Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(18)

Side by Side Diff: third_party/sqlite/src/test/e_select.test

Issue 5626002: Update sqlite to 3.7.3. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/third_party/sqlite/src
Patch Set: Remove misc change. Created 10 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « third_party/sqlite/src/test/e_reindex.test ('k') | third_party/sqlite/src/test/e_select2.test » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 # 2010 July 16
2 #
3 # The author disclaims copyright to this source code. In place of
4 # a legal notice, here is a blessing:
5 #
6 # May you do good and not evil.
7 # May you find forgiveness for yourself and forgive others.
8 # May you share freely, never taking more than you give.
9 #
10 #***********************************************************************
11 #
12 # This file implements tests to verify that the "testable statements" in
13 # the lang_select.html document are correct.
14 #
15
16 set testdir [file dirname $argv0]
17 source $testdir/tester.tcl
18
19 do_execsql_test e_select-1.0 {
20 CREATE TABLE t1(a, b);
21 INSERT INTO t1 VALUES('a', 'one');
22 INSERT INTO t1 VALUES('b', 'two');
23 INSERT INTO t1 VALUES('c', 'three');
24
25 CREATE TABLE t2(a, b);
26 INSERT INTO t2 VALUES('a', 'I');
27 INSERT INTO t2 VALUES('b', 'II');
28 INSERT INTO t2 VALUES('c', 'III');
29
30 CREATE TABLE t3(a, c);
31 INSERT INTO t3 VALUES('a', 1);
32 INSERT INTO t3 VALUES('b', 2);
33
34 CREATE TABLE t4(a, c);
35 INSERT INTO t4 VALUES('a', NULL);
36 INSERT INTO t4 VALUES('b', 2);
37 } {}
38 set t1_cross_t2 [list \
39 a one a I a one b II \
40 a one c III b two a I \
41 b two b II b two c III \
42 c three a I c three b II \
43 c three c III \
44 ]
45 set t1_cross_t1 [list \
46 a one a one a one b two \
47 a one c three b two a one \
48 b two b two b two c three \
49 c three a one c three b two \
50 c three c three \
51 ]
52
53
54 # This proc is a specialized version of [do_execsql_test].
55 #
56 # The second argument to this proc must be a SELECT statement that
57 # features a cross join of some time. Instead of the usual ",",
58 # "CROSS JOIN" or "INNER JOIN" join-op, the string %JOIN% must be
59 # substituted.
60 #
61 # This test runs the SELECT three times - once with:
62 #
63 # * s/%JOIN%/,/
64 # * s/%JOIN%/JOIN/
65 # * s/%JOIN%/INNER JOIN/
66 # * s/%JOIN%/CROSS JOIN/
67 #
68 # and checks that each time the results of the SELECT are $res.
69 #
70 proc do_join_test {tn select res} {
71 foreach {tn2 joinop} [list 1 , 2 "CROSS JOIN" 3 "INNER JOIN"] {
72 set S [string map [list %JOIN% $joinop] $select]
73 uplevel do_execsql_test $tn.$tn2 [list $S] [list $res]
74 }
75 }
76
77 #-------------------------------------------------------------------------
78 # The following tests check that all paths on the syntax diagrams on
79 # the lang_select.html page may be taken.
80 #
81 # EVIDENCE-OF: R-18428-22111 -- syntax diagram join-constraint
82 #
83 do_join_test e_select-0.1.1 {
84 SELECT count(*) FROM t1 %JOIN% t2 ON (t1.a=t2.a)
85 } {3}
86 do_join_test e_select-0.1.2 {
87 SELECT count(*) FROM t1 %JOIN% t2 USING (a)
88 } {3}
89 do_join_test e_select-0.1.3 {
90 SELECT count(*) FROM t1 %JOIN% t2
91 } {9}
92 do_catchsql_test e_select-0.1.4 {
93 SELECT count(*) FROM t1, t2 ON (t1.a=t2.a) USING (a)
94 } {1 {cannot have both ON and USING clauses in the same join}}
95 do_catchsql_test e_select-0.1.5 {
96 SELECT count(*) FROM t1, t2 USING (a) ON (t1.a=t2.a)
97 } {1 {near "ON": syntax error}}
98
99 # EVIDENCE-OF: R-44854-11739 -- syntax diagram select-core
100 #
101 # 0: SELECT ...
102 # 1: SELECT DISTINCT ...
103 # 2: SELECT ALL ...
