| Index: third_party/sqlite/src/ext/rtree/rtree.c
|
| diff --git a/third_party/sqlite/src/ext/rtree/rtree.c b/third_party/sqlite/src/ext/rtree/rtree.c
|
| index 5a4f570d6af3940dd618a1923fef638509166ec2..b805676b79d7798920b6a46555514587dd1e3ee8 100644
|
| --- a/third_party/sqlite/src/ext/rtree/rtree.c
|
| +++ b/third_party/sqlite/src/ext/rtree/rtree.c
|
| @@ -11,8 +11,45 @@
|
| *************************************************************************
|
| ** This file contains code for implementations of the r-tree and r*-tree
|
| ** algorithms packaged as an SQLite virtual table module.
|
| +*/
|
| +
|
| +/*
|
| +** Database Format of R-Tree Tables
|
| +** --------------------------------
|
| +**
|
| +** The data structure for a single virtual r-tree table is stored in three
|
| +** native SQLite tables declared as follows. In each case, the '%' character
|
| +** in the table name is replaced with the user-supplied name of the r-tree
|
| +** table.
|
| +**
|
| +** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
|
| +** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
|
| +** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
|
| +**
|
| +** The data for each node of the r-tree structure is stored in the %_node
|
| +** table. For each node that is not the root node of the r-tree, there is
|
| +** an entry in the %_parent table associating the node with its parent.
|
| +** And for each row of data in the table, there is an entry in the %_rowid
|
| +** table that maps from the entries rowid to the id of the node that it
|
| +** is stored on.
|
| +**
|
| +** The root node of an r-tree always exists, even if the r-tree table is
|
| +** empty. The nodeno of the root node is always 1. All other nodes in the
|
| +** table must be the same size as the root node. The content of each node
|
| +** is formatted as follows:
|
| +**
|
| +** 1. If the node is the root node (node 1), then the first 2 bytes
|
| +** of the node contain the tree depth as a big-endian integer.
|
| +** For non-root nodes, the first 2 bytes are left unused.
|
| +**
|
| +** 2. The next 2 bytes contain the number of entries currently
|
| +** stored in the node.
|
| **
|
| -** $Id: rtree.c,v 1.14 2009/08/06 18:36:47 danielk1977 Exp $
|
| +** 3. The remainder of the node contains the node entries. Each entry
|
| +** consists of a single 8-byte integer followed by an even number
|
| +** of 4-byte coordinates. For leaf nodes the integer is the rowid
|
| +** of a record. For internal nodes it is the node number of a
|
| +** child page.
|
| */
|
|
|
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
|
| @@ -55,6 +92,9 @@
|
| #define AssignCells splitNodeStartree
|
| #endif
|
|
|
| +#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
|
| +# define NDEBUG 1
|
| +#endif
|
|
|
| #ifndef SQLITE_CORE
|
| #include "sqlite3ext.h"
|
| @@ -67,6 +107,7 @@
|
| #include <assert.h>
|
|
|
| #ifndef SQLITE_AMALGAMATION
|
| +#include "sqlite3rtree.h"
|
| typedef sqlite3_int64 i64;
|
| typedef unsigned char u8;
|
| typedef unsigned int u32;
|
| @@ -77,6 +118,8 @@ typedef struct RtreeCursor RtreeCursor;
|
| typedef struct RtreeNode RtreeNode;
|
| typedef struct RtreeCell RtreeCell;
|
| typedef struct RtreeConstraint RtreeConstraint;
|
| +typedef struct RtreeMatchArg RtreeMatchArg;
|
| +typedef struct RtreeGeomCallback RtreeGeomCallback;
|
| typedef union RtreeCoord RtreeCoord;
|
|
|
| /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
|
| @@ -146,6 +189,15 @@ struct Rtree {
|
| #define RTREE_REINSERT(p) RTREE_MINCELLS(p)
|
| #define RTREE_MAXCELLS 51
|
|
|
| +/*
|
| +** The smallest possible node-size is (512-64)==448 bytes. And the largest
|
| +** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
|
| +** Therefore all non-root nodes must contain at least 3 entries. Since
|
| +** 2^40 is greater than 2^64, an r-tree structure always has a depth of
|
| +** 40 or less.
|
| +*/
|
| +#define RTREE_MAX_DEPTH 40
|
| +
|
| /*
|
| ** An rtree cursor object.
|
| */
|
| @@ -178,35 +230,23 @@ union RtreeCoord {
|
| ** A search constraint.
|
| */
|
| struct RtreeConstraint {
|
| - int iCoord; /* Index of constrained coordinate */
|
| - int op; /* Constraining operation */
|
| - double rValue; /* Constraint value. */
|
| + int iCoord; /* Index of constrained coordinate */
|
| + int op; /* Constraining operation */
|
| + double rValue; /* Constraint value. */
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
|
| + sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */
|
| };
|
|
|
| /* Possible values for RtreeConstraint.op */
|
| -#define RTREE_EQ 0x41
|
| -#define RTREE_LE 0x42
|
| -#define RTREE_LT 0x43
|
| -#define RTREE_GE 0x44
|
| -#define RTREE_GT 0x45
|
| +#define RTREE_EQ 0x41
|
| +#define RTREE_LE 0x42
|
| +#define RTREE_LT 0x43
|
| +#define RTREE_GE 0x44
|
| +#define RTREE_GT 0x45
|
| +#define RTREE_MATCH 0x46
|
|
|
| /*
|
| ** An rtree structure node.
|
| -**
|
| -** Data format (RtreeNode.zData):
|
| -**
|
| -** 1. If the node is the root node (node 1), then the first 2 bytes
|
| -** of the node contain the tree depth as a big-endian integer.
|
| -** For non-root nodes, the first 2 bytes are left unused.
|
| -**
|
| -** 2. The next 2 bytes contain the number of entries currently
|
| -** stored in the node.
|
| -**
|
| -** 3. The remainder of the node contains the node entries. Each entry
|
| -** consists of a single 8-byte integer followed by an even number
|
| -** of 4-byte coordinates. For leaf nodes the integer is the rowid
|
| -** of a record. For internal nodes it is the node number of a
|
| -** child page.
|
| */
|
| struct RtreeNode {
|
| RtreeNode *pParent; /* Parent node */
|
| @@ -226,6 +266,40 @@ struct RtreeCell {
|
| RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
|
| };
|
|
|
| +
|
| +/*
|
| +** Value for the first field of every RtreeMatchArg object. The MATCH
|
| +** operator tests that the first field of a blob operand matches this
|
| +** value to avoid operating on invalid blobs (which could cause a segfault).
|
| +*/
|
| +#define RTREE_GEOMETRY_MAGIC 0x891245AB
|
| +
|
| +/*
|
| +** An instance of this structure must be supplied as a blob argument to
|
| +** the right-hand-side of an SQL MATCH operator used to constrain an
|
| +** r-tree query.
