealing with a number-number 641 // In cases 3 and 4 we have found out we were dealing with a number-number
627 // comparison. If VFP3 is supported the double values of the numbers have 642 // comparison. The double values of the numbers have been loaded
628 // been loaded into d7 and d6. Otherwise, the double values have been loaded 643 // into d7 and d6.
629 // into r0, r1, r2, and r3.
630 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); 644 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict());
631 645
632 __ bind(&both_loaded_as_doubles); 646 __ bind(&both_loaded_as_doubles);
633 // The arguments have been converted to doubles and stored in d6 and d7, if 647 // The arguments have been converted to doubles and stored in d6 and d7
634 // VFP3 is supported, or in r0, r1, r2, and r3.
635 __ bind(&lhs_not_nan); 648 __ bind(&lhs_not_nan);
636 Label no_nan; 649 Label no_nan;
637 // ARMv7 VFP3 instructions to implement double precision comparison. 650 __ fcmpu(d7, d6);
638 __ VFPCompareAndSetFlags(d7, d6); 651
639 Label nan; 652 Label nan, equal, less_than;
640 __ b(vs, &nan); 653 __ bunordered(&nan);
641 __ mov(r0, Operand(EQUAL), LeaveCC, eq); 654 __ beq(&equal);
642 __ mov(r0, Operand(LESS), LeaveCC, lt); 655 __ blt(&less_than);
643 __ mov(r0, Operand(GREATER), LeaveCC, gt); 656 __ li(r3, Operand(GREATER));
657 __ Ret();
658 __ bind(&equal);
659 __ li(r3, Operand(EQUAL));
660 __ Ret();
661 __ bind(&less_than);
662 __ li(r3, Operand(LESS));
644 __ Ret(); 663 __ Ret();
645 664
646 __ bind(&nan); 665 __ bind(&nan);
647 // If one of the sides was a NaN then the v flag is set. Load r0 with 666 // If one of the sides was a NaN then the v flag is set. Load r3 with
648 // whatever it takes to make the comparison fail, since comparisons with NaN 667 // whatever it takes to make the comparison fail, since comparisons with NaN
649 // always fail. 668 // always fail.
650 if (cc == lt || cc == le) { 669 if (cc == lt || cc == le) {
651 __ mov(r0, Operand(GREATER)); 670 __ li(r3, Operand(GREATER));
652 } else { 671 } else {
653 __ mov(r0, Operand(LESS)); 672 __ li(r3, Operand(LESS));
654 } 673 }
655 __ Ret(); 674 __ Ret();
656 675
657 __ bind(&not_smis); 676 __ bind(&not_smis);
658 // At this point we know we are dealing with two different objects, 677 // At this point we know we are dealing with two different objects,
659 // and neither of them is a Smi. The objects are in rhs_ and lhs_. 678 // and neither of them is a Smi. The objects are in rhs_ and lhs_.
660 if (strict()) { 679 if (strict()) {
661 // This returns non-equal for some object types, or falls through if it 680 // This returns non-equal for some object types, or falls through if it
662 // was not lucky. 681 // was not lucky.
663 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); 682 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs);
664 } 683 }
665 684
666 Label check_for_internalized_strings; 685 Label check_for_internalized_strings;
667 Label flat_string_check; 686 Label flat_string_check;
668 // Check for heap-number-heap-number comparison. Can jump to slow case, 687 // Check for heap-number-heap-number comparison. Can jump to slow case,
669 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles 688 // or load both doubles into r3, r4, r5, r6 and jump to the code that handles
670 // that case. If the inputs are not doubles then jumps to 689 // that case. If the inputs are not doubles then jumps to
671 // check_for_internalized_strings. 690 // check_for_internalized_strings.
672 // In this case r2 will contain the type of rhs_. Never falls through. 691 // In this case r5 will contain the type of rhs_. Never falls through.
673 EmitCheckForTwoHeapNumbers(masm, 692 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles,
674 lhs,
675 rhs,
676 &both_loaded_as_doubles,
677 &check_for_internalized_strings, 693 &check_for_internalized_strings,
678 &flat_string_check); 694 &flat_string_check);
679 695
680 __ bind(&check_for_internalized_strings); 696 __ bind(&check_for_internalized_strings);
681 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of 697 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of
682 // internalized strings. 698 // internalized strings.
683 if (cc == eq && !strict()) { 699 if (cc == eq && !strict()) {
684 // Returns an answer for two internalized strings or two detectable objects. 700 // Returns an answer for two internalized strings or two detectable objects.
685 // Otherwise jumps to string case or not both strings case. 701 // Otherwise jumps to string case or not both strings case.
686 // Assumes that r2 is the type of rhs_ on entry. 702 // Assumes that r5 is the type of rhs_ on entry.
687 EmitCheckForInternalizedStringsOrObjects( 703 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check,
688 masm, lhs, rhs, &flat_string_check, &slow); 704 &slow);
689 } 705 }
690 706
691 // Check for both being sequential one-byte strings, 707 // Check for both being sequential one-byte strings,
692 // and inline if that is the case. 708 // and inline if that is the case.
693 __ bind(&flat_string_check); 709 __ bind(&flat_string_check);
694 710
695 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow); 711 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow);
696 712
697 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2, 713 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5,
698 r3); 714 r6);
699 if (cc == eq) { 715 if (cc == eq) {
700 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4); 716 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6);
701 } else { 717 } else {
702 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4, 718 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7);
703 r5);
704 } 719 }
705 // Never falls through to here. 720 // Never falls through to here.
706 721
707 __ bind(&slow); 722 __ bind(&slow);
708 723
709 __ Push(lhs, rhs); 724 __ Push(lhs, rhs);
710 // Figure out which native to call and setup the arguments. 725 // Figure out which native to call and setup the arguments.
711 Builtins::JavaScript native; 726 Builtins::JavaScript native;
712 if (cc == eq) { 727 if (cc == eq) {
713 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; 728 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
714 } else { 729 } else {
715 native = Builtins::COMPARE; 730 native = Builtins::COMPARE;
716 int ncr; // NaN compare result 731 int ncr; // NaN compare result
717 if (cc == lt || cc == le) { 732 if (cc == lt || cc == le) {
718 ncr = GREATER; 733 ncr = GREATER;
719 } else { 734 } else {
720 DCHECK(cc == gt || cc == ge); // remaining cases 735 DCHECK(cc == gt || cc == ge); // remaining cases
721 ncr = LESS; 736 ncr = LESS;
722 } 737 }
723 __ mov(r0, Operand(Smi::FromInt(ncr))); 738 __ LoadSmiLiteral(r3, Smi::FromInt(ncr));
724 __ push(r0); 739 __ push(r3);
725 } 740 }
726 741
727 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) 742 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
728 // tagged as a small integer. 743 // tagged as a small integer.
729 __ InvokeBuiltin(native, JUMP_FUNCTION); 744 __ InvokeBuiltin(native, JUMP_FUNCTION);
730 745
731 __ bind(&miss); 746 __ bind(&miss);
732 GenerateMiss(masm); 747 GenerateMiss(masm);
733 } 748 }
734 749
735 750
736 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { 751 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
737 // We don't allow a GC during a store buffer overflow so there is no need to 752 // We don't allow a GC during a store buffer overflow so there is no need to
738 // store the registers in any particular way, but we do have to store and 753 // store the registers in any particular way, but we do have to store and
739 // restore them. 754 // restore them.
740 __ stm(db_w, sp, kCallerSaved | lr.bit()); 755 __ mflr(r0);
741 756 __ MultiPush(kJSCallerSaved | r0.bit());
742 const Register scratch = r1;
743
744 if (save_doubles()) { 757 if (save_doubles()) {
745 __ SaveFPRegs(sp, scratch); 758 __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
746 } 759 }
747 const int argument_count = 1; 760 const int argument_count = 1;
748 const int fp_argument_count = 0; 761 const int fp_argument_count = 0;
762 const Register scratch = r4;
749 763
750 AllowExternalCallThatCantCauseGC scope(masm); 764 AllowExternalCallThatCantCauseGC scope(masm);
751 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); 765 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
752 __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); 766 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
753 __ CallCFunction( 767 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()),
754 ExternalReference::store_buffer_overflow_function(isolate()), 768 argument_count);
755 argument_count);
756 if (save_doubles()) { 769 if (save_doubles()) {
757 __ RestoreFPRegs(sp, scratch); 770 __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters);
758 } 771 }
759 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0). 772 __ MultiPop(kJSCallerSaved | r0.bit());
773 __ mtlr(r0);
774 __ Ret();
760 } 775 }
761 776
762 777
763 void MathPowStub::Generate(MacroAssembler* masm) { 778 void MathPowStub::Generate(MacroAssembler* masm) {
764 const Register base = r1; 779 const Register base = r4;
765 const Register exponent = MathPowTaggedDescriptor::exponent(); 780 const Register exponent = MathPowTaggedDescriptor::exponent();
766 DCHECK(exponent.is(r2)); 781 DCHECK(exponent.is(r5));
767 const Register heapnumbermap = r5; 782 const Register heapnumbermap = r8;
768 const Register heapnumber = r0; 783 const Register heapnumber = r3;
769 const DwVfpRegister double_base = d0; 784 const DoubleRegister double_base = d1;
770 const DwVfpRegister double_exponent = d1; 785 const DoubleRegister double_exponent = d2;
771 const DwVfpRegister double_result = d2; 786 const DoubleRegister double_result = d3;
772 const DwVfpRegister double_scratch = d3; 787 const DoubleRegister double_scratch = d0;
773 const SwVfpRegister single_scratch = s6; 788 const Register scratch = r11;
774 const Register scratch = r9; 789 const Register scratch2 = r10;
775 const Register scratch2 = r4;
776 790
777 Label call_runtime, done, int_exponent; 791 Label call_runtime, done, int_exponent;
778 if (exponent_type() == ON_STACK) { 792 if (exponent_type() == ON_STACK) {
779 Label base_is_smi, unpack_exponent; 793 Label base_is_smi, unpack_exponent;
780 // The exponent and base are supplied as arguments on the stack. 794 // The exponent and base are supplied as arguments on the stack.
781 // This can only happen if the stub is called from non-optimized code. 795 // This can only happen if the stub is called from non-optimized code.
782 // Load input parameters from stack to double registers. 796 // Load input parameters from stack to double registers.
783 __ ldr(base, MemOperand(sp, 1 * kPointerSize)); 797 __ LoadP(base, MemOperand(sp, 1 * kPointerSize));
784 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); 798 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize));
785 799
786 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); 800 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
787 801
788 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); 802 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi);
789 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); 803 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset));
790 __ cmp(scratch, heapnumbermap); 804 __ cmp(scratch, heapnumbermap);
791 __ b(ne, &call_runtime); 805 __ bne(&call_runtime);
792 806
793 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); 807 __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
794 __ jmp(&unpack_exponent); 808 __ b(&unpack_exponent);
795 809
796 __ bind(&base_is_smi); 810 __ bind(&base_is_smi);
797 __ vmov(single_scratch, scratch); 811 __ ConvertIntToDouble(scratch, double_base);
798 __ vcvt_f64_s32(double_base, single_scratch);
799 __ bind(&unpack_exponent); 812 __ bind(&unpack_exponent);
800 813
801 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); 814 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
815 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
816 __ cmp(scratch, heapnumbermap);
817 __ bne(&call_runtime);
802 818
803 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); 819 __ lfd(double_exponent,
804 __ cmp(scratch, heapnumbermap); 820 FieldMemOperand(exponent, HeapNumber::kValueOffset));
805 __ b(ne, &call_runtime);
806 __ vldr(double_exponent,
807 FieldMemOperand(exponent, HeapNumber::kValueOffset));
808 } else if (exponent_type() == TAGGED) { 821 } else if (exponent_type() == TAGGED) {
809 // Base is already in double_base. 822 // Base is already in double_base.
810 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); 823 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent);
811 824
812 __ vldr(double_exponent, 825 __ lfd(double_exponent,
813 FieldMemOperand(exponent, HeapNumber::kValueOffset)); 826 FieldMemOperand(exponent, HeapNumber::kValueOffset));
814 } 827 }
815 828
816 if (exponent_type() != INTEGER) { 829 if (exponent_type() != INTEGER) {
817 Label int_exponent_convert;
818 // Detect integer exponents stored as double. 830 // Detect integer exponents stored as double.
819 __ vcvt_u32_f64(single_scratch, double_exponent); 831 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2,
820 // We do not check for NaN or Infinity here because comparing numbers on 832 double_scratch);
821 // ARM correctly distinguishes NaNs. We end up calling the built-in. 833 __ beq(&int_exponent);
822 __ vcvt_f64_u32(double_scratch, single_scratch);
823 __ VFPCompareAndSetFlags(double_scratch, double_exponent);
824 __ b(eq, &int_exponent_convert);
825 834
826 if (exponent_type() == ON_STACK) { 835 if (exponent_type() == ON_STACK) {
827 // Detect square root case. Crankshaft detects constant +/-0.5 at 836 // Detect square root case. Crankshaft detects constant +/-0.5 at
828 // compile time and uses DoMathPowHalf instead. We then skip this check 837 // compile time and uses DoMathPowHalf instead. We then skip this check
829 // for non-constant cases of +/-0.5 as these hardly occur. 838 // for non-constant cases of +/-0.5 as these hardly occur.
830 Label not_plus_half; 839 Label not_plus_half, not_minus_inf1, not_minus_inf2;
831 840
832 // Test for 0.5. 841 // Test for 0.5.
833 __ vmov(double_scratch, 0.5, scratch); 842 __ LoadDoubleLiteral(double_scratch, 0.5, scratch);
834 __ VFPCompareAndSetFlags(double_exponent, double_scratch); 843 __ fcmpu(double_exponent, double_scratch);
835 __ b(ne, &not_plus_half); 844 __ bne(&not_plus_half);
836 845
837 // Calculates square root of base. Check for the special case of 846 // Calculates square root of base. Check for the special case of
838 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). 847 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
839 __ vmov(double_scratch, -V8_INFINITY, scratch); 848 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
840 __ VFPCompareAndSetFlags(double_base, double_scratch); 849 __ fcmpu(double_base, double_scratch);
841 __ vneg(double_result, double_scratch, eq); 850 __ bne(&not_minus_inf1);
842 __ b(eq, &done); 851 __ fneg(double_result, double_scratch);
852 __ b(&done);
853 __ bind(&not_minus_inf1);
843 854
844 // Add +0 to convert -0 to +0. 855 // Add +0 to convert -0 to +0.
845 __ vadd(double_scratch, double_base, kDoubleRegZero); 856 __ fadd(double_scratch, double_base, kDoubleRegZero);
846 __ vsqrt(double_result, double_scratch); 857 __ fsqrt(double_result, double_scratch);
847 __ jmp(&done); 858 __ b(&done);
848 859
849 __ bind(&not_plus_half); 860 __ bind(&not_plus_half);
850 __ vmov(double_scratch, -0.5, scratch); 861 __ LoadDoubleLiteral(double_scratch, -0.5, scratch);
851 __ VFPCompareAndSetFlags(double_exponent, double_scratch); 862 __ fcmpu(double_exponent, double_scratch);
852 __ b(ne, &call_runtime); 863 __ bne(&call_runtime);
853 864
854 // Calculates square root of base. Check for the special case of 865 // Calculates square root of base. Check for the special case of
855 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). 866 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
856 __ vmov(double_scratch, -V8_INFINITY, scratch); 867 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch);
857 __ VFPCompareAndSetFlags(double_base, double_scratch); 868 __ fcmpu(double_base, double_scratch);
858 __ vmov(double_result, kDoubleRegZero, eq); 869 __ bne(&not_minus_inf2);
859 __ b(eq, &done); 870 __ fmr(double_result, kDoubleRegZero);
871 __ b(&done);
872 __ bind(&not_minus_inf2);
860 873
861 // Add +0 to convert -0 to +0. 874 // Add +0 to convert -0 to +0.
862 __ vadd(double_scratch, double_base, kDoubleRegZero); 875 __ fadd(double_scratch, double_base, kDoubleRegZero);
863 __ vmov(double_result, 1.0, scratch); 876 __ LoadDoubleLiteral(double_result, 1.0, scratch);
864 __ vsqrt(double_scratch, double_scratch); 877 __ fsqrt(double_scratch, double_scratch);
865 __ vdiv(double_result, double_result, double_scratch); 878 __ fdiv(double_result, double_result, double_scratch);
866 __ jmp(&done); 879 __ b(&done);
867 } 880 }
868 881
869 __ push(lr); 882 __ mflr(r0);
883 __ push(r0);
870 { 884 {
871 AllowExternalCallThatCantCauseGC scope(masm); 885 AllowExternalCallThatCantCauseGC scope(masm);
872 __ PrepareCallCFunction(0, 2, scratch); 886 __ PrepareCallCFunction(0, 2, scratch);
873 __ MovToFloatParameters(double_base, double_exponent); 887 __ MovToFloatParameters(double_base, double_exponent);
874 __ CallCFunction( 888 __ CallCFunction(
875 ExternalReference::power_double_double_function(isolate()), 889 ExternalReference::power_double_double_function(isolate()), 0, 2);
876 0, 2);
877 } 890 }
878 __ pop(lr); 891 __ pop(r0);
892 __ mtlr(r0);
879 __ MovFromFloatResult(double_result); 893 __ MovFromFloatResult(double_result);
880 __ jmp(&done); 894 __ b(&done);
881
882 __ bind(&int_exponent_convert);
883 __ vcvt_u32_f64(single_scratch, double_exponent);
884 __ vmov(scratch, single_scratch);
885 } 895 }
886 896
887 // Calculate power with integer exponent. 897 // Calculate power with integer exponent.
888 __ bind(&int_exponent); 898 __ bind(&int_exponent);
889 899
890 // Get two copies of exponent in the registers scratch and exponent. 900 // Get two copies of exponent in the registers scratch and exponent.
891 if (exponent_type() == INTEGER) { 901 if (exponent_type() == INTEGER) {
892 __ mov(scratch, exponent); 902 __ mr(scratch, exponent);
893 } else { 903 } else {
894 // Exponent has previously been stored into scratch as untagged integer. 904 // Exponent has previously been stored into scratch as untagged integer.
895 __ mov(exponent, scratch); 905 __ mr(exponent, scratch);
896 } 906 }
897 __ vmov(double_scratch, double_base); // Back up base. 907 __ fmr(double_scratch, double_base); // Back up base.
898 __ vmov(double_result, 1.0, scratch2); 908 __ li(scratch2, Operand(1));
909 __ ConvertIntToDouble(scratch2, double_result);
899 910
900 // Get absolute value of exponent. 911 // Get absolute value of exponent.
901 __ cmp(scratch, Operand::Zero()); 912 Label positive_exponent;
902 __ mov(scratch2, Operand::Zero(), LeaveCC, mi); 913 __ cmpi(scratch, Operand::Zero());
903 __ sub(scratch, scratch2, scratch, LeaveCC, mi); 914 __ bge(&positive_exponent);
915 __ neg(scratch, scratch);
916 __ bind(&positive_exponent);
904 917
905 Label while_true; 918 Label while_true, no_carry, loop_end;
906 __ bind(&while_true); 919 __ bind(&while_true);
907 __ mov(scratch, Operand(scratch, ASR, 1), SetCC); 920 __ andi(scratch2, scratch, Operand(1));
908 __ vmul(double_result, double_result, double_scratch, cs); 921 __ beq(&no_carry, cr0);
909 __ vmul(double_scratch, double_scratch, double_scratch, ne); 922 __ fmul(double_result, double_result, double_scratch);
910 __ b(ne, &while_true); 923 __ bind(&no_carry);
924 __ ShiftRightArithImm(scratch, scratch, 1, SetRC);
925 __ beq(&loop_end, cr0);
926 __ fmul(double_scratch, double_scratch, double_scratch);
927 __ b(&while_true);
928 __ bind(&loop_end);
911 929
912 __ cmp(exponent, Operand::Zero()); 930 __ cmpi(exponent, Operand::Zero());
913 __ b(ge, &done); 931 __ bge(&done);
914 __ vmov(double_scratch, 1.0, scratch); 932
915 __ vdiv(double_result, double_scratch, double_result); 933 __ li(scratch2, Operand(1));
934 __ ConvertIntToDouble(scratch2, double_scratch);
935 __ fdiv(double_result, double_scratch, double_result);
916 // Test whether result is zero. Bail out to check for subnormal result. 936 // Test whether result is zero. Bail out to check for subnormal result.
917 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. 937 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
918 __ VFPCompareAndSetFlags(double_result, 0.0); 938 __ fcmpu(double_result, kDoubleRegZero);
919 __ b(ne, &done); 939 __ bne(&done);
920 // double_exponent may not containe the exponent value if the input was a 940 // double_exponent may not containe the exponent value if the input was a
921 // smi. We set it with exponent value before bailing out. 941 // smi. We set it with exponent value before bailing out.
922 __ vmov(single_scratch, exponent); 942 __ ConvertIntToDouble(exponent, double_exponent);
923 __ vcvt_f64_s32(double_exponent, single_scratch);
924 943
925 // Returning or bailing out. 944 // Returning or bailing out.
926 Counters* counters = isolate()->counters(); 945 Counters* counters = isolate()->counters();
927 if (exponent_type() == ON_STACK) { 946 if (exponent_type() == ON_STACK) {
928 // The arguments are still on the stack. 947 // The arguments are still on the stack.
929 __ bind(&call_runtime); 948 __ bind(&call_runtime);
930 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); 949 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1);
931 950
932 // The stub is called from non-optimized code, which expects the result 951 // The stub is called from non-optimized code, which expects the result
933 // as heap number in exponent. 952 // as heap number in exponent.
934 __ bind(&done); 953 __ bind(&done);
935 __ AllocateHeapNumber( 954 __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap,
936 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); 955 &call_runtime);
937 __ vstr(double_result, 956 __ stfd(double_result,
938 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); 957 FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
939 DCHECK(heapnumber.is(r0)); 958 DCHECK(heapnumber.is(r3));
940 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); 959 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
941 __ Ret(2); 960 __ Ret(2);
942 } else { 961 } else {
943 __ push(lr); 962 __ mflr(r0);
963 __ push(r0);
944 { 964 {
945 AllowExternalCallThatCantCauseGC scope(masm); 965 AllowExternalCallThatCantCauseGC scope(masm);
946 __ PrepareCallCFunction(0, 2, scratch); 966 __ PrepareCallCFunction(0, 2, scratch);
947 __ MovToFloatParameters(double_base, double_exponent); 967 __ MovToFloatParameters(double_base, double_exponent);
948 __ CallCFunction( 968 __ CallCFunction(
949 ExternalReference::power_double_double_function(isolate()), 969 ExternalReference::power_double_double_function(isolate()), 0, 2);
950 0, 2);
951 } 970 }
952 __ pop(lr); 971 __ pop(r0);
972 __ mtlr(r0);
953 __ MovFromFloatResult(double_result); 973 __ MovFromFloatResult(double_result);
954 974
955 __ bind(&done); 975 __ bind(&done);
956 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); 976 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
957 __ Ret(); 977 __ Ret();
958 } 978 }
959 } 979 }
960 980
961 981
962 bool CEntryStub::NeedsImmovableCode() { 982 bool CEntryStub::NeedsImmovableCode() { return true; }
963 return true;
964 }
965 983
966 984
967 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { 985 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) {
968 CEntryStub::GenerateAheadOfTime(isolate); 986 CEntryStub::GenerateAheadOfTime(isolate);
969 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); 987 // WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate);
970 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); 988 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate);
971 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); 989 StubFailureTrampolineStub::GenerateAheadOfTime(isolate);
972 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); 990 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate);
973 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); 991 CreateAllocationSiteStub::GenerateAheadOfTime(isolate);
974 BinaryOpICStub::GenerateAheadOfTime(isolate); 992 BinaryOpICStub::GenerateAheadOfTime(isolate);
975 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); 993 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate);
976 } 994 }
977 995
978 996
979 void CodeStub::GenerateFPStubs(Isolate* isolate) { 997 void CodeStub::GenerateFPStubs(Isolate* isolate) {
980 // Generate if not already in cache. 998 // Generate if not already in cache.
981 SaveFPRegsMode mode = kSaveFPRegs; 999 SaveFPRegsMode mode = kSaveFPRegs;
982 CEntryStub(isolate, 1, mode).GetCode(); 1000 CEntryStub(isolate, 1, mode).GetCode();
983 StoreBufferOverflowStub(isolate, mode).GetCode(); 1001 StoreBufferOverflowStub(isolate, mode).GetCode();
984 isolate->set_fp_stubs_generated(true); 1002 isolate->set_fp_stubs_generated(true);
985 } 1003 }
986 1004
987 1005
988 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { 1006 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) {
989 CEntryStub stub(isolate, 1, kDontSaveFPRegs); 1007 CEntryStub stub(isolate, 1, kDontSaveFPRegs);
990 stub.GetCode(); 1008 stub.GetCode();
991 } 1009 }
992 1010
993 1011
994 void CEntryStub::Generate(MacroAssembler* masm) { 1012 void CEntryStub::Generate(MacroAssembler* masm) {
995 // Called from JavaScript; parameters are on stack as if calling JS function. 1013 // Called from JavaScript; parameters are on stack as if calling JS function.
996 // r0: number of arguments including receiver 1014 // r3: number of arguments including receiver
997 // r1: pointer to builtin function 1015 // r4: pointer to builtin function
998 // fp: frame pointer (restored after C call) 1016 // fp: frame pointer (restored after C call)
999 // sp: stack pointer (restored as callee's sp after C call) 1017 // sp: stack pointer (restored as callee's sp after C call)
1000 // cp: current context (C callee-saved) 1018 // cp: current context (C callee-saved)
1001 1019
1002 ProfileEntryHookStub::MaybeCallEntryHook(masm); 1020 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1003 1021
1004 __ mov(r5, Operand(r1)); 1022 __ mr(r15, r4);
1005 1023
1006 // Compute the argv pointer in a callee-saved register. 1024 // Compute the argv pointer.
1007 __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); 1025 __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2));
1008 __ sub(r1, r1, Operand(kPointerSize)); 1026 __ add(r4, r4, sp);
1027 __ subi(r4, r4, Operand(kPointerSize));
1009 1028
1010 // Enter the exit frame that transitions from JavaScript to C++. 1029 // Enter the exit frame that transitions from JavaScript to C++.
1011 FrameScope scope(masm, StackFrame::MANUAL); 1030 FrameScope scope(masm, StackFrame::MANUAL);
1012 __ EnterExitFrame(save_doubles()); 1031
1032 // Need at least one extra slot for return address location.
1033 int arg_stack_space = 1;
1034
1035 // PPC LINUX ABI:
1036 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1037 // Pass buffer for return value on stack if necessary
1038 if (result_size() > 1) {
1039 DCHECK_EQ(2, result_size());
1040 arg_stack_space += 2;
1041 }
1042 #endif
1043
1044 __ EnterExitFrame(save_doubles(), arg_stack_space);
1013 1045
1014 // Store a copy of argc in callee-saved registers for later. 1046 // Store a copy of argc in callee-saved registers for later.
1015 __ mov(r4, Operand(r0)); 1047 __ mr(r14, r3);
1016 1048
1017 // r0, r4: number of arguments including receiver (C callee-saved) 1049 // r3, r14: number of arguments including receiver (C callee-saved)
1018 // r1: pointer to the first argument (C callee-saved) 1050 // r4: pointer to the first argument
1019 // r5: pointer to builtin function (C callee-saved) 1051 // r15: pointer to builtin function (C callee-saved)
1020 1052
1021 // Result returned in r0 or r0+r1 by default. 1053 // Result returned in registers or stack, depending on result size and ABI.
1022 1054
1023 #if V8_HOST_ARCH_ARM 1055 Register isolate_reg = r5;
1024 int frame_alignment = MacroAssembler::ActivationFrameAlignment(); 1056 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1025 int frame_alignment_mask = frame_alignment - 1; 1057 if (result_size() > 1) {
1026 if (FLAG_debug_code) { 1058 // The return value is 16-byte non-scalar value.
1027 if (frame_alignment > kPointerSize) { 1059 // Use frame storage reserved by calling function to pass return
1028 Label alignment_as_expected; 1060 // buffer as implicit first argument.
1029 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 1061 __ mr(r5, r4);
1030 __ tst(sp, Operand(frame_alignment_mask)); 1062 __ mr(r4, r3);
1031 __ b(eq, &alignment_as_expected); 1063 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
1032 // Don't use Check here, as it will call Runtime_Abort re-entering here. 1064 isolate_reg = r6;
1033 __ stop("Unexpected alignment");
1034 __ bind(&alignment_as_expected);
1035 }
1036 } 1065 }
1037 #endif 1066 #endif
1038 1067
1039 // Call C built-in. 1068 // Call C built-in.
1040 // r0 = argc, r1 = argv 1069 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate())));
1041 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); 1070
1071 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
1072 // Native AIX/PPC64 Linux use a function descriptor.
1073 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize));
1074 __ LoadP(ip, MemOperand(r15, 0)); // Instruction address
1075 Register target = ip;
1076 #elif ABI_TOC_ADDRESSABILITY_VIA_IP
1077 __ Move(ip, r15);
1078 Register target = ip;
1079 #else
1080 Register target = r15;
1081 #endif
1042 1082
1043 // To let the GC traverse the return address of the exit frames, we need to 1083 // To let the GC traverse the return address of the exit frames, we need to
1044 // know where the return address is. The CEntryStub is unmovable, so 1084 // know where the return address is. The CEntryStub is unmovable, so
1045 // we can store the address on the stack to be able to find it again and 1085 // we can store the address on the stack to be able to find it again and
1046 // we never have to restore it, because it will not change. 1086 // we never have to restore it, because it will not change.
1047 // Compute the return address in lr to return to after the jump below. Pc is 1087 // Compute the return address in lr to return to after the jump below. Pc is
1048 // already at '+ 8' from the current instruction but return is after three 1088 // already at '+ 8' from the current instruction but return is after three
1049 // instructions so add another 4 to pc to get the return address. 1089 // instructions so add another 4 to pc to get the return address.
1050 { 1090 {
1051 // Prevent literal pool emission before return address. 1091 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
1052 Assembler::BlockConstPoolScope block_const_pool(masm); 1092 Label here;
1053 __ add(lr, pc, Operand(4)); 1093 __ b(&here, SetLK);
1054 __ str(lr, MemOperand(sp, 0)); 1094 __ bind(&here);
1055 __ Call(r5); 1095 __ mflr(r8);
1056 } 1096
1057 1097 // Constant used below is dependent on size of Call() macro instructions
1058 __ VFPEnsureFPSCRState(r2); 1098 __ addi(r0, r8, Operand(20));
1099
1100 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
1101 __ Call(target);
1102 }
1103
1104 // roohack - do we need to (re)set FPU state?
1105
1106 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS
1107 // If return value is on the stack, pop it to registers.
1108 if (result_size() > 1) {
1109 __ LoadP(r4, MemOperand(r3, kPointerSize));
1110 __ LoadP(r3, MemOperand(r3));
1111 }
1112 #endif
1059 1113
1060 // Runtime functions should not return 'the hole'. Allowing it to escape may 1114 // Runtime functions should not return 'the hole'. Allowing it to escape may
1061 // lead to crashes in the IC code later. 1115 // lead to crashes in the IC code later.
1062 if (FLAG_debug_code) { 1116 if (FLAG_debug_code) {
1063 Label okay; 1117 Label okay;
1064 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); 1118 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex);
1065 __ b(ne, &okay); 1119 __ bne(&okay);
1066 __ stop("The hole escaped"); 1120 __ stop("The hole escaped");
1067 __ bind(&okay); 1121 __ bind(&okay);
1068 } 1122 }
1069 1123
1070 // Check result for exception sentinel. 1124 // Check result for exception sentinel.
1071 Label exception_returned; 1125 Label exception_returned;
1072 __ CompareRoot(r0, Heap::kExceptionRootIndex); 1126 __ CompareRoot(r3, Heap::kExceptionRootIndex);
1073 __ b(eq, &exception_returned); 1127 __ beq(&exception_returned);
1074 1128
1075 ExternalReference pending_exception_address( 1129 ExternalReference pending_exception_address(Isolate::kPendingExceptionAddress,
1076 Isolate::kPendingExceptionAddress, isolate()); 1130 isolate());
1077 1131
1078 // Check that there is no pending exception, otherwise we 1132 // Check that there is no pending exception, otherwise we
1079 // should have returned the exception sentinel. 1133 // should have returned the exception sentinel.
1080 if (FLAG_debug_code) { 1134 if (FLAG_debug_code) {
1081 Label okay; 1135 Label okay;
1082 __ mov(r2, Operand(pending_exception_address)); 1136 __ mov(r5, Operand(pending_exception_address));
1083 __ ldr(r2, MemOperand(r2)); 1137 __ LoadP(r5, MemOperand(r5));
1084 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); 1138 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex);
1085 // Cannot use check here as it attempts to generate call into runtime. 1139 // Cannot use check here as it attempts to generate call into runtime.
1086 __ b(eq, &okay); 1140 __ beq(&okay);
1087 __ stop("Unexpected pending exception"); 1141 __ stop("Unexpected pending exception");
1088 __ bind(&okay); 1142 __ bind(&okay);
1089 } 1143 }
1090 1144
1091 // Exit C frame and return. 1145 // Exit C frame and return.
1092 // r0:r1: result 1146 // r3:r4: result
1093 // sp: stack pointer 1147 // sp: stack pointer
1094 // fp: frame pointer 1148 // fp: frame pointer
1095 // Callee-saved register r4 still holds argc. 1149 // r14: still holds argc (callee-saved).
1096 __ LeaveExitFrame(save_doubles(), r4, true); 1150 __ LeaveExitFrame(save_doubles(), r14, true);
1097 __ mov(pc, lr); 1151 __ blr();
1098 1152
1099 // Handling of exception. 1153 // Handling of exception.
1100 __ bind(&exception_returned); 1154 __ bind(&exception_returned);
1101 1155
1102 // Retrieve the pending exception. 1156 // Retrieve the pending exception.
1103 __ mov(r2, Operand(pending_exception_address)); 1157 __ mov(r5, Operand(pending_exception_address));
1104 __ ldr(r0, MemOperand(r2)); 1158 __ LoadP(r3, MemOperand(r5));
1105 1159
1106 // Clear the pending exception. 1160 // Clear the pending exception.
1107 __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); 1161 __ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
1108 __ str(r3, MemOperand(r2)); 1162 __ StoreP(r6, MemOperand(r5));
1109 1163
1110 // Special handling of termination exceptions which are uncatchable 1164 // Special handling of termination exceptions which are uncatchable
1111 // by javascript code. 1165 // by javascript code.
1112 Label throw_termination_exception; 1166 Label throw_termination_exception;
1113 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); 1167 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
1114 __ b(eq, &throw_termination_exception); 1168 __ beq(&throw_termination_exception);
1115 1169
1116 // Handle normal exception. 1170 // Handle normal exception.