104 #
105 # 0: No FROM clause
106 # 1: Has FROM clause
107 #
108 # 0: No WHERE clause
109 # 1: Has WHERE clause
110 #
111 # 0: No GROUP BY clause
112 # 1: Has GROUP BY clause
113 # 2: Has GROUP BY and HAVING clauses
114 #
115 do_select_tests e_select-0.2 {
116 0000.1 "SELECT 1, 2, 3 " {1 2 3}
117 1000.1 "SELECT DISTINCT 1, 2, 3 " {1 2 3}
118 2000.1 "SELECT ALL 1, 2, 3 " {1 2 3}
119
120 0100.1 "SELECT a, b, a||b FROM t1 " {
121 a one aone b two btwo c three cthree
122 }
123 1100.1 "SELECT DISTINCT a, b, a||b FROM t1 " {
124 a one aone b two btwo c three cthree
125 }
126 1200.1 "SELECT ALL a, b, a||b FROM t1 " {
127 a one aone b two btwo c three cthree
128 }
129
130 0010.1 "SELECT 1, 2, 3 WHERE 1 " {1 2 3}
131 0010.2 "SELECT 1, 2, 3 WHERE 0 " {}
132 0010.3 "SELECT 1, 2, 3 WHERE NULL " {}
133
134 1010.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 " {1 2 3}
135
136 2010.1 "SELECT ALL 1, 2, 3 WHERE 1 " {1 2 3}
137
138 0110.1 "SELECT a, b, a||b FROM t1 WHERE a!='x' " {
139 a one aone b two btwo c three cthree
140 }
141 0110.2 "SELECT a, b, a||b FROM t1 WHERE a=='x'" {}
142
143 1110.1 "SELECT DISTINCT a, b, a||b FROM t1 WHERE a!='x' " {
144 a one aone b two btwo c three cthree
145 }
146
147 2110.0 "SELECT ALL a, b, a||b FROM t1 WHERE a=='x'" {}
148
149 0001.1 "SELECT 1, 2, 3 GROUP BY 2" {1 2 3}
150 0002.1 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
151 0002.2 "SELECT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
152
153 1001.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2" {1 2 3}
154 1002.1 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
155 1002.2 "SELECT DISTINCT 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
156
157 2001.1 "SELECT ALL 1, 2, 3 GROUP BY 2" {1 2 3}
158 2002.1 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)=1" {1 2 3}
159 2002.2 "SELECT ALL 1, 2, 3 GROUP BY 2 HAVING count(*)>1" {}
160
161 0101.1 "SELECT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
162 0102.1 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=1" {
163 1 a 1 c 1 b
164 }
165 0102.2 "SELECT count(*), max(a) FROM t1 GROUP BY b HAVING count(*)=2" { }
166
167 1101.1 "SELECT DISTINCT count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
168 1102.1 "SELECT DISTINCT count(*), max(a) FROM t1
169 GROUP BY b HAVING count(*)=1" {
170 1 a 1 c 1 b
171 }
172 1102.2 "SELECT DISTINCT count(*), max(a) FROM t1
173 GROUP BY b HAVING count(*)=2" {
174 }
175
176 2101.1 "SELECT ALL count(*), max(a) FROM t1 GROUP BY b" {1 a 1 c 1 b}
177 2102.1 "SELECT ALL count(*), max(a) FROM t1
178 GROUP BY b HAVING count(*)=1" {
179 1 a 1 c 1 b
180 }
181 2102.2 "SELECT ALL count(*), max(a) FROM t1
182 GROUP BY b HAVING count(*)=2" {
183 }
184
185 0011.1 "SELECT 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
186 0012.1 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
187 0012.2 "SELECT 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)>1" {}
188
189 1011.1 "SELECT DISTINCT 1, 2, 3 WHERE 0 GROUP BY 2" {}
190 1012.1 "SELECT DISTINCT 1, 2, 3 WHERE 1 GROUP BY 2 HAVING count(*)=1"
191 {1 2 3}
192 1012.2 "SELECT DISTINCT 1, 2, 3 WHERE NULL GROUP BY 2 HAVING count(*)>1" {}
193
194 2011.1 "SELECT ALL 1, 2, 3 WHERE 1 GROUP BY 2" {1 2 3}
195 2012.1 "SELECT ALL 1, 2, 3 WHERE 0 GROUP BY 2 HAVING count(*)=1" {}
196 2012.2 "SELECT ALL 1, 2, 3 WHERE 'abc' GROUP BY 2 HAVING count(*)>1" {}
197
198 0111.1 "SELECT count(*), max(a) FROM t1 WHERE a='a' GROUP BY b" {1 a}
199 0112.1 "SELECT count(*), max(a) FROM t1
200 WHERE a='c' GROUP BY b HAVING count(*)=1" {1 c}
201 0112.2 "SELECT count(*), max(a) FROM t1
202 WHERE 0 GROUP BY b HAVING count(*)=2" { }
203 1111.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a<'c' GROUP BY b"
204 {1 a 1 b}
205 1112.1 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE a>'a'
206 GROUP BY b HAVING count(*)=1" {
207 1 c 1 b
208 }
209 1112.2 "SELECT DISTINCT count(*), max(a) FROM t1 WHERE 0
210 GROUP BY b HAVING count(*)=2" {
211 }
212
213 2111.1 "SELECT ALL count(*), max(a) FROM t1 WHERE b>'one' GROUP BY b"
214 {1 c 1 b}
215 2112.1 "SELECT ALL count(*), max(a) FROM t1 WHERE a!='b'
216 GROUP BY b HAVING count(*)=1" {
217 1 a 1 c
218 }
219 2112.2 "SELECT ALL count(*), max(a) FROM t1
220 WHERE 0 GROUP BY b HAVING count(*)=2" { }
221 }
222
223
224 # EVIDENCE-OF: R-23316-20169 -- syntax diagram result-column
225 #
226 do_select_tests e_select-0.3 {
227 1 "SELECT * FROM t1" {a one b two c three}
228 2 "SELECT t1.* FROM t1" {a one b two c three}
229 3 "SELECT 'x'||a||'x' FROM t1" {xax xbx xcx}
230 4 "SELECT 'x'||a||'x' alias FROM t1" {xax xbx xcx}
231 5 "SELECT 'x'||a||'x' AS alias FROM t1" {xax xbx xcx}
232 }
233
234 # EVIDENCE-OF: R-41233-21397 -- syntax diagram join-source
235 #
236 # EVIDENCE-OF: R-28036-03696 -- syntax diagram join-op
237 #
238 do_select_tests e_select-0.4 {
239 1 "SELECT t1.rowid FROM t1" {1 2 3}
240 2 "SELECT t1.rowid FROM t1,t2" {1 1 1 2 2 2 3 3 3}
241 3 "SELECT t1.rowid FROM t1,t2,t3" {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
242
243 4 "SELECT t1.rowid FROM t1" {1 2 3}
244 5 "SELECT t1.rowid FROM t1 JOIN t2" {1 1 1 2 2 2 3 3 3}
245 6 "SELECT t1.rowid FROM t1 JOIN t2 JOIN t3"
246 {1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3}
247
248 7 "SELECT t1.rowid FROM t1 NATURAL JOIN t3" {1 2}