|
| +*/
|
| +struct RtreeMatchArg {
|
| + u32 magic; /* Always RTREE_GEOMETRY_MAGIC */
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
|
| + void *pContext;
|
| + int nParam;
|
| + double aParam[1];
|
| +};
|
| +
|
| +/*
|
| +** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
|
| +** a single instance of the following structure is allocated. It is used
|
| +** as the context for the user-function created by by s_r_g_c(). The object
|
| +** is eventually deleted by the destructor mechanism provided by
|
| +** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
|
| +** the geometry callback function).
|
| +*/
|
| +struct RtreeGeomCallback {
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
|
| + void *pContext;
|
| +};
|
| +
|
| #ifndef MAX
|
| # define MAX(x,y) ((x) < (y) ? (y) : (x))
|
| #endif
|
| @@ -308,10 +382,8 @@ static void nodeReference(RtreeNode *p){
|
| ** Clear the content of node p (set all bytes to 0x00).
|
| */
|
| static void nodeZero(Rtree *pRtree, RtreeNode *p){
|
| - if( p ){
|
| - memset(&p->zData[2], 0, pRtree->iNodeSize-2);
|
| - p->isDirty = 1;
|
| - }
|
| + memset(&p->zData[2], 0, pRtree->iNodeSize-2);
|
| + p->isDirty = 1;
|
| }
|
|
|
| /*
|
| @@ -331,7 +403,6 @@ static int nodeHash(i64 iNode){
|
| */
|
| static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
|
| RtreeNode *p;
|
| - assert( iNode!=0 );
|
| for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
|
| return p;
|
| }
|
| @@ -340,13 +411,11 @@ static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
|
| ** Add node pNode to the node hash table.
|
| */
|
| static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
|
| - if( pNode ){
|
| - int iHash;
|
| - assert( pNode->pNext==0 );
|
| - iHash = nodeHash(pNode->iNode);
|
| - pNode->pNext = pRtree->aHash[iHash];
|
| - pRtree->aHash[iHash] = pNode;
|
| - }
|
| + int iHash;
|
| + assert( pNode->pNext==0 );
|
| + iHash = nodeHash(pNode->iNode);
|
| + pNode->pNext = pRtree->aHash[iHash];
|
| + pRtree->aHash[iHash] = pNode;
|
| }
|
|
|
| /*
|
| @@ -368,11 +437,11 @@ static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
|
| ** assigned a node number when nodeWrite() is called to write the
|
| ** node contents out to the database.
|
| */
|
| -static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent, int zero){
|
| +static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
|
| RtreeNode *pNode;
|
| pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
|
| if( pNode ){
|
| - memset(pNode, 0, sizeof(RtreeNode) + (zero?pRtree->iNodeSize:0));
|
| + memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
|
| pNode->zData = (u8 *)&pNode[1];
|
| pNode->nRef = 1;
|
| pNode->pParent = pParent;
|
| @@ -393,6 +462,7 @@ nodeAcquire(
|
| RtreeNode **ppNode /* OUT: Acquired node */
|
| ){
|
| int rc;
|
| + int rc2 = SQLITE_OK;
|
| RtreeNode *pNode;
|
|
|
| /* Check if the requested node is already in the hash table. If so,
|
| @@ -409,38 +479,63 @@ nodeAcquire(
|
| return SQLITE_OK;
|
| }
|
|
|
| - pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
|
| - if( !pNode ){
|
| - *ppNode = 0;
|
| - return SQLITE_NOMEM;
|
| - }
|
| - pNode->pParent = pParent;
|
| - pNode->zData = (u8 *)&pNode[1];
|
| - pNode->nRef = 1;
|
| - pNode->iNode = iNode;
|
| - pNode->isDirty = 0;
|
| - pNode->pNext = 0;
|
| -
|
| sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
|
| rc = sqlite3_step(pRtree->pReadNode);
|
| if( rc==SQLITE_ROW ){
|
| const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
|
| - memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
|
| - nodeReference(pParent);
|
| - }else{
|
| - sqlite3_free(pNode);
|
| - pNode = 0;
|
| + if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
|
| + pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
|
| + if( !pNode ){
|
| + rc2 = SQLITE_NOMEM;
|
| + }else{
|
| + pNode->pParent = pParent;
|
| + pNode->zData = (u8 *)&pNode[1];
|
| + pNode->nRef = 1;
|
| + pNode->iNode = iNode;
|
| + pNode->isDirty = 0;
|
| + pNode->pNext = 0;
|
| + memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
|
| + nodeReference(pParent);
|
| + }
|
| + }
|
| }
|
| -
|
| - *ppNode = pNode;
|
| rc = sqlite3_reset(pRtree->pReadNode);
|
| + if( rc==SQLITE_OK ) rc = rc2;
|
|
|
| - if( rc==SQLITE_OK && iNode==1 ){
|
| + /* If the root node was just loaded, set pRtree->iDepth to the height
|
| + ** of the r-tree structure. A height of zero means all data is stored on
|
| + ** the root node. A height of one means the children of the root node
|
| + ** are the leaves, and so on. If the depth as specified on the root node
|
| + ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
|
| + */
|
| + if( pNode && iNode==1 ){
|
| pRtree->iDepth = readInt16(pNode->zData);
|
| + if( pRtree->iDepth>RTREE_MAX_DEPTH ){
|
| + rc = SQLITE_CORRUPT;
|
| + }
|
| }
|
|
|
| - assert( (rc==SQLITE_OK && pNode) || (pNode==0 && rc!=SQLITE_OK) );
|
| - nodeHashInsert(pRtree, pNode);
|
| + /* If no error has occurred so far, check if the "number of entries"
|
| + ** field on the node is too large. If so, set the return code to
|
| + ** SQLITE_CORRUPT.
|
| + */
|
| + if( pNode && rc==SQLITE_OK ){
|
| + if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
|
| + rc = SQLITE_CORRUPT;
|
| + }
|
| + }
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + if( pNode!=0 ){
|
| + nodeHashInsert(pRtree, pNode);
|
| + }else{
|
| + rc = SQLITE_CORRUPT;
|
| + }
|
| + *ppNode = pNode;
|
| + }else{
|
| + sqlite3_free(pNode);
|
| + *ppNode = 0;
|
| + }
|
|
|
| return rc;
|
| }
|
| @@ -493,8 +588,7 @@ nodeInsertCell(
|
| nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
|
| nCell = NCELL(pNode);
|
|
|
| - assert(nCell<=nMaxCell);
|
| -
|
| + assert( nCell<=nMaxCell );
|
| if( nCell<nMaxCell ){
|
| nodeOverwriteCell(pRtree, pNode, pCell, nCell);
|
| writeInt16(&pNode->zData[2], nCell+1);
|
| @@ -714,6 +808,25 @@ static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
| return rc;
|
| }
|
|
|
| +
|
| +/*
|
| +** Free the RtreeCursor.aConstraint[] array and its contents.
|
| +*/
|
| +static void freeCursorConstraints(RtreeCursor *pCsr){
|
| + if( pCsr->aConstraint ){
|
| + int i; /* Used to iterate through constraint array */
|
| + for(i=0; i<pCsr->nConstraint; i++){
|
| + sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom;
|
| + if( pGeom ){
|
| + if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser);
|
| + sqlite3_free(pGeom);
|
| + }
|
| + }
|
| + sqlite3_free(pCsr->aConstraint);
|
| + pCsr->aConstraint = 0;
|
| + }
|
| +}
|
| +
|
| /*
|
| ** Rtree virtual table module xClose method.