1117 __ Throw(r0); 1171 __ Throw(r3);
1118 1172
1119 __ bind(&throw_termination_exception); 1173 __ bind(&throw_termination_exception);
1120 __ ThrowUncatchable(r0); 1174 __ ThrowUncatchable(r3);
1121 } 1175 }
1122 1176
1123 1177
1124 void JSEntryStub::Generate(MacroAssembler* masm) { 1178 void JSEntryStub::Generate(MacroAssembler* masm) {
1125 // r0: code entry 1179 // r3: code entry
1126 // r1: function 1180 // r4: function
1127 // r2: receiver 1181 // r5: receiver
1128 // r3: argc 1182 // r6: argc
1129 // [sp+0]: argv 1183 // [sp+0]: argv
1130 1184
1131 Label invoke, handler_entry, exit; 1185 Label invoke, handler_entry, exit;
1132 1186
1187 // Called from C
1188 #if ABI_USES_FUNCTION_DESCRIPTORS
1189 __ function_descriptor();
1190 #endif
1191
1133 ProfileEntryHookStub::MaybeCallEntryHook(masm); 1192 ProfileEntryHookStub::MaybeCallEntryHook(masm);
1134 1193
1135 // Called from C, so do not pop argc and args on exit (preserve sp) 1194 // PPC LINUX ABI:
1136 // No need to save register-passed args 1195 // preserve LR in pre-reserved slot in caller's frame
1137 // Save callee-saved registers (incl. cp and fp), sp, and lr 1196 __ mflr(r0);
1138 __ stm(db_w, sp, kCalleeSaved | lr.bit()); 1197 __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1139 1198
1140 // Save callee-saved vfp registers. 1199 // Save callee saved registers on the stack.
1141 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); 1200 __ MultiPush(kCalleeSaved);
1142 // Set up the reserved register for 0.0. 1201
1143 __ vmov(kDoubleRegZero, 0.0); 1202 // Floating point regs FPR0 - FRP13 are volatile
1144 __ VFPEnsureFPSCRState(r4); 1203 // FPR14-FPR31 are non-volatile, but sub-calls will save them for us
1145 1204
1146 // Get address of argv, see stm above. 1205 // int offset_to_argv = kPointerSize * 22; // matches (22*4) above
1147 // r0: code entry 1206 // __ lwz(r7, MemOperand(sp, offset_to_argv));
1148 // r1: function
1149 // r2: receiver
1150 // r3: argc
1151
1152 // Set up argv in r4.
1153 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
1154 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize;
1155 __ ldr(r4, MemOperand(sp, offset_to_argv));
1156 1207
1157 // Push a frame with special values setup to mark it as an entry frame. 1208 // Push a frame with special values setup to mark it as an entry frame.
1158 // r0: code entry 1209 // r3: code entry
1159 // r1: function 1210 // r4: function
1160 // r2: receiver 1211 // r5: receiver
1161 // r3: argc 1212 // r6: argc
1162 // r4: argv 1213 // r7: argv
1214 __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1215 __ push(r0);
1216 #if V8_OOL_CONSTANT_POOL
1217 __ mov(kConstantPoolRegister,
1218 Operand(isolate()->factory()->empty_constant_pool_array()));
1219 __ push(kConstantPoolRegister);
1220 #endif
1163 int marker = type(); 1221 int marker = type();
1164 if (FLAG_enable_ool_constant_pool) { 1222 __ LoadSmiLiteral(r0, Smi::FromInt(marker));
1165 __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array())); 1223 __ push(r0);
1166 } 1224 __ push(r0);
1167 __ mov(r7, Operand(Smi::FromInt(marker))); 1225 // Save copies of the top frame descriptor on the stack.
1168 __ mov(r6, Operand(Smi::FromInt(marker))); 1226 __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1169 __ mov(r5, 1227 __ LoadP(r0, MemOperand(r8));
1170 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); 1228 __ push(r0);
1171 __ ldr(r5, MemOperand(r5));
1172 __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used.
1173 __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() |
1174 (FLAG_enable_ool_constant_pool ? r8.bit() : 0) |
1175 ip.bit());
1176 1229
1177 // Set up frame pointer for the frame to be pushed. 1230 // Set up frame pointer for the frame to be pushed.
1178 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); 1231 __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1179 1232
1180 // If this is the outermost JS call, set js_entry_sp value. 1233 // If this is the outermost JS call, set js_entry_sp value.
1181 Label non_outermost_js; 1234 Label non_outermost_js;
1182 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); 1235 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate());
1183 __ mov(r5, Operand(ExternalReference(js_entry_sp))); 1236 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1184 __ ldr(r6, MemOperand(r5)); 1237 __ LoadP(r9, MemOperand(r8));
1185 __ cmp(r6, Operand::Zero()); 1238 __ cmpi(r9, Operand::Zero());
1186 __ b(ne, &non_outermost_js); 1239 __ bne(&non_outermost_js);
1187 __ str(fp, MemOperand(r5)); 1240 __ StoreP(fp, MemOperand(r8));
1188 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); 1241 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME));
1189 Label cont; 1242 Label cont;
1190 __ b(&cont); 1243 __ b(&cont);
1191 __ bind(&non_outermost_js); 1244 __ bind(&non_outermost_js);
1192 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); 1245 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME));
1193 __ bind(&cont); 1246 __ bind(&cont);
1194 __ push(ip); 1247 __ push(ip); // frame-type
1195 1248
1196 // Jump to a faked try block that does the invoke, with a faked catch 1249 // Jump to a faked try block that does the invoke, with a faked catch
1197 // block that sets the pending exception. 1250 // block that sets the pending exception.
1198 __ jmp(&invoke); 1251 __ b(&invoke);
1199 1252
1200 // Block literal pool emission whilst taking the position of the handler 1253 __ bind(&handler_entry);
1201 // entry. This avoids making the assumption that literal pools are always 1254 handler_offset_ = handler_entry.pos();
1202 // emitted after an instruction is emitted, rather than before. 1255 // Caught exception: Store result (exception) in the pending exception
1203 { 1256 // field in the JSEnv and return a failure sentinel. Coming in here the
1204 Assembler::BlockConstPoolScope block_const_pool(masm); 1257 // fp will be invalid because the PushTryHandler below sets it to 0 to
1205 __ bind(&handler_entry); 1258 // signal the existence of the JSEntry frame.
1206 handler_offset_ = handler_entry.pos(); 1259 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1207 // Caught exception: Store result (exception) in the pending exception 1260 isolate())));
1208 // field in the JSEnv and return a failure sentinel. Coming in here the 1261
1209 // fp will be invalid because the PushTryHandler below sets it to 0 to 1262 __ StoreP(r3, MemOperand(ip));
1210 // signal the existence of the JSEntry frame. 1263 __ LoadRoot(r3, Heap::kExceptionRootIndex);
1211 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1212 isolate())));
1213 }
1214 __ str(r0, MemOperand(ip));
1215 __ LoadRoot(r0, Heap::kExceptionRootIndex);
1216 __ b(&exit); 1264 __ b(&exit);
1217 1265
1218 // Invoke: Link this frame into the handler chain. There's only one 1266 // Invoke: Link this frame into the handler chain. There's only one
1219 // handler block in this code object, so its index is 0. 1267 // handler block in this code object, so its index is 0.
1220 __ bind(&invoke); 1268 __ bind(&invoke);
1221 // Must preserve r0-r4, r5-r6 are available. 1269 // Must preserve r0-r4, r5-r7 are available. (needs update for PPC)
1222 __ PushTryHandler(StackHandler::JS_ENTRY, 0); 1270 __ PushTryHandler(StackHandler::JS_ENTRY, 0);
1223 // If an exception not caught by another handler occurs, this handler 1271 // If an exception not caught by another handler occurs, this handler
1224 // returns control to the code after the bl(&invoke) above, which 1272 // returns control to the code after the b(&invoke) above, which
1225 // restores all kCalleeSaved registers (including cp and fp) to their 1273 // restores all kCalleeSaved registers (including cp and fp) to their
1226 // saved values before returning a failure to C. 1274 // saved values before returning a failure to C.
1227 1275
1228 // Clear any pending exceptions. 1276 // Clear any pending exceptions.
1229 __ mov(r5, Operand(isolate()->factory()->the_hole_value())); 1277 __ mov(r8, Operand(isolate()->factory()->the_hole_value()));
1230 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, 1278 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
1231 isolate()))); 1279 isolate())));
1232 __ str(r5, MemOperand(ip)); 1280 __ StoreP(r8, MemOperand(ip));
1233 1281
1234 // Invoke the function by calling through JS entry trampoline builtin. 1282 // Invoke the function by calling through JS entry trampoline builtin.
1235 // Notice that we cannot store a reference to the trampoline code directly in 1283 // Notice that we cannot store a reference to the trampoline code directly in
1236 // this stub, because runtime stubs are not traversed when doing GC. 1284 // this stub, because runtime stubs are not traversed when doing GC.
1237 1285
1238 // Expected registers by Builtins::JSEntryTrampoline 1286 // Expected registers by Builtins::JSEntryTrampoline
1239 // r0: code entry 1287 // r3: code entry
1240 // r1: function 1288 // r4: function
1241 // r2: receiver 1289 // r5: receiver
1242 // r3: argc 1290 // r6: argc
1243 // r4: argv 1291 // r7: argv
1244 if (type() == StackFrame::ENTRY_CONSTRUCT) { 1292 if (type() == StackFrame::ENTRY_CONSTRUCT) {
1245 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, 1293 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
1246 isolate()); 1294 isolate());
1247 __ mov(ip, Operand(construct_entry)); 1295 __ mov(ip, Operand(construct_entry));
1248 } else { 1296 } else {
1249 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); 1297 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate());
1250 __ mov(ip, Operand(entry)); 1298 __ mov(ip, Operand(entry));
1251 } 1299 }
1252 __ ldr(ip, MemOperand(ip)); // deref address 1300 __ LoadP(ip, MemOperand(ip)); // deref address
1253 __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1254 1301
1255 // Branch and link to JSEntryTrampoline. 1302 // Branch and link to JSEntryTrampoline.
1256 __ Call(ip); 1303 // the address points to the start of the code object, skip the header
1304 __ addi(r0, ip, Operand(Code::kHeaderSize - kHeapObjectTag));
1305 __ mtlr(r0);
1306 __ bclr(BA, SetLK); // make the call
1257 1307
1258 // Unlink this frame from the handler chain. 1308 // Unlink this frame from the handler chain.
1259 __ PopTryHandler(); 1309 __ PopTryHandler();
1260 1310
1261 __ bind(&exit); // r0 holds result 1311 __ bind(&exit); // r3 holds result
1262 // Check if the current stack frame is marked as the outermost JS frame. 1312 // Check if the current stack frame is marked as the outermost JS frame.
1263 Label non_outermost_js_2; 1313 Label non_outermost_js_2;
1264 __ pop(r5); 1314 __ pop(r8);
1265 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); 1315 __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0);
1266 __ b(ne, &non_outermost_js_2); 1316 __ bne(&non_outermost_js_2);
1267 __ mov(r6, Operand::Zero()); 1317 __ mov(r9, Operand::Zero());
1268 __ mov(r5, Operand(ExternalReference(js_entry_sp))); 1318 __ mov(r8, Operand(ExternalReference(js_entry_sp)));
1269 __ str(r6, MemOperand(r5)); 1319 __ StoreP(r9, MemOperand(r8));
1270 __ bind(&non_outermost_js_2); 1320 __ bind(&non_outermost_js_2);
1271 1321
1272 // Restore the top frame descriptors from the stack. 1322 // Restore the top frame descriptors from the stack.
1273 __ pop(r3); 1323 __ pop(r6);
1274 __ mov(ip, 1324 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate())));
1275 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); 1325 __ StoreP(r6, MemOperand(ip));
1276 __ str(r3, MemOperand(ip));
1277 1326
1278 // Reset the stack to the callee saved registers. 1327 // Reset the stack to the callee saved registers.
1279 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); 1328 __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
1280 1329
1281 // Restore callee-saved registers and return. 1330 // Restore callee-saved registers and return.
1282 #ifdef DEBUG 1331 #ifdef DEBUG
1283 if (FLAG_debug_code) { 1332 if (FLAG_debug_code) {
1284 __ mov(lr, Operand(pc)); 1333 Label here;
1334 __ b(&here, SetLK);
1335 __ bind(&here);
1285 } 1336 }
1286 #endif 1337 #endif
1287 1338
1288 // Restore callee-saved vfp registers. 1339 __ MultiPop(kCalleeSaved);
1289 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
1290 1340
1291 __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); 1341 __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize));
1342 __ mtctr(r0);
1343 __ bctr();
1292 } 1344 }
1293 1345
1294 1346
1295 // Uses registers r0 to r4. 1347 // Uses registers r3 to r7.
1296 // Expected input (depending on whether args are in registers or on the stack): 1348 // Expected input (depending on whether args are in registers or on the stack):
1297 // * object: r0 or at sp + 1 * kPointerSize. 1349 // * object: r3 or at sp + 1 * kPointerSize.
1298 // * function: r1 or at sp. 1350 // * function: r4 or at sp.
1299 // 1351 //
1300 // An inlined call site may have been generated before calling this stub. 1352 // An inlined call site may have been generated before calling this stub.
1301 // In this case the offset to the inline sites to patch are passed in r5 and r6. 1353 // In this case the offset to the inline site to patch is passed in r8.
1302 // (See LCodeGen::DoInstanceOfKnownGlobal) 1354 // (See LCodeGen::DoInstanceOfKnownGlobal)
1303 void InstanceofStub::Generate(MacroAssembler* masm) { 1355 void InstanceofStub::Generate(MacroAssembler* masm) {
1304 // Call site inlining and patching implies arguments in registers. 1356 // Call site inlining and patching implies arguments in registers.
1305 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck()); 1357 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck());
1306 1358
1307 // Fixed register usage throughout the stub: 1359 // Fixed register usage throughout the stub:
1308 const Register object = r0; // Object (lhs). 1360 const Register object = r3; // Object (lhs).
1309 Register map = r3; // Map of the object. 1361 Register map = r6; // Map of the object.
1310 const Register function = r1; // Function (rhs). 1362 const Register function = r4; // Function (rhs).
1311 const Register prototype = r4; // Prototype of the function. 1363 const Register prototype = r7; // Prototype of the function.
1312 const Register scratch = r2; 1364 const Register inline_site = r9;
1365 const Register scratch = r5;
1366 Register scratch3 = no_reg;
1367
1368 // delta = mov + unaligned LoadP + cmp + bne
1369 #if V8_TARGET_ARCH_PPC64
1370 const int32_t kDeltaToLoadBoolResult =
1371 (Assembler::kMovInstructions + 4) * Assembler::kInstrSize;
1372 #else
1373 const int32_t kDeltaToLoadBoolResult =
1374 (Assembler::kMovInstructions + 3) * Assembler::kInstrSize;
1375 #endif
1313 1376
1314 Label slow, loop, is_instance, is_not_instance, not_js_object; 1377 Label slow, loop, is_instance, is_not_instance, not_js_object;
1315 1378
1316 if (!HasArgsInRegisters()) { 1379 if (!HasArgsInRegisters()) {
1317 __ ldr(object, MemOperand(sp, 1 * kPointerSize)); 1380 __ LoadP(object, MemOperand(sp, 1 * kPointerSize));
1318 __ ldr(function, MemOperand(sp, 0)); 1381 __ LoadP(function, MemOperand(sp, 0));
1319 } 1382 }
1320 1383
1321 // Check that the left hand is a JS object and load map. 1384 // Check that the left hand is a JS object and load map.
1322 __ JumpIfSmi(object, &not_js_object); 1385 __ JumpIfSmi(object, &not_js_object);
1323 __ IsObjectJSObjectType(object, map, scratch, &not_js_object); 1386 __ IsObjectJSObjectType(object, map, scratch, &not_js_object);
1324 1387
1325 // If there is a call site cache don't look in the global cache, but do the 1388 // If there is a call site cache don't look in the global cache, but do the
1326 // real lookup and update the call site cache. 1389 // real lookup and update the call site cache.
1327 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) { 1390 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) {
1328 Label miss; 1391 Label miss;
1329 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); 1392 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1330 __ b(ne, &miss); 1393 __ bne(&miss);
1331 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); 1394 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex);
1332 __ b(ne, &miss); 1395 __ bne(&miss);
1333 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 1396 __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
1334 __ Ret(HasArgsInRegisters() ? 0 : 2); 1397 __ Ret(HasArgsInRegisters() ? 0 : 2);
1335 1398
1336 __ bind(&miss); 1399 __ bind(&miss);
1337 } 1400 }
1338 1401
1339 // Get the prototype of the function. 1402 // Get the prototype of the function.
1340 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); 1403 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
1341 1404
1342 // Check that the function prototype is a JS object. 1405 // Check that the function prototype is a JS object.
1343 __ JumpIfSmi(prototype, &slow); 1406 __ JumpIfSmi(prototype, &slow);
1344 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); 1407 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
1345 1408
1346 // Update the global instanceof or call site inlined cache with the current 1409 // Update the global instanceof or call site inlined cache with the current
1347 // map and function. The cached answer will be set when it is known below. 1410 // map and function. The cached answer will be set when it is known below.
1348 if (!HasCallSiteInlineCheck()) { 1411 if (!HasCallSiteInlineCheck()) {
1349 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); 1412 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
1350 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); 1413 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
1351 } else { 1414 } else {
1352 DCHECK(HasArgsInRegisters()); 1415 DCHECK(HasArgsInRegisters());
1353 // Patch the (relocated) inlined map check. 1416 // Patch the (relocated) inlined map check.
1354 1417
1355 // The map_load_offset was stored in r5 1418 // The offset was stored in r8
1356 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). 1419 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1357 const Register map_load_offset = r5; 1420 const Register offset = r8;
1358 __ sub(r9, lr, map_load_offset); 1421 __ mflr(inline_site);
1359 // Get the map location in r5 and patch it. 1422 __ sub(inline_site, inline_site, offset);
1360 __ GetRelocatedValueLocation(r9, map_load_offset, scratch); 1423 // Get the map location in r8 and patch it.
1361 __ ldr(map_load_offset, MemOperand(map_load_offset)); 1424 __ GetRelocatedValue(inline_site, offset, scratch);
1362 __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset)); 1425 __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0);
1363 } 1426 }
1364 1427
1365 // Register mapping: r3 is object map and r4 is function prototype. 1428 // Register mapping: r6 is object map and r7 is function prototype.
1366 // Get prototype of object into r2. 1429 // Get prototype of object into r5.
1367 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); 1430 __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
1368 1431
1369 // We don't need map any more. Use it as a scratch register. 1432 // We don't need map any more. Use it as a scratch register.
1370 Register scratch2 = map; 1433 scratch3 = map;
1371 map = no_reg; 1434 map = no_reg;
1372 1435
1373 // Loop through the prototype chain looking for the function prototype. 1436 // Loop through the prototype chain looking for the function prototype.
1374 __ LoadRoot(scratch2, Heap::kNullValueRootIndex); 1437 __ LoadRoot(scratch3, Heap::kNullValueRootIndex);
1375 __ bind(&loop); 1438 __ bind(&loop);
1376 __ cmp(scratch, Operand(prototype)); 1439 __ cmp(scratch, prototype);
1377 __ b(eq, &is_instance); 1440 __ beq(&is_instance);
1378 __ cmp(scratch, scratch2); 1441 __ cmp(scratch, scratch3);
1379 __ b(eq, &is_not_instance); 1442 __ beq(&is_not_instance);
1380 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); 1443 __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
1381 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); 1444 __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
1382 __ jmp(&loop); 1445 __ b(&loop);
1383 Factory* factory = isolate()->factory(); 1446 Factory* factory = isolate()->factory();
1384 1447
1385 __ bind(&is_instance); 1448 __ bind(&is_instance);
1386 if (!HasCallSiteInlineCheck()) { 1449 if (!HasCallSiteInlineCheck()) {
1387 __ mov(r0, Operand(Smi::FromInt(0))); 1450 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1388 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 1451 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
1389 if (ReturnTrueFalseObject()) { 1452 if (ReturnTrueFalseObject()) {
1390 __ Move(r0, factory->true_value()); 1453 __ Move(r3, factory->true_value());
1391 } 1454 }
1392 } else { 1455 } else {
1393 // Patch the call site to return true. 1456 // Patch the call site to return true.
1394 __ LoadRoot(r0, Heap::kTrueValueRootIndex); 1457 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
1395 // The bool_load_offset was stored in r6 1458 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1396 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1397 const Register bool_load_offset = r6;
1398 __ sub(r9, lr, bool_load_offset);
1399 // Get the boolean result location in scratch and patch it. 1459 // Get the boolean result location in scratch and patch it.
1400 __ GetRelocatedValueLocation(r9, scratch, scratch2); 1460 __ SetRelocatedValue(inline_site, scratch, r3);
1401 __ str(r0, MemOperand(scratch));
1402 1461
1403 if (!ReturnTrueFalseObject()) { 1462 if (!ReturnTrueFalseObject()) {
1404 __ mov(r0, Operand(Smi::FromInt(0))); 1463 __ LoadSmiLiteral(r3, Smi::FromInt(0));
1405 } 1464 }
1406 } 1465 }
1407 __ Ret(HasArgsInRegisters() ? 0 : 2); 1466 __ Ret(HasArgsInRegisters() ? 0 : 2);
1408 1467
1409 __ bind(&is_not_instance); 1468 __ bind(&is_not_instance);
1410 if (!HasCallSiteInlineCheck()) { 1469 if (!HasCallSiteInlineCheck()) {
1411 __ mov(r0, Operand(Smi::FromInt(1))); 1470 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1412 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); 1471 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex);
1413 if (ReturnTrueFalseObject()) { 1472 if (ReturnTrueFalseObject()) {
1414 __ Move(r0, factory->false_value()); 1473 __ Move(r3, factory->false_value());
1415 } 1474 }
1416 } else { 1475 } else {
1417 // Patch the call site to return false. 1476 // Patch the call site to return false.
1418 __ LoadRoot(r0, Heap::kFalseValueRootIndex); 1477 __ LoadRoot(r3, Heap::kFalseValueRootIndex);
1419 // The bool_load_offset was stored in r6 1478 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
1420 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal).
1421 const Register bool_load_offset = r6;
1422 __ sub(r9, lr, bool_load_offset);
1423 ;
1424 // Get the boolean result location in scratch and patch it. 1479 // Get the boolean result location in scratch and patch it.
1425 __ GetRelocatedValueLocation(r9, scratch, scratch2); 1480 __ SetRelocatedValue(inline_site, scratch, r3);
1426 __ str(r0, MemOperand(scratch));
1427 1481
1428 if (!ReturnTrueFalseObject()) { 1482 if (!ReturnTrueFalseObject()) {
1429 __ mov(r0, Operand(Smi::FromInt(1))); 1483 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1430 } 1484 }
1431 } 1485 }
1432 __ Ret(HasArgsInRegisters() ? 0 : 2); 1486 __ Ret(HasArgsInRegisters() ? 0 : 2);
1433 1487
1434 Label object_not_null, object_not_null_or_smi; 1488 Label object_not_null, object_not_null_or_smi;
1435 __ bind(&not_js_object); 1489 __ bind(&not_js_object);
1436 // Before null, smi and string value checks, check that the rhs is a function 1490 // Before null, smi and string value checks, check that the rhs is a function
1437 // as for a non-function rhs an exception needs to be thrown. 1491 // as for a non-function rhs an exception needs to be thrown.
1438 __ JumpIfSmi(function, &slow); 1492 __ JumpIfSmi(function, &slow);
1439 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); 1493 __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE);
1440 __ b(ne, &slow); 1494 __ bne(&slow);
1441 1495
1442 // Null is not instance of anything. 1496 // Null is not instance of anything.
1443 __ cmp(scratch, Operand(isolate()->factory()->null_value())); 1497 __ Cmpi(scratch, Operand(isolate()->factory()->null_value()), r0);
1444 __ b(ne, &object_not_null); 1498 __ bne(&object_not_null);
1445 if (ReturnTrueFalseObject()) { 1499 if (ReturnTrueFalseObject()) {
1446 __ Move(r0, factory->false_value()); 1500 __ Move(r3, factory->false_value());
1447 } else { 1501 } else {
1448 __ mov(r0, Operand(Smi::FromInt(1))); 1502 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1449 } 1503 }
1450 __ Ret(HasArgsInRegisters() ? 0 : 2); 1504 __ Ret(HasArgsInRegisters() ? 0 : 2);
1451 1505
1452 __ bind(&object_not_null); 1506 __ bind(&object_not_null);
1453 // Smi values are not instances of anything. 1507 // Smi values are not instances of anything.
1454 __ JumpIfNotSmi(object, &object_not_null_or_smi); 1508 __ JumpIfNotSmi(object, &object_not_null_or_smi);
1455 if (ReturnTrueFalseObject()) { 1509 if (ReturnTrueFalseObject()) {
1456 __ Move(r0, factory->false_value()); 1510 __ Move(r3, factory->false_value());
1457 } else { 1511 } else {
1458 __ mov(r0, Operand(Smi::FromInt(1))); 1512 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1459 } 1513 }
1460 __ Ret(HasArgsInRegisters() ? 0 : 2); 1514 __ Ret(HasArgsInRegisters() ? 0 : 2);
1461 1515
1462 __ bind(&object_not_null_or_smi); 1516 __ bind(&object_not_null_or_smi);
1463 // String values are not instances of anything. 1517 // String values are not instances of anything.
1464 __ IsObjectJSStringType(object, scratch, &slow); 1518 __ IsObjectJSStringType(object, scratch, &slow);
1465 if (ReturnTrueFalseObject()) { 1519 if (ReturnTrueFalseObject()) {
1466 __ Move(r0, factory->false_value()); 1520 __ Move(r3, factory->false_value());
1467 } else { 1521 } else {
1468 __ mov(r0, Operand(Smi::FromInt(1))); 1522 __ LoadSmiLiteral(r3, Smi::FromInt(1));
1469 } 1523 }
1470 __ Ret(HasArgsInRegisters() ? 0 : 2); 1524 __ Ret(HasArgsInRegisters() ? 0 : 2);
1471 1525
1472 // Slow-case. Tail call builtin. 1526 // Slow-case. Tail call builtin.
1473 __ bind(&slow); 1527 __ bind(&slow);
1474 if (!ReturnTrueFalseObject()) { 1528 if (!ReturnTrueFalseObject()) {
1475 if (HasArgsInRegisters()) { 1529 if (HasArgsInRegisters()) {
1476 __ Push(r0, r1); 1530 __ Push(r3, r4);
1477 } 1531 }
1478 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); 1532 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
1479 } else { 1533 } else {
1480 { 1534 {
1481 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); 1535 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1482 __ Push(r0, r1); 1536 __ Push(r3, r4);
1483 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); 1537 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
1484 } 1538 }
1485 __ cmp(r0, Operand::Zero()); 1539 Label true_value, done;
1486 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); 1540 __ cmpi(r3, Operand::Zero());
1487 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); 1541 __ beq(&true_value);
1542
1543 __ LoadRoot(r3, Heap::kFalseValueRootIndex);
1544 __ b(&done);
1545
1546 __ bind(&true_value);
1547 __ LoadRoot(r3, Heap::kTrueValueRootIndex);
1548
1549 __ bind(&done);
1488 __ Ret(HasArgsInRegisters() ? 0 : 2); 1550 __ Ret(HasArgsInRegisters() ? 0 : 2);
1489 } 1551 }
1490 } 1552 }
1491 1553
1492 1554
1493 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { 1555 void FunctionPrototypeStub::Generate(MacroAssembler* masm) {
1494 Label miss; 1556 Label miss;
1495 Register receiver = LoadDescriptor::ReceiverRegister(); 1557 Register receiver = LoadDescriptor::ReceiverRegister();
1496 1558
1497 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, 1559 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6,
1498 r4, &miss); 1560 r7, &miss);
1499 __ bind(&miss); 1561 __ bind(&miss);
1500 PropertyAccessCompiler::TailCallBuiltin( 1562 PropertyAccessCompiler::TailCallBuiltin(
1501 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); 1563 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC));
1502 } 1564 }
1503 1565
1504 1566
1505 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { 1567 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
1506 // The displacement is the offset of the last parameter (if any) 1568 // The displacement is the offset of the last parameter (if any)
1507 // relative to the frame pointer. 1569 // relative to the frame pointer.
1508 const int kDisplacement = 1570 const int kDisplacement =
1509 StandardFrameConstants::kCallerSPOffset - kPointerSize; 1571 StandardFrameConstants::kCallerSPOffset - kPointerSize;
1510 DCHECK(r1.is(ArgumentsAccessReadDescriptor::index())); 1572 DCHECK(r4.is(ArgumentsAccessReadDescriptor::index()));
1511 DCHECK(r0.is(ArgumentsAccessReadDescriptor::parameter_count())); 1573 DCHECK(r3.is(ArgumentsAccessReadDescriptor::parameter_count()));
1512 1574
1513 // Check that the key is a smi. 1575 // Check that the key is a smi.
1514 Label slow; 1576 Label slow;
1515 __ JumpIfNotSmi(r1, &slow); 1577 __ JumpIfNotSmi(r4, &slow);
1516 1578
1517 // Check if the calling frame is an arguments adaptor frame. 1579 // Check if the calling frame is an arguments adaptor frame.
1518 Label adaptor; 1580 Label adaptor;
1519 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1581 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1520 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 1582 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
1521 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 1583 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1522 __ b(eq, &adaptor); 1584 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1585 __ beq(&adaptor);
1523 1586
1524 // Check index against formal parameters count limit passed in 1587 // Check index against formal parameters count limit passed in
1525 // through register r0. Use unsigned comparison to get negative 1588 // through register r3. Use unsigned comparison to get negative
1526 // check for free. 1589 // check for free.
1527 __ cmp(r1, r0); 1590 __ cmpl(r4, r3);
1528 __ b(hs, &slow); 1591 __ bge(&slow);
1529 1592
1530 // Read the argument from the stack and return it. 1593 // Read the argument from the stack and return it.
1531 __ sub(r3, r0, r1); 1594 __ sub(r6, r3, r4);
1532 __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3)); 1595 __ SmiToPtrArrayOffset(r6, r6);
1533 __ ldr(r0, MemOperand(r3, kDisplacement)); 1596 __ add(r6, fp, r6);
1534 __ Jump(lr); 1597 __ LoadP(r3, MemOperand(r6, kDisplacement));
1598 __ blr();
1535 1599
1536 // Arguments adaptor case: Check index against actual arguments 1600 // Arguments adaptor case: Check index against actual arguments
1537 // limit found in the arguments adaptor frame. Use unsigned 1601 // limit found in the arguments adaptor frame. Use unsigned
1538 // comparison to get negative check for free. 1602 // comparison to get negative check for free.
1539 __ bind(&adaptor); 1603 __ bind(&adaptor);
1540 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); 1604 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
1541 __ cmp(r1, r0); 1605 __ cmpl(r4, r3);
1542 __ b(cs, &slow); 1606 __ bge(&slow);
1543 1607
1544 // Read the argument from the adaptor frame and return it. 1608 // Read the argument from the adaptor frame and return it.
1545 __ sub(r3, r0, r1); 1609 __ sub(r6, r3, r4);
1546 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3)); 1610 __ SmiToPtrArrayOffset(r6, r6);
1547 __ ldr(r0, MemOperand(r3, kDisplacement)); 1611 __ add(r6, r5, r6);
1548 __ Jump(lr); 1612 __ LoadP(r3, MemOperand(r6, kDisplacement));
1613 __ blr();
1549 1614
1550 // Slow-case: Handle non-smi or out-of-bounds access to arguments 1615 // Slow-case: Handle non-smi or out-of-bounds access to arguments
1551 // by calling the runtime system. 1616 // by calling the runtime system.
1552 __ bind(&slow); 1617 __ bind(&slow);
1553 __ push(r1); 1618 __ push(r4);
1554 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); 1619 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
1555 } 1620 }
1556 1621
1557 1622
1558 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { 1623 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) {
1559 // sp[0] : number of parameters 1624 // sp[0] : number of parameters
1560 // sp[4] : receiver displacement 1625 // sp[1] : receiver displacement
1561 // sp[8] : function 1626 // sp[2] : function
1562 1627
1563 // Check if the calling frame is an arguments adaptor frame. 1628 // Check if the calling frame is an arguments adaptor frame.
1564 Label runtime; 1629 Label runtime;
1565 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1630 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1566 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); 1631 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
1567 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 1632 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1568 __ b(ne, &runtime); 1633 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1634 __ bne(&runtime);
1569 1635
1570 // Patch the arguments.length and the parameters pointer in the current frame. 1636 // Patch the arguments.length and the parameters pointer in the current frame.
1571 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); 1637 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
1572 __ str(r2, MemOperand(sp, 0 * kPointerSize)); 1638 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize));
1573 __ add(r3, r3, Operand(r2, LSL, 1)); 1639 __ SmiToPtrArrayOffset(r5, r5);
1574 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); 1640 __ add(r6, r6, r5);
1575 __ str(r3, MemOperand(sp, 1 * kPointerSize)); 1641 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
1642 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
1576 1643
1577 __ bind(&runtime); 1644 __ bind(&runtime);
1578 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); 1645 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1579 } 1646 }
1580 1647
1581 1648
1582 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { 1649 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) {
1583 // Stack layout: 1650 // Stack layout:
1584 // sp[0] : number of parameters (tagged) 1651 // sp[0] : number of parameters (tagged)
1585 // sp[4] : address of receiver argument 1652 // sp[1] : address of receiver argument
1586 // sp[8] : function 1653 // sp[2] : function
1587 // Registers used over whole function: 1654 // Registers used over whole function:
1588 // r6 : allocated object (tagged) 1655 // r9 : allocated object (tagged)
1589 // r9 : mapped parameter count (tagged) 1656 // r11 : mapped parameter count (tagged)
1590 1657
1591 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); 1658 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
1592 // r1 = parameter count (tagged) 1659 // r4 = parameter count (tagged)
1593 1660
1594 // Check if the calling frame is an arguments adaptor frame. 1661 // Check if the calling frame is an arguments adaptor frame.
1595 Label runtime; 1662 Label runtime;
1596 Label adaptor_frame, try_allocate; 1663 Label adaptor_frame, try_allocate;
1597 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1664 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1598 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); 1665 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset));
1599 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 1666 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1600 __ b(eq, &adaptor_frame); 1667 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1668 __ beq(&adaptor_frame);
1601 1669
1602 // No adaptor, parameter count = argument count. 1670 // No adaptor, parameter count = argument count.
1603 __ mov(r2, r1); 1671 __ mr(r5, r4);
1604 __ b(&try_allocate); 1672 __ b(&try_allocate);
1605 1673
1606 // We have an adaptor frame. Patch the parameters pointer. 1674 // We have an adaptor frame. Patch the parameters pointer.
1607 __ bind(&adaptor_frame); 1675 __ bind(&adaptor_frame);
1608 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); 1676 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset));
1609 __ add(r3, r3, Operand(r2, LSL, 1)); 1677 __ SmiToPtrArrayOffset(r7, r5);
1610 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); 1678 __ add(r6, r6, r7);
1611 __ str(r3, MemOperand(sp, 1 * kPointerSize)); 1679 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
1680 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
1612 1681
1613 // r1 = parameter count (tagged) 1682 // r4 = parameter count (tagged)
1614 // r2 = argument count (tagged) 1683 // r5 = argument count (tagged)
1615 // Compute the mapped parameter count = min(r1, r2) in r1. 1684 // Compute the mapped parameter count = min(r4, r5) in r4.
1616 __ cmp(r1, Operand(r2)); 1685 Label skip;
1617 __ mov(r1, Operand(r2), LeaveCC, gt); 1686 __ cmp(r4, r5);
1687 __ blt(&skip);
1688 __ mr(r4, r5);
1689 __ bind(&skip);
1618 1690
1619 __ bind(&try_allocate); 1691 __ bind(&try_allocate);
1620 1692
1621 // Compute the sizes of backing store, parameter map, and arguments object. 1693 // Compute the sizes of backing store, parameter map, and arguments object.
1622 // 1. Parameter map, has 2 extra words containing context and backing store. 1694 // 1. Parameter map, has 2 extra words containing context and backing store.
1623 const int kParameterMapHeaderSize = 1695 const int kParameterMapHeaderSize =
1624 FixedArray::kHeaderSize + 2 * kPointerSize; 1696 FixedArray::kHeaderSize + 2 * kPointerSize;
1625 // If there are no mapped parameters, we do not need the parameter_map. 1697 // If there are no mapped parameters, we do not need the parameter_map.