249 8 "SELECT t1.rowid FROM t1 NATURAL LEFT OUTER JOIN t3" {1 2 3}
250 9 "SELECT t1.rowid FROM t1 NATURAL INNER JOIN t3" {1 2}
251 10 "SELECT t1.rowid FROM t1 NATURAL CROSS JOIN t3" {1 2}
252
253 11 "SELECT t1.rowid FROM t1 JOIN t3" {1 1 2 2 3 3}
254 12 "SELECT t1.rowid FROM t1 LEFT OUTER JOIN t3" {1 1 2 2 3 3}
255 13 "SELECT t1.rowid FROM t1 INNER JOIN t3" {1 1 2 2 3 3}
256 14 "SELECT t1.rowid FROM t1 CROSS JOIN t3" {1 1 2 2 3 3}
257 }
258
259 # EVIDENCE-OF: R-56911-63533 -- syntax diagram compound-operator
260 #
261 do_select_tests e_select-0.5 {
262 1 "SELECT rowid FROM t1 UNION ALL SELECT rowid+2 FROM t4" {1 2 3 3 4}
263 2 "SELECT rowid FROM t1 UNION SELECT rowid+2 FROM t4" {1 2 3 4}
264 3 "SELECT rowid FROM t1 INTERSECT SELECT rowid+2 FROM t4" {3}
265 4 "SELECT rowid FROM t1 EXCEPT SELECT rowid+2 FROM t4" {1 2}
266 }
267
268 # EVIDENCE-OF: R-60388-27458 -- syntax diagram ordering-term
269 #
270 do_select_tests e_select-0.6 {
271 1 "SELECT b||a FROM t1 ORDER BY b||a" {onea threec twob}
272 2 "SELECT b||a FROM t1 ORDER BY (b||a) COLLATE nocase" {onea threec twob}
273 3 "SELECT b||a FROM t1 ORDER BY (b||a) ASC" {onea threec twob}
274 4 "SELECT b||a FROM t1 ORDER BY (b||a) DESC" {twob threec onea}
275 }
276
277 # EVIDENCE-OF: R-36494-33519 -- syntax diagram select-stmt
278 #
279 do_select_tests e_select-0.7 {
280 1 "SELECT * FROM t1" {a one b two c three}
281 2 "SELECT * FROM t1 ORDER BY b" {a one c three b two}
282 3 "SELECT * FROM t1 ORDER BY b, a" {a one c three b two}
283
284 4 "SELECT * FROM t1 LIMIT 10" {a one b two c three}
285 5 "SELECT * FROM t1 LIMIT 10 OFFSET 5" {}
286 6 "SELECT * FROM t1 LIMIT 10, 5" {}
287
288 7 "SELECT * FROM t1 ORDER BY a LIMIT 10" {a one b two c three}
289 8 "SELECT * FROM t1 ORDER BY b LIMIT 10 OFFSET 5" {}
290 9 "SELECT * FROM t1 ORDER BY a,b LIMIT 10, 5" {}
291
292 10 "SELECT * FROM t1 UNION SELECT b, a FROM t1"
293 {a one b two c three one a three c two b}
294 11 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b"
295 {one a two b three c a one c three b two}
296 12 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b, a"
297 {one a two b three c a one c three b two}
298 13 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10"
299 {a one b two c three one a three c two b}
300 14 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10 OFFSET 5"
301 {two b}
302 15 "SELECT * FROM t1 UNION SELECT b, a FROM t1 LIMIT 10, 5"
303 {}
304 16 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a LIMIT 10"
305 {a one b two c three one a three c two b}
306 17 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY b LIMIT 10 OFFSET 5"
307 {b two}
308 18 "SELECT * FROM t1 UNION SELECT b, a FROM t1 ORDER BY a,b LIMIT 10, 5"
309 {}
310 }
311
312 #-------------------------------------------------------------------------
313 # The following tests focus on FROM clause (join) processing.
314 #
315
316 # EVIDENCE-OF: R-16074-54196 If the FROM clause is omitted from a simple
317 # SELECT statement, then the input data is implicitly a single row zero
318 # columns wide
319 #
320 do_select_tests e_select-1.1 {
321 1 "SELECT 'abc'" {abc}
322 2 "SELECT 'abc' WHERE NULL" {}
323 3 "SELECT NULL" {{}}
324 4 "SELECT count(*)" {1}
325 5 "SELECT count(*) WHERE 0" {0}
326 6 "SELECT count(*) WHERE 1" {1}
327 }
328
329 # EVIDENCE-OF: R-48114-33255 If there is only a single table in the
330 # join-source following the FROM clause, then the input data used by the
331 # SELECT statement is the contents of the named table.
332 #
333 # The results of the SELECT queries suggest that they are operating on the
334 # contents of the table 'xx'.
335 #
336 do_execsql_test e_select-1.2.0 {
337 CREATE TABLE xx(x, y);
338 INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2');
339 INSERT INTO xx VALUES(NULL, -16.87);
340 INSERT INTO xx VALUES(-17.89, 'linguistically');
341 } {}
342 do_select_tests e_select-1.2 {
343 1 "SELECT quote(x), quote(y) FROM xx" {
344 'IiJlsIPepMuAhU' X'10B00B897A15BAA02E3F98DCE8F2'
345 NULL -16.87
346 -17.89 'linguistically'
347 }
348
349 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3}
350 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87}
351 }
352
353 # EVIDENCE-OF: R-23593-12456 If there is more than one table specified
354 # as part of the join-source following the FROM keyword, then the
355 # contents of each named table are joined into a single dataset for the
356 # simple SELECT statement to operate on.
357 #
358 # There are more detailed tests for subsequent requirements that add
359 # more detail to this idea. We just add a single test that shows that
360 # data is coming from each of the three tables following the FROM clause
361 # here to show that the statement, vague as it is, is not incorrect.
362 #
363 do_select_tests e_select-1.3 {
364 1 "SELECT * FROM t1, t2, t3" {
365 a one a I a 1 a one a I b 2 a one b II a 1
366 a one b II b 2 a one c III a 1 a one c III b 2
367 b two a I a 1 b two a I b 2 b two b II a 1
368 b two b II b 2 b two c III a 1 b two c III b 2
369 c three a I a 1 c three a I b 2 c three b II a 1
370 c three b II b 2 c three c III a 1 c three c III b 2
371 }
372 }
373
374 #
375 # The following block of tests - e_select-1.4.* - test that the description
376 # of cartesian joins in the SELECT documentation is consistent with SQLite.