|
| */
|
| @@ -721,7 +834,7 @@ static int rtreeClose(sqlite3_vtab_cursor *cur){
|
| Rtree *pRtree = (Rtree *)(cur->pVtab);
|
| int rc;
|
| RtreeCursor *pCsr = (RtreeCursor *)cur;
|
| - sqlite3_free(pCsr->aConstraint);
|
| + freeCursorConstraints(pCsr);
|
| rc = nodeRelease(pRtree, pCsr->pNode);
|
| sqlite3_free(pCsr);
|
| return rc;
|
| @@ -738,13 +851,39 @@ static int rtreeEof(sqlite3_vtab_cursor *cur){
|
| return (pCsr->pNode==0);
|
| }
|
|
|
| +/*
|
| +** The r-tree constraint passed as the second argument to this function is
|
| +** guaranteed to be a MATCH constraint.
|
| +*/
|
| +static int testRtreeGeom(
|
| + Rtree *pRtree, /* R-Tree object */
|
| + RtreeConstraint *pConstraint, /* MATCH constraint to test */
|
| + RtreeCell *pCell, /* Cell to test */
|
| + int *pbRes /* OUT: Test result */
|
| +){
|
| + int i;
|
| + double aCoord[RTREE_MAX_DIMENSIONS*2];
|
| + int nCoord = pRtree->nDim*2;
|
| +
|
| + assert( pConstraint->op==RTREE_MATCH );
|
| + assert( pConstraint->pGeom );
|
| +
|
| + for(i=0; i<nCoord; i++){
|
| + aCoord[i] = DCOORD(pCell->aCoord[i]);
|
| + }
|
| + return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes);
|
| +}
|
| +
|
| /*
|
| ** Cursor pCursor currently points to a cell in a non-leaf page.
|
| -** Return true if the sub-tree headed by the cell is filtered
|
| +** Set *pbEof to true if the sub-tree headed by the cell is filtered
|
| ** (excluded) by the constraints in the pCursor->aConstraint[]
|
| ** array, or false otherwise.
|
| +**
|
| +** Return SQLITE_OK if successful or an SQLite error code if an error
|
| +** occurs within a geometry callback.
|
| */
|
| -static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){
|
| +static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
|
| RtreeCell cell;
|
| int ii;
|
| int bRes = 0;
|
| @@ -756,31 +895,55 @@ static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor){
|
| double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
|
|
|
| assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
| - || p->op==RTREE_GT || p->op==RTREE_EQ
|
| + || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
|
| );
|
|
|
| switch( p->op ){
|
| - case RTREE_LE: case RTREE_LT: bRes = p->rValue<cell_min; break;
|
| - case RTREE_GE: case RTREE_GT: bRes = p->rValue>cell_max; break;
|
| - case RTREE_EQ:
|
| + case RTREE_LE: case RTREE_LT:
|
| + bRes = p->rValue<cell_min;
|
| + break;
|
| +
|
| + case RTREE_GE: case RTREE_GT:
|
| + bRes = p->rValue>cell_max;
|
| + break;
|
| +
|
| + case RTREE_EQ:
|
| bRes = (p->rValue>cell_max || p->rValue<cell_min);
|
| break;
|
| +
|
| + default: {
|
| + int rc;
|
| + assert( p->op==RTREE_MATCH );
|
| + rc = testRtreeGeom(pRtree, p, &cell, &bRes);
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| + bRes = !bRes;
|
| + break;
|
| + }
|
| }
|
| }
|
|
|
| - return bRes;
|
| + *pbEof = bRes;
|
| + return SQLITE_OK;
|
| }
|
|
|
| /*
|
| -** Return true if the cell that cursor pCursor currently points to
|
| +** Test if the cell that cursor pCursor currently points to
|
| ** would be filtered (excluded) by the constraints in the
|
| -** pCursor->aConstraint[] array, or false otherwise.
|
| +** pCursor->aConstraint[] array. If so, set *pbEof to true before
|
| +** returning. If the cell is not filtered (excluded) by the constraints,
|
| +** set pbEof to zero.
|
| +**
|
| +** Return SQLITE_OK if successful or an SQLite error code if an error
|
| +** occurs within a geometry callback.
|
| **
|
| ** This function assumes that the cell is part of a leaf node.
|
| */
|
| -static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
|
| +static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
|
| RtreeCell cell;
|
| int ii;
|
| + *pbEof = 0;
|
|
|
| nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
|
| for(ii=0; ii<pCursor->nConstraint; ii++){
|
| @@ -788,7 +951,7 @@ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
|
| double coord = DCOORD(cell.aCoord[p->iCoord]);
|
| int res;
|
| assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
| - || p->op==RTREE_GT || p->op==RTREE_EQ
|
| + || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
|
| );
|
| switch( p->op ){
|
| case RTREE_LE: res = (coord<=p->rValue); break;
|
| @@ -796,12 +959,24 @@ static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor){
|
| case RTREE_GE: res = (coord>=p->rValue); break;
|
| case RTREE_GT: res = (coord>p->rValue); break;
|
| case RTREE_EQ: res = (coord==p->rValue); break;
|
| + default: {
|
| + int rc;
|
| + assert( p->op==RTREE_MATCH );
|
| + rc = testRtreeGeom(pRtree, p, &cell, &res);
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| + break;
|
| + }
|
| }
|
|
|
| - if( !res ) return 1;
|
| + if( !res ){
|
| + *pbEof = 1;
|
| + return SQLITE_OK;
|
| + }
|
| }
|
|
|
| - return 0;
|
| + return SQLITE_OK;
|
| }
|
|
|
| /*
|
| @@ -828,13 +1003,13 @@ static int descendToCell(
|
| assert( iHeight>=0 );
|
|
|
| if( iHeight==0 ){
|
| - isEof = testRtreeEntry(pRtree, pCursor);
|
| + rc = testRtreeEntry(pRtree, pCursor, &isEof);
|
| }else{
|
| - isEof = testRtreeCell(pRtree, pCursor);
|
| + rc = testRtreeCell(pRtree, pCursor, &isEof);
|
| }
|
| - if( isEof || iHeight==0 ){
|
| + if( rc!=SQLITE_OK || isEof || iHeight==0 ){
|
| *pEof = isEof;
|
| - return SQLITE_OK;
|
| + return rc;
|
| }
|
|
|
| iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
|
| @@ -870,24 +1045,34 @@ static int descendToCell(
|
| ** One of the cells in node pNode is guaranteed to have a 64-bit
|
| ** integer value equal to iRowid. Return the index of this cell.