1626 __ cmp(r1, Operand(Smi::FromInt(0))); 1698 Label skip2, skip3;
1627 __ mov(r9, Operand::Zero(), LeaveCC, eq); 1699 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
1628 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne); 1700 __ bne(&skip2);
1629 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne); 1701 __ li(r11, Operand::Zero());
1702 __ b(&skip3);
1703 __ bind(&skip2);
1704 __ SmiToPtrArrayOffset(r11, r4);
1705 __ addi(r11, r11, Operand(kParameterMapHeaderSize));
1706 __ bind(&skip3);
1630 1707
1631 // 2. Backing store. 1708 // 2. Backing store.
1632 __ add(r9, r9, Operand(r2, LSL, 1)); 1709 __ SmiToPtrArrayOffset(r7, r5);
1633 __ add(r9, r9, Operand(FixedArray::kHeaderSize)); 1710 __ add(r11, r11, r7);
1711 __ addi(r11, r11, Operand(FixedArray::kHeaderSize));
1634 1712
1635 // 3. Arguments object. 1713 // 3. Arguments object.
1636 __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize)); 1714 __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize));
1637 1715
1638 // Do the allocation of all three objects in one go. 1716 // Do the allocation of all three objects in one go.
1639 __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT); 1717 __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT);
1640 1718
1641 // r0 = address of new object(s) (tagged) 1719 // r3 = address of new object(s) (tagged)
1642 // r2 = argument count (smi-tagged) 1720 // r5 = argument count (smi-tagged)
1643 // Get the arguments boilerplate from the current native context into r4. 1721 // Get the arguments boilerplate from the current native context into r4.
1644 const int kNormalOffset = 1722 const int kNormalOffset =
1645 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); 1723 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX);
1646 const int kAliasedOffset = 1724 const int kAliasedOffset =
1647 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); 1725 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX);
1648 1726
1649 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 1727 __ LoadP(r7,
1650 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); 1728 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1651 __ cmp(r1, Operand::Zero()); 1729 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
1652 __ ldr(r4, MemOperand(r4, kNormalOffset), eq); 1730 Label skip4, skip5;
1653 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne); 1731 __ cmpi(r4, Operand::Zero());
1732 __ bne(&skip4);
1733 __ LoadP(r7, MemOperand(r7, kNormalOffset));
1734 __ b(&skip5);
1735 __ bind(&skip4);
1736 __ LoadP(r7, MemOperand(r7, kAliasedOffset));
1737 __ bind(&skip5);
1654 1738
1655 // r0 = address of new object (tagged) 1739 // r3 = address of new object (tagged)
1656 // r1 = mapped parameter count (tagged) 1740 // r4 = mapped parameter count (tagged)
1657 // r2 = argument count (smi-tagged) 1741 // r5 = argument count (smi-tagged)
1658 // r4 = address of arguments map (tagged) 1742 // r7 = address of arguments map (tagged)
1659 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); 1743 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
1660 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); 1744 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
1661 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 1745 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
1662 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); 1746 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1663 1747
1664 // Set up the callee in-object property. 1748 // Set up the callee in-object property.
1665 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); 1749 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
1666 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); 1750 __ LoadP(r6, MemOperand(sp, 2 * kPointerSize));
1667 __ AssertNotSmi(r3); 1751 __ AssertNotSmi(r6);
1668 const int kCalleeOffset = JSObject::kHeaderSize + 1752 const int kCalleeOffset =
1669 Heap::kArgumentsCalleeIndex * kPointerSize; 1753 JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize;
1670 __ str(r3, FieldMemOperand(r0, kCalleeOffset)); 1754 __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0);
1671 1755
1672 // Use the length (smi tagged) and set that as an in-object property too. 1756 // Use the length (smi tagged) and set that as an in-object property too.
1673 __ AssertSmi(r2); 1757 __ AssertSmi(r5);
1674 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); 1758 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1675 const int kLengthOffset = JSObject::kHeaderSize + 1759 const int kLengthOffset =
1676 Heap::kArgumentsLengthIndex * kPointerSize; 1760 JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize;
1677 __ str(r2, FieldMemOperand(r0, kLengthOffset)); 1761 __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0);
1678 1762
1679 // Set up the elements pointer in the allocated arguments object. 1763 // Set up the elements pointer in the allocated arguments object.
1680 // If we allocated a parameter map, r4 will point there, otherwise 1764 // If we allocated a parameter map, r7 will point there, otherwise
1681 // it will point to the backing store. 1765 // it will point to the backing store.
1682 __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize)); 1766 __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize));
1683 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); 1767 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1684 1768
1685 // r0 = address of new object (tagged) 1769 // r3 = address of new object (tagged)
1686 // r1 = mapped parameter count (tagged) 1770 // r4 = mapped parameter count (tagged)
1687 // r2 = argument count (tagged) 1771 // r5 = argument count (tagged)
1688 // r4 = address of parameter map or backing store (tagged) 1772 // r7 = address of parameter map or backing store (tagged)
1689 // Initialize parameter map. If there are no mapped arguments, we're done. 1773 // Initialize parameter map. If there are no mapped arguments, we're done.
1690 Label skip_parameter_map; 1774 Label skip_parameter_map, skip6;
1691 __ cmp(r1, Operand(Smi::FromInt(0))); 1775 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0);
1692 // Move backing store address to r3, because it is 1776 __ bne(&skip6);
1777 // Move backing store address to r6, because it is
1693 // expected there when filling in the unmapped arguments. 1778 // expected there when filling in the unmapped arguments.
1694 __ mov(r3, r4, LeaveCC, eq); 1779 __ mr(r6, r7);
1695 __ b(eq, &skip_parameter_map); 1780 __ b(&skip_parameter_map);
1781 __ bind(&skip6);
1696 1782
1697 __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex); 1783 __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex);
1698 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset)); 1784 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
1699 __ add(r6, r1, Operand(Smi::FromInt(2))); 1785 __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0);
1700 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); 1786 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
1701 __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize)); 1787 __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize),
1702 __ add(r6, r4, Operand(r1, LSL, 1)); 1788 r0);
1703 __ add(r6, r6, Operand(kParameterMapHeaderSize)); 1789 __ SmiToPtrArrayOffset(r9, r4);
1704 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize)); 1790 __ add(r9, r7, r9);
1791 __ addi(r9, r9, Operand(kParameterMapHeaderSize));
1792 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize),
1793 r0);
1705 1794
1706 // Copy the parameter slots and the holes in the arguments. 1795 // Copy the parameter slots and the holes in the arguments.
1707 // We need to fill in mapped_parameter_count slots. They index the context, 1796 // We need to fill in mapped_parameter_count slots. They index the context,
1708 // where parameters are stored in reverse order, at 1797 // where parameters are stored in reverse order, at
1709 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 1798 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
1710 // The mapped parameter thus need to get indices 1799 // The mapped parameter thus need to get indices
1711 // MIN_CONTEXT_SLOTS+parameter_count-1 .. 1800 // MIN_CONTEXT_SLOTS+parameter_count-1 ..
1712 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count 1801 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
1713 // We loop from right to left. 1802 // We loop from right to left.
1714 Label parameters_loop, parameters_test; 1803 Label parameters_loop, parameters_test;
1715 __ mov(r6, r1); 1804 __ mr(r9, r4);
1716 __ ldr(r9, MemOperand(sp, 0 * kPointerSize)); 1805 __ LoadP(r11, MemOperand(sp, 0 * kPointerSize));
1717 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); 1806 __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0);
1718 __ sub(r9, r9, Operand(r1)); 1807 __ sub(r11, r11, r4);
1719 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); 1808 __ LoadRoot(r10, Heap::kTheHoleValueRootIndex);
1720 __ add(r3, r4, Operand(r6, LSL, 1)); 1809 __ SmiToPtrArrayOffset(r6, r9);
1721 __ add(r3, r3, Operand(kParameterMapHeaderSize)); 1810 __ add(r6, r7, r6);
1811 __ addi(r6, r6, Operand(kParameterMapHeaderSize));
1722 1812
1723 // r6 = loop variable (tagged) 1813 // r9 = loop variable (tagged)
1724 // r1 = mapping index (tagged) 1814 // r4 = mapping index (tagged)
1725 // r3 = address of backing store (tagged) 1815 // r6 = address of backing store (tagged)
1726 // r4 = address of parameter map (tagged), which is also the address of new 1816 // r7 = address of parameter map (tagged)
1727 // object + Heap::kSloppyArgumentsObjectSize (tagged) 1817 // r8 = temporary scratch (a.o., for address calculation)
1728 // r0 = temporary scratch (a.o., for address calculation) 1818 // r10 = the hole value
1729 // r5 = the hole value 1819 __ b(&parameters_test);
1730 __ jmp(&parameters_test);
1731 1820
1732 __ bind(&parameters_loop); 1821 __ bind(&parameters_loop);
1733 __ sub(r6, r6, Operand(Smi::FromInt(1))); 1822 __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0);
1734 __ mov(r0, Operand(r6, LSL, 1)); 1823 __ SmiToPtrArrayOffset(r8, r9);
1735 __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag)); 1824 __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag));
1736 __ str(r9, MemOperand(r4, r0)); 1825 __ StorePX(r11, MemOperand(r8, r7));
1737 __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); 1826 __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
1738 __ str(r5, MemOperand(r3, r0)); 1827 __ StorePX(r10, MemOperand(r8, r6));
1739 __ add(r9, r9, Operand(Smi::FromInt(1))); 1828 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
1740 __ bind(&parameters_test); 1829 __ bind(&parameters_test);
1741 __ cmp(r6, Operand(Smi::FromInt(0))); 1830 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0);
1742 __ b(ne, &parameters_loop); 1831 __ bne(&parameters_loop);
1743
1744 // Restore r0 = new object (tagged)
1745 __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize));
1746 1832
1747 __ bind(&skip_parameter_map); 1833 __ bind(&skip_parameter_map);
1748 // r0 = address of new object (tagged) 1834 // r5 = argument count (tagged)
1749 // r2 = argument count (tagged) 1835 // r6 = address of backing store (tagged)
1750 // r3 = address of backing store (tagged) 1836 // r8 = scratch
1751 // r5 = scratch
1752 // Copy arguments header and remaining slots (if there are any). 1837 // Copy arguments header and remaining slots (if there are any).
1753 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex); 1838 __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex);
1754 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset)); 1839 __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0);
1755 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset)); 1840 __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0);
1756 1841
1757 Label arguments_loop, arguments_test; 1842 Label arguments_loop, arguments_test;
1758 __ mov(r9, r1); 1843 __ mr(r11, r4);
1759 __ ldr(r4, MemOperand(sp, 1 * kPointerSize)); 1844 __ LoadP(r7, MemOperand(sp, 1 * kPointerSize));
1760 __ sub(r4, r4, Operand(r9, LSL, 1)); 1845 __ SmiToPtrArrayOffset(r8, r11);
1761 __ jmp(&arguments_test); 1846 __ sub(r7, r7, r8);
1847 __ b(&arguments_test);
1762 1848
1763 __ bind(&arguments_loop); 1849 __ bind(&arguments_loop);
1764 __ sub(r4, r4, Operand(kPointerSize)); 1850 __ subi(r7, r7, Operand(kPointerSize));
1765 __ ldr(r6, MemOperand(r4, 0)); 1851 __ LoadP(r9, MemOperand(r7, 0));
1766 __ add(r5, r3, Operand(r9, LSL, 1)); 1852 __ SmiToPtrArrayOffset(r8, r11);
1767 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize)); 1853 __ add(r8, r6, r8);
1768 __ add(r9, r9, Operand(Smi::FromInt(1))); 1854 __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0);
1855 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0);
1769 1856
1770 __ bind(&arguments_test); 1857 __ bind(&arguments_test);
1771 __ cmp(r9, Operand(r2)); 1858 __ cmp(r11, r5);
1772 __ b(lt, &arguments_loop); 1859 __ blt(&arguments_loop);
1773 1860
1774 // Return and remove the on-stack parameters. 1861 // Return and remove the on-stack parameters.
1775 __ add(sp, sp, Operand(3 * kPointerSize)); 1862 __ addi(sp, sp, Operand(3 * kPointerSize));
1776 __ Ret(); 1863 __ Ret();
1777 1864
1778 // Do the runtime call to allocate the arguments object. 1865 // Do the runtime call to allocate the arguments object.
1779 // r0 = address of new object (tagged) 1866 // r5 = argument count (tagged)
1780 // r2 = argument count (tagged)
1781 __ bind(&runtime); 1867 __ bind(&runtime);
1782 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. 1868 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
1783 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); 1869 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1);
1784 } 1870 }
1785 1871
1786 1872
1873 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) {
1874 // Return address is in lr.
1875 Label slow;
1876
1877 Register receiver = LoadDescriptor::ReceiverRegister();
1878 Register key = LoadDescriptor::NameRegister();
1879
1880 // Check that the key is an array index, that is Uint32.
1881 __ TestIfPositiveSmi(key, r0);
1882 __ bne(&slow, cr0);
1883
1884 // Everything is fine, call runtime.
1885 __ Push(receiver, key); // Receiver, key.
1886
1887 // Perform tail call to the entry.
1888 __ TailCallExternalReference(
1889 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor),
1890 masm->isolate()),
1891 2, 1);
1892
1893 __ bind(&slow);
1894 PropertyAccessCompiler::TailCallBuiltin(
1895 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC));
1896 }
1897
1898
1787 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { 1899 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
1788 // sp[0] : number of parameters 1900 // sp[0] : number of parameters
1789 // sp[4] : receiver displacement 1901 // sp[4] : receiver displacement
1790 // sp[8] : function 1902 // sp[8] : function
1791 // Check if the calling frame is an arguments adaptor frame. 1903 // Check if the calling frame is an arguments adaptor frame.
1792 Label adaptor_frame, try_allocate, runtime; 1904 Label adaptor_frame, try_allocate, runtime;
1793 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); 1905 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1794 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); 1906 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset));
1795 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); 1907 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu);
1796 __ b(eq, &adaptor_frame); 1908 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0);
1909 __ beq(&adaptor_frame);
1797 1910
1798 // Get the length from the frame. 1911 // Get the length from the frame.
1799 __ ldr(r1, MemOperand(sp, 0)); 1912 __ LoadP(r4, MemOperand(sp, 0));
1800 __ b(&try_allocate); 1913 __ b(&try_allocate);
1801 1914
1802 // Patch the arguments.length and the parameters pointer. 1915 // Patch the arguments.length and the parameters pointer.
1803 __ bind(&adaptor_frame); 1916 __ bind(&adaptor_frame);
1804 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); 1917 __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset));
1805 __ str(r1, MemOperand(sp, 0)); 1918 __ StoreP(r4, MemOperand(sp, 0));
1806 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1)); 1919 __ SmiToPtrArrayOffset(r6, r4);
1807 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); 1920 __ add(r6, r5, r6);
1808 __ str(r3, MemOperand(sp, 1 * kPointerSize)); 1921 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset));
1922 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize));
1809 1923
1810 // Try the new space allocation. Start out with computing the size 1924 // Try the new space allocation. Start out with computing the size
1811 // of the arguments object and the elements array in words. 1925 // of the arguments object and the elements array in words.
1812 Label add_arguments_object; 1926 Label add_arguments_object;
1813 __ bind(&try_allocate); 1927 __ bind(&try_allocate);
1814 __ SmiUntag(r1, SetCC); 1928 __ cmpi(r4, Operand::Zero());
1815 __ b(eq, &add_arguments_object); 1929 __ beq(&add_arguments_object);
1816 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); 1930 __ SmiUntag(r4);
1931 __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize));
1817 __ bind(&add_arguments_object); 1932 __ bind(&add_arguments_object);
1818 __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); 1933 __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize));
1819 1934
1820 // Do the allocation of both objects in one go. 1935 // Do the allocation of both objects in one go.
1821 __ Allocate(r1, r0, r2, r3, &runtime, 1936 __ Allocate(r4, r3, r5, r6, &runtime,
1822 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); 1937 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
1823 1938
1824 // Get the arguments boilerplate from the current native context. 1939 // Get the arguments boilerplate from the current native context.
1825 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); 1940 __ LoadP(r7,
1826 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); 1941 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX)));
1827 __ ldr(r4, MemOperand( 1942 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset));
1828 r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX))); 1943 __ LoadP(
1944 r7,
1945 MemOperand(r7, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX)));
1829 1946
1830 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); 1947 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0);
1831 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); 1948 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
1832 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); 1949 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0);
1833 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); 1950 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1834 1951
1835 // Get the length (smi tagged) and set that as an in-object property too. 1952 // Get the length (smi tagged) and set that as an in-object property too.
1836 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); 1953 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
1837 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); 1954 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize));
1838 __ AssertSmi(r1); 1955 __ AssertSmi(r4);
1839 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + 1956 __ StoreP(r4,
1840 Heap::kArgumentsLengthIndex * kPointerSize)); 1957 FieldMemOperand(r3, JSObject::kHeaderSize +
1958 Heap::kArgumentsLengthIndex * kPointerSize),
1959 r0);
1841 1960
1842 // If there are no actual arguments, we're done. 1961 // If there are no actual arguments, we're done.
1843 Label done; 1962 Label done;
1844 __ cmp(r1, Operand::Zero()); 1963 __ cmpi(r4, Operand::Zero());
1845 __ b(eq, &done); 1964 __ beq(&done);
1846 1965
1847 // Get the parameters pointer from the stack. 1966 // Get the parameters pointer from the stack.
1848 __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); 1967 __ LoadP(r5, MemOperand(sp, 1 * kPointerSize));
1849 1968
1850 // Set up the elements pointer in the allocated arguments object and 1969 // Set up the elements pointer in the allocated arguments object and
1851 // initialize the header in the elements fixed array. 1970 // initialize the header in the elements fixed array.
1852 __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize)); 1971 __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize));
1853 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); 1972 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0);
1854 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); 1973 __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex);
1855 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); 1974 __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0);
1856 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); 1975 __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0);
1857 __ SmiUntag(r1); 1976 // Untag the length for the loop.
1977 __ SmiUntag(r4);
1858 1978
1859 // Copy the fixed array slots. 1979 // Copy the fixed array slots.
1860 Label loop; 1980 Label loop;
1861 // Set up r4 to point to the first array slot. 1981 // Set up r7 to point to the first array slot.
1862 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 1982 __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
1863 __ bind(&loop); 1983 __ bind(&loop);
1864 // Pre-decrement r2 with kPointerSize on each iteration. 1984 // Pre-decrement r5 with kPointerSize on each iteration.
1865 // Pre-decrement in order to skip receiver. 1985 // Pre-decrement in order to skip receiver.
1866 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); 1986 __ LoadPU(r6, MemOperand(r5, -kPointerSize));
1867 // Post-increment r4 with kPointerSize on each iteration. 1987 // Post-increment r7 with kPointerSize on each iteration.
1868 __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); 1988 __ StoreP(r6, MemOperand(r7));
1869 __ sub(r1, r1, Operand(1)); 1989 __ addi(r7, r7, Operand(kPointerSize));
1870 __ cmp(r1, Operand::Zero()); 1990 __ subi(r4, r4, Operand(1));
1871 __ b(ne, &loop); 1991 __ cmpi(r4, Operand::Zero());
1992 __ bne(&loop);
1872 1993
1873 // Return and remove the on-stack parameters. 1994 // Return and remove the on-stack parameters.
1874 __ bind(&done); 1995 __ bind(&done);
1875 __ add(sp, sp, Operand(3 * kPointerSize)); 1996 __ addi(sp, sp, Operand(3 * kPointerSize));
1876 __ Ret(); 1997 __ Ret();
1877 1998
1878 // Do the runtime call to allocate the arguments object. 1999 // Do the runtime call to allocate the arguments object.
1879 __ bind(&runtime); 2000 __ bind(&runtime);
1880 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); 2001 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1);
1881 } 2002 }
1882 2003
1883 2004
1884 void RegExpExecStub::Generate(MacroAssembler* masm) { 2005 void RegExpExecStub::Generate(MacroAssembler* masm) {
1885 // Just jump directly to runtime if native RegExp is not selected at compile 2006 // Just jump directly to runtime if native RegExp is not selected at compile
1886 // time or if regexp entry in generated code is turned off runtime switch or 2007 // time or if regexp entry in generated code is turned off runtime switch or
1887 // at compilation. 2008 // at compilation.
1888 #ifdef V8_INTERPRETED_REGEXP 2009 #ifdef V8_INTERPRETED_REGEXP
1889 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); 2010 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
1890 #else // V8_INTERPRETED_REGEXP 2011 #else // V8_INTERPRETED_REGEXP
1891 2012
1892 // Stack frame on entry. 2013 // Stack frame on entry.
1893 // sp[0]: last_match_info (expected JSArray) 2014 // sp[0]: last_match_info (expected JSArray)
1894 // sp[4]: previous index 2015 // sp[4]: previous index
1895 // sp[8]: subject string 2016 // sp[8]: subject string
1896 // sp[12]: JSRegExp object 2017 // sp[12]: JSRegExp object
1897 2018
1898 const int kLastMatchInfoOffset = 0 * kPointerSize; 2019 const int kLastMatchInfoOffset = 0 * kPointerSize;
1899 const int kPreviousIndexOffset = 1 * kPointerSize; 2020 const int kPreviousIndexOffset = 1 * kPointerSize;
1900 const int kSubjectOffset = 2 * kPointerSize; 2021 const int kSubjectOffset = 2 * kPointerSize;
1901 const int kJSRegExpOffset = 3 * kPointerSize; 2022 const int kJSRegExpOffset = 3 * kPointerSize;
1902 2023
1903 Label runtime; 2024 Label runtime, br_over, encoding_type_UC16;
2025
1904 // Allocation of registers for this function. These are in callee save 2026 // Allocation of registers for this function. These are in callee save
1905 // registers and will be preserved by the call to the native RegExp code, as 2027 // registers and will be preserved by the call to the native RegExp code, as
1906 // this code is called using the normal C calling convention. When calling 2028 // this code is called using the normal C calling convention. When calling
1907 // directly from generated code the native RegExp code will not do a GC and 2029 // directly from generated code the native RegExp code will not do a GC and
1908 // therefore the content of these registers are safe to use after the call. 2030 // therefore the content of these registers are safe to use after the call.
1909 Register subject = r4; 2031 Register subject = r14;
1910 Register regexp_data = r5; 2032 Register regexp_data = r15;
1911 Register last_match_info_elements = no_reg; // will be r6; 2033 Register last_match_info_elements = r16;
2034 Register code = r17;
2035
2036 // Ensure register assigments are consistent with callee save masks
2037 DCHECK(subject.bit() & kCalleeSaved);
2038 DCHECK(regexp_data.bit() & kCalleeSaved);
2039 DCHECK(last_match_info_elements.bit() & kCalleeSaved);
2040 DCHECK(code.bit() & kCalleeSaved);
1912 2041
1913 // Ensure that a RegExp stack is allocated. 2042 // Ensure that a RegExp stack is allocated.
1914 ExternalReference address_of_regexp_stack_memory_address = 2043 ExternalReference address_of_regexp_stack_memory_address =
1915 ExternalReference::address_of_regexp_stack_memory_address(isolate()); 2044 ExternalReference::address_of_regexp_stack_memory_address(isolate());
1916 ExternalReference address_of_regexp_stack_memory_size = 2045 ExternalReference address_of_regexp_stack_memory_size =
1917 ExternalReference::address_of_regexp_stack_memory_size(isolate()); 2046 ExternalReference::address_of_regexp_stack_memory_size(isolate());
1918 __ mov(r0, Operand(address_of_regexp_stack_memory_size)); 2047 __ mov(r3, Operand(address_of_regexp_stack_memory_size));
1919 __ ldr(r0, MemOperand(r0, 0)); 2048 __ LoadP(r3, MemOperand(r3, 0));
1920 __ cmp(r0, Operand::Zero()); 2049 __ cmpi(r3, Operand::Zero());
1921 __ b(eq, &runtime); 2050 __ beq(&runtime);
1922 2051
1923 // Check that the first argument is a JSRegExp object. 2052 // Check that the first argument is a JSRegExp object.
1924 __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); 2053 __ LoadP(r3, MemOperand(sp, kJSRegExpOffset));
1925 __ JumpIfSmi(r0, &runtime); 2054 __ JumpIfSmi(r3, &runtime);
1926 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); 2055 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE);
1927 __ b(ne, &runtime); 2056 __ bne(&runtime);
1928 2057
1929 // Check that the RegExp has been compiled (data contains a fixed array). 2058 // Check that the RegExp has been compiled (data contains a fixed array).
1930 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); 2059 __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset));
1931 if (FLAG_debug_code) { 2060 if (FLAG_debug_code) {
1932 __ SmiTst(regexp_data); 2061 __ TestIfSmi(regexp_data, r0);
1933 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); 2062 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0);
1934 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); 2063 __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE);
1935 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); 2064 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected);
1936 } 2065 }
1937 2066
1938 // regexp_data: RegExp data (FixedArray) 2067 // regexp_data: RegExp data (FixedArray)
1939 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. 2068 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
1940 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); 2069 __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
1941 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); 2070 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu);
1942 __ b(ne, &runtime); 2071 __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0);
2072 __ bne(&runtime);
1943 2073
1944 // regexp_data: RegExp data (FixedArray) 2074 // regexp_data: RegExp data (FixedArray)
1945 // Check that the number of captures fit in the static offsets vector buffer. 2075 // Check that the number of captures fit in the static offsets vector buffer.
1946 __ ldr(r2, 2076 __ LoadP(r5,
1947 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); 2077 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
1948 // Check (number_of_captures + 1) * 2 <= offsets vector size 2078 // Check (number_of_captures + 1) * 2 <= offsets vector size
1949 // Or number_of_captures * 2 <= offsets vector size - 2 2079 // Or number_of_captures * 2 <= offsets vector size - 2
1950 // Multiplying by 2 comes for free since r2 is smi-tagged. 2080 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
1951 STATIC_ASSERT(kSmiTag == 0); 2081 // SmiUntag (which is a nop for 32-bit).
1952 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 2082 __ SmiToShortArrayOffset(r5, r5);
1953 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); 2083 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2);
1954 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); 2084 __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2));
1955 __ b(hi, &runtime); 2085 __ bgt(&runtime);
1956 2086
1957 // Reset offset for possibly sliced string. 2087 // Reset offset for possibly sliced string.
1958 __ mov(r9, Operand::Zero()); 2088 __ li(r11, Operand::Zero());
1959 __ ldr(subject, MemOperand(sp, kSubjectOffset)); 2089 __ LoadP(subject, MemOperand(sp, kSubjectOffset));
1960 __ JumpIfSmi(subject, &runtime); 2090 __ JumpIfSmi(subject, &runtime);
1961 __ mov(r3, subject); // Make a copy of the original subject string. 2091 __ mr(r6, subject); // Make a copy of the original subject string.
1962 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 2092 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
1963 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 2093 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
1964 // subject: subject string 2094 // subject: subject string
1965 // r3: subject string 2095 // r6: subject string
1966 // r0: subject string instance type 2096 // r3: subject string instance type
1967 // regexp_data: RegExp data (FixedArray) 2097 // regexp_data: RegExp data (FixedArray)
1968 // Handle subject string according to its encoding and representation: 2098 // Handle subject string according to its encoding and representation:
1969 // (1) Sequential string? If yes, go to (5). 2099 // (1) Sequential string? If yes, go to (5).
1970 // (2) Anything but sequential or cons? If yes, go to (6). 2100 // (2) Anything but sequential or cons? If yes, go to (6).
1971 // (3) Cons string. If the string is flat, replace subject with first string. 2101 // (3) Cons string. If the string is flat, replace subject with first string.
1972 // Otherwise bailout. 2102 // Otherwise bailout.
1973 // (4) Is subject external? If yes, go to (7). 2103 // (4) Is subject external? If yes, go to (7).
1974 // (5) Sequential string. Load regexp code according to encoding. 2104 // (5) Sequential string. Load regexp code according to encoding.
1975 // (E) Carry on. 2105 // (E) Carry on.
1976 /// [...] 2106 /// [...]
1977 2107
1978 // Deferred code at the end of the stub: 2108 // Deferred code at the end of the stub:
1979 // (6) Not a long external string? If yes, go to (8). 2109 // (6) Not a long external string? If yes, go to (8).
1980 // (7) External string. Make it, offset-wise, look like a sequential string. 2110 // (7) External string. Make it, offset-wise, look like a sequential string.
1981 // Go to (5). 2111 // Go to (5).
1982 // (8) Short external string or not a string? If yes, bail out to runtime. 2112 // (8) Short external string or not a string? If yes, bail out to runtime.
1983 // (9) Sliced string. Replace subject with parent. Go to (4). 2113 // (9) Sliced string. Replace subject with parent. Go to (4).
1984 2114
1985 Label seq_string /* 5 */, external_string /* 7 */, 2115 Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */,
1986 check_underlying /* 4 */, not_seq_nor_cons /* 6 */, 2116 not_seq_nor_cons /* 6 */, not_long_external /* 8 */;
1987 not_long_external /* 8 */;
1988 2117
1989 // (1) Sequential string? If yes, go to (5). 2118 // (1) Sequential string? If yes, go to (5).
1990 __ and_(r1, 2119 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask |
1991 r0, 2120 kShortExternalStringMask) == 0x93);
1992 Operand(kIsNotStringMask | 2121 __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask |
1993 kStringRepresentationMask | 2122 kShortExternalStringMask));
1994 kShortExternalStringMask),
1995 SetCC);
1996 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); 2123 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
1997 __ b(eq, &seq_string); // Go to (5). 2124 __ beq(&seq_string, cr0); // Go to (5).
1998 2125
1999 // (2) Anything but sequential or cons? If yes, go to (6). 2126 // (2) Anything but sequential or cons? If yes, go to (6).
2000 STATIC_ASSERT(kConsStringTag < kExternalStringTag); 2127 STATIC_ASSERT(kConsStringTag < kExternalStringTag);
2001 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); 2128 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
2002 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); 2129 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
2003 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); 2130 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
2004 __ cmp(r1, Operand(kExternalStringTag)); 2131 STATIC_ASSERT(kExternalStringTag < 0xffffu);
2005 __ b(ge, &not_seq_nor_cons); // Go to (6). 2132 __ cmpi(r4, Operand(kExternalStringTag));
2133 __ bge(&not_seq_nor_cons); // Go to (6).
2006 2134
2007 // (3) Cons string. Check that it's flat. 2135 // (3) Cons string. Check that it's flat.
2008 // Replace subject with first string and reload instance type. 2136 // Replace subject with first string and reload instance type.
2009 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); 2137 __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset));
2010 __ CompareRoot(r0, Heap::kempty_stringRootIndex); 2138 __ CompareRoot(r3, Heap::kempty_stringRootIndex);
2011 __ b(ne, &runtime); 2139 __ bne(&runtime);
2012 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); 2140 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
2013 2141
2014 // (4) Is subject external? If yes, go to (7). 2142 // (4) Is subject external? If yes, go to (7).
2015 __ bind(&check_underlying); 2143 __ bind(&check_underlying);
2016 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 2144 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
2017 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 2145 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2018 STATIC_ASSERT(kSeqStringTag == 0); 2146 STATIC_ASSERT(kSeqStringTag == 0);
2019 __ tst(r0, Operand(kStringRepresentationMask)); 2147 STATIC_ASSERT(kStringRepresentationMask == 3);
2148 __ andi(r0, r3, Operand(kStringRepresentationMask));
2020 // The underlying external string is never a short external string. 2149 // The underlying external string is never a short external string.
2021 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); 2150 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength);
2022 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); 2151 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength);
2023 __ b(ne, &external_string); // Go to (7). 2152 __ bne(&external_string, cr0); // Go to (7).
2024 2153
2025 // (5) Sequential string. Load regexp code according to encoding. 2154 // (5) Sequential string. Load regexp code according to encoding.
2026 __ bind(&seq_string); 2155 __ bind(&seq_string);
2027 // subject: sequential subject string (or look-alike, external string) 2156 // subject: sequential subject string (or look-alike, external string)
2028 // r3: original subject string 2157 // r6: original subject string
2029 // Load previous index and check range before r3 is overwritten. We have to 2158 // Load previous index and check range before r6 is overwritten. We have to
2030 // use r3 instead of subject here because subject might have been only made 2159 // use r6 instead of subject here because subject might have been only made
2031 // to look like a sequential string when it actually is an external string. 2160 // to look like a sequential string when it actually is an external string.
2032 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); 2161 __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset));
2033 __ JumpIfNotSmi(r1, &runtime); 2162 __ JumpIfNotSmi(r4, &runtime);
2034 __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset)); 2163 __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset));
2035 __ cmp(r3, Operand(r1)); 2164 __ cmpl(r6, r4);
2036 __ b(ls, &runtime); 2165 __ ble(&runtime);
2037 __ SmiUntag(r1); 2166 __ SmiUntag(r4);
2038 2167
2039 STATIC_ASSERT(4 == kOneByteStringTag); 2168 STATIC_ASSERT(4 == kOneByteStringTag);
2040 STATIC_ASSERT(kTwoByteStringTag == 0); 2169 STATIC_ASSERT(kTwoByteStringTag == 0);
2041 __ and_(r0, r0, Operand(kStringEncodingMask)); 2170 STATIC_ASSERT(kStringEncodingMask == 4);
2042 __ mov(r3, Operand(r0, ASR, 2), SetCC); 2171 __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC);
2043 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset), 2172 __ beq(&encoding_type_UC16, cr0);
2044 ne); 2173 __ LoadP(code,
2045 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); 2174 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset));
2175 __ b(&br_over);
2176 __ bind(&encoding_type_UC16);
2177 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
2178 __ bind(&br_over);
2046 2179
2047 // (E) Carry on. String handling is done. 2180 // (E) Carry on. String handling is done.
2048 // r6: irregexp code 2181 // code: irregexp code
2049 // Check that the irregexp code has been generated for the actual string 2182 // Check that the irregexp code has been generated for the actual string
2050 // encoding. If it has, the field contains a code object otherwise it contains 2183 // encoding. If it has, the field contains a code object otherwise it contains
2051 // a smi (code flushing support). 2184 // a smi (code flushing support).
2052 __ JumpIfSmi(r6, &runtime); 2185 __ JumpIfSmi(code, &runtime);
2053 2186
2054 // r1: previous index 2187 // r4: previous index
2055 // r3: encoding of subject string (1 if one_byte, 0 if two_byte); 2188 // r6: encoding of subject string (1 if one_byte, 0 if two_byte);
2056 // r6: code 2189 // code: Address of generated regexp code
2057 // subject: Subject string 2190 // subject: Subject string
2058 // regexp_data: RegExp data (FixedArray) 2191 // regexp_data: RegExp data (FixedArray)
2059 // All checks done. Now push arguments for native regexp code. 2192 // All checks done. Now push arguments for native regexp code.
2060 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2); 2193 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5);
2061 2194
2062 // Isolates: note we add an additional parameter here (isolate pointer). 2195 // Isolates: note we add an additional parameter here (isolate pointer).
2063 const int kRegExpExecuteArguments = 9; 2196 const int kRegExpExecuteArguments = 10;
2064 const int kParameterRegisters = 4; 2197 const int kParameterRegisters = 8;
2065 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); 2198 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
2066 2199
2067 // Stack pointer now points to cell where return address is to be written. 2200 // Stack pointer now points to cell where return address is to be written.
2068 // Arguments are before that on the stack or in registers. 2201 // Arguments are before that on the stack or in registers.
2069 2202
2070 // Argument 9 (sp[20]): Pass current isolate address. 2203 // Argument 10 (in stack parameter area): Pass current isolate address.