377 # In doing so, we test the following three requirements as a side-effect:
378 #
379 # EVIDENCE-OF: R-46122-14930 If the join-op is "CROSS JOIN", "INNER
380 # JOIN", "JOIN" or a comma (",") and there is no ON or USING clause,
381 # then the result of the join is simply the cartesian product of the
382 # left and right-hand datasets.
383 #
384 # The tests are built on this assertion. Really, they test that the output
385 # of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result
386 # of calculating the cartesian product of the left and right-hand datasets.
387 #
388 # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER
389 # JOIN", "JOIN" and "," join operators.
390 #
391 # EVIDENCE-OF: R-07544-24155 The "CROSS JOIN" join operator produces the
392 # same data as the "INNER JOIN", "JOIN" and "," operators
393 #
394 # All tests are run 4 times, with the only difference in each run being
395 # which of the 4 equivalent cartesian product join operators are used.
396 # Since the output data is the same in all cases, we consider that this
397 # qualifies as testing the two statements above.
398 #
399 do_execsql_test e_select-1.4.0 {
400 CREATE TABLE x1(a, b);
401 CREATE TABLE x2(c, d, e);
402 CREATE TABLE x3(f, g, h, i);
403
404 -- x1: 3 rows, 2 columns
405 INSERT INTO x1 VALUES(24, 'converging');
406 INSERT INTO x1 VALUES(NULL, X'CB71');
407 INSERT INTO x1 VALUES('blonds', 'proprietary');
408
409 -- x2: 2 rows, 3 columns
410 INSERT INTO x2 VALUES(-60.06, NULL, NULL);
411 INSERT INTO x2 VALUES(-58, NULL, 1.21);
412
413 -- x3: 5 rows, 4 columns
414 INSERT INTO x3 VALUES(-39.24, NULL, 'encompass', -1);
415 INSERT INTO x3 VALUES('presenting', 51, 'reformation', 'dignified');
416 INSERT INTO x3 VALUES('conducting', -87.24, 37.56, NULL);
417 INSERT INTO x3 VALUES('coldest', -96, 'dramatists', 82.3);
418 INSERT INTO x3 VALUES('alerting', NULL, -93.79, NULL);
419 } {}
420
421 # EVIDENCE-OF: R-59089-25828 The columns of the cartesian product
422 # dataset are, in order, all the columns of the left-hand dataset
423 # followed by all the columns of the right-hand dataset.
424 #
425 do_join_test e_select-1.4.1.1 {
426 SELECT * FROM x1 %JOIN% x2 LIMIT 1
427 } [concat {24 converging} {-60.06 {} {}}]
428
429 do_join_test e_select-1.4.1.2 {
430 SELECT * FROM x2 %JOIN% x1 LIMIT 1
431 } [concat {-60.06 {} {}} {24 converging}]
432
433 do_join_test e_select-1.4.1.3 {
434 SELECT * FROM x3 %JOIN% x2 LIMIT 1
435 } [concat {-39.24 {} encompass -1} {-60.06 {} {}}]
436
437 do_join_test e_select-1.4.1.4 {
438 SELECT * FROM x2 %JOIN% x3 LIMIT 1
439 } [concat {-60.06 {} {}} {-39.24 {} encompass -1}]
440
441 # EVIDENCE-OF: R-44414-54710 There is a row in the cartesian product
442 # dataset formed by combining each unique combination of a row from the
443 # left-hand and right-hand datasets.
444 #
445 do_join_test e_select-1.4.2.1 {
446 SELECT * FROM x2 %JOIN% x3
447 } [list -60.06 {} {} -39.24 {} encompass -1 \
448 -60.06 {} {} presenting 51 reformation dignified \
449 -60.06 {} {} conducting -87.24 37.56 {} \
450 -60.06 {} {} coldest -96 dramatists 82.3 \
451 -60.06 {} {} alerting {} -93.79 {} \
452 -58 {} 1.21 -39.24 {} encompass -1 \
453 -58 {} 1.21 presenting 51 reformation dignified \
454 -58 {} 1.21 conducting -87.24 37.56 {} \
455 -58 {} 1.21 coldest -96 dramatists 82.3 \
456 -58 {} 1.21 alerting {} -93.79 {} \
457 ]
458 # TODO: Come back and add a few more like the above.
459
460 # EVIDENCE-OF: R-20659-43267 In other words, if the left-hand dataset
461 # consists of Nlhs rows of Mlhs columns, and the right-hand dataset of
462 # Nrhs rows of Mrhs columns, then the cartesian product is a dataset of
463 # Nlhs.Nrhs rows, each containing Mlhs+Mrhs columns.
464 #
465 # x1, x2 (Nlhs=3, Nrhs=2) (Mlhs=2, Mrhs=3)
466 do_join_test e_select-1.4.3.1 {
467 SELECT count(*) FROM x1 %JOIN% x2
468 } [expr 3*2]
469 do_test e_select-1.4.3.2 {
470 expr {[llength [execsql {SELECT * FROM x1, x2}]] / 6}
471 } [expr 2+3]
472
473 # x2, x3 (Nlhs=2, Nrhs=5) (Mlhs=3, Mrhs=4)
474 do_join_test e_select-1.4.3.3 {
475 SELECT count(*) FROM x2 %JOIN% x3
476 } [expr 2*5]
477 do_test e_select-1.4.3.4 {
478 expr {[llength [execsql {SELECT * FROM x2 JOIN x3}]] / 10}
479 } [expr 3+4]
480
481 # x3, x1 (Nlhs=5, Nrhs=3) (Mlhs=4, Mrhs=2)
482 do_join_test e_select-1.4.3.5 {
483 SELECT count(*) FROM x3 %JOIN% x1
484 } [expr 5*3]
485 do_test e_select-1.4.3.6 {
486 expr {[llength [execsql {SELECT * FROM x3 CROSS JOIN x1}]] / 15}
487 } [expr 4+2]
488
489 # x3, x3 (Nlhs=5, Nrhs=5) (Mlhs=4, Mrhs=4)
490 do_join_test e_select-1.4.3.7 {
491 SELECT count(*) FROM x3 %JOIN% x3
492 } [expr 5*5]
493 do_test e_select-1.4.3.8 {
494 expr {[llength [execsql {SELECT * FROM x3 INNER JOIN x3 AS x4}]] / 25}
495 } [expr 4+4]
496
497 # Some extra cartesian product tests using tables t1 and t2.