|
| */
|
| -static int nodeRowidIndex(Rtree *pRtree, RtreeNode *pNode, i64 iRowid){
|
| +static int nodeRowidIndex(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + i64 iRowid,
|
| + int *piIndex
|
| +){
|
| int ii;
|
| - for(ii=0; nodeGetRowid(pRtree, pNode, ii)!=iRowid; ii++){
|
| - assert( ii<(NCELL(pNode)-1) );
|
| + int nCell = NCELL(pNode);
|
| + for(ii=0; ii<nCell; ii++){
|
| + if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
|
| + *piIndex = ii;
|
| + return SQLITE_OK;
|
| + }
|
| }
|
| - return ii;
|
| + return SQLITE_CORRUPT;
|
| }
|
|
|
| /*
|
| ** Return the index of the cell containing a pointer to node pNode
|
| ** in its parent. If pNode is the root node, return -1.
|
| */
|
| -static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode){
|
| +static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
|
| RtreeNode *pParent = pNode->pParent;
|
| if( pParent ){
|
| - return nodeRowidIndex(pRtree, pParent, pNode->iNode);
|
| + return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
|
| }
|
| - return -1;
|
| + *piIndex = -1;
|
| + return SQLITE_OK;
|
| }
|
|
|
| /*
|
| @@ -898,13 +1083,17 @@ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
|
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
| int rc = SQLITE_OK;
|
|
|
| + /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
|
| + ** already at EOF. It is against the rules to call the xNext() method of
|
| + ** a cursor that has already reached EOF.
|
| + */
|
| + assert( pCsr->pNode );
|
| +
|
| if( pCsr->iStrategy==1 ){
|
| /* This "scan" is a direct lookup by rowid. There is no next entry. */
|
| nodeRelease(pRtree, pCsr->pNode);
|
| pCsr->pNode = 0;
|
| - }
|
| -
|
| - else if( pCsr->pNode ){
|
| + }else{
|
| /* Move to the next entry that matches the configured constraints. */
|
| int iHeight = 0;
|
| while( pCsr->pNode ){
|
| @@ -918,7 +1107,10 @@ static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
|
| }
|
| }
|
| pCsr->pNode = pNode->pParent;
|
| - pCsr->iCell = nodeParentIndex(pRtree, pNode);
|
| + rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| nodeReference(pCsr->pNode);
|
| nodeRelease(pRtree, pNode);
|
| iHeight++;
|
| @@ -986,6 +1178,51 @@ static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
|
| return rc;
|
| }
|
|
|
| +/*
|
| +** This function is called to configure the RtreeConstraint object passed
|
| +** as the second argument for a MATCH constraint. The value passed as the
|
| +** first argument to this function is the right-hand operand to the MATCH
|
| +** operator.
|
| +*/
|
| +static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
|
| + RtreeMatchArg *p;
|
| + sqlite3_rtree_geometry *pGeom;
|
| + int nBlob;
|
| +
|
| + /* Check that value is actually a blob. */
|
| + if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR;
|
| +
|
| + /* Check that the blob is roughly the right size. */
|
| + nBlob = sqlite3_value_bytes(pValue);
|
| + if( nBlob<sizeof(RtreeMatchArg)
|
| + || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
|
| + ){
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
|
| + sizeof(sqlite3_rtree_geometry) + nBlob
|
| + );
|
| + if( !pGeom ) return SQLITE_NOMEM;
|
| + memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
|
| + p = (RtreeMatchArg *)&pGeom[1];
|
| +
|
| + memcpy(p, sqlite3_value_blob(pValue), nBlob);
|
| + if( p->magic!=RTREE_GEOMETRY_MAGIC
|
| + || nBlob!=(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
|
| + ){
|
| + sqlite3_free(pGeom);
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + pGeom->pContext = p->pContext;
|
| + pGeom->nParam = p->nParam;
|
| + pGeom->aParam = p->aParam;
|
| +
|
| + pCons->xGeom = p->xGeom;
|
| + pCons->pGeom = pGeom;
|
| + return SQLITE_OK;
|
| +}
|
|
|
| /*
|
| ** Rtree virtual table module xFilter method.
|
| @@ -1004,8 +1241,7 @@ static int rtreeFilter(
|
|
|
| rtreeReference(pRtree);
|
|
|
| - sqlite3_free(pCsr->aConstraint);
|
| - pCsr->aConstraint = 0;
|
| + freeCursorConstraints(pCsr);
|
| pCsr->iStrategy = idxNum;
|
|
|
| if( idxNum==1 ){
|
| @@ -1014,8 +1250,9 @@ static int rtreeFilter(
|
| i64 iRowid = sqlite3_value_int64(argv[0]);
|
| rc = findLeafNode(pRtree, iRowid, &pLeaf);
|
| pCsr->pNode = pLeaf;
|
| - if( pLeaf && rc==SQLITE_OK ){
|
| - pCsr->iCell = nodeRowidIndex(pRtree, pLeaf, iRowid);
|
| + if( pLeaf ){
|
| + assert( rc==SQLITE_OK );
|
| + rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
|
| }
|
| }else{
|
| /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
|
| @@ -1027,12 +1264,24 @@ static int rtreeFilter(
|
| if( !pCsr->aConstraint ){
|
| rc = SQLITE_NOMEM;
|
| }else{
|
| + memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
|
| assert( (idxStr==0 && argc==0) || strlen(idxStr)==argc*2 );
|
| for(ii=0; ii<argc; ii++){
|
| RtreeConstraint *p = &pCsr->aConstraint[ii];
|
| p->op = idxStr[ii*2];
|
| p->iCoord = idxStr[ii*2+1]-'a';
|
| - p->rValue = sqlite3_value_double(argv[ii]);
|
| + if( p->op==RTREE_MATCH ){
|
| + /* A MATCH operator. The right-hand-side must be a blob that
|
| + ** can be cast into an RtreeMatchArg object. One created using
|
| + ** an sqlite3_rtree_geometry_callback() SQL user function.
|
| + */
|
| + rc = deserializeGeometry(argv[ii], p);
|
| + if( rc!=SQLITE_OK ){
|
| + break;
|
| + }
|
| + }else{
|
| + p->rValue = sqlite3_value_double(argv[ii]);
|
| + }
|
| }
|
| }
|
| }
|
| @@ -1073,11 +1322,10 @@ static int rtreeFilter(
|
| ** idxNum idxStr Strategy
|
| ** ------------------------------------------------
|
| ** 1 Unused Direct lookup by rowid.
|
| -** 2 See below R-tree query.
|
| -** 3 Unused Full table scan.
|
| +** 2 See below R-tree query or full-table scan.
|
| ** ------------------------------------------------
|
| **
|
| -** If strategy 1 or 3 is used, then idxStr is not meaningful. If strategy
|
| +** If strategy 1 is used, then idxStr is not meaningful. If strategy
|
| ** 2 is used, idxStr is formatted to contain 2 bytes for each
|
| ** constraint used. The first two bytes of idxStr correspond to
|
| ** the constraint in sqlite3_index_info.aConstraintUsage[] with
|
| @@ -1093,6 +1341,7 @@ static int rtreeFilter(
|
| ** < 0x43 ('C')
|
| ** >= 0x44 ('D')
|
| ** > 0x45 ('E')
|
| +** MATCH 0x46 ('F')
|
| ** ----------------------
|
| **
|
| ** The second of each pair of bytes identifies the coordinate column
|
| @@ -1131,7 +1380,9 @@ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
| return SQLITE_OK;
|
| }
|
|
|
| - if( p->usable && p->iColumn>0 ){
|
| + if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
|
| + int j, opmsk;
|
| + static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
|
| u8 op = 0;
|
| switch( p->op ){
|
| case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
|
| @@ -1139,31 +1390,33 @@ static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
| case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
|
| case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
|
| case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
|
| + default:
|
| + assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
|
| + op = RTREE_MATCH;
|
| + break;
|
| }
|
| - if( op ){
|
| - /* Make sure this particular constraint has not been used before.