2071 __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); 2204 __ mov(r3, Operand(ExternalReference::isolate_address(isolate())));
2072 __ str(r0, MemOperand(sp, 5 * kPointerSize)); 2205 __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize));
2073 2206
2074 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript. 2207 // Argument 9 is a dummy that reserves the space used for
2075 __ mov(r0, Operand(1)); 2208 // the return address added by the ExitFrame in native calls.
2076 __ str(r0, MemOperand(sp, 4 * kPointerSize)); 2209
2077 2210 // Argument 8 (r10): Indicate that this is a direct call from JavaScript.
2078 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area. 2211 __ li(r10, Operand(1));
2079 __ mov(r0, Operand(address_of_regexp_stack_memory_address)); 2212
2080 __ ldr(r0, MemOperand(r0, 0)); 2213 // Argument 7 (r9): Start (high end) of backtracking stack memory area.
2081 __ mov(r2, Operand(address_of_regexp_stack_memory_size)); 2214 __ mov(r3, Operand(address_of_regexp_stack_memory_address));
2082 __ ldr(r2, MemOperand(r2, 0)); 2215 __ LoadP(r3, MemOperand(r3, 0));
2083 __ add(r0, r0, Operand(r2)); 2216 __ mov(r5, Operand(address_of_regexp_stack_memory_size));
2084 __ str(r0, MemOperand(sp, 3 * kPointerSize)); 2217 __ LoadP(r5, MemOperand(r5, 0));
2085 2218 __ add(r9, r3, r5);
2086 // Argument 6: Set the number of capture registers to zero to force global 2219
2087 // regexps to behave as non-global. This does not affect non-global regexps. 2220 // Argument 6 (r8): Set the number of capture registers to zero to force
2088 __ mov(r0, Operand::Zero()); 2221 // global egexps to behave as non-global. This does not affect non-global
2089 __ str(r0, MemOperand(sp, 2 * kPointerSize)); 2222 // regexps.
2090 2223 __ li(r8, Operand::Zero());
2091 // Argument 5 (sp[4]): static offsets vector buffer. 2224
2092 __ mov(r0, 2225 // Argument 5 (r7): static offsets vector buffer.
2093 Operand(ExternalReference::address_of_static_offsets_vector( 2226 __ mov(
2094 isolate()))); 2227 r7,
2095 __ str(r0, MemOperand(sp, 1 * kPointerSize)); 2228 Operand(ExternalReference::address_of_static_offsets_vector(isolate())));
2096 2229
2097 // For arguments 4 and 3 get string length, calculate start of string data and 2230 // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data
2098 // calculate the shift of the index (0 for one-byte and 1 for two-byte). 2231 // and calculate the shift of the index (0 for one-byte and 1 for two-byte).
2099 __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); 2232 __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
2100 __ eor(r3, r3, Operand(1)); 2233 __ xori(r6, r6, Operand(1));
2101 // Load the length from the original subject string from the previous stack 2234 // Load the length from the original subject string from the previous stack
2102 // frame. Therefore we have to use fp, which points exactly to two pointer 2235 // frame. Therefore we have to use fp, which points exactly to two pointer
2103 // sizes below the previous sp. (Because creating a new stack frame pushes 2236 // sizes below the previous sp. (Because creating a new stack frame pushes
2104 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) 2237 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
2105 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); 2238 __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
2106 // If slice offset is not 0, load the length from the original sliced string. 2239 // If slice offset is not 0, load the length from the original sliced string.
2107 // Argument 4, r3: End of string data 2240 // Argument 4, r6: End of string data
2108 // Argument 3, r2: Start of string data 2241 // Argument 3, r5: Start of string data
2109 // Prepare start and end index of the input. 2242 // Prepare start and end index of the input.
2110 __ add(r9, r7, Operand(r9, LSL, r3)); 2243 __ ShiftLeft(r11, r11, r6);
2111 __ add(r2, r9, Operand(r1, LSL, r3)); 2244 __ add(r11, r18, r11);
2112 2245 __ ShiftLeft(r5, r4, r6);
2113 __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset)); 2246 __ add(r5, r11, r5);
2114 __ SmiUntag(r7); 2247
2115 __ add(r3, r9, Operand(r7, LSL, r3)); 2248 __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset));
2116 2249 __ SmiUntag(r18);
2117 // Argument 2 (r1): Previous index. 2250 __ ShiftLeft(r6, r18, r6);
2251 __ add(r6, r11, r6);
2252
2253 // Argument 2 (r4): Previous index.
2118 // Already there 2254 // Already there
2119 2255
2120 // Argument 1 (r0): Subject string. 2256 // Argument 1 (r3): Subject string.
2121 __ mov(r0, subject); 2257 __ mr(r3, subject);
2122 2258
2123 // Locate the code entry and call it. 2259 // Locate the code entry and call it.
2124 __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); 2260 __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag));
2261
2262
2263 #if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR)
2264 // Even Simulated AIX/PPC64 Linux uses a function descriptor for the
2265 // RegExp routine. Extract the instruction address here since
2266 // DirectCEntryStub::GenerateCall will not do it for calls out to
2267 // what it thinks is C code compiled for the simulator/host
2268 // platform.
2269 __ LoadP(code, MemOperand(code, 0)); // Instruction address
2270 #endif
2271
2125 DirectCEntryStub stub(isolate()); 2272 DirectCEntryStub stub(isolate());
2126 stub.GenerateCall(masm, r6); 2273 stub.GenerateCall(masm, code);
2127 2274
2128 __ LeaveExitFrame(false, no_reg, true); 2275 __ LeaveExitFrame(false, no_reg, true);
2129 2276
2130 last_match_info_elements = r6; 2277 // r3: result
2131
2132 // r0: result
2133 // subject: subject string (callee saved) 2278 // subject: subject string (callee saved)
2134 // regexp_data: RegExp data (callee saved) 2279 // regexp_data: RegExp data (callee saved)
2135 // last_match_info_elements: Last match info elements (callee saved) 2280 // last_match_info_elements: Last match info elements (callee saved)
2136 // Check the result. 2281 // Check the result.
2137 Label success; 2282 Label success;
2138 __ cmp(r0, Operand(1)); 2283 __ cmpi(r3, Operand(1));
2139 // We expect exactly one result since we force the called regexp to behave 2284 // We expect exactly one result since we force the called regexp to behave
2140 // as non-global. 2285 // as non-global.
2141 __ b(eq, &success); 2286 __ beq(&success);
2142 Label failure; 2287 Label failure;
2143 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); 2288 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE));
2144 __ b(eq, &failure); 2289 __ beq(&failure);
2145 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); 2290 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION));
2146 // If not exception it can only be retry. Handle that in the runtime system. 2291 // If not exception it can only be retry. Handle that in the runtime system.
2147 __ b(ne, &runtime); 2292 __ bne(&runtime);
2148 // Result must now be exception. If there is no pending exception already a 2293 // Result must now be exception. If there is no pending exception already a
2149 // stack overflow (on the backtrack stack) was detected in RegExp code but 2294 // stack overflow (on the backtrack stack) was detected in RegExp code but
2150 // haven't created the exception yet. Handle that in the runtime system. 2295 // haven't created the exception yet. Handle that in the runtime system.
2151 // TODO(592): Rerunning the RegExp to get the stack overflow exception. 2296 // TODO(592): Rerunning the RegExp to get the stack overflow exception.
2152 __ mov(r1, Operand(isolate()->factory()->the_hole_value())); 2297 __ mov(r4, Operand(isolate()->factory()->the_hole_value()));
2153 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, 2298 __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
2154 isolate()))); 2299 isolate())));
2155 __ ldr(r0, MemOperand(r2, 0)); 2300 __ LoadP(r3, MemOperand(r5, 0));
2156 __ cmp(r0, r1); 2301 __ cmp(r3, r4);
2157 __ b(eq, &runtime); 2302 __ beq(&runtime);
2158 2303
2159 __ str(r1, MemOperand(r2, 0)); // Clear pending exception. 2304 __ StoreP(r4, MemOperand(r5, 0)); // Clear pending exception.
2160 2305
2161 // Check if the exception is a termination. If so, throw as uncatchable. 2306 // Check if the exception is a termination. If so, throw as uncatchable.
2162 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); 2307 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex);
2163 2308
2164 Label termination_exception; 2309 Label termination_exception;
2165 __ b(eq, &termination_exception); 2310 __ beq(&termination_exception);
2166 2311
2167 __ Throw(r0); 2312 __ Throw(r3);
2168 2313
2169 __ bind(&termination_exception); 2314 __ bind(&termination_exception);
2170 __ ThrowUncatchable(r0); 2315 __ ThrowUncatchable(r3);
2171 2316
2172 __ bind(&failure); 2317 __ bind(&failure);
2173 // For failure and exception return null. 2318 // For failure and exception return null.
2174 __ mov(r0, Operand(isolate()->factory()->null_value())); 2319 __ mov(r3, Operand(isolate()->factory()->null_value()));
2175 __ add(sp, sp, Operand(4 * kPointerSize)); 2320 __ addi(sp, sp, Operand(4 * kPointerSize));
2176 __ Ret(); 2321 __ Ret();
2177 2322
2178 // Process the result from the native regexp code. 2323 // Process the result from the native regexp code.
2179 __ bind(&success); 2324 __ bind(&success);
2180 __ ldr(r1, 2325 __ LoadP(r4,
2181 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); 2326 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
2182 // Calculate number of capture registers (number_of_captures + 1) * 2. 2327 // Calculate number of capture registers (number_of_captures + 1) * 2.
2183 // Multiplying by 2 comes for free since r1 is smi-tagged. 2328 // SmiToShortArrayOffset accomplishes the multiplication by 2 and
2184 STATIC_ASSERT(kSmiTag == 0); 2329 // SmiUntag (which is a nop for 32-bit).
2185 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); 2330 __ SmiToShortArrayOffset(r4, r4);
2186 __ add(r1, r1, Operand(2)); // r1 was a smi. 2331 __ addi(r4, r4, Operand(2));
2187 2332
2188 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); 2333 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
2189 __ JumpIfSmi(r0, &runtime); 2334 __ JumpIfSmi(r3, &runtime);
2190 __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE); 2335 __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE);
2191 __ b(ne, &runtime); 2336 __ bne(&runtime);
2192 // Check that the JSArray is in fast case. 2337 // Check that the JSArray is in fast case.
2193 __ ldr(last_match_info_elements, 2338 __ LoadP(last_match_info_elements,
2194 FieldMemOperand(r0, JSArray::kElementsOffset)); 2339 FieldMemOperand(r3, JSArray::kElementsOffset));
2195 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); 2340 __ LoadP(r3,
2196 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); 2341 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
2197 __ b(ne, &runtime); 2342 __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex);
2343 __ bne(&runtime);
2198 // Check that the last match info has space for the capture registers and the 2344 // Check that the last match info has space for the capture registers and the
2199 // additional information. 2345 // additional information.
2200 __ ldr(r0, 2346 __ LoadP(
2201 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); 2347 r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
2202 __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead)); 2348 __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead));
2203 __ cmp(r2, Operand::SmiUntag(r0)); 2349 __ SmiUntag(r0, r3);
2204 __ b(gt, &runtime); 2350 __ cmp(r5, r0);
2205 2351 __ bgt(&runtime);
2206 // r1: number of capture registers 2352
2207 // r4: subject string 2353 // r4: number of capture registers
2354 // subject: subject string
2208 // Store the capture count. 2355 // Store the capture count.
2209 __ SmiTag(r2, r1); 2356 __ SmiTag(r5, r4);
2210 __ str(r2, FieldMemOperand(last_match_info_elements, 2357 __ StoreP(r5, FieldMemOperand(last_match_info_elements,
2211 RegExpImpl::kLastCaptureCountOffset)); 2358 RegExpImpl::kLastCaptureCountOffset),
2359 r0);
2212 // Store last subject and last input. 2360 // Store last subject and last input.
2213 __ str(subject, 2361 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
2214 FieldMemOperand(last_match_info_elements, 2362 RegExpImpl::kLastSubjectOffset),
2215 RegExpImpl::kLastSubjectOffset)); 2363 r0);
2216 __ mov(r2, subject); 2364 __ mr(r5, subject);
2217 __ RecordWriteField(last_match_info_elements, 2365 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset,
2218 RegExpImpl::kLastSubjectOffset, 2366 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
2219 subject, 2367 __ mr(subject, r5);
2220 r3, 2368 __ StoreP(subject, FieldMemOperand(last_match_info_elements,
2221 kLRHasNotBeenSaved, 2369 RegExpImpl::kLastInputOffset),
2222 kDontSaveFPRegs); 2370 r0);
2223 __ mov(subject, r2); 2371 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset,
2224 __ str(subject, 2372 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs);
2225 FieldMemOperand(last_match_info_elements,
2226 RegExpImpl::kLastInputOffset));
2227 __ RecordWriteField(last_match_info_elements,
2228 RegExpImpl::kLastInputOffset,
2229 subject,
2230 r3,
2231 kLRHasNotBeenSaved,
2232 kDontSaveFPRegs);
2233 2373
2234 // Get the static offsets vector filled by the native regexp code. 2374 // Get the static offsets vector filled by the native regexp code.
2235 ExternalReference address_of_static_offsets_vector = 2375 ExternalReference address_of_static_offsets_vector =
2236 ExternalReference::address_of_static_offsets_vector(isolate()); 2376 ExternalReference::address_of_static_offsets_vector(isolate());
2237 __ mov(r2, Operand(address_of_static_offsets_vector)); 2377 __ mov(r5, Operand(address_of_static_offsets_vector));
2238 2378
2239 // r1: number of capture registers 2379 // r4: number of capture registers
2240 // r2: offsets vector 2380 // r5: offsets vector
2241 Label next_capture, done; 2381 Label next_capture;
2242 // Capture register counter starts from number of capture registers and 2382 // Capture register counter starts from number of capture registers and
2243 // counts down until wraping after zero. 2383 // counts down until wraping after zero.
2244 __ add(r0, 2384 __ addi(
2245 last_match_info_elements, 2385 r3, last_match_info_elements,
2246 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); 2386 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize));
2387 __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu
2388 __ mtctr(r4);
2247 __ bind(&next_capture); 2389 __ bind(&next_capture);
2248 __ sub(r1, r1, Operand(1), SetCC);
2249 __ b(mi, &done);
2250 // Read the value from the static offsets vector buffer. 2390 // Read the value from the static offsets vector buffer.
2251 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); 2391 __ lwzu(r6, MemOperand(r5, kIntSize));
2252 // Store the smi value in the last match info. 2392 // Store the smi value in the last match info.
2253 __ SmiTag(r3); 2393 __ SmiTag(r6);
2254 __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); 2394 __ StorePU(r6, MemOperand(r3, kPointerSize));
2255 __ jmp(&next_capture); 2395 __ bdnz(&next_capture);
2256 __ bind(&done);
2257 2396
2258 // Return last match info. 2397 // Return last match info.
2259 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); 2398 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset));
2260 __ add(sp, sp, Operand(4 * kPointerSize)); 2399 __ addi(sp, sp, Operand(4 * kPointerSize));
2261 __ Ret(); 2400 __ Ret();
2262 2401
2263 // Do the runtime call to execute the regexp. 2402 // Do the runtime call to execute the regexp.
2264 __ bind(&runtime); 2403 __ bind(&runtime);
2265 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); 2404 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1);
2266 2405
2267 // Deferred code for string handling. 2406 // Deferred code for string handling.
2268 // (6) Not a long external string? If yes, go to (8). 2407 // (6) Not a long external string? If yes, go to (8).
2269 __ bind(&not_seq_nor_cons); 2408 __ bind(&not_seq_nor_cons);
2270 // Compare flags are still set. 2409 // Compare flags are still set.
2271 __ b(gt, &not_long_external); // Go to (8). 2410 __ bgt(&not_long_external); // Go to (8).
2272 2411
2273 // (7) External string. Make it, offset-wise, look like a sequential string. 2412 // (7) External string. Make it, offset-wise, look like a sequential string.
2274 __ bind(&external_string); 2413 __ bind(&external_string);
2275 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); 2414 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset));
2276 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); 2415 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset));
2277 if (FLAG_debug_code) { 2416 if (FLAG_debug_code) {
2278 // Assert that we do not have a cons or slice (indirect strings) here. 2417 // Assert that we do not have a cons or slice (indirect strings) here.
2279 // Sequential strings have already been ruled out. 2418 // Sequential strings have already been ruled out.
2280 __ tst(r0, Operand(kIsIndirectStringMask)); 2419 STATIC_ASSERT(kIsIndirectStringMask == 1);
2281 __ Assert(eq, kExternalStringExpectedButNotFound); 2420 __ andi(r0, r3, Operand(kIsIndirectStringMask));
2421 __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
2282 } 2422 }
2283 __ ldr(subject, 2423 __ LoadP(subject,
2284 FieldMemOperand(subject, ExternalString::kResourceDataOffset)); 2424 FieldMemOperand(subject, ExternalString::kResourceDataOffset));
2285 // Move the pointer so that offset-wise, it looks like a sequential string. 2425 // Move the pointer so that offset-wise, it looks like a sequential string.
2286 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); 2426 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
2287 __ sub(subject, 2427 __ subi(subject, subject,
2288 subject, 2428 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
2289 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 2429 __ b(&seq_string); // Go to (5).
2290 __ jmp(&seq_string); // Go to (5).
2291 2430
2292 // (8) Short external string or not a string? If yes, bail out to runtime. 2431 // (8) Short external string or not a string? If yes, bail out to runtime.
2293 __ bind(&not_long_external); 2432 __ bind(&not_long_external);
2294 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); 2433 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0);
2295 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask)); 2434 __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask));
2296 __ b(ne, &runtime); 2435 __ bne(&runtime, cr0);
2297 2436
2298 // (9) Sliced string. Replace subject with parent. Go to (4). 2437 // (9) Sliced string. Replace subject with parent. Go to (4).
2299 // Load offset into r9 and replace subject string with parent. 2438 // Load offset into r11 and replace subject string with parent.
2300 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset)); 2439 __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset));
2301 __ SmiUntag(r9); 2440 __ SmiUntag(r11);
2302 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); 2441 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
2303 __ jmp(&check_underlying); // Go to (4). 2442 __ b(&check_underlying); // Go to (4).
2304 #endif // V8_INTERPRETED_REGEXP 2443 #endif // V8_INTERPRETED_REGEXP
2305 } 2444 }
2306 2445
2307 2446
2308 static void GenerateRecordCallTarget(MacroAssembler* masm) { 2447 static void GenerateRecordCallTarget(MacroAssembler* masm) {
2309 // Cache the called function in a feedback vector slot. Cache states 2448 // Cache the called function in a feedback vector slot. Cache states
2310 // are uninitialized, monomorphic (indicated by a JSFunction), and 2449 // are uninitialized, monomorphic (indicated by a JSFunction), and
2311 // megamorphic. 2450 // megamorphic.
2312 // r0 : number of arguments to the construct function 2451 // r3 : number of arguments to the construct function
2313 // r1 : the function to call 2452 // r4 : the function to call
2314 // r2 : Feedback vector 2453 // r5 : Feedback vector
2315 // r3 : slot in feedback vector (Smi) 2454 // r6 : slot in feedback vector (Smi)
2316 Label initialize, done, miss, megamorphic, not_array_function; 2455 Label initialize, done, miss, megamorphic, not_array_function;
2317 2456
2318 DCHECK_EQ(*TypeFeedbackInfo::MegamorphicSentinel(masm->isolate()), 2457 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()),
2319 masm->isolate()->heap()->megamorphic_symbol()); 2458 masm->isolate()->heap()->megamorphic_symbol());
2320 DCHECK_EQ(*TypeFeedbackInfo::UninitializedSentinel(masm->isolate()), 2459 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()),
2321 masm->isolate()->heap()->uninitialized_symbol()); 2460 masm->isolate()->heap()->uninitialized_symbol());
2322 2461
2323 // Load the cache state into r4. 2462 // Load the cache state into r7.
2324 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); 2463 __ SmiToPtrArrayOffset(r7, r6);
2325 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); 2464 __ add(r7, r5, r7);
2465 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2326 2466
2327 // A monomorphic cache hit or an already megamorphic state: invoke the 2467 // A monomorphic cache hit or an already megamorphic state: invoke the
2328 // function without changing the state. 2468 // function without changing the state.
2329 __ cmp(r4, r1); 2469 __ cmp(r7, r4);
2330 __ b(eq, &done); 2470 __ b(eq, &done);
2331 2471
2332 if (!FLAG_pretenuring_call_new) { 2472 if (!FLAG_pretenuring_call_new) {
2333 // If we came here, we need to see if we are the array function. 2473 // If we came here, we need to see if we are the array function.
2334 // If we didn't have a matching function, and we didn't find the megamorph 2474 // If we didn't have a matching function, and we didn't find the megamorph
2335 // sentinel, then we have in the slot either some other function or an 2475 // sentinel, then we have in the slot either some other function or an
2336 // AllocationSite. Do a map check on the object in ecx. 2476 // AllocationSite. Do a map check on the object in ecx.
2337 __ ldr(r5, FieldMemOperand(r4, 0)); 2477 __ LoadP(r8, FieldMemOperand(r7, 0));
2338 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); 2478 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2339 __ b(ne, &miss); 2479 __ bne(&miss);
2340 2480
2341 // Make sure the function is the Array() function 2481 // Make sure the function is the Array() function
2342 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); 2482 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
2343 __ cmp(r1, r4); 2483 __ cmp(r4, r7);
2344 __ b(ne, &megamorphic); 2484 __ bne(&megamorphic);
2345 __ jmp(&done); 2485 __ b(&done);
2346 } 2486 }
2347 2487
2348 __ bind(&miss); 2488 __ bind(&miss);
2349 2489
2350 // A monomorphic miss (i.e, here the cache is not uninitialized) goes 2490 // A monomorphic miss (i.e, here the cache is not uninitialized) goes
2351 // megamorphic. 2491 // megamorphic.
2352 __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); 2492 __ CompareRoot(r7, Heap::kUninitializedSymbolRootIndex);
2353 __ b(eq, &initialize); 2493 __ beq(&initialize);
2354 // MegamorphicSentinel is an immortal immovable object (undefined) so no 2494 // MegamorphicSentinel is an immortal immovable object (undefined) so no
2355 // write-barrier is needed. 2495 // write-barrier is needed.
2356 __ bind(&megamorphic); 2496 __ bind(&megamorphic);
2357 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); 2497 __ SmiToPtrArrayOffset(r7, r6);
2498 __ add(r7, r5, r7);
2358 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); 2499 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
2359 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); 2500 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
2360 __ jmp(&done); 2501 __ jmp(&done);
2361 2502
2362 // An uninitialized cache is patched with the function 2503 // An uninitialized cache is patched with the function
2363 __ bind(&initialize); 2504 __ bind(&initialize);
2364 2505
2365 if (!FLAG_pretenuring_call_new) { 2506 if (!FLAG_pretenuring_call_new) {
2366 // Make sure the function is the Array() function 2507 // Make sure the function is the Array() function.
2367 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); 2508 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
2368 __ cmp(r1, r4); 2509 __ cmp(r4, r7);
2369 __ b(ne, &not_array_function); 2510 __ bne(&not_array_function);
2370 2511
2371 // The target function is the Array constructor, 2512 // The target function is the Array constructor,
2372 // Create an AllocationSite if we don't already have it, store it in the 2513 // Create an AllocationSite if we don't already have it, store it in the
2373 // slot. 2514 // slot.
2374 { 2515 {
2375 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); 2516 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2376 2517
2377 // Arguments register must be smi-tagged to call out. 2518 // Arguments register must be smi-tagged to call out.
2378 __ SmiTag(r0); 2519 __ SmiTag(r3);
2379 __ Push(r3, r2, r1, r0); 2520 __ Push(r6, r5, r4, r3);
2380 2521
2381 CreateAllocationSiteStub create_stub(masm->isolate()); 2522 CreateAllocationSiteStub create_stub(masm->isolate());
2382 __ CallStub(&create_stub); 2523 __ CallStub(&create_stub);
2383 2524
2384 __ Pop(r3, r2, r1, r0); 2525 __ Pop(r6, r5, r4, r3);
2385 __ SmiUntag(r0); 2526 __ SmiUntag(r3);
2386 } 2527 }
2387 __ b(&done); 2528 __ b(&done);
2388 2529
2389 __ bind(&not_array_function); 2530 __ bind(&not_array_function);
2390 } 2531 }
2391 2532
2392 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); 2533 __ SmiToPtrArrayOffset(r7, r6);
2393 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 2534 __ add(r7, r5, r7);
2394 __ str(r1, MemOperand(r4, 0)); 2535 __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2536 __ StoreP(r4, MemOperand(r7, 0));
2395 2537
2396 __ Push(r4, r2, r1); 2538 __ Push(r7, r5, r4);
2397 __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs, 2539 __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs,
2398 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); 2540 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
2399 __ Pop(r4, r2, r1); 2541 __ Pop(r7, r5, r4);
2400 2542
2401 __ bind(&done); 2543 __ bind(&done);
2402 } 2544 }
2403 2545
2404 2546
2405 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { 2547 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) {
2406 // Do not transform the receiver for strict mode functions. 2548 // Do not transform the receiver for strict mode functions and natives.
2407 __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); 2549 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2408 __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset)); 2550 __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset));
2409 __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + 2551 __ TestBit(r7,
2410 kSmiTagSize))); 2552 #if V8_TARGET_ARCH_PPC64
2411 __ b(ne, cont); 2553 SharedFunctionInfo::kStrictModeFunction,
2554 #else
2555 SharedFunctionInfo::kStrictModeFunction + kSmiTagSize,
2556 #endif
2557 r0);
2558 __ bne(cont, cr0);
2412 2559
2413 // Do not transform the receiver for native (Compilerhints already in r3). 2560 // Do not transform the receiver for native.
2414 __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); 2561 __ TestBit(r7,
2415 __ b(ne, cont); 2562 #if V8_TARGET_ARCH_PPC64
2563 SharedFunctionInfo::kNative,
2564 #else
2565 SharedFunctionInfo::kNative + kSmiTagSize,
2566 #endif
2567 r0);
2568 __ bne(cont, cr0);
2416 } 2569 }
2417 2570
2418 2571
2419 static void EmitSlowCase(MacroAssembler* masm, 2572 static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) {
2420 int argc,
2421 Label* non_function) {
2422 // Check for function proxy. 2573 // Check for function proxy.
2423 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); 2574 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
2424 __ b(ne, non_function); 2575 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
2425 __ push(r1); // put proxy as additional argument 2576 __ bne(non_function);
2426 __ mov(r0, Operand(argc + 1, RelocInfo::NONE32)); 2577 __ push(r4); // put proxy as additional argument
2427 __ mov(r2, Operand::Zero()); 2578 __ li(r3, Operand(argc + 1));
2428 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY); 2579 __ li(r5, Operand::Zero());
2580 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY);
2429 { 2581 {
2430 Handle<Code> adaptor = 2582 Handle<Code> adaptor =
2431 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); 2583 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
2432 __ Jump(adaptor, RelocInfo::CODE_TARGET); 2584 __ Jump(adaptor, RelocInfo::CODE_TARGET);
2433 } 2585 }
2434 2586
2435 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead 2587 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead
2436 // of the original receiver from the call site). 2588 // of the original receiver from the call site).
2437 __ bind(non_function); 2589 __ bind(non_function);
2438 __ str(r1, MemOperand(sp, argc * kPointerSize)); 2590 __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0);
2439 __ mov(r0, Operand(argc)); // Set up the number of arguments. 2591 __ li(r3, Operand(argc)); // Set up the number of arguments.
2440 __ mov(r2, Operand::Zero()); 2592 __ li(r5, Operand::Zero());
2441 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION); 2593 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION);
2442 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), 2594 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2443 RelocInfo::CODE_TARGET); 2595 RelocInfo::CODE_TARGET);
2444 } 2596 }
2445 2597
2446 2598
2447 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { 2599 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) {
2448 // Wrap the receiver and patch it back onto the stack. 2600 // Wrap the receiver and patch it back onto the stack.
2449 { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); 2601 {
2450 __ Push(r1, r3); 2602 FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL);
2603 __ Push(r4, r6);
2451 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); 2604 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
2452 __ pop(r1); 2605 __ pop(r4);
2453 } 2606 }
2454 __ str(r0, MemOperand(sp, argc * kPointerSize)); 2607 __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0);
2455 __ jmp(cont); 2608 __ b(cont);
2456 } 2609 }
2457 2610
2458 2611
2459 static void CallFunctionNoFeedback(MacroAssembler* masm, 2612 static void CallFunctionNoFeedback(MacroAssembler* masm, int argc,
2460 int argc, bool needs_checks, 2613 bool needs_checks, bool call_as_method) {
2461 bool call_as_method) { 2614 // r4 : the function to call
2462 // r1 : the function to call
2463 Label slow, non_function, wrap, cont; 2615 Label slow, non_function, wrap, cont;
2464 2616
2465 if (needs_checks) { 2617 if (needs_checks) {
2466 // Check that the function is really a JavaScript function. 2618 // Check that the function is really a JavaScript function.
2467 // r1: pushed function (to be verified) 2619 // r4: pushed function (to be verified)
2468 __ JumpIfSmi(r1, &non_function); 2620 __ JumpIfSmi(r4, &non_function);
2469 2621
2470 // Goto slow case if we do not have a function. 2622 // Goto slow case if we do not have a function.
2471 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); 2623 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2472 __ b(ne, &slow); 2624 __ bne(&slow);
2473 } 2625 }
2474 2626
2475 // Fast-case: Invoke the function now. 2627 // Fast-case: Invoke the function now.
2476 // r1: pushed function 2628 // r4: pushed function
2477 ParameterCount actual(argc); 2629 ParameterCount actual(argc);
2478 2630
2479 if (call_as_method) { 2631 if (call_as_method) {
2480 if (needs_checks) { 2632 if (needs_checks) {
2481 EmitContinueIfStrictOrNative(masm, &cont); 2633 EmitContinueIfStrictOrNative(masm, &cont);
2482 } 2634 }
2483 2635
2484 // Compute the receiver in sloppy mode. 2636 // Compute the receiver in sloppy mode.
2485 __ ldr(r3, MemOperand(sp, argc * kPointerSize)); 2637 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
2486 2638
2487 if (needs_checks) { 2639 if (needs_checks) {
2488 __ JumpIfSmi(r3, &wrap); 2640 __ JumpIfSmi(r6, &wrap);
2489 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); 2641 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
2490 __ b(lt, &wrap); 2642 __ blt(&wrap);
2491 } else { 2643 } else {
2492 __ jmp(&wrap); 2644 __ b(&wrap);
2493 } 2645 }
2494 2646
2495 __ bind(&cont); 2647 __ bind(&cont);
2496 } 2648 }
2497 2649
2498 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); 2650 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
2499 2651
2500 if (needs_checks) { 2652 if (needs_checks) {
2501 // Slow-case: Non-function called. 2653 // Slow-case: Non-function called.
2502 __ bind(&slow); 2654 __ bind(&slow);
2503 EmitSlowCase(masm, argc, &non_function); 2655 EmitSlowCase(masm, argc, &non_function);
2504 } 2656 }
2505 2657
2506 if (call_as_method) { 2658 if (call_as_method) {
2507 __ bind(&wrap); 2659 __ bind(&wrap);
2508 EmitWrapCase(masm, argc, &cont); 2660 EmitWrapCase(masm, argc, &cont);
2509 } 2661 }
2510 } 2662 }
2511 2663
2512 2664
2513 void CallFunctionStub::Generate(MacroAssembler* masm) { 2665 void CallFunctionStub::Generate(MacroAssembler* masm) {
2514 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod()); 2666 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod());
2515 } 2667 }
2516 2668
2517 2669
2518 void CallConstructStub::Generate(MacroAssembler* masm) { 2670 void CallConstructStub::Generate(MacroAssembler* masm) {
2519 // r0 : number of arguments 2671 // r3 : number of arguments
2520 // r1 : the function to call 2672 // r4 : the function to call
2521 // r2 : feedback vector 2673 // r5 : feedback vector
2522 // r3 : (only if r2 is not the megamorphic symbol) slot in feedback 2674 // r6 : (only if r5 is not the megamorphic symbol) slot in feedback
2523 // vector (Smi) 2675 // vector (Smi)
2524 Label slow, non_function_call; 2676 Label slow, non_function_call;
2525 2677
2526 // Check that the function is not a smi. 2678 // Check that the function is not a smi.
2527 __ JumpIfSmi(r1, &non_function_call); 2679 __ JumpIfSmi(r4, &non_function_call);
2528 // Check that the function is a JSFunction. 2680 // Check that the function is a JSFunction.
2529 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); 2681 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2530 __ b(ne, &slow); 2682 __ bne(&slow);
2531 2683
2532 if (RecordCallTarget()) { 2684 if (RecordCallTarget()) {
2533 GenerateRecordCallTarget(masm); 2685 GenerateRecordCallTarget(masm);
2534 2686
2535 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); 2687 __ SmiToPtrArrayOffset(r8, r6);
2688 __ add(r8, r5, r8);
2536 if (FLAG_pretenuring_call_new) { 2689 if (FLAG_pretenuring_call_new) {
2537 // Put the AllocationSite from the feedback vector into r2. 2690 // Put the AllocationSite from the feedback vector into r5.
2538 // By adding kPointerSize we encode that we know the AllocationSite 2691 // By adding kPointerSize we encode that we know the AllocationSite
2539 // entry is at the feedback vector slot given by r3 + 1. 2692 // entry is at the feedback vector slot given by r6 + 1.
2540 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize)); 2693 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize));
2541 } else { 2694 } else {
2542 Label feedback_register_initialized; 2695 Label feedback_register_initialized;
2543 // Put the AllocationSite from the feedback vector into r2, or undefined. 2696 // Put the AllocationSite from the feedback vector into r5, or undefined.
2544 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize)); 2697 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize));
2545 __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset)); 2698 __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset));
2546 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); 2699 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2547 __ b(eq, &feedback_register_initialized); 2700 __ beq(&feedback_register_initialized);
2548 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); 2701 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex);
2549 __ bind(&feedback_register_initialized); 2702 __ bind(&feedback_register_initialized);
2550 } 2703 }
2551 2704
2552 __ AssertUndefinedOrAllocationSite(r2, r5); 2705 __ AssertUndefinedOrAllocationSite(r5, r8);
2553 } 2706 }
2554 2707
2555 // Jump to the function-specific construct stub. 2708 // Jump to the function-specific construct stub.
2556 Register jmp_reg = r4; 2709 Register jmp_reg = r7;
2557 __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); 2710 __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
2558 __ ldr(jmp_reg, FieldMemOperand(jmp_reg, 2711 __ LoadP(jmp_reg,
2559 SharedFunctionInfo::kConstructStubOffset)); 2712 FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset));
2560 __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); 2713 __ addi(r0, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag));
2714 __ Jump(r0);
2561 2715
2562 // r0: number of arguments 2716 // r3: number of arguments
2563 // r1: called object 2717 // r4: called object
2564 // r4: object type 2718 // r7: object type
2565 Label do_call; 2719 Label do_call;
2566 __ bind(&slow); 2720 __ bind(&slow);
2567 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); 2721 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu);
2568 __ b(ne, &non_function_call); 2722 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE));
2569 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); 2723 __ bne(&non_function_call);
2570 __ jmp(&do_call); 2724 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR);
2725 __ b(&do_call);
2571 2726
2572 __ bind(&non_function_call); 2727 __ bind(&non_function_call);
2573 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); 2728 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
2574 __ bind(&do_call); 2729 __ bind(&do_call);
2575 // Set expected number of arguments to zero (not changing r0). 2730 // Set expected number of arguments to zero (not changing r3).