498 #
499 do_execsql_test e_select-1.4.4.1 { SELECT * FROM t1, t2 } $t1_cross_t2
500 do_execsql_test e_select-1.4.4.2 { SELECT * FROM t1 AS x, t1 AS y} $t1_cross_t1
501
502 do_select_tests e_select-1.4.5 [list \
503 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \
504 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \
505 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \
506 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \
507 ]
508
509
510 # EVIDENCE-OF: R-22775-56496 If there is an ON clause specified, then
511 # the ON expression is evaluated for each row of the cartesian product
512 # as a boolean expression. All rows for which the expression evaluates
513 # to false are excluded from the dataset.
514 #
515 foreach {tn select res} [list \
516 1 { SELECT * FROM t1 %JOIN% t2 ON (1) } $t1_cross_t2 \
517 2 { SELECT * FROM t1 %JOIN% t2 ON (0) } [list] \
518 3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) } [list] \
519 4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') } [list] \
520 5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') } $t1_cross_t2 \
521 6 { SELECT * FROM t1 %JOIN% t2 ON (0.9) } $t1_cross_t2 \
522 7 { SELECT * FROM t1 %JOIN% t2 ON ('0.9') } $t1_cross_t2 \
523 8 { SELECT * FROM t1 %JOIN% t2 ON (0.0) } [list] \
524 \
525 9 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = t2.a) } \
526 {one I two II three III} \
527 10 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (t1.a = 'a') } \
528 {one I one II one III} \
529 11 { SELECT t1.b, t2.b
530 FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \
531 {two I two II two III three I three II three III} \
532 ] {
533 do_join_test e_select-1.3.$tn $select $res
534 }
535
536 # EVIDENCE-OF: R-63358-54862 If there is a USING clause specified as
537 # part of the join-constraint, then each of the column names specified
538 # must exist in the datasets to both the left and right of the join-op.
539 #
540 do_select_tests e_select-1.4 -error {
541 cannot join using column %s - column not present in both tables
542 } {
543 1 { SELECT * FROM t1, t3 USING (b) } "b"
544 2 { SELECT * FROM t3, t1 USING (c) } "c"
545 3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) } "a"
546 }
547
548 # EVIDENCE-OF: R-55987-04584 For each pair of namesake columns, the
549 # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian
550 # product as a boolean expression. All rows for which one or more of the
551 # expressions evaluates to false are excluded from the result set.
552 #
553 do_select_tests e_select-1.5 {
554 1 { SELECT * FROM t1, t3 USING (a) } {a one 1 b two 2}
555 2 { SELECT * FROM t3, t4 USING (a,c) } {b 2}
556 }
557
558 # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a
559 # USING clause, the normal rules for handling affinities, collation
560 # sequences and NULL values in comparisons apply.
561 #
562 # EVIDENCE-OF: R-35466-18578 The column from the dataset on the
563 # left-hand side of the join operator is considered to be on the
564 # left-hand side of the comparison operator (=) for the purposes of
565 # collation sequence and affinity precedence.
566 #
567 do_execsql_test e_select-1.6.0 {
568 CREATE TABLE t5(a COLLATE nocase, b COLLATE binary);
569 INSERT INTO t5 VALUES('AA', 'cc');
570 INSERT INTO t5 VALUES('BB', 'dd');
571 INSERT INTO t5 VALUES(NULL, NULL);
572 CREATE TABLE t6(a COLLATE binary, b COLLATE nocase);
573 INSERT INTO t6 VALUES('aa', 'cc');
574 INSERT INTO t6 VALUES('bb', 'DD');
575 INSERT INTO t6 VALUES(NULL, NULL);
576 } {}
577 foreach {tn select res} {
578 1 { SELECT * FROM t5 %JOIN% t6 USING (a) } {AA cc cc BB dd DD}
579 2 { SELECT * FROM t6 %JOIN% t5 USING (a) } {}
580 3 { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) %JOIN% t5 USING (a) }
581 {aa cc cc bb DD dd}
582 4 { SELECT * FROM t5 %JOIN% t6 USING (a,b) } {AA cc}
583 5 { SELECT * FROM t6 %JOIN% t5 USING (a,b) } {}
584 } {
585 do_join_test e_select-1.6.$tn $select $res
586 }
587
588 # EVIDENCE-OF: R-57047-10461 For each pair of columns identified by a
589 # USING clause, the column from the right-hand dataset is omitted from
590 # the joined dataset.
591 #
592 # EVIDENCE-OF: R-56132-15700 This is the only difference between a USING
593 # clause and its equivalent ON constraint.
594 #
595 foreach {tn select res} {
596 1a { SELECT * FROM t1 %JOIN% t2 USING (a) }
597 {a one I b two II c three III}
598 1b { SELECT * FROM t1 %JOIN% t2 ON (t1.a=t2.a) }
599 {a one a I b two b II c three c III}
600
601 2a { SELECT * FROM t3 %JOIN% t4 USING (a) }
602 {a 1 {} b 2 2}
603 2b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a) }
604 {a 1 a {} b 2 b 2}
605
606 3a { SELECT * FROM t3 %JOIN% t4 USING (a,c) } {b 2}
607 3b { SELECT * FROM t3 %JOIN% t4 ON (t3.a=t4.a AND t3.c=t4.c) } {b 2 b 2}
608
609 4a { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
610 %JOIN% t5 USING (a) }
611 {aa cc cc bb DD dd}
612 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x
613 %JOIN% t5 ON (x.a=t5.a) }
614 {aa cc AA cc bb DD BB dd}
615 } {
616 do_join_test e_select-1.7.$tn $select $res
617 }
618
619 # EVIDENCE-OF: R-41434-12448 If the join-op is a "LEFT JOIN" or "LEFT
620 # OUTER JOIN", then after the ON or USING filtering clauses have been
621 # applied, an extra row is added to the output for each row in the
622 # original left-hand input dataset that corresponds to no rows at all in
623 # the composite dataset (if any).