|
| - ** If it has been used before, ignore it.
|
| - **
|
| - ** A <= or < can be used if there is a prior >= or >.
|
| - ** A >= or > can be used if there is a prior < or <=.
|
| - ** A <= or < is disqualified if there is a prior <=, <, or ==.
|
| - ** A >= or > is disqualified if there is a prior >=, >, or ==.
|
| - ** A == is disqualifed if there is any prior constraint.
|
| - */
|
| - int j, opmsk;
|
| - static const unsigned char compatible[] = { 0, 0, 1, 1, 2, 2 };
|
| - assert( compatible[RTREE_EQ & 7]==0 );
|
| - assert( compatible[RTREE_LT & 7]==1 );
|
| - assert( compatible[RTREE_LE & 7]==1 );
|
| - assert( compatible[RTREE_GT & 7]==2 );
|
| - assert( compatible[RTREE_GE & 7]==2 );
|
| - cCol = p->iColumn - 1 + 'a';
|
| - opmsk = compatible[op & 7];
|
| - for(j=0; j<iIdx; j+=2){
|
| - if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
|
| - op = 0;
|
| - break;
|
| - }
|
| + assert( op!=0 );
|
| +
|
| + /* Make sure this particular constraint has not been used before.
|
| + ** If it has been used before, ignore it.
|
| + **
|
| + ** A <= or < can be used if there is a prior >= or >.
|
| + ** A >= or > can be used if there is a prior < or <=.
|
| + ** A <= or < is disqualified if there is a prior <=, <, or ==.
|
| + ** A >= or > is disqualified if there is a prior >=, >, or ==.
|
| + ** A == is disqualifed if there is any prior constraint.
|
| + */
|
| + assert( compatible[RTREE_EQ & 7]==0 );
|
| + assert( compatible[RTREE_LT & 7]==1 );
|
| + assert( compatible[RTREE_LE & 7]==1 );
|
| + assert( compatible[RTREE_GT & 7]==2 );
|
| + assert( compatible[RTREE_GE & 7]==2 );
|
| + cCol = p->iColumn - 1 + 'a';
|
| + opmsk = compatible[op & 7];
|
| + for(j=0; j<iIdx; j+=2){
|
| + if( zIdxStr[j+1]==cCol && (compatible[zIdxStr[j] & 7] & opmsk)!=0 ){
|
| + op = 0;
|
| + break;
|
| }
|
| }
|
| if( op ){
|
| @@ -1271,7 +1524,12 @@ static float cellOverlap(
|
| int ii;
|
| float overlap = 0.0;
|
| for(ii=0; ii<nCell; ii++){
|
| - if( ii!=iExclude ){
|
| +#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
| + if( ii!=iExclude )
|
| +#else
|
| + assert( iExclude==-1 );
|
| +#endif
|
| + {
|
| int jj;
|
| float o = 1.0;
|
| for(jj=0; jj<(pRtree->nDim*2); jj+=2){
|
| @@ -1364,22 +1622,31 @@ static int ChooseLeaf(
|
| ** the smallest area.
|
| */
|
| for(iCell=0; iCell<nCell; iCell++){
|
| + int bBest = 0;
|
| float growth;
|
| float area;
|
| float overlap = 0.0;
|
| nodeGetCell(pRtree, pNode, iCell, &cell);
|
| growth = cellGrowth(pRtree, &cell, pCell);
|
| area = cellArea(pRtree, &cell);
|
| +
|
| #if VARIANT_RSTARTREE_CHOOSESUBTREE
|
| if( ii==(pRtree->iDepth-1) ){
|
| overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
|
| }
|
| -#endif
|
| if( (iCell==0)
|
| || (overlap<fMinOverlap)
|
| || (overlap==fMinOverlap && growth<fMinGrowth)
|
| || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
|
| ){
|
| + bBest = 1;
|
| + }
|
| +#else
|
| + if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
|
| + bBest = 1;
|
| + }
|
| +#endif
|
| + if( bBest ){
|
| fMinOverlap = overlap;
|
| fMinGrowth = growth;
|
| fMinArea = area;
|
| @@ -1402,16 +1669,20 @@ static int ChooseLeaf(
|
| ** the node pNode. This function updates the bounding box cells in
|
| ** all ancestor elements.
|
| */
|
| -static void AdjustTree(
|
| +static int AdjustTree(
|
| Rtree *pRtree, /* Rtree table */
|
| RtreeNode *pNode, /* Adjust ancestry of this node. */
|
| RtreeCell *pCell /* This cell was just inserted */
|
| ){
|
| RtreeNode *p = pNode;
|
| while( p->pParent ){
|
| - RtreeCell cell;
|
| RtreeNode *pParent = p->pParent;
|
| - int iCell = nodeParentIndex(pRtree, p);
|
| + RtreeCell cell;
|
| + int iCell;
|
| +
|
| + if( nodeParentIndex(pRtree, p, &iCell) ){
|
| + return SQLITE_CORRUPT;
|
| + }
|
|
|
| nodeGetCell(pRtree, pParent, iCell, &cell);
|
| if( !cellContains(pRtree, &cell, pCell) ){
|
| @@ -1421,6 +1692,7 @@ static void AdjustTree(
|
|
|
| p = pParent;
|
| }
|
| + return SQLITE_OK;
|
| }
|
|
|
| /*
|
| @@ -1486,8 +1758,8 @@ static void LinearPickSeeds(
|
| ** variables iLeftSeek and iRightSeed.