2576 __ mov(r2, Operand::Zero()); 2731 __ li(r5, Operand::Zero());
2577 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), 2732 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
2578 RelocInfo::CODE_TARGET); 2733 RelocInfo::CODE_TARGET);
2579 } 2734 }
2580 2735
2581 2736
2582 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { 2737 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) {
2583 __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 2738 __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
2584 __ ldr(vector, FieldMemOperand(vector, 2739 __ LoadP(vector,
2585 JSFunction::kSharedFunctionInfoOffset)); 2740 FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset));
2586 __ ldr(vector, FieldMemOperand(vector, 2741 __ LoadP(vector,
2587 SharedFunctionInfo::kFeedbackVectorOffset)); 2742 FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset));
2588 } 2743 }
2589 2744
2590 2745
2591 void CallIC_ArrayStub::Generate(MacroAssembler* masm) { 2746 void CallIC_ArrayStub::Generate(MacroAssembler* masm) {
2592 // r1 - function 2747 // r4 - function
2593 // r3 - slot id 2748 // r6 - slot id
2594 Label miss; 2749 Label miss;
2595 int argc = arg_count(); 2750 int argc = arg_count();
2596 ParameterCount actual(argc); 2751 ParameterCount actual(argc);
2597 2752
2598 EmitLoadTypeFeedbackVector(masm, r2); 2753 EmitLoadTypeFeedbackVector(masm, r5);
2599 2754
2600 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); 2755 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7);
2601 __ cmp(r1, r4); 2756 __ cmp(r4, r7);
2602 __ b(ne, &miss); 2757 __ bne(&miss);
2603 2758
2604 __ mov(r0, Operand(arg_count())); 2759 __ mov(r3, Operand(arg_count()));
2605 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); 2760 __ SmiToPtrArrayOffset(r7, r6);
2606 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); 2761 __ add(r7, r5, r7);
2762 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2607 2763
2608 // Verify that r4 contains an AllocationSite 2764 // Verify that r7 contains an AllocationSite
2609 __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); 2765 __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset));
2610 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); 2766 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
2611 __ b(ne, &miss); 2767 __ bne(&miss);
2612 2768
2613 __ mov(r2, r4); 2769 __ mr(r5, r7);
2614 ArrayConstructorStub stub(masm->isolate(), arg_count()); 2770 ArrayConstructorStub stub(masm->isolate(), arg_count());
2615 __ TailCallStub(&stub); 2771 __ TailCallStub(&stub);
2616 2772
2617 __ bind(&miss); 2773 __ bind(&miss);
2618 GenerateMiss(masm, IC::kCallIC_Customization_Miss); 2774 GenerateMiss(masm);
2619 2775
2620 // The slow case, we need this no matter what to complete a call after a miss. 2776 // The slow case, we need this no matter what to complete a call after a miss.
2621 CallFunctionNoFeedback(masm, 2777 CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod());
2622 arg_count(),
2623 true,
2624 CallAsMethod());
2625 2778
2626 // Unreachable. 2779 // Unreachable.
2627 __ stop("Unexpected code address"); 2780 __ stop("Unexpected code address");
2628 } 2781 }
2629 2782
2630 2783
2631 void CallICStub::Generate(MacroAssembler* masm) { 2784 void CallICStub::Generate(MacroAssembler* masm) {
2632 // r1 - function 2785 // r4 - function
2633 // r3 - slot id (Smi) 2786 // r6 - slot id (Smi)
2634 Label extra_checks_or_miss, slow_start; 2787 Label extra_checks_or_miss, slow_start;
2635 Label slow, non_function, wrap, cont; 2788 Label slow, non_function, wrap, cont;
2636 Label have_js_function; 2789 Label have_js_function;
2637 int argc = arg_count(); 2790 int argc = arg_count();
2638 ParameterCount actual(argc); 2791 ParameterCount actual(argc);
2639 2792
2640 EmitLoadTypeFeedbackVector(masm, r2); 2793 EmitLoadTypeFeedbackVector(masm, r5);
2641 2794
2642 // The checks. First, does r1 match the recorded monomorphic target? 2795 // The checks. First, does r4 match the recorded monomorphic target?
2643 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); 2796 __ SmiToPtrArrayOffset(r7, r6);
2644 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); 2797 __ add(r7, r5, r7);
2645 __ cmp(r1, r4); 2798 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize));
2646 __ b(ne, &extra_checks_or_miss); 2799 __ cmp(r4, r7);
2800 __ bne(&extra_checks_or_miss);
2647 2801
2648 __ bind(&have_js_function); 2802 __ bind(&have_js_function);
2649 if (CallAsMethod()) { 2803 if (CallAsMethod()) {
2650 EmitContinueIfStrictOrNative(masm, &cont); 2804 EmitContinueIfStrictOrNative(masm, &cont);
2651 // Compute the receiver in sloppy mode. 2805 // Compute the receiver in sloppy mode.
2652 __ ldr(r3, MemOperand(sp, argc * kPointerSize)); 2806 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0);
2653 2807
2654 __ JumpIfSmi(r3, &wrap); 2808 __ JumpIfSmi(r6, &wrap);
2655 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); 2809 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE);
2656 __ b(lt, &wrap); 2810 __ blt(&wrap);
2657 2811
2658 __ bind(&cont); 2812 __ bind(&cont);
2659 } 2813 }
2660 2814
2661 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); 2815 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper());
2662 2816
2663 __ bind(&slow); 2817 __ bind(&slow);
2664 EmitSlowCase(masm, argc, &non_function); 2818 EmitSlowCase(masm, argc, &non_function);
2665 2819
2666 if (CallAsMethod()) { 2820 if (CallAsMethod()) {
2667 __ bind(&wrap); 2821 __ bind(&wrap);
2668 EmitWrapCase(masm, argc, &cont); 2822 EmitWrapCase(masm, argc, &cont);
2669 } 2823 }
2670 2824
2671 __ bind(&extra_checks_or_miss); 2825 __ bind(&extra_checks_or_miss);
2672 Label miss; 2826 Label miss;
2673 2827
2674 __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex); 2828 __ CompareRoot(r7, Heap::kMegamorphicSymbolRootIndex);
2675 __ b(eq, &slow_start); 2829 __ beq(&slow_start);
2676 __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); 2830 __ CompareRoot(r7, Heap::kUninitializedSymbolRootIndex);
2677 __ b(eq, &miss); 2831 __ beq(&miss);
2678 2832
2679 if (!FLAG_trace_ic) { 2833 if (!FLAG_trace_ic) {
2680 // We are going megamorphic. If the feedback is a JSFunction, it is fine 2834 // We are going megamorphic. If the feedback is a JSFunction, it is fine
2681 // to handle it here. More complex cases are dealt with in the runtime. 2835 // to handle it here. More complex cases are dealt with in the runtime.
2682 __ AssertNotSmi(r4); 2836 __ AssertNotSmi(r7);
2683 __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE); 2837 __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE);
2684 __ b(ne, &miss); 2838 __ bne(&miss);
2685 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); 2839 __ SmiToPtrArrayOffset(r7, r6);
2840 __ add(r7, r5, r7);
2686 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); 2841 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex);
2687 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); 2842 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0);
2688 __ jmp(&slow_start); 2843 __ jmp(&slow_start);
2689 } 2844 }
2690 2845
2691 // We are here because tracing is on or we are going monomorphic. 2846 // We are here because tracing is on or we are going monomorphic.
2692 __ bind(&miss); 2847 __ bind(&miss);
2693 GenerateMiss(masm, IC::kCallIC_Miss); 2848 GenerateMiss(masm);
2694 2849
2695 // the slow case 2850 // the slow case
2696 __ bind(&slow_start); 2851 __ bind(&slow_start);
2697 // Check that the function is really a JavaScript function. 2852 // Check that the function is really a JavaScript function.
2698 // r1: pushed function (to be verified) 2853 // r4: pushed function (to be verified)
2699 __ JumpIfSmi(r1, &non_function); 2854 __ JumpIfSmi(r4, &non_function);
2700 2855
2701 // Goto slow case if we do not have a function. 2856 // Goto slow case if we do not have a function.
2702 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); 2857 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE);
2703 __ b(ne, &slow); 2858 __ bne(&slow);
2704 __ jmp(&have_js_function); 2859 __ b(&have_js_function);
2705 } 2860 }
2706 2861
2707 2862
2708 void CallICStub::GenerateMiss(MacroAssembler* masm, IC::UtilityId id) { 2863 void CallICStub::GenerateMiss(MacroAssembler* masm) {
2709 // Get the receiver of the function from the stack; 1 ~ return address. 2864 // Get the receiver of the function from the stack; 1 ~ return address.
2710 __ ldr(r4, MemOperand(sp, (arg_count() + 1) * kPointerSize)); 2865 __ LoadP(r7, MemOperand(sp, (arg_count() + 1) * kPointerSize), r0);
2711 2866
2712 { 2867 {
2713 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); 2868 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2714 2869
2715 // Push the receiver and the function and feedback info. 2870 // Push the receiver and the function and feedback info.
2716 __ Push(r4, r1, r2, r3); 2871 __ Push(r7, r4, r5, r6);
2717 2872
2718 // Call the entry. 2873 // Call the entry.
2719 ExternalReference miss = ExternalReference(IC_Utility(id), 2874 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss
2720 masm->isolate()); 2875 : IC::kCallIC_Customization_Miss;
2876
2877 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate());
2721 __ CallExternalReference(miss, 4); 2878 __ CallExternalReference(miss, 4);
2722 2879
2723 // Move result to edi and exit the internal frame. 2880 // Move result to r4 and exit the internal frame.
2724 __ mov(r1, r0); 2881 __ mr(r4, r3);
2725 } 2882 }
2726 } 2883 }
2727 2884
2728 2885
2729 // StringCharCodeAtGenerator 2886 // StringCharCodeAtGenerator
2730 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { 2887 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
2731 // If the receiver is a smi trigger the non-string case. 2888 // If the receiver is a smi trigger the non-string case.
2732 __ JumpIfSmi(object_, receiver_not_string_); 2889 __ JumpIfSmi(object_, receiver_not_string_);
2733 2890
2734 // Fetch the instance type of the receiver into result register. 2891 // Fetch the instance type of the receiver into result register.
2735 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 2892 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2736 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 2893 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2737 // If the receiver is not a string trigger the non-string case. 2894 // If the receiver is not a string trigger the non-string case.
2738 __ tst(result_, Operand(kIsNotStringMask)); 2895 __ andi(r0, result_, Operand(kIsNotStringMask));
2739 __ b(ne, receiver_not_string_); 2896 __ bne(receiver_not_string_, cr0);
2740 2897
2741 // If the index is non-smi trigger the non-smi case. 2898 // If the index is non-smi trigger the non-smi case.
2742 __ JumpIfNotSmi(index_, &index_not_smi_); 2899 __ JumpIfNotSmi(index_, &index_not_smi_);
2743 __ bind(&got_smi_index_); 2900 __ bind(&got_smi_index_);
2744 2901
2745 // Check for index out of range. 2902 // Check for index out of range.
2746 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); 2903 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset));
2747 __ cmp(ip, Operand(index_)); 2904 __ cmpl(ip, index_);
2748 __ b(ls, index_out_of_range_); 2905 __ ble(index_out_of_range_);
2749 2906
2750 __ SmiUntag(index_); 2907 __ SmiUntag(index_);
2751 2908
2752 StringCharLoadGenerator::Generate(masm, 2909 StringCharLoadGenerator::Generate(masm, object_, index_, result_,
2753 object_,
2754 index_,
2755 result_,
2756 &call_runtime_); 2910 &call_runtime_);
2757 2911
2758 __ SmiTag(result_); 2912 __ SmiTag(result_);
2759 __ bind(&exit_); 2913 __ bind(&exit_);
2760 } 2914 }
2761 2915
2762 2916
2763 void StringCharCodeAtGenerator::GenerateSlow( 2917 void StringCharCodeAtGenerator::GenerateSlow(
2764 MacroAssembler* masm, 2918 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2765 const RuntimeCallHelper& call_helper) {
2766 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); 2919 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase);
2767 2920
2768 // Index is not a smi. 2921 // Index is not a smi.
2769 __ bind(&index_not_smi_); 2922 __ bind(&index_not_smi_);
2770 // If index is a heap number, try converting it to an integer. 2923 // If index is a heap number, try converting it to an integer.
2771 __ CheckMap(index_, 2924 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_,
2772 result_,
2773 Heap::kHeapNumberMapRootIndex,
2774 index_not_number_,
2775 DONT_DO_SMI_CHECK); 2925 DONT_DO_SMI_CHECK);
2776 call_helper.BeforeCall(masm); 2926 call_helper.BeforeCall(masm);
2777 __ push(object_); 2927 __ push(object_);
2778 __ push(index_); // Consumed by runtime conversion function. 2928 __ push(index_); // Consumed by runtime conversion function.
2779 if (index_flags_ == STRING_INDEX_IS_NUMBER) { 2929 if (index_flags_ == STRING_INDEX_IS_NUMBER) {
2780 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); 2930 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
2781 } else { 2931 } else {
2782 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); 2932 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
2783 // NumberToSmi discards numbers that are not exact integers. 2933 // NumberToSmi discards numbers that are not exact integers.
2784 __ CallRuntime(Runtime::kNumberToSmi, 1); 2934 __ CallRuntime(Runtime::kNumberToSmi, 1);
2785 } 2935 }
2786 // Save the conversion result before the pop instructions below 2936 // Save the conversion result before the pop instructions below
2787 // have a chance to overwrite it. 2937 // have a chance to overwrite it.
2788 __ Move(index_, r0); 2938 __ Move(index_, r3);
2789 __ pop(object_); 2939 __ pop(object_);
2790 // Reload the instance type. 2940 // Reload the instance type.
2791 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); 2941 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
2792 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); 2942 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
2793 call_helper.AfterCall(masm); 2943 call_helper.AfterCall(masm);
2794 // If index is still not a smi, it must be out of range. 2944 // If index is still not a smi, it must be out of range.
2795 __ JumpIfNotSmi(index_, index_out_of_range_); 2945 __ JumpIfNotSmi(index_, index_out_of_range_);
2796 // Otherwise, return to the fast path. 2946 // Otherwise, return to the fast path.
2797 __ jmp(&got_smi_index_); 2947 __ b(&got_smi_index_);
2798 2948
2799 // Call runtime. We get here when the receiver is a string and the 2949 // Call runtime. We get here when the receiver is a string and the
2800 // index is a number, but the code of getting the actual character 2950 // index is a number, but the code of getting the actual character
2801 // is too complex (e.g., when the string needs to be flattened). 2951 // is too complex (e.g., when the string needs to be flattened).
2802 __ bind(&call_runtime_); 2952 __ bind(&call_runtime_);
2803 call_helper.BeforeCall(masm); 2953 call_helper.BeforeCall(masm);
2804 __ SmiTag(index_); 2954 __ SmiTag(index_);
2805 __ Push(object_, index_); 2955 __ Push(object_, index_);
2806 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); 2956 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2);
2807 __ Move(result_, r0); 2957 __ Move(result_, r3);
2808 call_helper.AfterCall(masm); 2958 call_helper.AfterCall(masm);
2809 __ jmp(&exit_); 2959 __ b(&exit_);
2810 2960
2811 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); 2961 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase);
2812 } 2962 }
2813 2963
2814 2964
2815 // ------------------------------------------------------------------------- 2965 // -------------------------------------------------------------------------
2816 // StringCharFromCodeGenerator 2966 // StringCharFromCodeGenerator
2817 2967
2818 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { 2968 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
2819 // Fast case of Heap::LookupSingleCharacterStringFromCode. 2969 // Fast case of Heap::LookupSingleCharacterStringFromCode.
2820 STATIC_ASSERT(kSmiTag == 0);
2821 STATIC_ASSERT(kSmiShiftSize == 0);
2822 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1)); 2970 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1));
2823 __ tst(code_, 2971 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode));
2824 Operand(kSmiTagMask | 2972 __ ori(r0, r0, Operand(kSmiTagMask));
2825 ((~String::kMaxOneByteCharCode) << kSmiTagSize))); 2973 __ and_(r0, code_, r0);
2826 __ b(ne, &slow_case_); 2974 __ cmpi(r0, Operand::Zero());
2975 __ bne(&slow_case_);
2827 2976
2828 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); 2977 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
2829 // At this point code register contains smi tagged one-byte char code. 2978 // At this point code register contains smi tagged one-byte char code.
2830 __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_)); 2979 __ mr(r0, code_);
2831 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); 2980 __ SmiToPtrArrayOffset(code_, code_);
2981 __ add(result_, result_, code_);
2982 __ mr(code_, r0);
2983 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
2832 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); 2984 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
2833 __ b(eq, &slow_case_); 2985 __ beq(&slow_case_);
2834 __ bind(&exit_); 2986 __ bind(&exit_);
2835 } 2987 }
2836 2988
2837 2989
2838 void StringCharFromCodeGenerator::GenerateSlow( 2990 void StringCharFromCodeGenerator::GenerateSlow(
2839 MacroAssembler* masm, 2991 MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
2840 const RuntimeCallHelper& call_helper) {
2841 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); 2992 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase);
2842 2993
2843 __ bind(&slow_case_); 2994 __ bind(&slow_case_);
2844 call_helper.BeforeCall(masm); 2995 call_helper.BeforeCall(masm);
2845 __ push(code_); 2996 __ push(code_);
2846 __ CallRuntime(Runtime::kCharFromCode, 1); 2997 __ CallRuntime(Runtime::kCharFromCode, 1);
2847 __ Move(result_, r0); 2998 __ Move(result_, r3);
2848 call_helper.AfterCall(masm); 2999 call_helper.AfterCall(masm);
2849 __ jmp(&exit_); 3000 __ b(&exit_);
2850 3001
2851 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); 3002 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase);
2852 } 3003 }
2853 3004
2854 3005
2855 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 }; 3006 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 };
2856 3007
2857 3008
2858 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, 3009 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest,
2859 Register dest, 3010 Register src, Register count,
2860 Register src,
2861 Register count,
2862 Register scratch, 3011 Register scratch,
2863 String::Encoding encoding) { 3012 String::Encoding encoding) {
2864 if (FLAG_debug_code) { 3013 if (FLAG_debug_code) {
2865 // Check that destination is word aligned. 3014 // Check that destination is word aligned.
2866 __ tst(dest, Operand(kPointerAlignmentMask)); 3015 __ andi(r0, dest, Operand(kPointerAlignmentMask));
2867 __ Check(eq, kDestinationOfCopyNotAligned); 3016 __ Check(eq, kDestinationOfCopyNotAligned, cr0);
2868 } 3017 }
2869 3018
2870 // Assumes word reads and writes are little endian.
2871 // Nothing to do for zero characters. 3019 // Nothing to do for zero characters.
2872 Label done; 3020 Label done;
2873 if (encoding == String::TWO_BYTE_ENCODING) { 3021 if (encoding == String::TWO_BYTE_ENCODING) {
2874 __ add(count, count, Operand(count), SetCC); 3022 // double the length
3023 __ add(count, count, count, LeaveOE, SetRC);
3024 __ beq(&done, cr0);
3025 } else {
3026 __ cmpi(count, Operand::Zero());
3027 __ beq(&done);
2875 } 3028 }
2876 3029
2877 Register limit = count; // Read until dest equals this. 3030 // Copy count bytes from src to dst.
2878 __ add(limit, dest, Operand(count)); 3031 Label byte_loop;
2879 3032 __ mtctr(count);
2880 Label loop_entry, loop; 3033 __ bind(&byte_loop);
2881 // Copy bytes from src to dest until dest hits limit. 3034 __ lbz(scratch, MemOperand(src));
2882 __ b(&loop_entry); 3035 __ addi(src, src, Operand(1));
2883 __ bind(&loop); 3036 __ stb(scratch, MemOperand(dest));
2884 __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt); 3037 __ addi(dest, dest, Operand(1));
2885 __ strb(scratch, MemOperand(dest, 1, PostIndex)); 3038 __ bdnz(&byte_loop);
2886 __ bind(&loop_entry);
2887 __ cmp(dest, Operand(limit));
2888 __ b(lt, &loop);
2889 3039
2890 __ bind(&done); 3040 __ bind(&done);
2891 } 3041 }
2892 3042
2893 3043
2894 void SubStringStub::Generate(MacroAssembler* masm) { 3044 void SubStringStub::Generate(MacroAssembler* masm) {
2895 Label runtime; 3045 Label runtime;
2896 3046
2897 // Stack frame on entry. 3047 // Stack frame on entry.
2898 // lr: return address 3048 // lr: return address
2899 // sp[0]: to 3049 // sp[0]: to
2900 // sp[4]: from 3050 // sp[4]: from
2901 // sp[8]: string 3051 // sp[8]: string
2902 3052
2903 // This stub is called from the native-call %_SubString(...), so 3053 // This stub is called from the native-call %_SubString(...), so
2904 // nothing can be assumed about the arguments. It is tested that: 3054 // nothing can be assumed about the arguments. It is tested that:
2905 // "string" is a sequential string, 3055 // "string" is a sequential string,
2906 // both "from" and "to" are smis, and 3056 // both "from" and "to" are smis, and
2907 // 0 <= from <= to <= string.length. 3057 // 0 <= from <= to <= string.length.
2908 // If any of these assumptions fail, we call the runtime system. 3058 // If any of these assumptions fail, we call the runtime system.
2909 3059
2910 const int kToOffset = 0 * kPointerSize; 3060 const int kToOffset = 0 * kPointerSize;
2911 const int kFromOffset = 1 * kPointerSize; 3061 const int kFromOffset = 1 * kPointerSize;
2912 const int kStringOffset = 2 * kPointerSize; 3062 const int kStringOffset = 2 * kPointerSize;
2913 3063
2914 __ Ldrd(r2, r3, MemOperand(sp, kToOffset)); 3064 __ LoadP(r5, MemOperand(sp, kToOffset));
2915 STATIC_ASSERT(kFromOffset == kToOffset + 4); 3065 __ LoadP(r6, MemOperand(sp, kFromOffset));
2916 STATIC_ASSERT(kSmiTag == 0);
2917 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
2918 3066
2919 // Arithmetic shift right by one un-smi-tags. In this case we rotate right 3067 // If either to or from had the smi tag bit set, then fail to generic runtime
2920 // instead because we bail out on non-smi values: ROR and ASR are equivalent 3068 __ JumpIfNotSmi(r5, &runtime);
2921 // for smis but they set the flags in a way that's easier to optimize. 3069 __ JumpIfNotSmi(r6, &runtime);
2922 __ mov(r2, Operand(r2, ROR, 1), SetCC); 3070 __ SmiUntag(r5);
2923 __ mov(r3, Operand(r3, ROR, 1), SetCC, cc); 3071 __ SmiUntag(r6, SetRC);
2924 // If either to or from had the smi tag bit set, then C is set now, and N 3072 // Both r5 and r6 are untagged integers.
2925 // has the same value: we rotated by 1, so the bottom bit is now the top bit. 3073
2926 // We want to bailout to runtime here if From is negative. In that case, the 3074 // We want to bailout to runtime here if From is negative.
2927 // next instruction is not executed and we fall through to bailing out to 3075 __ blt(&runtime, cr0); // From < 0.
2928 // runtime. 3076
2929 // Executed if both r2 and r3 are untagged integers. 3077 __ cmpl(r6, r5);
2930 __ sub(r2, r2, Operand(r3), SetCC, cc); 3078 __ bgt(&runtime); // Fail if from > to.
2931 // One of the above un-smis or the above SUB could have set N==1. 3079 __ sub(r5, r5, r6);
2932 __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to.
2933 3080
2934 // Make sure first argument is a string. 3081 // Make sure first argument is a string.
2935 __ ldr(r0, MemOperand(sp, kStringOffset)); 3082 __ LoadP(r3, MemOperand(sp, kStringOffset));
2936 __ JumpIfSmi(r0, &runtime); 3083 __ JumpIfSmi(r3, &runtime);
2937 Condition is_string = masm->IsObjectStringType(r0, r1); 3084 Condition is_string = masm->IsObjectStringType(r3, r4);
2938 __ b(NegateCondition(is_string), &runtime); 3085 __ b(NegateCondition(is_string), &runtime, cr0);
2939 3086
2940 Label single_char; 3087 Label single_char;
2941 __ cmp(r2, Operand(1)); 3088 __ cmpi(r5, Operand(1));
2942 __ b(eq, &single_char); 3089 __ b(eq, &single_char);
2943 3090
2944 // Short-cut for the case of trivial substring. 3091 // Short-cut for the case of trivial substring.
2945 Label return_r0; 3092 Label return_r3;
2946 // r0: original string 3093 // r3: original string
2947 // r2: result string length 3094 // r5: result string length
2948 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset)); 3095 __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset));
2949 __ cmp(r2, Operand(r4, ASR, 1)); 3096 __ SmiUntag(r0, r7);
3097 __ cmpl(r5, r0);
2950 // Return original string. 3098 // Return original string.
2951 __ b(eq, &return_r0); 3099 __ beq(&return_r3);
2952 // Longer than original string's length or negative: unsafe arguments. 3100 // Longer than original string's length or negative: unsafe arguments.
2953 __ b(hi, &runtime); 3101 __ bgt(&runtime);
2954 // Shorter than original string's length: an actual substring. 3102 // Shorter than original string's length: an actual substring.
2955 3103
2956 // Deal with different string types: update the index if necessary 3104 // Deal with different string types: update the index if necessary
2957 // and put the underlying string into r5. 3105 // and put the underlying string into r8.
2958 // r0: original string 3106 // r3: original string
2959 // r1: instance type 3107 // r4: instance type
2960 // r2: length 3108 // r5: length
2961 // r3: from index (untagged) 3109 // r6: from index (untagged)
2962 Label underlying_unpacked, sliced_string, seq_or_external_string; 3110 Label underlying_unpacked, sliced_string, seq_or_external_string;
2963 // If the string is not indirect, it can only be sequential or external. 3111 // If the string is not indirect, it can only be sequential or external.
2964 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); 3112 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
2965 STATIC_ASSERT(kIsIndirectStringMask != 0); 3113 STATIC_ASSERT(kIsIndirectStringMask != 0);
2966 __ tst(r1, Operand(kIsIndirectStringMask)); 3114 __ andi(r0, r4, Operand(kIsIndirectStringMask));
2967 __ b(eq, &seq_or_external_string); 3115 __ beq(&seq_or_external_string, cr0);
2968 3116
2969 __ tst(r1, Operand(kSlicedNotConsMask)); 3117 __ andi(r0, r4, Operand(kSlicedNotConsMask));
2970 __ b(ne, &sliced_string); 3118 __ bne(&sliced_string, cr0);
2971 // Cons string. Check whether it is flat, then fetch first part. 3119 // Cons string. Check whether it is flat, then fetch first part.
2972 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset)); 3120 __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset));
2973 __ CompareRoot(r5, Heap::kempty_stringRootIndex); 3121 __ CompareRoot(r8, Heap::kempty_stringRootIndex);
2974 __ b(ne, &runtime); 3122 __ bne(&runtime);
2975 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset)); 3123 __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset));
2976 // Update instance type. 3124 // Update instance type.
2977 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); 3125 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
2978 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); 3126 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
2979 __ jmp(&underlying_unpacked); 3127 __ b(&underlying_unpacked);
2980 3128
2981 __ bind(&sliced_string); 3129 __ bind(&sliced_string);
2982 // Sliced string. Fetch parent and correct start index by offset. 3130 // Sliced string. Fetch parent and correct start index by offset.
2983 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); 3131 __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset));
2984 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset)); 3132 __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset));
2985 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index. 3133 __ SmiUntag(r4, r7);
3134 __ add(r6, r6, r4); // Add offset to index.
2986 // Update instance type. 3135 // Update instance type.
2987 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); 3136 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset));
2988 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); 3137 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
2989 __ jmp(&underlying_unpacked); 3138 __ b(&underlying_unpacked);
2990 3139
2991 __ bind(&seq_or_external_string); 3140 __ bind(&seq_or_external_string);
2992 // Sequential or external string. Just move string to the expected register. 3141 // Sequential or external string. Just move string to the expected register.
2993 __ mov(r5, r0); 3142 __ mr(r8, r3);
2994 3143
2995 __ bind(&underlying_unpacked); 3144 __ bind(&underlying_unpacked);
2996 3145
2997 if (FLAG_string_slices) { 3146 if (FLAG_string_slices) {
2998 Label copy_routine; 3147 Label copy_routine;
2999 // r5: underlying subject string 3148 // r8: underlying subject string
3000 // r1: instance type of underlying subject string 3149 // r4: instance type of underlying subject string
3001 // r2: length 3150 // r5: length
3002 // r3: adjusted start index (untagged) 3151 // r6: adjusted start index (untagged)
3003 __ cmp(r2, Operand(SlicedString::kMinLength)); 3152 __ cmpi(r5, Operand(SlicedString::kMinLength));
3004 // Short slice. Copy instead of slicing. 3153 // Short slice. Copy instead of slicing.
3005 __ b(lt, &copy_routine); 3154 __ blt(&copy_routine);
3006 // Allocate new sliced string. At this point we do not reload the instance 3155 // Allocate new sliced string. At this point we do not reload the instance
3007 // type including the string encoding because we simply rely on the info 3156 // type including the string encoding because we simply rely on the info
3008 // provided by the original string. It does not matter if the original 3157 // provided by the original string. It does not matter if the original
3009 // string's encoding is wrong because we always have to recheck encoding of 3158 // string's encoding is wrong because we always have to recheck encoding of
3010 // the newly created string's parent anyways due to externalized strings. 3159 // the newly created string's parent anyways due to externalized strings.
3011 Label two_byte_slice, set_slice_header; 3160 Label two_byte_slice, set_slice_header;
3012 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); 3161 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0);
3013 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); 3162 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
3014 __ tst(r1, Operand(kStringEncodingMask)); 3163 __ andi(r0, r4, Operand(kStringEncodingMask));
3015 __ b(eq, &two_byte_slice); 3164 __ beq(&two_byte_slice, cr0);
3016 __ AllocateOneByteSlicedString(r0, r2, r6, r4, &runtime); 3165 __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime);
3017 __ jmp(&set_slice_header); 3166 __ b(&set_slice_header);
3018 __ bind(&two_byte_slice); 3167 __ bind(&two_byte_slice);
3019 __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime); 3168 __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime);
3020 __ bind(&set_slice_header); 3169 __ bind(&set_slice_header);
3021 __ mov(r3, Operand(r3, LSL, 1)); 3170 __ SmiTag(r6);
3022 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); 3171 __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0);
3023 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset)); 3172 __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0);
3024 __ jmp(&return_r0); 3173 __ b(&return_r3);
3025 3174
3026 __ bind(&copy_routine); 3175 __ bind(&copy_routine);
3027 } 3176 }
3028 3177
3029 // r5: underlying subject string 3178 // r8: underlying subject string
3030 // r1: instance type of underlying subject string 3179 // r4: instance type of underlying subject string
3031 // r2: length 3180 // r5: length
3032 // r3: adjusted start index (untagged) 3181 // r6: adjusted start index (untagged)
3033 Label two_byte_sequential, sequential_string, allocate_result; 3182 Label two_byte_sequential, sequential_string, allocate_result;
3034 STATIC_ASSERT(kExternalStringTag != 0); 3183 STATIC_ASSERT(kExternalStringTag != 0);
3035 STATIC_ASSERT(kSeqStringTag == 0); 3184 STATIC_ASSERT(kSeqStringTag == 0);
3036 __ tst(r1, Operand(kExternalStringTag)); 3185 __ andi(r0, r4, Operand(kExternalStringTag));
3037 __ b(eq, &sequential_string); 3186 __ beq(&sequential_string, cr0);
3038 3187
3039 // Handle external string. 3188 // Handle external string.
3040 // Rule out short external strings. 3189 // Rule out short external strings.
3041 STATIC_ASSERT(kShortExternalStringTag != 0); 3190 STATIC_ASSERT(kShortExternalStringTag != 0);
3042 __ tst(r1, Operand(kShortExternalStringTag)); 3191 __ andi(r0, r4, Operand(kShortExternalStringTag));
3043 __ b(ne, &runtime); 3192 __ bne(&runtime, cr0);
3044 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset)); 3193 __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset));
3045 // r5 already points to the first character of underlying string. 3194 // r8 already points to the first character of underlying string.
3046 __ jmp(&allocate_result); 3195 __ b(&allocate_result);
3047 3196
3048 __ bind(&sequential_string); 3197 __ bind(&sequential_string);
3049 // Locate first character of underlying subject string. 3198 // Locate first character of underlying subject string.
3050 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); 3199 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
3051 __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 3200 __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3052 3201
3053 __ bind(&allocate_result); 3202 __ bind(&allocate_result);
3054 // Sequential acii string. Allocate the result. 3203 // Sequential acii string. Allocate the result.
3055 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); 3204 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0);
3056 __ tst(r1, Operand(kStringEncodingMask)); 3205 __ andi(r0, r4, Operand(kStringEncodingMask));
3057 __ b(eq, &two_byte_sequential); 3206 __ beq(&two_byte_sequential, cr0);
3058 3207
3059 // Allocate and copy the resulting one-byte string. 3208 // Allocate and copy the resulting one-byte string.
3060 __ AllocateOneByteString(r0, r2, r4, r6, r1, &runtime); 3209 __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime);
3061 3210
3062 // Locate first character of substring to copy. 3211 // Locate first character of substring to copy.
3063 __ add(r5, r5, r3); 3212 __ add(r8, r8, r6);
3064 // Locate first character of result. 3213 // Locate first character of result.
3065 __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 3214 __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3066 3215
3067 // r0: result string 3216 // r3: result string
3068 // r1: first character of result string 3217 // r4: first character of result string
3069 // r2: result string length 3218 // r5: result string length
3070 // r5: first character of substring to copy 3219 // r8: first character of substring to copy
3071 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); 3220 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3072 StringHelper::GenerateCopyCharacters( 3221 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
3073 masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING); 3222 String::ONE_BYTE_ENCODING);
3074 __ jmp(&return_r0); 3223 __ b(&return_r3);
3075 3224
3076 // Allocate and copy the resulting two-byte string. 3225 // Allocate and copy the resulting two-byte string.
3077 __ bind(&two_byte_sequential); 3226 __ bind(&two_byte_sequential);
3078 __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime); 3227 __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime);
3079 3228
3080 // Locate first character of substring to copy. 3229 // Locate first character of substring to copy.
3081 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); 3230 __ ShiftLeftImm(r4, r6, Operand(1));
3082 __ add(r5, r5, Operand(r3, LSL, 1)); 3231 __ add(r8, r8, r4);
3083 // Locate first character of result. 3232 // Locate first character of result.
3084 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); 3233 __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
3085 3234
3086 // r0: result string. 3235 // r3: result string.
3087 // r1: first character of result. 3236 // r4: first character of result.
3088 // r2: result length. 3237 // r5: result length.
3089 // r5: first character of substring to copy. 3238 // r8: first character of substring to copy.
3090 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); 3239 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3091 StringHelper::GenerateCopyCharacters( 3240 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6,
3092 masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING); 3241 String::TWO_BYTE_ENCODING);
3093 3242
3094 __ bind(&return_r0); 3243 __ bind(&return_r3);
3095 Counters* counters = isolate()->counters(); 3244 Counters* counters = isolate()->counters();
3096 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); 3245 __ IncrementCounter(counters->sub_string_native(), 1, r6, r7);
3097 __ Drop(3); 3246 __ Drop(3);
3098 __ Ret(); 3247 __ Ret();
3099 3248
3100 // Just jump to runtime to create the sub string. 3249 // Just jump to runtime to create the sub string.