624 #
625 do_execsql_test e_select-1.8.0 {
626 CREATE TABLE t7(a, b, c);
627 CREATE TABLE t8(a, d, e);
628
629 INSERT INTO t7 VALUES('x', 'ex', 24);
630 INSERT INTO t7 VALUES('y', 'why', 25);
631
632 INSERT INTO t8 VALUES('x', 'abc', 24);
633 INSERT INTO t8 VALUES('z', 'ghi', 26);
634 } {}
635
636 do_select_tests e_select-1.8 {
637 1a "SELECT count(*) FROM t7 JOIN t8 ON (t7.a=t8.a)" {1}
638 1b "SELECT count(*) FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {2}
639 2a "SELECT count(*) FROM t7 JOIN t8 USING (a)" {1}
640 2b "SELECT count(*) FROM t7 LEFT JOIN t8 USING (a)" {2}
641 }
642
643
644 # EVIDENCE-OF: R-15607-52988 The added rows contain NULL values in the
645 # columns that would normally contain values copied from the right-hand
646 # input dataset.
647 #
648 do_select_tests e_select-1.9 {
649 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24}
650 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)"
651 {x ex 24 x abc 24 y why 25 {} {} {}}
652 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
653 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
654 }
655
656 # EVIDENCE-OF: R-01809-52134 If the NATURAL keyword is added to any of
657 # the join-ops, then an implicit USING clause is added to the
658 # join-constraints. The implicit USING clause contains each of the
659 # column names that appear in both the left and right-hand input
660 # datasets.
661 #
662 do_select_tests e_select-1-10 {
663 1a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24}
664 1b "SELECT * FROM t7 NATURAL JOIN t8" {x ex 24 abc 24}
665
666 2a "SELECT * FROM t8 JOIN t7 USING (a)" {x abc 24 ex 24}
667 2b "SELECT * FROM t8 NATURAL JOIN t7" {x abc 24 ex 24}
668
669 3a "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}}
670 3b "SELECT * FROM t7 NATURAL LEFT JOIN t8" {x ex 24 abc 24 y why 25 {} {}}
671
672 4a "SELECT * FROM t8 LEFT JOIN t7 USING (a)" {x abc 24 ex 24 z ghi 26 {} {}}
673 4b "SELECT * FROM t8 NATURAL LEFT JOIN t7" {x abc 24 ex 24 z ghi 26 {} {}}
674
675 5a "SELECT * FROM t3 JOIN t4 USING (a,c)" {b 2}
676 5b "SELECT * FROM t3 NATURAL JOIN t4" {b 2}
677
678 6a "SELECT * FROM t3 LEFT JOIN t4 USING (a,c)" {a 1 b 2}
679 6b "SELECT * FROM t3 NATURAL LEFT JOIN t4" {a 1 b 2}
680 }
681
682 # EVIDENCE-OF: R-49566-01570 If the left and right-hand input datasets
683 # feature no common column names, then the NATURAL keyword has no effect
684 # on the results of the join.
685 #
686 do_execsql_test e_select-1.11.0 {
687 CREATE TABLE t10(x, y);
688 INSERT INTO t10 VALUES(1, 'true');
689 INSERT INTO t10 VALUES(0, 'false');
690 } {}
691 do_select_tests e_select-1-11 {
692 1a "SELECT a, x FROM t1 CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
693 1b "SELECT a, x FROM t1 NATURAL CROSS JOIN t10" {a 1 a 0 b 1 b 0 c 1 c 0}
694 }
695
696 # EVIDENCE-OF: R-39625-59133 A USING or ON clause may not be added to a
697 # join that specifies the NATURAL keyword.
698 #
699 foreach {tn sql} {
700 1 {SELECT * FROM t1 NATURAL LEFT JOIN t2 USING (a)}
701 2 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (t1.a=t2.a)}
702 3 {SELECT * FROM t1 NATURAL LEFT JOIN t2 ON (45)}
703 } {
704 do_catchsql_test e_select-1.12.$tn "
705 $sql
706 " {1 {a NATURAL join may not have an ON or USING clause}}
707 }
708
709 #-------------------------------------------------------------------------
710 # The next block of tests - e_select-3.* - concentrate on verifying
711 # statements made regarding WHERE clause processing.
712 #
713 drop_all_tables
714 do_execsql_test e_select-3.0 {
715 CREATE TABLE x1(k, x, y, z);
716 INSERT INTO x1 VALUES(1, 'relinquished', 'aphasia', 78.43);
717 INSERT INTO x1 VALUES(2, X'A8E8D66F', X'07CF', -81);
718 INSERT INTO x1 VALUES(3, -22, -27.57, NULL);
719 INSERT INTO x1 VALUES(4, NULL, 'bygone', 'picky');
720 INSERT INTO x1 VALUES(5, NULL, 96.28, NULL);
721 INSERT INTO x1 VALUES(6, 0, 1, 2);
722
723 CREATE TABLE x2(k, x, y2);
724 INSERT INTO x2 VALUES(1, 50, X'B82838');
725 INSERT INTO x2 VALUES(5, 84.79, 65.88);
726 INSERT INTO x2 VALUES(3, -22, X'0E1BE452A393');
727 INSERT INTO x2 VALUES(7, 'mistrusted', 'standardized');
728 } {}
729
730 # EVIDENCE-OF: R-06999-14330 If a WHERE clause is specified, the WHERE
731 # expression is evaluated for each row in the input data as a boolean
732 # expression. All rows for which the WHERE clause expression evaluates
733 # to false are excluded from the dataset before continuing.