|
| */
|
| for(i=0; i<pRtree->nDim; i++){
|
| - float x1 = aCell[0].aCoord[i*2];
|
| - float x2 = aCell[0].aCoord[i*2+1];
|
| + float x1 = DCOORD(aCell[0].aCoord[i*2]);
|
| + float x2 = DCOORD(aCell[0].aCoord[i*2+1]);
|
| float x3 = x1;
|
| float x4 = x2;
|
| int jj;
|
| @@ -1496,8 +1768,8 @@ static void LinearPickSeeds(
|
| int iCellRight = 0;
|
|
|
| for(jj=1; jj<nCell; jj++){
|
| - float left = aCell[jj].aCoord[i*2];
|
| - float right = aCell[jj].aCoord[i*2+1];
|
| + float left = DCOORD(aCell[jj].aCoord[i*2]);
|
| + float right = DCOORD(aCell[jj].aCoord[i*2+1]);
|
|
|
| if( left<x1 ) x1 = left;
|
| if( right>x4 ) x4 = right;
|
| @@ -1855,6 +2127,9 @@ static int splitNodeGuttman(
|
| int i;
|
|
|
| aiUsed = sqlite3_malloc(sizeof(int)*nCell);
|
| + if( !aiUsed ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| memset(aiUsed, 0, sizeof(int)*nCell);
|
|
|
| PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
|
| @@ -1946,14 +2221,14 @@ static int SplitNode(
|
| nCell++;
|
|
|
| if( pNode->iNode==1 ){
|
| - pRight = nodeNew(pRtree, pNode, 1);
|
| - pLeft = nodeNew(pRtree, pNode, 1);
|
| + pRight = nodeNew(pRtree, pNode);
|
| + pLeft = nodeNew(pRtree, pNode);
|
| pRtree->iDepth++;
|
| pNode->isDirty = 1;
|
| writeInt16(pNode->zData, pRtree->iDepth);
|
| }else{
|
| pLeft = pNode;
|
| - pRight = nodeNew(pRtree, pLeft->pParent, 1);
|
| + pRight = nodeNew(pRtree, pLeft->pParent);
|
| nodeReference(pLeft);
|
| }
|
|
|
| @@ -1970,8 +2245,12 @@ static int SplitNode(
|
| goto splitnode_out;
|
| }
|
|
|
| - /* Ensure both child nodes have node numbers assigned to them. */
|
| - if( (0==pRight->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)))
|
| + /* Ensure both child nodes have node numbers assigned to them by calling
|
| + ** nodeWrite(). Node pRight always needs a node number, as it was created
|
| + ** by nodeNew() above. But node pLeft sometimes already has a node number.
|
| + ** In this case avoid the all to nodeWrite().
|
| + */
|
| + if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
|
| || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
|
| ){
|
| goto splitnode_out;
|
| @@ -1987,9 +2266,15 @@ static int SplitNode(
|
| }
|
| }else{
|
| RtreeNode *pParent = pLeft->pParent;
|
| - int iCell = nodeParentIndex(pRtree, pLeft);
|
| - nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
|
| - AdjustTree(pRtree, pParent, &leftbbox);
|
| + int iCell;
|
| + rc = nodeParentIndex(pRtree, pLeft, &iCell);
|
| + if( rc==SQLITE_OK ){
|
| + nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
|
| + rc = AdjustTree(pRtree, pParent, &leftbbox);
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| + goto splitnode_out;
|
| + }
|
| }
|
| if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
|
| goto splitnode_out;
|
| @@ -2033,20 +2318,43 @@ splitnode_out:
|
| return rc;
|
| }
|
|
|
| +/*
|
| +** If node pLeaf is not the root of the r-tree and its pParent pointer is
|
| +** still NULL, load all ancestor nodes of pLeaf into memory and populate
|
| +** the pLeaf->pParent chain all the way up to the root node.
|
| +**
|
| +** This operation is required when a row is deleted (or updated - an update
|
| +** is implemented as a delete followed by an insert). SQLite provides the
|
| +** rowid of the row to delete, which can be used to find the leaf on which
|
| +** the entry resides (argument pLeaf). Once the leaf is located, this
|
| +** function is called to determine its ancestry.
|
| +*/
|
| static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
|
| int rc = SQLITE_OK;
|
| - if( pLeaf->iNode!=1 && pLeaf->pParent==0 ){
|
| - sqlite3_bind_int64(pRtree->pReadParent, 1, pLeaf->iNode);
|
| - if( sqlite3_step(pRtree->pReadParent)==SQLITE_ROW ){
|
| - i64 iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
|
| - rc = nodeAcquire(pRtree, iNode, 0, &pLeaf->pParent);
|
| - }else{
|
| - rc = SQLITE_ERROR;
|
| - }
|
| - sqlite3_reset(pRtree->pReadParent);
|
| - if( rc==SQLITE_OK ){
|
| - rc = fixLeafParent(pRtree, pLeaf->pParent);
|
| + RtreeNode *pChild = pLeaf;
|
| + while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
|
| + int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
|
| + sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
|
| + rc = sqlite3_step(pRtree->pReadParent);
|
| + if( rc==SQLITE_ROW ){
|
| + RtreeNode *pTest; /* Used to test for reference loops */
|
| + i64 iNode; /* Node number of parent node */
|
| +
|
| + /* Before setting pChild->pParent, test that we are not creating a
|
| + ** loop of references (as we would if, say, pChild==pParent). We don't
|
| + ** want to do this as it leads to a memory leak when trying to delete
|
| + ** the referenced counted node structures.
|
| + */
|
| + iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
|
| + for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
|
| + if( !pTest ){
|
| + rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
|
| + }
|
| }
|
| + rc = sqlite3_reset(pRtree->pReadParent);
|
| + if( rc==SQLITE_OK ) rc = rc2;
|
| + if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT;
|
| + pChild = pChild->pParent;
|
| }
|
| return rc;
|
| }
|
| @@ -2055,18 +2363,24 @@ static int deleteCell(Rtree *, RtreeNode *, int, int);
|
|
|
| static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
|
| int rc;
|
| + int rc2;
|
| RtreeNode *pParent;
|
| int iCell;
|
|
|
| assert( pNode->nRef==1 );
|
|
|
| /* Remove the entry in the parent cell. */
|
| - iCell = nodeParentIndex(pRtree, pNode);
|
| - pParent = pNode->pParent;
|
| - pNode->pParent = 0;
|
| - if( SQLITE_OK!=(rc = deleteCell(pRtree, pParent, iCell, iHeight+1))
|
| - || SQLITE_OK!=(rc = nodeRelease(pRtree, pParent))
|
| - ){
|
| + rc = nodeParentIndex(pRtree, pNode, &iCell);
|
| + if( rc==SQLITE_OK ){
|
| + pParent = pNode->pParent;
|
| + pNode->pParent = 0;
|
| + rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
|
| + }
|
| + rc2 = nodeRelease(pRtree, pParent);
|
| + if( rc==SQLITE_OK ){
|
| + rc = rc2;
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| return rc;
|
| }
|
|
|
| @@ -2096,8 +2410,9 @@ static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
|
| return SQLITE_OK;
|
| }
|
|
|
| -static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
| +static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
| RtreeNode *pParent = pNode->pParent;
|
| + int rc = SQLITE_OK;
|
| if( pParent ){
|
| int ii;
|
| int nCell = NCELL(pNode);
|
| @@ -2109,10 +2424,13 @@ static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
| cellUnion(pRtree, &box, &cell);
|
| }
|
| box.iRowid = pNode->iNode;
|
| - ii = nodeParentIndex(pRtree, pNode);
|
| - nodeOverwriteCell(pRtree, pParent, &box, ii);
|
| - fixBoundingBox(pRtree, pParent);
|
| + rc = nodeParentIndex(pRtree, pNode, &ii);
|
| + if( rc==SQLITE_OK ){
|
| + nodeOverwriteCell(pRtree, pParent, &box, ii);
|
| + rc = fixBoundingBox(pRtree, pParent);
|
| + }
|
| }
|
| + return rc;
|
| }
|
|
|
| /*
|
| @@ -2120,6 +2438,7 @@ static void fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
| ** cell, adjust the r-tree data structure if required.