3101 __ bind(&runtime); 3250 __ bind(&runtime);
3102 __ TailCallRuntime(Runtime::kSubString, 3, 1); 3251 __ TailCallRuntime(Runtime::kSubString, 3, 1);
3103 3252
3104 __ bind(&single_char); 3253 __ bind(&single_char);
3105 // r0: original string 3254 // r3: original string
3106 // r1: instance type 3255 // r4: instance type
3107 // r2: length 3256 // r5: length
3108 // r3: from index (untagged) 3257 // r6: from index (untagged)
3109 __ SmiTag(r3, r3); 3258 __ SmiTag(r6, r6);
3110 StringCharAtGenerator generator( 3259 StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime,
3111 r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); 3260 STRING_INDEX_IS_NUMBER);
3112 generator.GenerateFast(masm); 3261 generator.GenerateFast(masm);
3113 __ Drop(3); 3262 __ Drop(3);
3114 __ Ret(); 3263 __ Ret();
3115 generator.SkipSlow(masm, &runtime); 3264 generator.SkipSlow(masm, &runtime);
3116 } 3265 }
3117 3266
3118 3267
3119 void StringHelper::GenerateFlatOneByteStringEquals( 3268 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm,
3120 MacroAssembler* masm, Register left, Register right, Register scratch1, 3269 Register left,
3121 Register scratch2, Register scratch3) { 3270 Register right,
3271 Register scratch1,
3272 Register scratch2) {
3122 Register length = scratch1; 3273 Register length = scratch1;
3123 3274
3124 // Compare lengths. 3275 // Compare lengths.
3125 Label strings_not_equal, check_zero_length; 3276 Label strings_not_equal, check_zero_length;
3126 __ ldr(length, FieldMemOperand(left, String::kLengthOffset)); 3277 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset));
3127 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); 3278 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
3128 __ cmp(length, scratch2); 3279 __ cmp(length, scratch2);
3129 __ b(eq, &check_zero_length); 3280 __ beq(&check_zero_length);
3130 __ bind(&strings_not_equal); 3281 __ bind(&strings_not_equal);
3131 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL))); 3282 __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL));
3132 __ Ret(); 3283 __ Ret();
3133 3284
3134 // Check if the length is zero. 3285 // Check if the length is zero.
3135 Label compare_chars; 3286 Label compare_chars;
3136 __ bind(&check_zero_length); 3287 __ bind(&check_zero_length);
3137 STATIC_ASSERT(kSmiTag == 0); 3288 STATIC_ASSERT(kSmiTag == 0);
3138 __ cmp(length, Operand::Zero()); 3289 __ cmpi(length, Operand::Zero());
3139 __ b(ne, &compare_chars); 3290 __ bne(&compare_chars);
3140 __ mov(r0, Operand(Smi::FromInt(EQUAL))); 3291 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3141 __ Ret(); 3292 __ Ret();
3142 3293
3143 // Compare characters. 3294 // Compare characters.
3144 __ bind(&compare_chars); 3295 __ bind(&compare_chars);
3145 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3, 3296 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2,
3146 &strings_not_equal); 3297 &strings_not_equal);
3147 3298
3148 // Characters are equal. 3299 // Characters are equal.
3149 __ mov(r0, Operand(Smi::FromInt(EQUAL))); 3300 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3150 __ Ret(); 3301 __ Ret();
3151 } 3302 }
3152 3303
3153 3304
3154 void StringHelper::GenerateCompareFlatOneByteStrings( 3305 void StringHelper::GenerateCompareFlatOneByteStrings(
3155 MacroAssembler* masm, Register left, Register right, Register scratch1, 3306 MacroAssembler* masm, Register left, Register right, Register scratch1,
3156 Register scratch2, Register scratch3, Register scratch4) { 3307 Register scratch2, Register scratch3) {
3157 Label result_not_equal, compare_lengths; 3308 Label skip, result_not_equal, compare_lengths;
3158 // Find minimum length and length difference. 3309 // Find minimum length and length difference.
3159 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); 3310 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset));
3160 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); 3311 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset));
3161 __ sub(scratch3, scratch1, Operand(scratch2), SetCC); 3312 __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC);
3162 Register length_delta = scratch3; 3313 Register length_delta = scratch3;
3163 __ mov(scratch1, scratch2, LeaveCC, gt); 3314 __ ble(&skip, cr0);
3315 __ mr(scratch1, scratch2);
3316 __ bind(&skip);
3164 Register min_length = scratch1; 3317 Register min_length = scratch1;
3165 STATIC_ASSERT(kSmiTag == 0); 3318 STATIC_ASSERT(kSmiTag == 0);
3166 __ cmp(min_length, Operand::Zero()); 3319 __ cmpi(min_length, Operand::Zero());
3167 __ b(eq, &compare_lengths); 3320 __ beq(&compare_lengths);
3168 3321
3169 // Compare loop. 3322 // Compare loop.
3170 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, 3323 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2,
3171 scratch4, &result_not_equal); 3324 &result_not_equal);
3172 3325
3173 // Compare lengths - strings up to min-length are equal. 3326 // Compare lengths - strings up to min-length are equal.
3174 __ bind(&compare_lengths); 3327 __ bind(&compare_lengths);
3175 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); 3328 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
3176 // Use length_delta as result if it's zero. 3329 // Use length_delta as result if it's zero.
3177 __ mov(r0, Operand(length_delta), SetCC); 3330 __ mr(r3, length_delta);
3331 __ cmpi(r3, Operand::Zero());
3178 __ bind(&result_not_equal); 3332 __ bind(&result_not_equal);
3179 // Conditionally update the result based either on length_delta or 3333 // Conditionally update the result based either on length_delta or
3180 // the last comparion performed in the loop above. 3334 // the last comparion performed in the loop above.
3181 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); 3335 Label less_equal, equal;
3182 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); 3336 __ ble(&less_equal);
3337 __ LoadSmiLiteral(r3, Smi::FromInt(GREATER));
3338 __ Ret();
3339 __ bind(&less_equal);
3340 __ beq(&equal);
3341 __ LoadSmiLiteral(r3, Smi::FromInt(LESS));
3342 __ bind(&equal);
3183 __ Ret(); 3343 __ Ret();
3184 } 3344 }
3185 3345
3186 3346
3187 void StringHelper::GenerateOneByteCharsCompareLoop( 3347 void StringHelper::GenerateOneByteCharsCompareLoop(
3188 MacroAssembler* masm, Register left, Register right, Register length, 3348 MacroAssembler* masm, Register left, Register right, Register length,
3189 Register scratch1, Register scratch2, Label* chars_not_equal) { 3349 Register scratch1, Label* chars_not_equal) {
3190 // Change index to run from -length to -1 by adding length to string 3350 // Change index to run from -length to -1 by adding length to string
3191 // start. This means that loop ends when index reaches zero, which 3351 // start. This means that loop ends when index reaches zero, which
3192 // doesn't need an additional compare. 3352 // doesn't need an additional compare.
3193 __ SmiUntag(length); 3353 __ SmiUntag(length);
3194 __ add(scratch1, length, 3354 __ addi(scratch1, length,
3195 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); 3355 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag));
3196 __ add(left, left, Operand(scratch1)); 3356 __ add(left, left, scratch1);
3197 __ add(right, right, Operand(scratch1)); 3357 __ add(right, right, scratch1);
3198 __ rsb(length, length, Operand::Zero()); 3358 __ subfic(length, length, Operand::Zero());
3199 Register index = length; // index = -length; 3359 Register index = length; // index = -length;
3200 3360
3201 // Compare loop. 3361 // Compare loop.
3202 Label loop; 3362 Label loop;
3203 __ bind(&loop); 3363 __ bind(&loop);
3204 __ ldrb(scratch1, MemOperand(left, index)); 3364 __ lbzx(scratch1, MemOperand(left, index));
3205 __ ldrb(scratch2, MemOperand(right, index)); 3365 __ lbzx(r0, MemOperand(right, index));
3206 __ cmp(scratch1, scratch2); 3366 __ cmp(scratch1, r0);
3207 __ b(ne, chars_not_equal); 3367 __ bne(chars_not_equal);
3208 __ add(index, index, Operand(1), SetCC); 3368 __ addi(index, index, Operand(1));
3209 __ b(ne, &loop); 3369 __ cmpi(index, Operand::Zero());
3370 __ bne(&loop);
3210 } 3371 }
3211 3372
3212 3373
3213 void StringCompareStub::Generate(MacroAssembler* masm) { 3374 void StringCompareStub::Generate(MacroAssembler* masm) {
3214 Label runtime; 3375 Label runtime;
3215 3376
3216 Counters* counters = isolate()->counters(); 3377 Counters* counters = isolate()->counters();
3217 3378
3218 // Stack frame on entry. 3379 // Stack frame on entry.
3219 // sp[0]: right string 3380 // sp[0]: right string
3220 // sp[4]: left string 3381 // sp[4]: left string
3221 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. 3382 __ LoadP(r3, MemOperand(sp)); // Load right in r3, left in r4.
3383 __ LoadP(r4, MemOperand(sp, kPointerSize));
3222 3384
3223 Label not_same; 3385 Label not_same;
3224 __ cmp(r0, r1); 3386 __ cmp(r3, r4);
3225 __ b(ne, &not_same); 3387 __ bne(&not_same);
3226 STATIC_ASSERT(EQUAL == 0); 3388 STATIC_ASSERT(EQUAL == 0);
3227 STATIC_ASSERT(kSmiTag == 0); 3389 STATIC_ASSERT(kSmiTag == 0);
3228 __ mov(r0, Operand(Smi::FromInt(EQUAL))); 3390 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3229 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); 3391 __ IncrementCounter(counters->string_compare_native(), 1, r4, r5);
3230 __ add(sp, sp, Operand(2 * kPointerSize)); 3392 __ addi(sp, sp, Operand(2 * kPointerSize));
3231 __ Ret(); 3393 __ Ret();
3232 3394
3233 __ bind(&not_same); 3395 __ bind(&not_same);
3234 3396
3235 // Check that both objects are sequential one-byte strings. 3397 // Check that both objects are sequential one-byte strings.
3236 __ JumpIfNotBothSequentialOneByteStrings(r1, r0, r2, r3, &runtime); 3398 __ JumpIfNotBothSequentialOneByteStrings(r4, r3, r5, r6, &runtime);
3237 3399
3238 // Compare flat one-byte strings natively. Remove arguments from stack first. 3400 // Compare flat one-byte strings natively. Remove arguments from stack first.
3239 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); 3401 __ IncrementCounter(counters->string_compare_native(), 1, r5, r6);
3240 __ add(sp, sp, Operand(2 * kPointerSize)); 3402 __ addi(sp, sp, Operand(2 * kPointerSize));
3241 StringHelper::GenerateCompareFlatOneByteStrings(masm, r1, r0, r2, r3, r4, r5); 3403 StringHelper::GenerateCompareFlatOneByteStrings(masm, r4, r3, r5, r6, r7);
3242 3404
3243 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) 3405 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
3244 // tagged as a small integer. 3406 // tagged as a small integer.
3245 __ bind(&runtime); 3407 __ bind(&runtime);
3246 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); 3408 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3247 } 3409 }
3248 3410
3249 3411
3250 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { 3412 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) {
3251 // ----------- S t a t e ------------- 3413 // ----------- S t a t e -------------
3252 // -- r1 : left 3414 // -- r4 : left
3253 // -- r0 : right 3415 // -- r3 : right
3254 // -- lr : return address 3416 // -- lr : return address
3255 // ----------------------------------- 3417 // -----------------------------------
3256 3418
3257 // Load r2 with the allocation site. We stick an undefined dummy value here 3419 // Load r5 with the allocation site. We stick an undefined dummy value here
3258 // and replace it with the real allocation site later when we instantiate this 3420 // and replace it with the real allocation site later when we instantiate this
3259 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). 3421 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate().
3260 __ Move(r2, handle(isolate()->heap()->undefined_value())); 3422 __ Move(r5, handle(isolate()->heap()->undefined_value()));
3261 3423
3262 // Make sure that we actually patched the allocation site. 3424 // Make sure that we actually patched the allocation site.
3263 if (FLAG_debug_code) { 3425 if (FLAG_debug_code) {
3264 __ tst(r2, Operand(kSmiTagMask)); 3426 __ TestIfSmi(r5, r0);
3265 __ Assert(ne, kExpectedAllocationSite); 3427 __ Assert(ne, kExpectedAllocationSite, cr0);
3266 __ push(r2); 3428 __ push(r5);
3267 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); 3429 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset));
3268 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); 3430 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex);
3269 __ cmp(r2, ip); 3431 __ cmp(r5, ip);
3270 __ pop(r2); 3432 __ pop(r5);
3271 __ Assert(eq, kExpectedAllocationSite); 3433 __ Assert(eq, kExpectedAllocationSite);
3272 } 3434 }
3273 3435
3274 // Tail call into the stub that handles binary operations with allocation 3436 // Tail call into the stub that handles binary operations with allocation
3275 // sites. 3437 // sites.
3276 BinaryOpWithAllocationSiteStub stub(isolate(), state()); 3438 BinaryOpWithAllocationSiteStub stub(isolate(), state());
3277 __ TailCallStub(&stub); 3439 __ TailCallStub(&stub);
3278 } 3440 }
3279 3441
3280 3442
3281 void CompareICStub::GenerateSmis(MacroAssembler* masm) { 3443 void CompareICStub::GenerateSmis(MacroAssembler* masm) {
3282 DCHECK(state() == CompareIC::SMI); 3444 DCHECK(state() == CompareICState::SMI);
3283 Label miss; 3445 Label miss;
3284 __ orr(r2, r1, r0); 3446 __ orx(r5, r4, r3);
3285 __ JumpIfNotSmi(r2, &miss); 3447 __ JumpIfNotSmi(r5, &miss);
3286 3448
3287 if (GetCondition() == eq) { 3449 if (GetCondition() == eq) {
3288 // For equality we do not care about the sign of the result. 3450 // For equality we do not care about the sign of the result.
3289 __ sub(r0, r0, r1, SetCC); 3451 // __ sub(r3, r3, r4, SetCC);
3452 __ sub(r3, r3, r4);
3290 } else { 3453 } else {
3291 // Untag before subtracting to avoid handling overflow. 3454 // Untag before subtracting to avoid handling overflow.
3292 __ SmiUntag(r1); 3455 __ SmiUntag(r4);
3293 __ sub(r0, r1, Operand::SmiUntag(r0)); 3456 __ SmiUntag(r3);
3457 __ sub(r3, r4, r3);
3294 } 3458 }
3295 __ Ret(); 3459 __ Ret();
3296 3460
3297 __ bind(&miss); 3461 __ bind(&miss);
3298 GenerateMiss(masm); 3462 GenerateMiss(masm);
3299 } 3463 }
3300 3464
3301 3465
3302 void CompareICStub::GenerateNumbers(MacroAssembler* masm) { 3466 void CompareICStub::GenerateNumbers(MacroAssembler* masm) {
3303 DCHECK(state() == CompareIC::NUMBER); 3467 DCHECK(state() == CompareICState::NUMBER);
3304 3468
3305 Label generic_stub; 3469 Label generic_stub;
3306 Label unordered, maybe_undefined1, maybe_undefined2; 3470 Label unordered, maybe_undefined1, maybe_undefined2;
3307 Label miss; 3471 Label miss;
3472 Label equal, less_than;
3308 3473
3309 if (left() == CompareIC::SMI) { 3474 if (left() == CompareICState::SMI) {
3310 __ JumpIfNotSmi(r1, &miss); 3475 __ JumpIfNotSmi(r4, &miss);
3311 } 3476 }
3312 if (right() == CompareIC::SMI) { 3477 if (right() == CompareICState::SMI) {
3313 __ JumpIfNotSmi(r0, &miss); 3478 __ JumpIfNotSmi(r3, &miss);
3314 } 3479 }
3315 3480
3316 // Inlining the double comparison and falling back to the general compare 3481 // Inlining the double comparison and falling back to the general compare
3317 // stub if NaN is involved. 3482 // stub if NaN is involved.
3318 // Load left and right operand. 3483 // Load left and right operand.
3319 Label done, left, left_smi, right_smi; 3484 Label done, left, left_smi, right_smi;
3320 __ JumpIfSmi(r0, &right_smi); 3485 __ JumpIfSmi(r3, &right_smi);
3321 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, 3486 __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1,
3322 DONT_DO_SMI_CHECK); 3487 DONT_DO_SMI_CHECK);
3323 __ sub(r2, r0, Operand(kHeapObjectTag)); 3488 __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset));
3324 __ vldr(d1, r2, HeapNumber::kValueOffset);
3325 __ b(&left); 3489 __ b(&left);
3326 __ bind(&right_smi); 3490 __ bind(&right_smi);
3327 __ SmiToDouble(d1, r0); 3491 __ SmiToDouble(d1, r3);
3328 3492
3329 __ bind(&left); 3493 __ bind(&left);
3330 __ JumpIfSmi(r1, &left_smi); 3494 __ JumpIfSmi(r4, &left_smi);
3331 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, 3495 __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2,
3332 DONT_DO_SMI_CHECK); 3496 DONT_DO_SMI_CHECK);
3333 __ sub(r2, r1, Operand(kHeapObjectTag)); 3497 __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset));
3334 __ vldr(d0, r2, HeapNumber::kValueOffset);
3335 __ b(&done); 3498 __ b(&done);
3336 __ bind(&left_smi); 3499 __ bind(&left_smi);
3337 __ SmiToDouble(d0, r1); 3500 __ SmiToDouble(d0, r4);
3338 3501
3339 __ bind(&done); 3502 __ bind(&done);
3340 // Compare operands. 3503
3341 __ VFPCompareAndSetFlags(d0, d1); 3504 // Compare operands
3505 __ fcmpu(d0, d1);
3342 3506
3343 // Don't base result on status bits when a NaN is involved. 3507 // Don't base result on status bits when a NaN is involved.
3344 __ b(vs, &unordered); 3508 __ bunordered(&unordered);
3345 3509
3346 // Return a result of -1, 0, or 1, based on status bits. 3510 // Return a result of -1, 0, or 1, based on status bits.
3347 __ mov(r0, Operand(EQUAL), LeaveCC, eq); 3511 __ beq(&equal);
3348 __ mov(r0, Operand(LESS), LeaveCC, lt); 3512 __ blt(&less_than);
3349 __ mov(r0, Operand(GREATER), LeaveCC, gt); 3513 // assume greater than
3514 __ li(r3, Operand(GREATER));
3515 __ Ret();
3516 __ bind(&equal);
3517 __ li(r3, Operand(EQUAL));
3518 __ Ret();
3519 __ bind(&less_than);
3520 __ li(r3, Operand(LESS));
3350 __ Ret(); 3521 __ Ret();
3351 3522
3352 __ bind(&unordered); 3523 __ bind(&unordered);
3353 __ bind(&generic_stub); 3524 __ bind(&generic_stub);
3354 CompareICStub stub(isolate(), op(), CompareIC::GENERIC, CompareIC::GENERIC, 3525 CompareICStub stub(isolate(), op(), CompareICState::GENERIC,
3355 CompareIC::GENERIC); 3526 CompareICState::GENERIC, CompareICState::GENERIC);
3356 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); 3527 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
3357 3528
3358 __ bind(&maybe_undefined1); 3529 __ bind(&maybe_undefined1);
3359 if (Token::IsOrderedRelationalCompareOp(op())) { 3530 if (Token::IsOrderedRelationalCompareOp(op())) {
3360 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); 3531 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex);
3361 __ b(ne, &miss); 3532 __ bne(&miss);
3362 __ JumpIfSmi(r1, &unordered); 3533 __ JumpIfSmi(r4, &unordered);
3363 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); 3534 __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE);
3364 __ b(ne, &maybe_undefined2); 3535 __ bne(&maybe_undefined2);
3365 __ jmp(&unordered); 3536 __ b(&unordered);
3366 } 3537 }
3367 3538
3368 __ bind(&maybe_undefined2); 3539 __ bind(&maybe_undefined2);
3369 if (Token::IsOrderedRelationalCompareOp(op())) { 3540 if (Token::IsOrderedRelationalCompareOp(op())) {
3370 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); 3541 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex);
3371 __ b(eq, &unordered); 3542 __ beq(&unordered);
3372 } 3543 }
3373 3544
3374 __ bind(&miss); 3545 __ bind(&miss);
3375 GenerateMiss(masm); 3546 GenerateMiss(masm);
3376 } 3547 }
3377 3548
3378 3549
3379 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { 3550 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) {
3380 DCHECK(state() == CompareIC::INTERNALIZED_STRING); 3551 DCHECK(state() == CompareICState::INTERNALIZED_STRING);
3381 Label miss; 3552 Label miss, not_equal;
3382 3553
3383 // Registers containing left and right operands respectively. 3554 // Registers containing left and right operands respectively.
3384 Register left = r1; 3555 Register left = r4;
3385 Register right = r0; 3556 Register right = r3;
3386 Register tmp1 = r2; 3557 Register tmp1 = r5;
3387 Register tmp2 = r3; 3558 Register tmp2 = r6;
3388 3559
3389 // Check that both operands are heap objects. 3560 // Check that both operands are heap objects.
3390 __ JumpIfEitherSmi(left, right, &miss); 3561 __ JumpIfEitherSmi(left, right, &miss);
3391 3562
3392 // Check that both operands are internalized strings. 3563 // Check that both operands are symbols.
3393 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); 3564 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3394 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); 3565 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3395 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); 3566 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3396 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); 3567 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3397 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); 3568 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0);
3398 __ orr(tmp1, tmp1, Operand(tmp2)); 3569 __ orx(tmp1, tmp1, tmp2);
3399 __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); 3570 __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask));
3400 __ b(ne, &miss); 3571 __ bne(&miss, cr0);
3401 3572
3402 // Internalized strings are compared by identity. 3573 // Internalized strings are compared by identity.
3403 __ cmp(left, right); 3574 __ cmp(left, right);
3404 // Make sure r0 is non-zero. At this point input operands are 3575 __ bne(&not_equal);
3576 // Make sure r3 is non-zero. At this point input operands are
3405 // guaranteed to be non-zero. 3577 // guaranteed to be non-zero.
3406 DCHECK(right.is(r0)); 3578 DCHECK(right.is(r3));
3407 STATIC_ASSERT(EQUAL == 0); 3579 STATIC_ASSERT(EQUAL == 0);
3408 STATIC_ASSERT(kSmiTag == 0); 3580 STATIC_ASSERT(kSmiTag == 0);
3409 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); 3581 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3582 __ bind(&not_equal);
3410 __ Ret(); 3583 __ Ret();
3411 3584
3412 __ bind(&miss); 3585 __ bind(&miss);
3413 GenerateMiss(masm); 3586 GenerateMiss(masm);
3414 } 3587 }
3415 3588
3416 3589
3417 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { 3590 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) {
3418 DCHECK(state() == CompareIC::UNIQUE_NAME); 3591 DCHECK(state() == CompareICState::UNIQUE_NAME);
3419 DCHECK(GetCondition() == eq); 3592 DCHECK(GetCondition() == eq);
3420 Label miss; 3593 Label miss;
3421 3594
3422 // Registers containing left and right operands respectively. 3595 // Registers containing left and right operands respectively.
3423 Register left = r1; 3596 Register left = r4;
3424 Register right = r0; 3597 Register right = r3;
3425 Register tmp1 = r2; 3598 Register tmp1 = r5;
3426 Register tmp2 = r3; 3599 Register tmp2 = r6;
3427 3600
3428 // Check that both operands are heap objects. 3601 // Check that both operands are heap objects.
3429 __ JumpIfEitherSmi(left, right, &miss); 3602 __ JumpIfEitherSmi(left, right, &miss);
3430 3603
3431 // Check that both operands are unique names. This leaves the instance 3604 // Check that both operands are unique names. This leaves the instance
3432 // types loaded in tmp1 and tmp2. 3605 // types loaded in tmp1 and tmp2.
3433 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); 3606 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3434 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); 3607 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3435 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); 3608 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3436 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); 3609 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3437 3610
3438 __ JumpIfNotUniqueName(tmp1, &miss); 3611 __ JumpIfNotUniqueName(tmp1, &miss);
3439 __ JumpIfNotUniqueName(tmp2, &miss); 3612 __ JumpIfNotUniqueName(tmp2, &miss);
3440 3613
3441 // Unique names are compared by identity. 3614 // Unique names are compared by identity.
3442 __ cmp(left, right); 3615 __ cmp(left, right);
3443 // Make sure r0 is non-zero. At this point input operands are 3616 __ bne(&miss);
3617 // Make sure r3 is non-zero. At this point input operands are
3444 // guaranteed to be non-zero. 3618 // guaranteed to be non-zero.
3445 DCHECK(right.is(r0)); 3619 DCHECK(right.is(r3));
3446 STATIC_ASSERT(EQUAL == 0); 3620 STATIC_ASSERT(EQUAL == 0);
3447 STATIC_ASSERT(kSmiTag == 0); 3621 STATIC_ASSERT(kSmiTag == 0);
3448 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); 3622 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3449 __ Ret(); 3623 __ Ret();
3450 3624
3451 __ bind(&miss); 3625 __ bind(&miss);
3452 GenerateMiss(masm); 3626 GenerateMiss(masm);
3453 } 3627 }
3454 3628
3455 3629
3456 void CompareICStub::GenerateStrings(MacroAssembler* masm) { 3630 void CompareICStub::GenerateStrings(MacroAssembler* masm) {
3457 DCHECK(state() == CompareIC::STRING); 3631 DCHECK(state() == CompareICState::STRING);
3458 Label miss; 3632 Label miss, not_identical, is_symbol;
3459 3633
3460 bool equality = Token::IsEqualityOp(op()); 3634 bool equality = Token::IsEqualityOp(op());
3461 3635
3462 // Registers containing left and right operands respectively. 3636 // Registers containing left and right operands respectively.
3463 Register left = r1; 3637 Register left = r4;
3464 Register right = r0; 3638 Register right = r3;
3465 Register tmp1 = r2; 3639 Register tmp1 = r5;
3466 Register tmp2 = r3; 3640 Register tmp2 = r6;
3467 Register tmp3 = r4; 3641 Register tmp3 = r7;
3468 Register tmp4 = r5; 3642 Register tmp4 = r8;
3469 3643
3470 // Check that both operands are heap objects. 3644 // Check that both operands are heap objects.
3471 __ JumpIfEitherSmi(left, right, &miss); 3645 __ JumpIfEitherSmi(left, right, &miss);
3472 3646
3473 // Check that both operands are strings. This leaves the instance 3647 // Check that both operands are strings. This leaves the instance
3474 // types loaded in tmp1 and tmp2. 3648 // types loaded in tmp1 and tmp2.
3475 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); 3649 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
3476 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); 3650 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
3477 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); 3651 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
3478 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); 3652 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
3479 STATIC_ASSERT(kNotStringTag != 0); 3653 STATIC_ASSERT(kNotStringTag != 0);
3480 __ orr(tmp3, tmp1, tmp2); 3654 __ orx(tmp3, tmp1, tmp2);
3481 __ tst(tmp3, Operand(kIsNotStringMask)); 3655 __ andi(r0, tmp3, Operand(kIsNotStringMask));
3482 __ b(ne, &miss); 3656 __ bne(&miss, cr0);
3483 3657
3484 // Fast check for identical strings. 3658 // Fast check for identical strings.
3485 __ cmp(left, right); 3659 __ cmp(left, right);
3486 STATIC_ASSERT(EQUAL == 0); 3660 STATIC_ASSERT(EQUAL == 0);
3487 STATIC_ASSERT(kSmiTag == 0); 3661 STATIC_ASSERT(kSmiTag == 0);
3488 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); 3662 __ bne(&not_identical);
3489 __ Ret(eq); 3663 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL));
3664 __ Ret();
3665 __ bind(&not_identical);
3490 3666
3491 // Handle not identical strings. 3667 // Handle not identical strings.
3492 3668
3493 // Check that both strings are internalized strings. If they are, we're done 3669 // Check that both strings are internalized strings. If they are, we're done
3494 // because we already know they are not identical. We know they are both 3670 // because we already know they are not identical. We know they are both
3495 // strings. 3671 // strings.
3496 if (equality) { 3672 if (equality) {
3497 DCHECK(GetCondition() == eq); 3673 DCHECK(GetCondition() == eq);
3498 STATIC_ASSERT(kInternalizedTag == 0); 3674 STATIC_ASSERT(kInternalizedTag == 0);
3499 __ orr(tmp3, tmp1, Operand(tmp2)); 3675 __ orx(tmp3, tmp1, tmp2);
3500 __ tst(tmp3, Operand(kIsNotInternalizedMask)); 3676 __ andi(r0, tmp3, Operand(kIsNotInternalizedMask));
3501 // Make sure r0 is non-zero. At this point input operands are 3677 __ bne(&is_symbol, cr0);
3678 // Make sure r3 is non-zero. At this point input operands are
3502 // guaranteed to be non-zero. 3679 // guaranteed to be non-zero.
3503 DCHECK(right.is(r0)); 3680 DCHECK(right.is(r3));
3504 __ Ret(eq); 3681 __ Ret();
3682 __ bind(&is_symbol);
3505 } 3683 }
3506 3684
3507 // Check that both strings are sequential one-byte. 3685 // Check that both strings are sequential one-byte.
3508 Label runtime; 3686 Label runtime;
3509 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, 3687 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4,
3510 &runtime); 3688 &runtime);
3511 3689
3512 // Compare flat one-byte strings. Returns when done. 3690 // Compare flat one-byte strings. Returns when done.
3513 if (equality) { 3691 if (equality) {
3514 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2, 3692 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1,
3515 tmp3); 3693 tmp2);
3516 } else { 3694 } else {
3517 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, 3695 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1,
3518 tmp2, tmp3, tmp4); 3696 tmp2, tmp3);
3519 } 3697 }
3520 3698
3521 // Handle more complex cases in runtime. 3699 // Handle more complex cases in runtime.
3522 __ bind(&runtime); 3700 __ bind(&runtime);
3523 __ Push(left, right); 3701 __ Push(left, right);
3524 if (equality) { 3702 if (equality) {
3525 __ TailCallRuntime(Runtime::kStringEquals, 2, 1); 3703 __ TailCallRuntime(Runtime::kStringEquals, 2, 1);
3526 } else { 3704 } else {
3527 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); 3705 __ TailCallRuntime(Runtime::kStringCompare, 2, 1);
3528 } 3706 }
3529 3707
3530 __ bind(&miss); 3708 __ bind(&miss);
3531 GenerateMiss(masm); 3709 GenerateMiss(masm);
3532 } 3710 }
3533 3711
3534 3712
3535 void CompareICStub::GenerateObjects(MacroAssembler* masm) { 3713 void CompareICStub::GenerateObjects(MacroAssembler* masm) {
3536 DCHECK(state() == CompareIC::OBJECT); 3714 DCHECK(state() == CompareICState::OBJECT);
3537 Label miss; 3715 Label miss;
3538 __ and_(r2, r1, Operand(r0)); 3716 __ and_(r5, r4, r3);
3539 __ JumpIfSmi(r2, &miss); 3717 __ JumpIfSmi(r5, &miss);
3540 3718
3541 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); 3719 __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE);
3542 __ b(ne, &miss); 3720 __ bne(&miss);
3543 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); 3721 __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE);
3544 __ b(ne, &miss); 3722 __ bne(&miss);
3545 3723
3546 DCHECK(GetCondition() == eq); 3724 DCHECK(GetCondition() == eq);
3547 __ sub(r0, r0, Operand(r1)); 3725 __ sub(r3, r3, r4);
3548 __ Ret(); 3726 __ Ret();
3549 3727
3550 __ bind(&miss); 3728 __ bind(&miss);
3551 GenerateMiss(masm); 3729 GenerateMiss(masm);
3552 } 3730 }
3553 3731
3554 3732
3555 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) { 3733 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) {
3556 Label miss; 3734 Label miss;
3557 __ and_(r2, r1, Operand(r0)); 3735 __ and_(r5, r4, r3);
3558 __ JumpIfSmi(r2, &miss); 3736 __ JumpIfSmi(r5, &miss);
3559 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); 3737 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset));
3560 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); 3738 __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset));
3561 __ cmp(r2, Operand(known_map_)); 3739 __ Cmpi(r5, Operand(known_map_), r0);
3562 __ b(ne, &miss); 3740 __ bne(&miss);
3563 __ cmp(r3, Operand(known_map_)); 3741 __ Cmpi(r6, Operand(known_map_), r0);
3564 __ b(ne, &miss); 3742 __ bne(&miss);
3565 3743
3566 __ sub(r0, r0, Operand(r1)); 3744 __ sub(r3, r3, r4);
3567 __ Ret(); 3745 __ Ret();
3568 3746
3569 __ bind(&miss); 3747 __ bind(&miss);
3570 GenerateMiss(masm); 3748 GenerateMiss(masm);
3571 } 3749 }
3572 3750
3573 3751
3574 void CompareICStub::GenerateMiss(MacroAssembler* masm) { 3752 void CompareICStub::GenerateMiss(MacroAssembler* masm) {
3575 { 3753 {
3576 // Call the runtime system in a fresh internal frame. 3754 // Call the runtime system in a fresh internal frame.
3577 ExternalReference miss = 3755 ExternalReference miss =
3578 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); 3756 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate());
3579 3757
3580 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); 3758 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
3581 __ Push(r1, r0); 3759 __ Push(r4, r3);
3582 __ Push(lr, r1, r0); 3760 __ mflr(r0);
3583 __ mov(ip, Operand(Smi::FromInt(op()))); 3761 __ Push(r0, r4, r3);
3762 __ LoadSmiLiteral(ip, Smi::FromInt(op()));
3584 __ push(ip); 3763 __ push(ip);
3585 __ CallExternalReference(miss, 3); 3764 __ CallExternalReference(miss, 3);
3586 // Compute the entry point of the rewritten stub. 3765 // Compute the entry point of the rewritten stub.
3587 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); 3766 __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag));
3588 // Restore registers. 3767 // Restore registers.
3589 __ pop(lr); 3768 __ pop(r0);
3590 __ Pop(r1, r0); 3769 __ mtlr(r0);
3770 __ Pop(r4, r3);
3591 } 3771 }
3592 3772
3593 __ Jump(r2); 3773 __ Jump(r5);
3594 } 3774 }
3595 3775
3596 3776
3777 // This stub is paired with DirectCEntryStub::GenerateCall
3597 void DirectCEntryStub::Generate(MacroAssembler* masm) { 3778 void DirectCEntryStub::Generate(MacroAssembler* masm) {
3598 // Place the return address on the stack, making the call 3779 // Place the return address on the stack, making the call
3599 // GC safe. The RegExp backend also relies on this. 3780 // GC safe. The RegExp backend also relies on this.
3600 __ str(lr, MemOperand(sp, 0)); 3781 __ mflr(r0);
3601 __ blx(ip); // Call the C++ function. 3782 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3602 __ VFPEnsureFPSCRState(r2); 3783 __ Call(ip); // Call the C++ function.
3603 __ ldr(pc, MemOperand(sp, 0)); 3784 __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize));
3785 __ mtlr(r0);
3786 __ blr();
3604 } 3787 }
3605 3788
3606 3789
3607 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, 3790 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) {
3608 Register target) { 3791 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR)
3609 intptr_t code = 3792 // Native AIX/PPC64 Linux use a function descriptor.
3610 reinterpret_cast<intptr_t>(GetCode().location()); 3793 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize));
3794 __ LoadP(ip, MemOperand(target, 0)); // Instruction address
3795 #else
3796 // ip needs to be set for DirectCEentryStub::Generate, and also
3797 // for ABI_TOC_ADDRESSABILITY_VIA_IP.
3611 __ Move(ip, target); 3798 __ Move(ip, target);
3612 __ mov(lr, Operand(code, RelocInfo::CODE_TARGET)); 3799 #endif
3613 __ blx(lr); // Call the stub. 3800
3801 intptr_t code = reinterpret_cast<intptr_t>(GetCode().location());
3802 __ mov(r0, Operand(code, RelocInfo::CODE_TARGET));
3803 __ Call(r0); // Call the stub.