734 #
735 do_execsql_test e_select-3.1.1 { SELECT k FROM x1 WHERE x } {3}
736 do_execsql_test e_select-3.1.2 { SELECT k FROM x1 WHERE y } {3 5 6}
737 do_execsql_test e_select-3.1.3 { SELECT k FROM x1 WHERE z } {1 2 6}
738 do_execsql_test e_select-3.1.4 { SELECT k FROM x1 WHERE '1'||z } {1 2 4 6}
739 do_execsql_test e_select-3.1.5 { SELECT k FROM x1 WHERE x IS NULL } {4 5}
740 do_execsql_test e_select-3.1.6 { SELECT k FROM x1 WHERE z - 78.43 } {2 4 6}
741
742 do_execsql_test e_select-3.2.1a {
743 SELECT k FROM x1 LEFT JOIN x2 USING(k)
744 } {1 2 3 4 5 6}
745 do_execsql_test e_select-3.2.1b {
746 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k
747 } {1 3 5}
748 do_execsql_test e_select-3.2.2 {
749 SELECT k FROM x1 LEFT JOIN x2 USING(k) WHERE x2.k IS NULL
750 } {2 4 6}
751
752 do_execsql_test e_select-3.2.3 {
753 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k
754 } {3}
755 do_execsql_test e_select-3.2.4 {
756 SELECT k FROM x1 NATURAL JOIN x2 WHERE x2.k-3
757 } {}
758
759 #-------------------------------------------------------------------------
760 # Tests below this point are focused on verifying the testable statements
761 # related to caculating the result rows of a simple SELECT statement.
762 #
763
764 drop_all_tables
765 do_execsql_test e_select-4.0 {
766 CREATE TABLE z1(a, b, c);
767 CREATE TABLE z2(d, e);
768 CREATE TABLE z3(a, b);
769
770 INSERT INTO z1 VALUES(51.65, -59.58, 'belfries');
771 INSERT INTO z1 VALUES(-5, NULL, 75);
772 INSERT INTO z1 VALUES(-2.2, -23.18, 'suiters');
773 INSERT INTO z1 VALUES(NULL, 67, 'quartets');
774 INSERT INTO z1 VALUES(-1.04, -32.3, 'aspen');
775 INSERT INTO z1 VALUES(63, 'born', -26);
776
777 INSERT INTO z2 VALUES(NULL, 21);
778 INSERT INTO z2 VALUES(36, 6);
779
780 INSERT INTO z3 VALUES('subsistence', 'gauze');
781 INSERT INTO z3 VALUES(49.17, -67);
782 } {}
783
784 # EVIDENCE-OF: R-36327-17224 If a result expression is the special
785 # expression "*" then all columns in the input data are substituted for
786 # that one expression.
787 #
788 # EVIDENCE-OF: R-43693-30522 If the expression is the alias of a table
789 # or subquery in the FROM clause followed by ".*" then all columns from
790 # the named table or subquery are substituted for the single expression.
791 #
792 do_select_tests e_select-4.1 {
793 1 "SELECT * FROM z1 LIMIT 1" {51.65 -59.58 belfries}
794 2 "SELECT * FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries {} 21}
795 3 "SELECT z1.* FROM z1,z2 LIMIT 1" {51.65 -59.58 belfries}
796 4 "SELECT z2.* FROM z1,z2 LIMIT 1" {{} 21}
797 5 "SELECT z2.*, z1.* FROM z1,z2 LIMIT 1" {{} 21 51.65 -59.58 belfries}
798
799 6 "SELECT count(*), * FROM z1" {6 63 born -26}
800 7 "SELECT max(a), * FROM z1" {63 63 born -26}
801 8 "SELECT *, min(a) FROM z1" {63 born -26 -5}
802
803 9 "SELECT *,* FROM z1,z2 LIMIT 1" {
804 51.65 -59.58 belfries {} 21 51.65 -59.58 belfries {} 21
805 }
806 10 "SELECT z1.*,z1.* FROM z2,z1 LIMIT 1" {
807 51.65 -59.58 belfries 51.65 -59.58 belfries
808 }
809 }
810
811 # EVIDENCE-OF: R-61869-22578 It is an error to use a "*" or "alias.*"
812 # expression in any context other than than a result expression list.
813 #
814 # EVIDENCE-OF: R-44324-41166 It is also an error to use a "*" or
815 # "alias.*" expression in a simple SELECT query that does not have a
816 # FROM clause.
817 #
818 foreach {tn select err} {
819 1.1 "SELECT a, b, c FROM z1 WHERE *" {near "*": syntax error}
820 1.2 "SELECT a, b, c FROM z1 GROUP BY *" {near "*": syntax error}
821 1.3 "SELECT 1 + * FROM z1" {near "*": syntax error}
822 1.4 "SELECT * + 1 FROM z1" {near "+": syntax error}
823
824 2.1 "SELECT *" {no tables specified}
825 2.2 "SELECT * WHERE 1" {no tables specified}
826 2.3 "SELECT * WHERE 0" {no tables specified}
827 2.4 "SELECT count(*), *" {no tables specified}
828 } {
829 do_catchsql_test e_select-4.2.$tn $select [list 1 $err]
830 }
831
832 # EVIDENCE-OF: R-08669-22397 The number of columns in the rows returned
833 # by a simple SELECT statement is equal to the number of expressions in
834 # the result expression list after substitution of * and alias.*
835 # expressions.
836 #
837 foreach {tn select nCol} {
838 1 "SELECT * FROM z1" 3
839 2 "SELECT * FROM z1 NATURAL JOIN z3" 3
840 3 "SELECT z1.* FROM z1 NATURAL JOIN z3" 3
841 4 "SELECT z3.* FROM z1 NATURAL JOIN z3" 2
842 5 "SELECT z1.*, z3.* FROM z1 NATURAL JOIN z3" 5
843 6 "SELECT 1, 2, z1.* FROM z1" 5
844 7 "SELECT a, *, b, c FROM z1" 6
845 } {
846 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
847 do_test e_select-4.3.$tn { sqlite3_column_count $::stmt } $nCol
848 sqlite3_finalize $::stmt
849 }
850
851
852
853 # In lang_select.html, a non-aggregate query is defined as any simple SELECT
854 # that has no GROUP BY clause and no aggregate expressions in the result
855 # expression list. Other queries are aggregate queries. Test cases
856 # e_select-4.4.* through e_select-4.12.*, inclusive, which test the part of
857 # simple SELECT that is different for aggregate and non-aggregate queries
858 # verify (in a way) that these definitions are consistent:
859 #
860 # EVIDENCE-OF: R-20637-43463 A simple SELECT statement is an aggregate
861 # query if it contains either a GROUP BY clause or one or more aggregate
862 # functions in the result-set.