|
| */
|
| static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
|
| + RtreeNode *pParent;
|
| int rc;
|
|
|
| if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
|
| @@ -2136,14 +2455,13 @@ static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
|
| ** cell in the parent node so that it tightly contains the updated
|
| ** node.
|
| */
|
| - if( pNode->iNode!=1 ){
|
| - RtreeNode *pParent = pNode->pParent;
|
| - if( (pParent->iNode!=1 || NCELL(pParent)!=1)
|
| - && (NCELL(pNode)<RTREE_MINCELLS(pRtree))
|
| - ){
|
| + pParent = pNode->pParent;
|
| + assert( pParent || pNode->iNode==1 );
|
| + if( pParent ){
|
| + if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
|
| rc = removeNode(pRtree, pNode, iHeight);
|
| }else{
|
| - fixBoundingBox(pRtree, pNode);
|
| + rc = fixBoundingBox(pRtree, pNode);
|
| }
|
| }
|
|
|
| @@ -2226,7 +2544,7 @@ static int Reinsert(
|
| }
|
| }
|
| if( rc==SQLITE_OK ){
|
| - fixBoundingBox(pRtree, pNode);
|
| + rc = fixBoundingBox(pRtree, pNode);
|
| }
|
| for(; rc==SQLITE_OK && ii<nCell; ii++){
|
| /* Find a node to store this cell in. pNode->iNode currently contains
|
| @@ -2280,11 +2598,13 @@ static int rtreeInsertCell(
|
| rc = SplitNode(pRtree, pNode, pCell, iHeight);
|
| #endif
|
| }else{
|
| - AdjustTree(pRtree, pNode, pCell);
|
| - if( iHeight==0 ){
|
| - rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
|
| - }else{
|
| - rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
|
| + rc = AdjustTree(pRtree, pNode, pCell);
|
| + if( rc==SQLITE_OK ){
|
| + if( iHeight==0 ){
|
| + rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
|
| + }else{
|
| + rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
|
| + }
|
| }
|
| }
|
| return rc;
|
| @@ -2354,7 +2674,6 @@ static int rtreeUpdate(
|
| rtreeReference(pRtree);
|
|
|
| assert(nData>=1);
|
| - assert(hashIsEmpty(pRtree));
|
|
|
| /* If azData[0] is not an SQL NULL value, it is the rowid of a
|
| ** record to delete from the r-tree table. The following block does
|
| @@ -2380,8 +2699,10 @@ static int rtreeUpdate(
|
| /* Delete the cell in question from the leaf node. */
|
| if( rc==SQLITE_OK ){
|
| int rc2;
|
| - iCell = nodeRowidIndex(pRtree, pLeaf, iDelete);
|
| - rc = deleteCell(pRtree, pLeaf, iCell, 0);
|
| + rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
|
| + if( rc==SQLITE_OK ){
|
| + rc = deleteCell(pRtree, pLeaf, iCell, 0);
|
| + }
|
| rc2 = nodeRelease(pRtree, pLeaf);
|
| if( rc==SQLITE_OK ){
|
| rc = rc2;
|
| @@ -2403,19 +2724,20 @@ static int rtreeUpdate(
|
| ** the root node (the operation that Gutman's paper says to perform
|
| ** in this scenario).
|
| */
|
| - if( rc==SQLITE_OK && pRtree->iDepth>0 ){
|
| - if( rc==SQLITE_OK && NCELL(pRoot)==1 ){
|
| - RtreeNode *pChild;
|
| - i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
|
| - rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
|
| - if( rc==SQLITE_OK ){
|
| - rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - pRtree->iDepth--;
|
| - writeInt16(pRoot->zData, pRtree->iDepth);
|
| - pRoot->isDirty = 1;
|
| - }
|
| + if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
|
| + int rc2;
|
| + RtreeNode *pChild;
|
| + i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
|
| + rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
|
| + if( rc==SQLITE_OK ){
|
| + rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
|
| + }
|
| + rc2 = nodeRelease(pRtree, pChild);
|
| + if( rc==SQLITE_OK ) rc = rc2;
|
| + if( rc==SQLITE_OK ){
|
| + pRtree->iDepth--;
|
| + writeInt16(pRoot->zData, pRtree->iDepth);
|
| + pRoot->isDirty = 1;
|
| }
|
| }
|
|
|
| @@ -2481,6 +2803,7 @@ static int rtreeUpdate(
|
| }
|
| rc = sqlite3_reset(pRtree->pReadRowid);
|
| }
|
| + *pRowid = cell.iRowid;
|
|
|
| if( rc==SQLITE_OK ){
|
| rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
|
| @@ -2618,31 +2941,69 @@ static int rtreeSqlInit(
|
| }
|
|
|
| /*
|
| -** This routine queries database handle db for the page-size used by
|
| -** database zDb. If successful, the page-size in bytes is written to
|
| -** *piPageSize and SQLITE_OK returned. Otherwise, and an SQLite error
|
| -** code is returned.
|
| +** The second argument to this function contains the text of an SQL statement
|
| +** that returns a single integer value. The statement is compiled and executed
|
| +** using database connection db. If successful, the integer value returned
|
| +** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
|
| +** code is returned and the value of *piVal after returning is not defined.
|
| */
|
| -static int getPageSize(sqlite3 *db, const char *zDb, int *piPageSize){
|
| +static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
|
| int rc = SQLITE_NOMEM;
|
| - char *zSql;
|
| - sqlite3_stmt *pStmt = 0;
|
| -
|
| - zSql = sqlite3_mprintf("PRAGMA %Q.page_size", zDb);
|
| - if( !zSql ){
|
| - return SQLITE_NOMEM;
|
| + if( zSql ){
|
| + sqlite3_stmt *pStmt = 0;
|
| + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
| + if( rc==SQLITE_OK ){
|
| + if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
| + *piVal = sqlite3_column_int(pStmt, 0);
|
| + }
|
| + rc = sqlite3_finalize(pStmt);
|
| + }
|
| }
|
| + return rc;
|
| +}
|
|
|
| - rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
| - sqlite3_free(zSql);
|
| - if( rc!=SQLITE_OK ){
|
| - return rc;
|
| +/*
|
| +** This function is called from within the xConnect() or xCreate() method to
|
| +** determine the node-size used by the rtree table being created or connected
|
| +** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
|
| +** Otherwise, an SQLite error code is returned.
|
| +**
|
| +** If this function is being called as part of an xConnect(), then the rtree
|
| +** table already exists. In this case the node-size is determined by inspecting
|
| +** the root node of the tree.
|
| +**
|
| +** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
|
| +** This ensures that each node is stored on a single database page. If the
|
| +** database page-size is so large that more than RTREE_MAXCELLS entries
|
| +** would fit in a single node, use a smaller node-size.