3614 } 3804 }
3615 3805
3616 3806
3617 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, 3807 void NameDictionaryLookupStub::GenerateNegativeLookup(
3618 Label* miss, 3808 MacroAssembler* masm, Label* miss, Label* done, Register receiver,
3619 Label* done, 3809 Register properties, Handle<Name> name, Register scratch0) {
3620 Register receiver,
3621 Register properties,
3622 Handle<Name> name,
3623 Register scratch0) {
3624 DCHECK(name->IsUniqueName()); 3810 DCHECK(name->IsUniqueName());
3625 // If names of slots in range from 1 to kProbes - 1 for the hash value are 3811 // If names of slots in range from 1 to kProbes - 1 for the hash value are
3626 // not equal to the name and kProbes-th slot is not used (its name is the 3812 // not equal to the name and kProbes-th slot is not used (its name is the
3627 // undefined value), it guarantees the hash table doesn't contain the 3813 // undefined value), it guarantees the hash table doesn't contain the
3628 // property. It's true even if some slots represent deleted properties 3814 // property. It's true even if some slots represent deleted properties
3629 // (their names are the hole value). 3815 // (their names are the hole value).
3630 for (int i = 0; i < kInlinedProbes; i++) { 3816 for (int i = 0; i < kInlinedProbes; i++) {
3631 // scratch0 points to properties hash. 3817 // scratch0 points to properties hash.
3632 // Compute the masked index: (hash + i + i * i) & mask. 3818 // Compute the masked index: (hash + i + i * i) & mask.
3633 Register index = scratch0; 3819 Register index = scratch0;
3634 // Capacity is smi 2^n. 3820 // Capacity is smi 2^n.
3635 __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); 3821 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset));
3636 __ sub(index, index, Operand(1)); 3822 __ subi(index, index, Operand(1));
3637 __ and_(index, index, Operand( 3823 __ LoadSmiLiteral(
3638 Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); 3824 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)));
3825 __ and_(index, index, ip);
3639 3826
3640 // Scale the index by multiplying by the entry size. 3827 // Scale the index by multiplying by the entry size.
3641 DCHECK(NameDictionary::kEntrySize == 3); 3828 DCHECK(NameDictionary::kEntrySize == 3);
3642 __ add(index, index, Operand(index, LSL, 1)); // index *= 3. 3829 __ ShiftLeftImm(ip, index, Operand(1));
3830 __ add(index, index, ip); // index *= 3.
3643 3831
3644 Register entity_name = scratch0; 3832 Register entity_name = scratch0;
3645 // Having undefined at this place means the name is not contained. 3833 // Having undefined at this place means the name is not contained.
3646 DCHECK_EQ(kSmiTagSize, 1);
3647 Register tmp = properties; 3834 Register tmp = properties;
3648 __ add(tmp, properties, Operand(index, LSL, 1)); 3835 __ SmiToPtrArrayOffset(ip, index);
3649 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); 3836 __ add(tmp, properties, ip);
3837 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
3650 3838
3651 DCHECK(!tmp.is(entity_name)); 3839 DCHECK(!tmp.is(entity_name));
3652 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); 3840 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
3653 __ cmp(entity_name, tmp); 3841 __ cmp(entity_name, tmp);
3654 __ b(eq, done); 3842 __ beq(done);
3655 3843
3656 // Load the hole ready for use below: 3844 // Load the hole ready for use below:
3657 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); 3845 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex);
3658 3846
3659 // Stop if found the property. 3847 // Stop if found the property.
3660 __ cmp(entity_name, Operand(Handle<Name>(name))); 3848 __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0);
3661 __ b(eq, miss); 3849 __ beq(miss);
3662 3850
3663 Label good; 3851 Label good;
3664 __ cmp(entity_name, tmp); 3852 __ cmp(entity_name, tmp);
3665 __ b(eq, &good); 3853 __ beq(&good);
3666 3854
3667 // Check if the entry name is not a unique name. 3855 // Check if the entry name is not a unique name.
3668 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); 3856 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
3669 __ ldrb(entity_name, 3857 __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3670 FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
3671 __ JumpIfNotUniqueName(entity_name, miss); 3858 __ JumpIfNotUniqueName(entity_name, miss);
3672 __ bind(&good); 3859 __ bind(&good);
3673 3860
3674 // Restore the properties. 3861 // Restore the properties.
3675 __ ldr(properties, 3862 __ LoadP(properties,
3676 FieldMemOperand(receiver, JSObject::kPropertiesOffset)); 3863 FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3677 } 3864 }
3678 3865
3679 const int spill_mask = 3866 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3680 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | 3867 r5.bit() | r4.bit() | r3.bit());
3681 r2.bit() | r1.bit() | r0.bit());
3682 3868
3683 __ stm(db_w, sp, spill_mask); 3869 __ mflr(r0);
3684 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); 3870 __ MultiPush(spill_mask);
3685 __ mov(r1, Operand(Handle<Name>(name))); 3871
3872 __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
3873 __ mov(r4, Operand(Handle<Name>(name)));
3686 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); 3874 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP);
3687 __ CallStub(&stub); 3875 __ CallStub(&stub);
3688 __ cmp(r0, Operand::Zero()); 3876 __ cmpi(r3, Operand::Zero());
3689 __ ldm(ia_w, sp, spill_mask);
3690 3877
3691 __ b(eq, done); 3878 __ MultiPop(spill_mask); // MultiPop does not touch condition flags
3692 __ b(ne, miss); 3879 __ mtlr(r0);
3880
3881 __ beq(done);
3882 __ bne(miss);
3693 } 3883 }
3694 3884
3695 3885
3696 // Probe the name dictionary in the |elements| register. Jump to the 3886 // Probe the name dictionary in the |elements| register. Jump to the
3697 // |done| label if a property with the given name is found. Jump to 3887 // |done| label if a property with the given name is found. Jump to
3698 // the |miss| label otherwise. 3888 // the |miss| label otherwise.
3699 // If lookup was successful |scratch2| will be equal to elements + 4 * index. 3889 // If lookup was successful |scratch2| will be equal to elements + 4 * index.
3700 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, 3890 void NameDictionaryLookupStub::GeneratePositiveLookup(
3701 Label* miss, 3891 MacroAssembler* masm, Label* miss, Label* done, Register elements,
3702 Label* done, 3892 Register name, Register scratch1, Register scratch2) {
3703 Register elements,
3704 Register name,
3705 Register scratch1,
3706 Register scratch2) {
3707 DCHECK(!elements.is(scratch1)); 3893 DCHECK(!elements.is(scratch1));
3708 DCHECK(!elements.is(scratch2)); 3894 DCHECK(!elements.is(scratch2));
3709 DCHECK(!name.is(scratch1)); 3895 DCHECK(!name.is(scratch1));
3710 DCHECK(!name.is(scratch2)); 3896 DCHECK(!name.is(scratch2));
3711 3897
3712 __ AssertName(name); 3898 __ AssertName(name);
3713 3899
3714 // Compute the capacity mask. 3900 // Compute the capacity mask.
3715 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); 3901 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset));
3716 __ SmiUntag(scratch1); 3902 __ SmiUntag(scratch1); // convert smi to int
3717 __ sub(scratch1, scratch1, Operand(1)); 3903 __ subi(scratch1, scratch1, Operand(1));
3718 3904
3719 // Generate an unrolled loop that performs a few probes before 3905 // Generate an unrolled loop that performs a few probes before
3720 // giving up. Measurements done on Gmail indicate that 2 probes 3906 // giving up. Measurements done on Gmail indicate that 2 probes
3721 // cover ~93% of loads from dictionaries. 3907 // cover ~93% of loads from dictionaries.
3722 for (int i = 0; i < kInlinedProbes; i++) { 3908 for (int i = 0; i < kInlinedProbes; i++) {
3723 // Compute the masked index: (hash + i + i * i) & mask. 3909 // Compute the masked index: (hash + i + i * i) & mask.
3724 __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); 3910 __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset));
3725 if (i > 0) { 3911 if (i > 0) {
3726 // Add the probe offset (i + i * i) left shifted to avoid right shifting 3912 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3727 // the hash in a separate instruction. The value hash + i + i * i is right 3913 // the hash in a separate instruction. The value hash + i + i * i is right
3728 // shifted in the following and instruction. 3914 // shifted in the following and instruction.
3729 DCHECK(NameDictionary::GetProbeOffset(i) < 3915 DCHECK(NameDictionary::GetProbeOffset(i) <
3730 1 << (32 - Name::kHashFieldOffset)); 3916 1 << (32 - Name::kHashFieldOffset));
3731 __ add(scratch2, scratch2, Operand( 3917 __ addi(scratch2, scratch2,
3732 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); 3918 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3733 } 3919 }
3734 __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); 3920 __ srwi(scratch2, scratch2, Operand(Name::kHashShift));
3921 __ and_(scratch2, scratch1, scratch2);
3735 3922
3736 // Scale the index by multiplying by the element size. 3923 // Scale the index by multiplying by the element size.
3737 DCHECK(NameDictionary::kEntrySize == 3); 3924 DCHECK(NameDictionary::kEntrySize == 3);
3738 // scratch2 = scratch2 * 3. 3925 // scratch2 = scratch2 * 3.
3739 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); 3926 __ ShiftLeftImm(ip, scratch2, Operand(1));
3927 __ add(scratch2, scratch2, ip);
3740 3928
3741 // Check if the key is identical to the name. 3929 // Check if the key is identical to the name.
3742 __ add(scratch2, elements, Operand(scratch2, LSL, 2)); 3930 __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2));
3743 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); 3931 __ add(scratch2, elements, ip);
3744 __ cmp(name, Operand(ip)); 3932 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset));
3745 __ b(eq, done); 3933 __ cmp(name, ip);
3934 __ beq(done);
3746 } 3935 }
3747 3936
3748 const int spill_mask = 3937 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() |
3749 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | 3938 r5.bit() | r4.bit() | r3.bit()) &
3750 r3.bit() | r2.bit() | r1.bit() | r0.bit()) & 3939 ~(scratch1.bit() | scratch2.bit());
3751 ~(scratch1.bit() | scratch2.bit());
3752 3940
3753 __ stm(db_w, sp, spill_mask); 3941 __ mflr(r0);
3754 if (name.is(r0)) { 3942 __ MultiPush(spill_mask);
3755 DCHECK(!elements.is(r1)); 3943 if (name.is(r3)) {
3756 __ Move(r1, name); 3944 DCHECK(!elements.is(r4));
3757 __ Move(r0, elements); 3945 __ mr(r4, name);
3946 __ mr(r3, elements);
3758 } else { 3947 } else {
3759 __ Move(r0, elements); 3948 __ mr(r3, elements);
3760 __ Move(r1, name); 3949 __ mr(r4, name);
3761 } 3950 }
3762 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); 3951 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP);
3763 __ CallStub(&stub); 3952 __ CallStub(&stub);
3764 __ cmp(r0, Operand::Zero()); 3953 __ cmpi(r3, Operand::Zero());
3765 __ mov(scratch2, Operand(r2)); 3954 __ mr(scratch2, r5);
3766 __ ldm(ia_w, sp, spill_mask); 3955 __ MultiPop(spill_mask);
3956 __ mtlr(r0);
3767 3957
3768 __ b(ne, done); 3958 __ bne(done);
3769 __ b(eq, miss); 3959 __ beq(miss);
3770 } 3960 }
3771 3961
3772 3962
3773 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { 3963 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
3774 // This stub overrides SometimesSetsUpAFrame() to return false. That means 3964 // This stub overrides SometimesSetsUpAFrame() to return false. That means
3775 // we cannot call anything that could cause a GC from this stub. 3965 // we cannot call anything that could cause a GC from this stub.
3776 // Registers: 3966 // Registers:
3777 // result: NameDictionary to probe 3967 // result: NameDictionary to probe
3778 // r1: key 3968 // r4: key
3779 // dictionary: NameDictionary to probe. 3969 // dictionary: NameDictionary to probe.
3780 // index: will hold an index of entry if lookup is successful. 3970 // index: will hold an index of entry if lookup is successful.
3781 // might alias with result_. 3971 // might alias with result_.
3782 // Returns: 3972 // Returns:
3783 // result_ is zero if lookup failed, non zero otherwise. 3973 // result_ is zero if lookup failed, non zero otherwise.
3784 3974
3785 Register result = r0; 3975 Register result = r3;
3786 Register dictionary = r0; 3976 Register dictionary = r3;
3787 Register key = r1; 3977 Register key = r4;
3788 Register index = r2; 3978 Register index = r5;
3789 Register mask = r3; 3979 Register mask = r6;
3790 Register hash = r4; 3980 Register hash = r7;
3791 Register undefined = r5; 3981 Register undefined = r8;
3792 Register entry_key = r6; 3982 Register entry_key = r9;
3983 Register scratch = r9;
3793 3984
3794 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; 3985 Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
3795 3986
3796 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset)); 3987 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset));
3797 __ SmiUntag(mask); 3988 __ SmiUntag(mask);
3798 __ sub(mask, mask, Operand(1)); 3989 __ subi(mask, mask, Operand(1));
3799 3990
3800 __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); 3991 __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset));
3801 3992
3802 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); 3993 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
3803 3994
3804 for (int i = kInlinedProbes; i < kTotalProbes; i++) { 3995 for (int i = kInlinedProbes; i < kTotalProbes; i++) {
3805 // Compute the masked index: (hash + i + i * i) & mask. 3996 // Compute the masked index: (hash + i + i * i) & mask.
3806 // Capacity is smi 2^n. 3997 // Capacity is smi 2^n.
3807 if (i > 0) { 3998 if (i > 0) {
3808 // Add the probe offset (i + i * i) left shifted to avoid right shifting 3999 // Add the probe offset (i + i * i) left shifted to avoid right shifting
3809 // the hash in a separate instruction. The value hash + i + i * i is right 4000 // the hash in a separate instruction. The value hash + i + i * i is right
3810 // shifted in the following and instruction. 4001 // shifted in the following and instruction.
3811 DCHECK(NameDictionary::GetProbeOffset(i) < 4002 DCHECK(NameDictionary::GetProbeOffset(i) <
3812 1 << (32 - Name::kHashFieldOffset)); 4003 1 << (32 - Name::kHashFieldOffset));
3813 __ add(index, hash, Operand( 4004 __ addi(index, hash,
3814 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); 4005 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift));
3815 } else { 4006 } else {
3816 __ mov(index, Operand(hash)); 4007 __ mr(index, hash);
3817 } 4008 }
3818 __ and_(index, mask, Operand(index, LSR, Name::kHashShift)); 4009 __ srwi(r0, index, Operand(Name::kHashShift));
4010 __ and_(index, mask, r0);
3819 4011
3820 // Scale the index by multiplying by the entry size. 4012 // Scale the index by multiplying by the entry size.
3821 DCHECK(NameDictionary::kEntrySize == 3); 4013 DCHECK(NameDictionary::kEntrySize == 3);
3822 __ add(index, index, Operand(index, LSL, 1)); // index *= 3. 4014 __ ShiftLeftImm(scratch, index, Operand(1));
4015 __ add(index, index, scratch); // index *= 3.
3823 4016
3824 DCHECK_EQ(kSmiTagSize, 1); 4017 DCHECK_EQ(kSmiTagSize, 1);
3825 __ add(index, dictionary, Operand(index, LSL, 2)); 4018 __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2));
3826 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); 4019 __ add(index, dictionary, scratch);
4020 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset));
3827 4021
3828 // Having undefined at this place means the name is not contained. 4022 // Having undefined at this place means the name is not contained.
3829 __ cmp(entry_key, Operand(undefined)); 4023 __ cmp(entry_key, undefined);
3830 __ b(eq, &not_in_dictionary); 4024 __ beq(&not_in_dictionary);
3831 4025
3832 // Stop if found the property. 4026 // Stop if found the property.
3833 __ cmp(entry_key, Operand(key)); 4027 __ cmp(entry_key, key);
3834 __ b(eq, &in_dictionary); 4028 __ beq(&in_dictionary);
3835 4029
3836 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { 4030 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
3837 // Check if the entry name is not a unique name. 4031 // Check if the entry name is not a unique name.
3838 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); 4032 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
3839 __ ldrb(entry_key, 4033 __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3840 FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
3841 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); 4034 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary);
3842 } 4035 }
3843 } 4036 }
3844 4037
3845 __ bind(&maybe_in_dictionary); 4038 __ bind(&maybe_in_dictionary);
3846 // If we are doing negative lookup then probing failure should be 4039 // If we are doing negative lookup then probing failure should be
3847 // treated as a lookup success. For positive lookup probing failure 4040 // treated as a lookup success. For positive lookup probing failure
3848 // should be treated as lookup failure. 4041 // should be treated as lookup failure.
3849 if (mode() == POSITIVE_LOOKUP) { 4042 if (mode() == POSITIVE_LOOKUP) {
3850 __ mov(result, Operand::Zero()); 4043 __ li(result, Operand::Zero());
3851 __ Ret(); 4044 __ Ret();
3852 } 4045 }
3853 4046
3854 __ bind(&in_dictionary); 4047 __ bind(&in_dictionary);
3855 __ mov(result, Operand(1)); 4048 __ li(result, Operand(1));
3856 __ Ret(); 4049 __ Ret();
3857 4050
3858 __ bind(&not_in_dictionary); 4051 __ bind(&not_in_dictionary);
3859 __ mov(result, Operand::Zero()); 4052 __ li(result, Operand::Zero());
3860 __ Ret(); 4053 __ Ret();
3861 } 4054 }
3862 4055
3863 4056
3864 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( 4057 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(
3865 Isolate* isolate) { 4058 Isolate* isolate) {
3866 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); 4059 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs);
3867 stub1.GetCode(); 4060 stub1.GetCode();
3868 // Hydrogen code stubs need stub2 at snapshot time. 4061 // Hydrogen code stubs need stub2 at snapshot time.
3869 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); 4062 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs);
3870 stub2.GetCode(); 4063 stub2.GetCode();
3871 } 4064 }
3872 4065
3873 4066
3874 // Takes the input in 3 registers: address_ value_ and object_. A pointer to 4067 // Takes the input in 3 registers: address_ value_ and object_. A pointer to
3875 // the value has just been written into the object, now this stub makes sure 4068 // the value has just been written into the object, now this stub makes sure
3876 // we keep the GC informed. The word in the object where the value has been 4069 // we keep the GC informed. The word in the object where the value has been
3877 // written is in the address register. 4070 // written is in the address register.
3878 void RecordWriteStub::Generate(MacroAssembler* masm) { 4071 void RecordWriteStub::Generate(MacroAssembler* masm) {
3879 Label skip_to_incremental_noncompacting; 4072 Label skip_to_incremental_noncompacting;
3880 Label skip_to_incremental_compacting; 4073 Label skip_to_incremental_compacting;
3881 4074
3882 // The first two instructions are generated with labels so as to get the 4075 // The first two branch instructions are generated with labels so as to
3883 // offset fixed up correctly by the bind(Label*) call. We patch it back and 4076 // get the offset fixed up correctly by the bind(Label*) call. We patch
3884 // forth between a compare instructions (a nop in this position) and the 4077 // it back and forth between branch condition True and False
3885 // real branch when we start and stop incremental heap marking. 4078 // when we start and stop incremental heap marking.
3886 // See RecordWriteStub::Patch for details. 4079 // See RecordWriteStub::Patch for details.
3887 { 4080
3888 // Block literal pool emission, as the position of these two instructions 4081 // Clear the bit, branch on True for NOP action initially
3889 // is assumed by the patching code. 4082 __ crclr(Assembler::encode_crbit(cr2, CR_LT));
3890 Assembler::BlockConstPoolScope block_const_pool(masm); 4083 __ blt(&skip_to_incremental_noncompacting, cr2);
3891 __ b(&skip_to_incremental_noncompacting); 4084 __ blt(&skip_to_incremental_compacting, cr2);
3892 __ b(&skip_to_incremental_compacting);
3893 }
3894 4085
3895 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 4086 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3896 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 4087 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3897 MacroAssembler::kReturnAtEnd); 4088 MacroAssembler::kReturnAtEnd);
3898 } 4089 }
3899 __ Ret(); 4090 __ Ret();
3900 4091
3901 __ bind(&skip_to_incremental_noncompacting); 4092 __ bind(&skip_to_incremental_noncompacting);
3902 GenerateIncremental(masm, INCREMENTAL); 4093 GenerateIncremental(masm, INCREMENTAL);
3903 4094
3904 __ bind(&skip_to_incremental_compacting); 4095 __ bind(&skip_to_incremental_compacting);
3905 GenerateIncremental(masm, INCREMENTAL_COMPACTION); 4096 GenerateIncremental(masm, INCREMENTAL_COMPACTION);
3906 4097
3907 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. 4098 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
3908 // Will be checked in IncrementalMarking::ActivateGeneratedStub. 4099 // Will be checked in IncrementalMarking::ActivateGeneratedStub.
3909 DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12)); 4100 // patching not required on PPC as the initial path is effectively NOP
3910 DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12));
3911 PatchBranchIntoNop(masm, 0);
3912 PatchBranchIntoNop(masm, Assembler::kInstrSize);
3913 } 4101 }
3914 4102
3915 4103
3916 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { 4104 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
3917 regs_.Save(masm); 4105 regs_.Save(masm);
3918 4106
3919 if (remembered_set_action() == EMIT_REMEMBERED_SET) { 4107 if (remembered_set_action() == EMIT_REMEMBERED_SET) {
3920 Label dont_need_remembered_set; 4108 Label dont_need_remembered_set;
3921 4109
3922 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); 4110 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
3923 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. 4111 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
3924 regs_.scratch0(), 4112 regs_.scratch0(), &dont_need_remembered_set);
3925 &dont_need_remembered_set);
3926 4113
3927 __ CheckPageFlag(regs_.object(), 4114 __ CheckPageFlag(regs_.object(), regs_.scratch0(),
3928 regs_.scratch0(), 4115 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne,
3929 1 << MemoryChunk::SCAN_ON_SCAVENGE,
3930 ne,
3931 &dont_need_remembered_set); 4116 &dont_need_remembered_set);
3932 4117
3933 // First notify the incremental marker if necessary, then update the 4118 // First notify the incremental marker if necessary, then update the
3934 // remembered set. 4119 // remembered set.
3935 CheckNeedsToInformIncrementalMarker( 4120 CheckNeedsToInformIncrementalMarker(
3936 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); 4121 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
3937 InformIncrementalMarker(masm); 4122 InformIncrementalMarker(masm);
3938 regs_.Restore(masm); 4123 regs_.Restore(masm);
3939 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 4124 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3940 MacroAssembler::kReturnAtEnd); 4125 MacroAssembler::kReturnAtEnd);
3941 4126
3942 __ bind(&dont_need_remembered_set); 4127 __ bind(&dont_need_remembered_set);
3943 } 4128 }
3944 4129
3945 CheckNeedsToInformIncrementalMarker( 4130 CheckNeedsToInformIncrementalMarker(
3946 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); 4131 masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
3947 InformIncrementalMarker(masm); 4132 InformIncrementalMarker(masm);
3948 regs_.Restore(masm); 4133 regs_.Restore(masm);
3949 __ Ret(); 4134 __ Ret();
3950 } 4135 }
3951 4136
3952 4137
3953 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { 4138 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
3954 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); 4139 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
3955 int argument_count = 3; 4140 int argument_count = 3;
3956 __ PrepareCallCFunction(argument_count, regs_.scratch0()); 4141 __ PrepareCallCFunction(argument_count, regs_.scratch0());
3957 Register address = 4142 Register address =
3958 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); 4143 r3.is(regs_.address()) ? regs_.scratch0() : regs_.address();
3959 DCHECK(!address.is(regs_.object())); 4144 DCHECK(!address.is(regs_.object()));
3960 DCHECK(!address.is(r0)); 4145 DCHECK(!address.is(r3));
3961 __ Move(address, regs_.address()); 4146 __ mr(address, regs_.address());
3962 __ Move(r0, regs_.object()); 4147 __ mr(r3, regs_.object());
3963 __ Move(r1, address); 4148 __ mr(r4, address);
3964 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); 4149 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
3965 4150
3966 AllowExternalCallThatCantCauseGC scope(masm); 4151 AllowExternalCallThatCantCauseGC scope(masm);
3967 __ CallCFunction( 4152 __ CallCFunction(
3968 ExternalReference::incremental_marking_record_write_function(isolate()), 4153 ExternalReference::incremental_marking_record_write_function(isolate()),
3969 argument_count); 4154 argument_count);
3970 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); 4155 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
3971 } 4156 }
3972 4157
3973 4158
3974 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( 4159 void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
3975 MacroAssembler* masm, 4160 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need,
3976 OnNoNeedToInformIncrementalMarker on_no_need,
3977 Mode mode) { 4161 Mode mode) {
3978 Label on_black; 4162 Label on_black;
3979 Label need_incremental; 4163 Label need_incremental;
3980 Label need_incremental_pop_scratch; 4164 Label need_incremental_pop_scratch;
3981 4165
3982 __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask)); 4166 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0);
3983 __ ldr(regs_.scratch1(), 4167 __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16)));
3984 MemOperand(regs_.scratch0(), 4168 __ and_(regs_.scratch0(), regs_.object(), r0);
3985 MemoryChunk::kWriteBarrierCounterOffset)); 4169 __ LoadP(
3986 __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC); 4170 regs_.scratch1(),
3987 __ str(regs_.scratch1(), 4171 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
3988 MemOperand(regs_.scratch0(), 4172 __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1));
3989 MemoryChunk::kWriteBarrierCounterOffset)); 4173 __ StoreP(
3990 __ b(mi, &need_incremental); 4174 regs_.scratch1(),
4175 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset));
4176 __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here
4177 __ blt(&need_incremental);
3991 4178
3992 // Let's look at the color of the object: If it is not black we don't have 4179 // Let's look at the color of the object: If it is not black we don't have
3993 // to inform the incremental marker. 4180 // to inform the incremental marker.
3994 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); 4181 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
3995 4182
3996 regs_.Restore(masm); 4183 regs_.Restore(masm);
3997 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 4184 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
3998 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 4185 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
3999 MacroAssembler::kReturnAtEnd); 4186 MacroAssembler::kReturnAtEnd);
4000 } else { 4187 } else {
4001 __ Ret(); 4188 __ Ret();
4002 } 4189 }
4003 4190
4004 __ bind(&on_black); 4191 __ bind(&on_black);
4005 4192
4006 // Get the value from the slot. 4193 // Get the value from the slot.
4007 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); 4194 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0));
4008 4195
4009 if (mode == INCREMENTAL_COMPACTION) { 4196 if (mode == INCREMENTAL_COMPACTION) {
4010 Label ensure_not_white; 4197 Label ensure_not_white;
4011 4198
4012 __ CheckPageFlag(regs_.scratch0(), // Contains value. 4199 __ CheckPageFlag(regs_.scratch0(), // Contains value.
4013 regs_.scratch1(), // Scratch. 4200 regs_.scratch1(), // Scratch.
4014 MemoryChunk::kEvacuationCandidateMask, 4201 MemoryChunk::kEvacuationCandidateMask, eq,
4015 eq,
4016 &ensure_not_white); 4202 &ensure_not_white);
4017 4203
4018 __ CheckPageFlag(regs_.object(), 4204 __ CheckPageFlag(regs_.object(),
4019 regs_.scratch1(), // Scratch. 4205 regs_.scratch1(), // Scratch.
4020 MemoryChunk::kSkipEvacuationSlotsRecordingMask, 4206 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq,
4021 eq,
4022 &need_incremental); 4207 &need_incremental);
4023 4208
4024 __ bind(&ensure_not_white); 4209 __ bind(&ensure_not_white);
4025 } 4210 }
4026 4211
4027 // We need extra registers for this, so we push the object and the address 4212 // We need extra registers for this, so we push the object and the address
4028 // register temporarily. 4213 // register temporarily.
4029 __ Push(regs_.object(), regs_.address()); 4214 __ Push(regs_.object(), regs_.address());
4030 __ EnsureNotWhite(regs_.scratch0(), // The value. 4215 __ EnsureNotWhite(regs_.scratch0(), // The value.
4031 regs_.scratch1(), // Scratch. 4216 regs_.scratch1(), // Scratch.
4032 regs_.object(), // Scratch. 4217 regs_.object(), // Scratch.
4033 regs_.address(), // Scratch. 4218 regs_.address(), // Scratch.
4034 &need_incremental_pop_scratch); 4219 &need_incremental_pop_scratch);
4035 __ Pop(regs_.object(), regs_.address()); 4220 __ Pop(regs_.object(), regs_.address());
4036 4221
4037 regs_.Restore(masm); 4222 regs_.Restore(masm);
4038 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { 4223 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
4039 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), 4224 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(),
4040 MacroAssembler::kReturnAtEnd); 4225 MacroAssembler::kReturnAtEnd);
4041 } else { 4226 } else {
4042 __ Ret(); 4227 __ Ret();
4043 } 4228 }
4044 4229
4045 __ bind(&need_incremental_pop_scratch); 4230 __ bind(&need_incremental_pop_scratch);
4046 __ Pop(regs_.object(), regs_.address()); 4231 __ Pop(regs_.object(), regs_.address());
4047 4232
4048 __ bind(&need_incremental); 4233 __ bind(&need_incremental);
4049 4234
4050 // Fall through when we need to inform the incremental marker. 4235 // Fall through when we need to inform the incremental marker.
4051 } 4236 }
4052 4237
4053 4238
4054 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { 4239 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
4055 // ----------- S t a t e ------------- 4240 // ----------- S t a t e -------------
4056 // -- r0 : element value to store 4241 // -- r3 : element value to store
4057 // -- r3 : element index as smi 4242 // -- r6 : element index as smi
4058 // -- sp[0] : array literal index in function as smi 4243 // -- sp[0] : array literal index in function as smi
4059 // -- sp[4] : array literal 4244 // -- sp[4] : array literal
4060 // clobbers r1, r2, r4 4245 // clobbers r3, r5, r7
4061 // ----------------------------------- 4246 // -----------------------------------
4062 4247
4063 Label element_done; 4248 Label element_done;
4064 Label double_elements; 4249 Label double_elements;
4065 Label smi_element; 4250 Label smi_element;
4066 Label slow_elements; 4251 Label slow_elements;
4067 Label fast_elements; 4252 Label fast_elements;
4068 4253
4069 // Get array literal index, array literal and its map. 4254 // Get array literal index, array literal and its map.
4070 __ ldr(r4, MemOperand(sp, 0 * kPointerSize)); 4255 __ LoadP(r7, MemOperand(sp, 0 * kPointerSize));
4071 __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); 4256 __ LoadP(r4, MemOperand(sp, 1 * kPointerSize));
4072 __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset)); 4257 __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset));
4073 4258
4074 __ CheckFastElements(r2, r5, &double_elements); 4259 __ CheckFastElements(r5, r8, &double_elements);
4075 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS 4260 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS
4076 __ JumpIfSmi(r0, &smi_element); 4261 __ JumpIfSmi(r3, &smi_element);
4077 __ CheckFastSmiElements(r2, r5, &fast_elements); 4262 __ CheckFastSmiElements(r5, r8, &fast_elements);
4078 4263
4079 // Store into the array literal requires a elements transition. Call into 4264 // Store into the array literal requires a elements transition. Call into
4080 // the runtime. 4265 // the runtime.
4081 __ bind(&slow_elements); 4266 __ bind(&slow_elements);
4082 // call. 4267 // call.
4083 __ Push(r1, r3, r0); 4268 __ Push(r4, r6, r3);
4084 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); 4269 __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
4085 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset)); 4270 __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset));
4086 __ Push(r5, r4); 4271 __ Push(r8, r7);
4087 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); 4272 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
4088 4273
4089 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. 4274 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object.
4090 __ bind(&fast_elements); 4275 __ bind(&fast_elements);
4091 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); 4276 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
4092 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); 4277 __ SmiToPtrArrayOffset(r9, r6);
4093 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); 4278 __ add(r9, r8, r9);
4094 __ str(r0, MemOperand(r6, 0)); 4279 #if V8_TARGET_ARCH_PPC64
4280 // add due to offset alignment requirements of StorePU
4281 __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
4282 __ StoreP(r3, MemOperand(r9));
4283 #else
4284 __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag));
4285 #endif
4095 // Update the write barrier for the array store. 4286 // Update the write barrier for the array store.
4096 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs, 4287 __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs,
4097 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); 4288 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
4098 __ Ret(); 4289 __ Ret();
4099 4290
4100 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, 4291 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS,
4101 // and value is Smi. 4292 // and value is Smi.
4102 __ bind(&smi_element); 4293 __ bind(&smi_element);
4103 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); 4294 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
4104 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); 4295 __ SmiToPtrArrayOffset(r9, r6);
4105 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize)); 4296 __ add(r9, r8, r9);
4297 __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0);
4106 __ Ret(); 4298 __ Ret();
4107 4299
4108 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. 4300 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
4109 __ bind(&double_elements); 4301 __ bind(&double_elements);
4110 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); 4302 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset));
4111 __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements); 4303 __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements);
4112 __ Ret(); 4304 __ Ret();
4113 } 4305 }
4114 4306
4115 4307
4116 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { 4308 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) {
4117 CEntryStub ces(isolate(), 1, kSaveFPRegs); 4309 CEntryStub ces(isolate(), 1, kSaveFPRegs);
4118 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); 4310 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET);
4119 int parameter_count_offset = 4311 int parameter_count_offset =
4120 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; 4312 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset;
4121 __ ldr(r1, MemOperand(fp, parameter_count_offset)); 4313 __ LoadP(r4, MemOperand(fp, parameter_count_offset));
4122 if (function_mode() == JS_FUNCTION_STUB_MODE) { 4314 if (function_mode() == JS_FUNCTION_STUB_MODE) {
4123 __ add(r1, r1, Operand(1)); 4315 __ addi(r4, r4, Operand(1));
4124 } 4316 }
4125 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); 4317 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE);
4126 __ mov(r1, Operand(r1, LSL, kPointerSizeLog2)); 4318 __ slwi(r4, r4, Operand(kPointerSizeLog2));
4127 __ add(sp, sp, r1); 4319 __ add(sp, sp, r4);
4128 __ Ret(); 4320 __ Ret();
4129 } 4321 }
4130 4322
4131 4323
4132 void LoadICTrampolineStub::Generate(MacroAssembler* masm) { 4324 void LoadICTrampolineStub::Generate(MacroAssembler* masm) {
4133 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); 4325 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4134 VectorLoadStub stub(isolate(), state()); 4326 VectorLoadStub stub(isolate(), state());
4135 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); 4327 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4136 } 4328 }
4137 4329
4138 4330
4139 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { 4331 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) {
4140 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); 4332 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister());
4141 VectorKeyedLoadStub stub(isolate()); 4333 VectorKeyedLoadStub stub(isolate());
4142 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); 4334 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
4143 } 4335 }
4144 4336
4145 4337
4146 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { 4338 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) {
4147 if (masm->isolate()->function_entry_hook() != NULL) { 4339 if (masm->isolate()->function_entry_hook() != NULL) {
4340 PredictableCodeSizeScope predictable(masm,
4341 #if V8_TARGET_ARCH_PPC64
4342 12 * Assembler::kInstrSize);
4343 #else
4344 9 * Assembler::kInstrSize);
4345 #endif
4148 ProfileEntryHookStub stub(masm->isolate()); 4346 ProfileEntryHookStub stub(masm->isolate());
4149 int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize; 4347 __ mflr(r0);
4150 PredictableCodeSizeScope predictable(masm, code_size); 4348 __ push(r0);
4151 __ push(lr);
4152 __ CallStub(&stub); 4349 __ CallStub(&stub);
4153 __ pop(lr); 4350 __ pop(r0);
4351 __ mtlr(r0);
4154 } 4352 }
4155 } 4353 }
4156 4354
4157 4355
4158 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { 4356 void ProfileEntryHookStub::Generate(MacroAssembler* masm) {
4159 // The entry hook is a "push lr" instruction, followed by a call. 4357 // The entry hook is a "push lr" instruction, followed by a call.