|
| +*/
|
| +static int getNodeSize(
|
| + sqlite3 *db, /* Database handle */
|
| + Rtree *pRtree, /* Rtree handle */
|
| + int isCreate /* True for xCreate, false for xConnect */
|
| +){
|
| + int rc;
|
| + char *zSql;
|
| + if( isCreate ){
|
| + int iPageSize;
|
| + zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
|
| + rc = getIntFromStmt(db, zSql, &iPageSize);
|
| + if( rc==SQLITE_OK ){
|
| + pRtree->iNodeSize = iPageSize-64;
|
| + if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
|
| + pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
|
| + }
|
| + }
|
| + }else{
|
| + zSql = sqlite3_mprintf(
|
| + "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
|
| + pRtree->zDb, pRtree->zName
|
| + );
|
| + rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
|
| }
|
|
|
| - if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
| - *piPageSize = sqlite3_column_int(pStmt, 0);
|
| - }
|
| - return sqlite3_finalize(pStmt);
|
| + sqlite3_free(zSql);
|
| + return rc;
|
| }
|
|
|
| /*
|
| @@ -2663,11 +3024,10 @@ static int rtreeInit(
|
| int isCreate /* True for xCreate, false for xConnect */
|
| ){
|
| int rc = SQLITE_OK;
|
| - int iPageSize = 0;
|
| Rtree *pRtree;
|
| int nDb; /* Length of string argv[1] */
|
| int nName; /* Length of string argv[2] */
|
| - int eCoordType = (int)pAux;
|
| + int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
|
|
|
| const char *aErrMsg[] = {
|
| 0, /* 0 */
|
| @@ -2682,11 +3042,6 @@ static int rtreeInit(
|
| return SQLITE_ERROR;
|
| }
|
|
|
| - rc = getPageSize(db, argv[1], &iPageSize);
|
| - if( rc!=SQLITE_OK ){
|
| - return rc;
|
| - }
|
| -
|
| /* Allocate the sqlite3_vtab structure */
|
| nDb = strlen(argv[1]);
|
| nName = strlen(argv[2]);
|
| @@ -2705,44 +3060,37 @@ static int rtreeInit(
|
| memcpy(pRtree->zDb, argv[1], nDb);
|
| memcpy(pRtree->zName, argv[2], nName);
|
|
|
| - /* Figure out the node size to use. By default, use 64 bytes less than
|
| - ** the database page-size. This ensures that each node is stored on
|
| - ** a single database page.
|
| - **
|
| - ** If the databasd page-size is so large that more than RTREE_MAXCELLS
|
| - ** entries would fit in a single node, use a smaller node-size.
|
| - */
|
| - pRtree->iNodeSize = iPageSize-64;
|
| - if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
|
| - pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
|
| - }
|
| + /* Figure out the node size to use. */
|
| + rc = getNodeSize(db, pRtree, isCreate);
|
|
|
| /* Create/Connect to the underlying relational database schema. If
|
| ** that is successful, call sqlite3_declare_vtab() to configure
|
| ** the r-tree table schema.
|
| */
|
| - if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
|
| - *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
| - }else{
|
| - char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
|
| - char *zTmp;
|
| - int ii;
|
| - for(ii=4; zSql && ii<argc; ii++){
|
| - zTmp = zSql;
|
| - zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
|
| - sqlite3_free(zTmp);
|
| - }
|
| - if( zSql ){
|
| - zTmp = zSql;
|
| - zSql = sqlite3_mprintf("%s);", zTmp);
|
| - sqlite3_free(zTmp);
|
| - }
|
| - if( !zSql ){
|
| - rc = SQLITE_NOMEM;
|
| - }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
|
| + if( rc==SQLITE_OK ){
|
| + if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
|
| *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
| + }else{
|
| + char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
|
| + char *zTmp;
|
| + int ii;
|
| + for(ii=4; zSql && ii<argc; ii++){
|
| + zTmp = zSql;
|
| + zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
|
| + sqlite3_free(zTmp);
|
| + }
|
| + if( zSql ){
|
| + zTmp = zSql;
|
| + zSql = sqlite3_mprintf("%s);", zTmp);
|
| + sqlite3_free(zTmp);
|
| + }
|
| + if( !zSql ){
|
| + rc = SQLITE_NOMEM;
|
| + }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
|
| + *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
| + }
|
| + sqlite3_free(zSql);
|
| }
|
| - sqlite3_free(zSql);
|
| }
|
|
|
| if( rc==SQLITE_OK ){
|
| @@ -2825,12 +3173,10 @@ static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
| ** function "rtreenode".
|
| */
|
| int sqlite3RtreeInit(sqlite3 *db){
|
| - int rc = SQLITE_OK;
|
| + const int utf8 = SQLITE_UTF8;
|
| + int rc;
|
|
|
| - if( rc==SQLITE_OK ){
|
| - int utf8 = SQLITE_UTF8;
|
| - rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
|
| - }
|
| + rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
|
| if( rc==SQLITE_OK ){
|
| int utf8 = SQLITE_UTF8;
|
| rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
|
| @@ -2847,6 +3193,70 @@ int sqlite3RtreeInit(sqlite3 *db){
|
| return rc;
|
| }
|
|
|
| +/*
|
| +** A version of sqlite3_free() that can be used as a callback. This is used
|
| +** in two places - as the destructor for the blob value returned by the
|
| +** invocation of a geometry function, and as the destructor for the geometry
|
| +** functions themselves.
|
| +*/
|
| +static void doSqlite3Free(void *p){
|
| + sqlite3_free(p);
|
| +}
|
| +
|
| +/*
|
| +** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite
|
| +** scalar user function. This C function is the callback used for all such
|
| +** registered SQL functions.
|
| +**
|
| +** The scalar user functions return a blob that is interpreted by r-tree
|
| +** table MATCH operators.
|
| +*/
|
| +static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
|
| + RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
|
| + RtreeMatchArg *pBlob;
|
| + int nBlob;
|
| +
|
| + nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
|
| + pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
|
| + if( !pBlob ){
|
| + sqlite3_result_error_nomem(ctx);
|
| + }else{
|
| + int i;
|
| + pBlob->magic = RTREE_GEOMETRY_MAGIC;
|
| + pBlob->xGeom = pGeomCtx->xGeom;
|
| + pBlob->pContext = pGeomCtx->pContext;
|
| + pBlob->nParam = nArg;
|
| + for(i=0; i<nArg; i++){
|
| + pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
|
| + }
|
| + sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Register a new geometry function for use with the r-tree MATCH operator.
|
| +*/
|
| +int sqlite3_rtree_geometry_callback(
|
| + sqlite3 *db,
|
| + const char *zGeom,
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
|
| + void *pContext
|
| +){
|
| + RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
|
| +
|
| + /* Allocate and populate the context object. */
|
| + pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
|
| + if( !pGeomCtx ) return SQLITE_NOMEM;
|
| + pGeomCtx->xGeom = xGeom;
|
| + pGeomCtx->pContext = pContext;
|
| +
|
| + /* Create the new user-function. Register a destructor function to delete
|
| + ** the context object when it is no longer required. */
|
| + return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
|
| + (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
|
| + );
|
| +}
|
| +
|
| #if !SQLITE_CORE
|
| int sqlite3_extension_init(
|
| sqlite3 *db,
|
|
|