4160 const int32_t kReturnAddressDistanceFromFunctionStart = 4358 const int32_t kReturnAddressDistanceFromFunctionStart =
4161 3 * Assembler::kInstrSize; 4359 Assembler::kCallTargetAddressOffset + 2 * Assembler::kInstrSize;
4162 4360
4163 // This should contain all kCallerSaved registers. 4361 // This should contain all kJSCallerSaved registers.
4164 const RegList kSavedRegs = 4362 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers.
4165 1 << 0 | // r0 4363 r15.bit(); // Saved stack pointer.
4166 1 << 1 | // r1 4364
4167 1 << 2 | // r2
4168 1 << 3 | // r3
4169 1 << 5 | // r5
4170 1 << 9; // r9
4171 // We also save lr, so the count here is one higher than the mask indicates. 4365 // We also save lr, so the count here is one higher than the mask indicates.
4172 const int32_t kNumSavedRegs = 7; 4366 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2;
4173
4174 DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved);
4175 4367
4176 // Save all caller-save registers as this may be called from anywhere. 4368 // Save all caller-save registers as this may be called from anywhere.
4177 __ stm(db_w, sp, kSavedRegs | lr.bit()); 4369 __ mflr(r0);
4370 __ MultiPush(kSavedRegs | r0.bit());
4178 4371
4179 // Compute the function's address for the first argument. 4372 // Compute the function's address for the first argument.
4180 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart)); 4373 __ mr(r3, r0);
4374 __ subi(r3, r3, Operand(kReturnAddressDistanceFromFunctionStart));
4181 4375
4182 // The caller's return address is above the saved temporaries. 4376 // The caller's return address is above the saved temporaries.
4183 // Grab that for the second argument to the hook. 4377 // Grab that for the second argument to the hook.
4184 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize)); 4378 __ addi(r4, sp, Operand(kNumSavedRegs * kPointerSize));
4185 4379
4186 // Align the stack if necessary. 4380 // Align the stack if necessary.
4187 int frame_alignment = masm->ActivationFrameAlignment(); 4381 int frame_alignment = masm->ActivationFrameAlignment();
4188 if (frame_alignment > kPointerSize) { 4382 if (frame_alignment > kPointerSize) {
4189 __ mov(r5, sp); 4383 __ mr(r15, sp);
4190 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); 4384 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment));
4191 __ and_(sp, sp, Operand(-frame_alignment)); 4385 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment)));
4192 } 4386 }
4193 4387
4194 #if V8_HOST_ARCH_ARM 4388 #if !defined(USE_SIMULATOR)
4195 int32_t entry_hook = 4389 uintptr_t entry_hook =
4196 reinterpret_cast<int32_t>(isolate()->function_entry_hook()); 4390 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook());
4197 __ mov(ip, Operand(entry_hook)); 4391 __ mov(ip, Operand(entry_hook));
4392
4393 #if ABI_USES_FUNCTION_DESCRIPTORS
4394 // Function descriptor
4395 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize));
4396 __ LoadP(ip, MemOperand(ip, 0));
4397 #elif ABI_TOC_ADDRESSABILITY_VIA_IP
4398 // ip set above, so nothing to do.
4399 #endif
4400
4401 // PPC LINUX ABI:
4402 __ li(r0, Operand::Zero());
4403 __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize));
4198 #else 4404 #else
4199 // Under the simulator we need to indirect the entry hook through a 4405 // Under the simulator we need to indirect the entry hook through a
4200 // trampoline function at a known address. 4406 // trampoline function at a known address.
4201 // It additionally takes an isolate as a third parameter 4407 // It additionally takes an isolate as a third parameter
4202 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); 4408 __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
4203 4409
4204 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); 4410 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline));
4205 __ mov(ip, Operand(ExternalReference(&dispatcher, 4411 __ mov(ip, Operand(ExternalReference(
4206 ExternalReference::BUILTIN_CALL, 4412 &dispatcher, ExternalReference::BUILTIN_CALL, isolate())));
4207 isolate())));
4208 #endif 4413 #endif
4209 __ Call(ip); 4414 __ Call(ip);
4210 4415
4416 #if !defined(USE_SIMULATOR)
4417 __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize));
4418 #endif
4419
4211 // Restore the stack pointer if needed. 4420 // Restore the stack pointer if needed.
4212 if (frame_alignment > kPointerSize) { 4421 if (frame_alignment > kPointerSize) {
4213 __ mov(sp, r5); 4422 __ mr(sp, r15);
4214 } 4423 }
4215 4424
4216 // Also pop pc to get Ret(0). 4425 // Also pop lr to get Ret(0).
4217 __ ldm(ia_w, sp, kSavedRegs | pc.bit()); 4426 __ MultiPop(kSavedRegs | r0.bit());
4427 __ mtlr(r0);
4428 __ Ret();
4218 } 4429 }
4219 4430
4220 4431
4221 template<class T> 4432 template <class T>
4222 static void CreateArrayDispatch(MacroAssembler* masm, 4433 static void CreateArrayDispatch(MacroAssembler* masm,
4223 AllocationSiteOverrideMode mode) { 4434 AllocationSiteOverrideMode mode) {
4224 if (mode == DISABLE_ALLOCATION_SITES) { 4435 if (mode == DISABLE_ALLOCATION_SITES) {
4225 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); 4436 T stub(masm->isolate(), GetInitialFastElementsKind(), mode);
4226 __ TailCallStub(&stub); 4437 __ TailCallStub(&stub);
4227 } else if (mode == DONT_OVERRIDE) { 4438 } else if (mode == DONT_OVERRIDE) {
4228 int last_index = GetSequenceIndexFromFastElementsKind( 4439 int last_index =
4229 TERMINAL_FAST_ELEMENTS_KIND); 4440 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4230 for (int i = 0; i <= last_index; ++i) { 4441 for (int i = 0; i <= last_index; ++i) {
4231 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 4442 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4232 __ cmp(r3, Operand(kind)); 4443 __ Cmpi(r6, Operand(kind), r0);
4233 T stub(masm->isolate(), kind); 4444 T stub(masm->isolate(), kind);
4234 __ TailCallStub(&stub, eq); 4445 __ TailCallStub(&stub, eq);
4235 } 4446 }
4236 4447
4237 // If we reached this point there is a problem. 4448 // If we reached this point there is a problem.
4238 __ Abort(kUnexpectedElementsKindInArrayConstructor); 4449 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4239 } else { 4450 } else {
4240 UNREACHABLE(); 4451 UNREACHABLE();
4241 } 4452 }
4242 } 4453 }
4243 4454
4244 4455
4245 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, 4456 static void CreateArrayDispatchOneArgument(MacroAssembler* masm,
4246 AllocationSiteOverrideMode mode) { 4457 AllocationSiteOverrideMode mode) {
4247 // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) 4458 // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES)
4248 // r3 - kind (if mode != DISABLE_ALLOCATION_SITES) 4459 // r6 - kind (if mode != DISABLE_ALLOCATION_SITES)
4249 // r0 - number of arguments 4460 // r3 - number of arguments
4250 // r1 - constructor? 4461 // r4 - constructor?
4251 // sp[0] - last argument 4462 // sp[0] - last argument
4252 Label normal_sequence; 4463 Label normal_sequence;
4253 if (mode == DONT_OVERRIDE) { 4464 if (mode == DONT_OVERRIDE) {
4254 DCHECK(FAST_SMI_ELEMENTS == 0); 4465 DCHECK(FAST_SMI_ELEMENTS == 0);
4255 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1); 4466 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1);
4256 DCHECK(FAST_ELEMENTS == 2); 4467 DCHECK(FAST_ELEMENTS == 2);
4257 DCHECK(FAST_HOLEY_ELEMENTS == 3); 4468 DCHECK(FAST_HOLEY_ELEMENTS == 3);
4258 DCHECK(FAST_DOUBLE_ELEMENTS == 4); 4469 DCHECK(FAST_DOUBLE_ELEMENTS == 4);
4259 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5); 4470 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5);
4260 4471
4261 // is the low bit set? If so, we are holey and that is good. 4472 // is the low bit set? If so, we are holey and that is good.
4262 __ tst(r3, Operand(1)); 4473 __ andi(r0, r6, Operand(1));
4263 __ b(ne, &normal_sequence); 4474 __ bne(&normal_sequence, cr0);
4264 } 4475 }
4265 4476
4266 // look at the first argument 4477 // look at the first argument
4267 __ ldr(r5, MemOperand(sp, 0)); 4478 __ LoadP(r8, MemOperand(sp, 0));
4268 __ cmp(r5, Operand::Zero()); 4479 __ cmpi(r8, Operand::Zero());
4269 __ b(eq, &normal_sequence); 4480 __ beq(&normal_sequence);
4270 4481
4271 if (mode == DISABLE_ALLOCATION_SITES) { 4482 if (mode == DISABLE_ALLOCATION_SITES) {
4272 ElementsKind initial = GetInitialFastElementsKind(); 4483 ElementsKind initial = GetInitialFastElementsKind();
4273 ElementsKind holey_initial = GetHoleyElementsKind(initial); 4484 ElementsKind holey_initial = GetHoleyElementsKind(initial);
4274 4485
4275 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), 4486 ArraySingleArgumentConstructorStub stub_holey(
4276 holey_initial, 4487 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES);
4277 DISABLE_ALLOCATION_SITES);
4278 __ TailCallStub(&stub_holey); 4488 __ TailCallStub(&stub_holey);
4279 4489
4280 __ bind(&normal_sequence); 4490 __ bind(&normal_sequence);
4281 ArraySingleArgumentConstructorStub stub(masm->isolate(), 4491 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial,
4282 initial,
4283 DISABLE_ALLOCATION_SITES); 4492 DISABLE_ALLOCATION_SITES);
4284 __ TailCallStub(&stub); 4493 __ TailCallStub(&stub);
4285 } else if (mode == DONT_OVERRIDE) { 4494 } else if (mode == DONT_OVERRIDE) {
4286 // We are going to create a holey array, but our kind is non-holey. 4495 // We are going to create a holey array, but our kind is non-holey.
4287 // Fix kind and retry (only if we have an allocation site in the slot). 4496 // Fix kind and retry (only if we have an allocation site in the slot).
4288 __ add(r3, r3, Operand(1)); 4497 __ addi(r6, r6, Operand(1));
4289 4498
4290 if (FLAG_debug_code) { 4499 if (FLAG_debug_code) {
4291 __ ldr(r5, FieldMemOperand(r2, 0)); 4500 __ LoadP(r8, FieldMemOperand(r5, 0));
4292 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); 4501 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex);
4293 __ Assert(eq, kExpectedAllocationSite); 4502 __ Assert(eq, kExpectedAllocationSite);
4294 } 4503 }
4295 4504
4296 // Save the resulting elements kind in type info. We can't just store r3 4505 // Save the resulting elements kind in type info. We can't just store r6
4297 // in the AllocationSite::transition_info field because elements kind is 4506 // in the AllocationSite::transition_info field because elements kind is
4298 // restricted to a portion of the field...upper bits need to be left alone. 4507 // restricted to a portion of the field...upper bits need to be left alone.
4299 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 4508 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4300 __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); 4509 __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4301 __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); 4510 __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0);
4302 __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); 4511 __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset),
4512 r0);
4303 4513
4304 __ bind(&normal_sequence); 4514 __ bind(&normal_sequence);
4305 int last_index = GetSequenceIndexFromFastElementsKind( 4515 int last_index =
4306 TERMINAL_FAST_ELEMENTS_KIND); 4516 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4307 for (int i = 0; i <= last_index; ++i) { 4517 for (int i = 0; i <= last_index; ++i) {
4308 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 4518 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4309 __ cmp(r3, Operand(kind)); 4519 __ mov(r0, Operand(kind));
4520 __ cmp(r6, r0);
4310 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); 4521 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind);
4311 __ TailCallStub(&stub, eq); 4522 __ TailCallStub(&stub, eq);
4312 } 4523 }
4313 4524
4314 // If we reached this point there is a problem. 4525 // If we reached this point there is a problem.
4315 __ Abort(kUnexpectedElementsKindInArrayConstructor); 4526 __ Abort(kUnexpectedElementsKindInArrayConstructor);
4316 } else { 4527 } else {
4317 UNREACHABLE(); 4528 UNREACHABLE();
4318 } 4529 }
4319 } 4530 }
4320 4531
4321 4532
4322 template<class T> 4533 template <class T>
4323 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { 4534 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) {
4324 int to_index = GetSequenceIndexFromFastElementsKind( 4535 int to_index =
4325 TERMINAL_FAST_ELEMENTS_KIND); 4536 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND);
4326 for (int i = 0; i <= to_index; ++i) { 4537 for (int i = 0; i <= to_index; ++i) {
4327 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); 4538 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i);
4328 T stub(isolate, kind); 4539 T stub(isolate, kind);
4329 stub.GetCode(); 4540 stub.GetCode();
4330 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { 4541 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) {
4331 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); 4542 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES);
4332 stub1.GetCode(); 4543 stub1.GetCode();
4333 } 4544 }
4334 } 4545 }
4335 } 4546 }
4336 4547
4337 4548
4338 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { 4549 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) {
4339 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( 4550 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>(
4340 isolate); 4551 isolate);
4341 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( 4552 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>(
4342 isolate); 4553 isolate);
4343 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( 4554 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>(
4344 isolate); 4555 isolate);
4345 } 4556 }
4346 4557
4347 4558
4348 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( 4559 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime(
4349 Isolate* isolate) { 4560 Isolate* isolate) {
4350 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; 4561 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS};
4351 for (int i = 0; i < 2; i++) { 4562 for (int i = 0; i < 2; i++) {
4352 // For internal arrays we only need a few things 4563 // For internal arrays we only need a few things
4353 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); 4564 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]);
4354 stubh1.GetCode(); 4565 stubh1.GetCode();
4355 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); 4566 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]);
4356 stubh2.GetCode(); 4567 stubh2.GetCode();
4357 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); 4568 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]);
4358 stubh3.GetCode(); 4569 stubh3.GetCode();
4359 } 4570 }
4360 } 4571 }
4361 4572
4362 4573
4363 void ArrayConstructorStub::GenerateDispatchToArrayStub( 4574 void ArrayConstructorStub::GenerateDispatchToArrayStub(
4364 MacroAssembler* masm, 4575 MacroAssembler* masm, AllocationSiteOverrideMode mode) {
4365 AllocationSiteOverrideMode mode) {
4366 if (argument_count() == ANY) { 4576 if (argument_count() == ANY) {
4367 Label not_zero_case, not_one_case; 4577 Label not_zero_case, not_one_case;
4368 __ tst(r0, r0); 4578 __ cmpi(r3, Operand::Zero());
4369 __ b(ne, &not_zero_case); 4579 __ bne(&not_zero_case);
4370 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); 4580 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4371 4581
4372 __ bind(&not_zero_case); 4582 __ bind(&not_zero_case);
4373 __ cmp(r0, Operand(1)); 4583 __ cmpi(r3, Operand(1));
4374 __ b(gt, &not_one_case); 4584 __ bgt(&not_one_case);
4375 CreateArrayDispatchOneArgument(masm, mode); 4585 CreateArrayDispatchOneArgument(masm, mode);
4376 4586
4377 __ bind(&not_one_case); 4587 __ bind(&not_one_case);
4378 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); 4588 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4379 } else if (argument_count() == NONE) { 4589 } else if (argument_count() == NONE) {
4380 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); 4590 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode);
4381 } else if (argument_count() == ONE) { 4591 } else if (argument_count() == ONE) {
4382 CreateArrayDispatchOneArgument(masm, mode); 4592 CreateArrayDispatchOneArgument(masm, mode);
4383 } else if (argument_count() == MORE_THAN_ONE) { 4593 } else if (argument_count() == MORE_THAN_ONE) {
4384 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); 4594 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode);
4385 } else { 4595 } else {
4386 UNREACHABLE(); 4596 UNREACHABLE();
4387 } 4597 }
4388 } 4598 }
4389 4599
4390 4600
4391 void ArrayConstructorStub::Generate(MacroAssembler* masm) { 4601 void ArrayConstructorStub::Generate(MacroAssembler* masm) {
4392 // ----------- S t a t e ------------- 4602 // ----------- S t a t e -------------
4393 // -- r0 : argc (only if argument_count() == ANY) 4603 // -- r3 : argc (only if argument_count() == ANY)
4394 // -- r1 : constructor 4604 // -- r4 : constructor
4395 // -- r2 : AllocationSite or undefined 4605 // -- r5 : AllocationSite or undefined
4396 // -- sp[0] : return address 4606 // -- sp[0] : return address
4397 // -- sp[4] : last argument 4607 // -- sp[4] : last argument
4398 // ----------------------------------- 4608 // -----------------------------------
4399 4609
4400 if (FLAG_debug_code) { 4610 if (FLAG_debug_code) {
4401 // The array construct code is only set for the global and natives 4611 // The array construct code is only set for the global and natives
4402 // builtin Array functions which always have maps. 4612 // builtin Array functions which always have maps.
4403 4613
4404 // Initial map for the builtin Array function should be a map. 4614 // Initial map for the builtin Array function should be a map.
4405 __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); 4615 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4406 // Will both indicate a NULL and a Smi. 4616 // Will both indicate a NULL and a Smi.
4407 __ tst(r4, Operand(kSmiTagMask)); 4617 __ TestIfSmi(r7, r0);
4408 __ Assert(ne, kUnexpectedInitialMapForArrayFunction); 4618 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4409 __ CompareObjectType(r4, r4, r5, MAP_TYPE); 4619 __ CompareObjectType(r7, r7, r8, MAP_TYPE);
4410 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); 4620 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4411 4621
4412 // We should either have undefined in r2 or a valid AllocationSite 4622 // We should either have undefined in r5 or a valid AllocationSite
4413 __ AssertUndefinedOrAllocationSite(r2, r4); 4623 __ AssertUndefinedOrAllocationSite(r5, r7);
4414 } 4624 }
4415 4625
4416 Label no_info; 4626 Label no_info;
4417 // Get the elements kind and case on that. 4627 // Get the elements kind and case on that.
4418 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); 4628 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex);
4419 __ b(eq, &no_info); 4629 __ beq(&no_info);
4420 4630
4421 __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); 4631 __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset));
4422 __ SmiUntag(r3); 4632 __ SmiUntag(r6);
4423 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); 4633 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0);
4424 __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask)); 4634 __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask));
4425 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); 4635 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE);
4426 4636
4427 __ bind(&no_info); 4637 __ bind(&no_info);
4428 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); 4638 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES);
4429 } 4639 }
4430 4640
4431 4641
4432 void InternalArrayConstructorStub::GenerateCase( 4642 void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm,
4433 MacroAssembler* masm, ElementsKind kind) { 4643 ElementsKind kind) {
4434 __ cmp(r0, Operand(1)); 4644 __ cmpli(r3, Operand(1));
4435 4645
4436 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); 4646 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind);
4437 __ TailCallStub(&stub0, lo); 4647 __ TailCallStub(&stub0, lt);
4438 4648
4439 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); 4649 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind);
4440 __ TailCallStub(&stubN, hi); 4650 __ TailCallStub(&stubN, gt);
4441 4651
4442 if (IsFastPackedElementsKind(kind)) { 4652 if (IsFastPackedElementsKind(kind)) {
4443 // We might need to create a holey array 4653 // We might need to create a holey array
4444 // look at the first argument 4654 // look at the first argument
4445 __ ldr(r3, MemOperand(sp, 0)); 4655 __ LoadP(r6, MemOperand(sp, 0));
4446 __ cmp(r3, Operand::Zero()); 4656 __ cmpi(r6, Operand::Zero());
4447 4657
4448 InternalArraySingleArgumentConstructorStub 4658 InternalArraySingleArgumentConstructorStub stub1_holey(
4449 stub1_holey(isolate(), GetHoleyElementsKind(kind)); 4659 isolate(), GetHoleyElementsKind(kind));
4450 __ TailCallStub(&stub1_holey, ne); 4660 __ TailCallStub(&stub1_holey, ne);
4451 } 4661 }
4452 4662
4453 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); 4663 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind);
4454 __ TailCallStub(&stub1); 4664 __ TailCallStub(&stub1);
4455 } 4665 }
4456 4666
4457 4667
4458 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { 4668 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) {
4459 // ----------- S t a t e ------------- 4669 // ----------- S t a t e -------------
4460 // -- r0 : argc 4670 // -- r3 : argc
4461 // -- r1 : constructor 4671 // -- r4 : constructor
4462 // -- sp[0] : return address 4672 // -- sp[0] : return address
4463 // -- sp[4] : last argument 4673 // -- sp[4] : last argument
4464 // ----------------------------------- 4674 // -----------------------------------
4465 4675
4466 if (FLAG_debug_code) { 4676 if (FLAG_debug_code) {
4467 // The array construct code is only set for the global and natives 4677 // The array construct code is only set for the global and natives
4468 // builtin Array functions which always have maps. 4678 // builtin Array functions which always have maps.
4469 4679
4470 // Initial map for the builtin Array function should be a map. 4680 // Initial map for the builtin Array function should be a map.
4471 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); 4681 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4472 // Will both indicate a NULL and a Smi. 4682 // Will both indicate a NULL and a Smi.
4473 __ tst(r3, Operand(kSmiTagMask)); 4683 __ TestIfSmi(r6, r0);
4474 __ Assert(ne, kUnexpectedInitialMapForArrayFunction); 4684 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0);
4475 __ CompareObjectType(r3, r3, r4, MAP_TYPE); 4685 __ CompareObjectType(r6, r6, r7, MAP_TYPE);
4476 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); 4686 __ Assert(eq, kUnexpectedInitialMapForArrayFunction);
4477 } 4687 }
4478 4688
4479 // Figure out the right elements kind 4689 // Figure out the right elements kind
4480 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); 4690 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset));
4481 // Load the map's "bit field 2" into |result|. We only need the first byte, 4691 // Load the map's "bit field 2" into |result|.
4482 // but the following bit field extraction takes care of that anyway. 4692 __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset));
4483 __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset));
4484 // Retrieve elements_kind from bit field 2. 4693 // Retrieve elements_kind from bit field 2.
4485 __ DecodeField<Map::ElementsKindBits>(r3); 4694 __ DecodeField<Map::ElementsKindBits>(r6);
4486 4695
4487 if (FLAG_debug_code) { 4696 if (FLAG_debug_code) {
4488 Label done; 4697 Label done;
4489 __ cmp(r3, Operand(FAST_ELEMENTS)); 4698 __ cmpi(r6, Operand(FAST_ELEMENTS));
4490 __ b(eq, &done); 4699 __ beq(&done);
4491 __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS)); 4700 __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS));
4492 __ Assert(eq, 4701 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4493 kInvalidElementsKindForInternalArrayOrInternalPackedArray);
4494 __ bind(&done); 4702 __ bind(&done);
4495 } 4703 }
4496 4704
4497 Label fast_elements_case; 4705 Label fast_elements_case;
4498 __ cmp(r3, Operand(FAST_ELEMENTS)); 4706 __ cmpi(r6, Operand(FAST_ELEMENTS));
4499 __ b(eq, &fast_elements_case); 4707 __ beq(&fast_elements_case);
4500 GenerateCase(masm, FAST_HOLEY_ELEMENTS); 4708 GenerateCase(masm, FAST_HOLEY_ELEMENTS);
4501 4709
4502 __ bind(&fast_elements_case); 4710 __ bind(&fast_elements_case);
4503 GenerateCase(masm, FAST_ELEMENTS); 4711 GenerateCase(masm, FAST_ELEMENTS);
4504 } 4712 }
4505 4713
4506 4714
4507 void CallApiFunctionStub::Generate(MacroAssembler* masm) { 4715 void CallApiFunctionStub::Generate(MacroAssembler* masm) {
4508 // ----------- S t a t e ------------- 4716 // ----------- S t a t e -------------
4509 // -- r0 : callee 4717 // -- r3 : callee
4510 // -- r4 : call_data 4718 // -- r7 : call_data
4511 // -- r2 : holder 4719 // -- r5 : holder
4512 // -- r1 : api_function_address 4720 // -- r4 : api_function_address
4513 // -- cp : context 4721 // -- cp : context
4514 // -- 4722 // --
4515 // -- sp[0] : last argument 4723 // -- sp[0] : last argument
4516 // -- ... 4724 // -- ...
4517 // -- sp[(argc - 1)* 4] : first argument 4725 // -- sp[(argc - 1)* 4] : first argument
4518 // -- sp[argc * 4] : receiver 4726 // -- sp[argc * 4] : receiver
4519 // ----------------------------------- 4727 // -----------------------------------
4520 4728
4521 Register callee = r0; 4729 Register callee = r3;
4522 Register call_data = r4; 4730 Register call_data = r7;
4523 Register holder = r2; 4731 Register holder = r5;
4524 Register api_function_address = r1; 4732 Register api_function_address = r4;
4525 Register context = cp; 4733 Register context = cp;
4526 4734
4527 int argc = this->argc(); 4735 int argc = this->argc();
4528 bool is_store = this->is_store(); 4736 bool is_store = this->is_store();
4529 bool call_data_undefined = this->call_data_undefined(); 4737 bool call_data_undefined = this->call_data_undefined();
4530 4738
4531 typedef FunctionCallbackArguments FCA; 4739 typedef FunctionCallbackArguments FCA;
4532 4740
4533 STATIC_ASSERT(FCA::kContextSaveIndex == 6); 4741 STATIC_ASSERT(FCA::kContextSaveIndex == 6);
4534 STATIC_ASSERT(FCA::kCalleeIndex == 5); 4742 STATIC_ASSERT(FCA::kCalleeIndex == 5);
4535 STATIC_ASSERT(FCA::kDataIndex == 4); 4743 STATIC_ASSERT(FCA::kDataIndex == 4);
4536 STATIC_ASSERT(FCA::kReturnValueOffset == 3); 4744 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
4537 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); 4745 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
4538 STATIC_ASSERT(FCA::kIsolateIndex == 1); 4746 STATIC_ASSERT(FCA::kIsolateIndex == 1);
4539 STATIC_ASSERT(FCA::kHolderIndex == 0); 4747 STATIC_ASSERT(FCA::kHolderIndex == 0);
4540 STATIC_ASSERT(FCA::kArgsLength == 7); 4748 STATIC_ASSERT(FCA::kArgsLength == 7);
4541 4749
4542 // context save 4750 // context save
4543 __ push(context); 4751 __ push(context);
4544 // load context from callee 4752 // load context from callee
4545 __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); 4753 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset));
4546 4754
4547 // callee 4755 // callee
4548 __ push(callee); 4756 __ push(callee);
4549 4757
4550 // call data 4758 // call data
4551 __ push(call_data); 4759 __ push(call_data);
4552 4760
4553 Register scratch = call_data; 4761 Register scratch = call_data;
4554 if (!call_data_undefined) { 4762 if (!call_data_undefined) {
4555 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); 4763 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex);
4556 } 4764 }
4557 // return value 4765 // return value
4558 __ push(scratch); 4766 __ push(scratch);
4559 // return value default 4767 // return value default
4560 __ push(scratch); 4768 __ push(scratch);
4561 // isolate 4769 // isolate
4562 __ mov(scratch, 4770 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate())));
4563 Operand(ExternalReference::isolate_address(isolate())));
4564 __ push(scratch); 4771 __ push(scratch);
4565 // holder 4772 // holder
4566 __ push(holder); 4773 __ push(holder);
4567 4774
4568 // Prepare arguments. 4775 // Prepare arguments.
4569 __ mov(scratch, sp); 4776 __ mr(scratch, sp);
4570 4777
4571 // Allocate the v8::Arguments structure in the arguments' space since 4778 // Allocate the v8::Arguments structure in the arguments' space since
4572 // it's not controlled by GC. 4779 // it's not controlled by GC.
4573 const int kApiStackSpace = 4; 4780 // PPC LINUX ABI:
4781 //
4782 // Create 5 extra slots on stack:
4783 // [0] space for DirectCEntryStub's LR save
4784 // [1-4] FunctionCallbackInfo
4785 const int kApiStackSpace = 5;
4574 4786
4575 FrameScope frame_scope(masm, StackFrame::MANUAL); 4787 FrameScope frame_scope(masm, StackFrame::MANUAL);
4576 __ EnterExitFrame(false, kApiStackSpace); 4788 __ EnterExitFrame(false, kApiStackSpace);
4577 4789
4578 DCHECK(!api_function_address.is(r0) && !scratch.is(r0)); 4790 DCHECK(!api_function_address.is(r3) && !scratch.is(r3));
4579 // r0 = FunctionCallbackInfo& 4791 // r3 = FunctionCallbackInfo&
4580 // Arguments is after the return address. 4792 // Arguments is after the return address.
4581 __ add(r0, sp, Operand(1 * kPointerSize)); 4793 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize));
4582 // FunctionCallbackInfo::implicit_args_ 4794 // FunctionCallbackInfo::implicit_args_
4583 __ str(scratch, MemOperand(r0, 0 * kPointerSize)); 4795 __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize));
4584 // FunctionCallbackInfo::values_ 4796 // FunctionCallbackInfo::values_
4585 __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); 4797 __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize));
4586 __ str(ip, MemOperand(r0, 1 * kPointerSize)); 4798 __ StoreP(ip, MemOperand(r3, 1 * kPointerSize));
4587 // FunctionCallbackInfo::length_ = argc 4799 // FunctionCallbackInfo::length_ = argc
4588 __ mov(ip, Operand(argc)); 4800 __ li(ip, Operand(argc));
4589 __ str(ip, MemOperand(r0, 2 * kPointerSize)); 4801 __ stw(ip, MemOperand(r3, 2 * kPointerSize));
4590 // FunctionCallbackInfo::is_construct_call = 0 4802 // FunctionCallbackInfo::is_construct_call = 0
4591 __ mov(ip, Operand::Zero()); 4803 __ li(ip, Operand::Zero());
4592 __ str(ip, MemOperand(r0, 3 * kPointerSize)); 4804 __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize));
4593 4805
4594 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; 4806 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1;
4595 ExternalReference thunk_ref = 4807 ExternalReference thunk_ref =
4596 ExternalReference::invoke_function_callback(isolate()); 4808 ExternalReference::invoke_function_callback(isolate());
4597 4809
4598 AllowExternalCallThatCantCauseGC scope(masm); 4810 AllowExternalCallThatCantCauseGC scope(masm);
4599 MemOperand context_restore_operand( 4811 MemOperand context_restore_operand(
4600 fp, (2 + FCA::kContextSaveIndex) * kPointerSize); 4812 fp, (2 + FCA::kContextSaveIndex) * kPointerSize);
4601 // Stores return the first js argument 4813 // Stores return the first js argument
4602 int return_value_offset = 0; 4814 int return_value_offset = 0;
4603 if (is_store) { 4815 if (is_store) {
4604 return_value_offset = 2 + FCA::kArgsLength; 4816 return_value_offset = 2 + FCA::kArgsLength;
4605 } else { 4817 } else {
4606 return_value_offset = 2 + FCA::kReturnValueOffset; 4818 return_value_offset = 2 + FCA::kReturnValueOffset;
4607 } 4819 }
4608 MemOperand return_value_operand(fp, return_value_offset * kPointerSize); 4820 MemOperand return_value_operand(fp, return_value_offset * kPointerSize);
4609 4821
4610 __ CallApiFunctionAndReturn(api_function_address, 4822 __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
4611 thunk_ref, 4823 kStackUnwindSpace, return_value_operand,
4612 kStackUnwindSpace,
4613 return_value_operand,
4614 &context_restore_operand); 4824 &context_restore_operand);
4615 } 4825 }
4616 4826
4617 4827
4618 void CallApiGetterStub::Generate(MacroAssembler* masm) { 4828 void CallApiGetterStub::Generate(MacroAssembler* masm) {
4619 // ----------- S t a t e ------------- 4829 // ----------- S t a t e -------------
4620 // -- sp[0] : name 4830 // -- sp[0] : name
4621 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object 4831 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object
4622 // -- ... 4832 // -- ...
4623 // -- r2 : api_function_address 4833 // -- r5 : api_function_address
4624 // ----------------------------------- 4834 // -----------------------------------
4625 4835
4626 Register api_function_address = ApiGetterDescriptor::function_address(); 4836 Register api_function_address = ApiGetterDescriptor::function_address();
4627 DCHECK(api_function_address.is(r2)); 4837 DCHECK(api_function_address.is(r5));
4628 4838
4629 __ mov(r0, sp); // r0 = Handle<Name> 4839 __ mr(r3, sp); // r0 = Handle<Name>
4630 __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA 4840 __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = PCA
4631 4841
4632 const int kApiStackSpace = 1; 4842 // If ABI passes Handles (pointer-sized struct) in a register:
4843 //
4844 // Create 2 extra slots on stack:
4845 // [0] space for DirectCEntryStub's LR save
4846 // [1] AccessorInfo&
4847 //
4848 // Otherwise:
4849 //
4850 // Create 3 extra slots on stack:
4851 // [0] space for DirectCEntryStub's LR save
4852 // [1] copy of Handle (first arg)
4853 // [2] AccessorInfo&
4854 #if ABI_PASSES_HANDLES_IN_REGS
4855 const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1;
4856 const int kApiStackSpace = 2;
4857 #else
4858 const int kArg0Slot = kStackFrameExtraParamSlot + 1;
4859 const int kAccessorInfoSlot = kArg0Slot + 1;
4860 const int kApiStackSpace = 3;
4861 #endif
4862
4633 FrameScope frame_scope(masm, StackFrame::MANUAL); 4863 FrameScope frame_scope(masm, StackFrame::MANUAL);
4634 __ EnterExitFrame(false, kApiStackSpace); 4864 __ EnterExitFrame(false, kApiStackSpace);
4635 4865
4866 #if !ABI_PASSES_HANDLES_IN_REGS
4867 // pass 1st arg by reference
4868 __ StoreP(r3, MemOperand(sp, kArg0Slot * kPointerSize));
4869 __ addi(r3, sp, Operand(kArg0Slot * kPointerSize));
4870 #endif
4871
4636 // Create PropertyAccessorInfo instance on the stack above the exit frame with 4872 // Create PropertyAccessorInfo instance on the stack above the exit frame with
4637 // r1 (internal::Object** args_) as the data. 4873 // r4 (internal::Object** args_) as the data.
4638 __ str(r1, MemOperand(sp, 1 * kPointerSize)); 4874 __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize));
4639 __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo& 4875 // r4 = AccessorInfo&
4876 __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize));
4640 4877
4641 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; 4878 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
4642 4879
4643 ExternalReference thunk_ref = 4880 ExternalReference thunk_ref =
4644 ExternalReference::invoke_accessor_getter_callback(isolate()); 4881 ExternalReference::invoke_accessor_getter_callback(isolate());
4645 __ CallApiFunctionAndReturn(api_function_address, 4882 __ CallApiFunctionAndReturn(api_function_address, thunk_ref,
4646 thunk_ref,
4647 kStackUnwindSpace, 4883 kStackUnwindSpace,
4648 MemOperand(fp, 6 * kPointerSize), 4884 MemOperand(fp, 6 * kPointerSize), NULL);
4649 NULL);
4650 } 4885 }
4651 4886
4652 4887
4653 #undef __ 4888 #undef __
4889 }
4890 } // namespace v8::internal
4654 4891
4655 } } // namespace v8::internal 4892 #endif // V8_TARGET_ARCH_PPC
4656
4657 #endif // V8_TARGET_ARCH_ARM
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698