863 #
864 # EVIDENCE-OF: R-23155-55597 Otherwise, if a simple SELECT contains no
865 # aggregate functions or a GROUP BY clause, it is a non-aggregate query.
866 #
867
868 # EVIDENCE-OF: R-44050-47362 If the SELECT statement is a non-aggregate
869 # query, then each expression in the result expression list is evaluated
870 # for each row in the dataset filtered by the WHERE clause.
871 #
872 do_select_tests e_select-4.4 {
873 1 "SELECT a, b FROM z1"
874 {51.65 -59.58 -5 {} -2.2 -23.18 {} 67 -1.04 -32.3 63 born}
875
876 2 "SELECT a IS NULL, b+1, * FROM z1" {
877 0 -58.58 51.65 -59.58 belfries
878 0 {} -5 {} 75
879 0 -22.18 -2.2 -23.18 suiters
880 1 68 {} 67 quartets
881 0 -31.3 -1.04 -32.3 aspen
882 0 1 63 born -26
883 }
884
885 3 "SELECT 32*32, d||e FROM z2" {1024 {} 1024 366}
886 }
887
888
889 # Test cases e_select-4.5.* and e_select-4.6.* together show that:
890 #
891 # EVIDENCE-OF: R-51988-01124 The single row of result-set data created
892 # by evaluating the aggregate and non-aggregate expressions in the
893 # result-set forms the result of an aggregate query without a GROUP BY
894 # clause.
895 #
896
897 # EVIDENCE-OF: R-57629-25253 If the SELECT statement is an aggregate
898 # query without a GROUP BY clause, then each aggregate expression in the
899 # result-set is evaluated once across the entire dataset.
900 #
901 do_select_tests e_select-4.5 {
902 1 "SELECT count(a), max(a), count(b), max(b) FROM z1" {5 63 5 born}
903 2 "SELECT count(*), max(1)" {1 1}
904
905 3 "SELECT sum(b+1) FROM z1 NATURAL LEFT JOIN z3" {-43.06}
906 4 "SELECT sum(b+2) FROM z1 NATURAL LEFT JOIN z3" {-38.06}
907 5 "SELECT sum(b IS NOT NULL) FROM z1 NATURAL LEFT JOIN z3" {5}
908 }
909
910 # EVIDENCE-OF: R-26684-40576 Each non-aggregate expression in the
911 # result-set is evaluated once for an arbitrarily selected row of the
912 # dataset.
913 #
914 # EVIDENCE-OF: R-27994-60376 The same arbitrarily selected row is used
915 # for each non-aggregate expression.
916 #
917 # Note: The results of many of the queries in this block of tests are
918 # technically undefined, as the documentation does not specify which row
919 # SQLite will arbitrarily select to use for the evaluation of the
920 # non-aggregate expressions.
921 #
922 drop_all_tables
923 do_execsql_test e_select-4.6.0 {
924 CREATE TABLE a1(one PRIMARY KEY, two);
925 INSERT INTO a1 VALUES(1, 1);
926 INSERT INTO a1 VALUES(2, 3);
927 INSERT INTO a1 VALUES(3, 6);
928 INSERT INTO a1 VALUES(4, 10);
929
930 CREATE TABLE a2(one PRIMARY KEY, three);
931 INSERT INTO a2 VALUES(1, 1);
932 INSERT INTO a2 VALUES(3, 2);
933 INSERT INTO a2 VALUES(6, 3);
934 INSERT INTO a2 VALUES(10, 4);
935 } {}
936 do_select_tests e_select-4.6 {
937 1 "SELECT one, two, count(*) FROM a1" {4 10 4}
938 2 "SELECT one, two, count(*) FROM a1 WHERE one<3" {2 3 2}
939 3 "SELECT one, two, count(*) FROM a1 WHERE one>3" {4 10 1}
940 4 "SELECT *, count(*) FROM a1 JOIN a2" {4 10 10 4 16}
941 5 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3}
942 6 "SELECT *, sum(three) FROM a1 NATURAL JOIN a2" {3 6 2 3}
943 7 "SELECT group_concat(three, ''), a1.* FROM a1 NATURAL JOIN a2" {12 3 6}
944 }
945
946 # EVIDENCE-OF: R-04486-07266 Or, if the dataset contains zero rows, then
947 # each non-aggregate expression is evaluated against a row consisting
948 # entirely of NULL values.
949 #
950 do_select_tests e_select-4.7 {
951 1 "SELECT one, two, count(*) FROM a1 WHERE 0" {{} {} 0}
952 2 "SELECT sum(two), * FROM a1, a2 WHERE three>5" {{} {} {} {} {}}
953 3 "SELECT max(one) IS NULL, one IS NULL, two IS NULL FROM a1 WHERE two=7" {
954 1 1 1
955 }
956 }
957
958 # EVIDENCE-OF: R-64138-28774 An aggregate query without a GROUP BY
959 # clause always returns exactly one row of data, even if there are zero
960 # rows of input data.
961 #
962 foreach {tn select} {
963 8.1 "SELECT count(*) FROM a1"
964 8.2 "SELECT count(*) FROM a1 WHERE 0"
965 8.3 "SELECT count(*) FROM a1 WHERE 1"
966 8.4 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 1"
967 8.5 "SELECT max(a1.one)+min(two), a1.one, two, * FROM a1, a2 WHERE 0"
968 } {
969 # Set $nRow to the number of rows returned by $select:
970 set ::stmt [sqlite3_prepare_v2 db $select -1 DUMMY]
971 set nRow 0
972 while {"SQLITE_ROW" == [sqlite3_step $::stmt]} { incr nRow }
973 set rc [sqlite3_finalize $::stmt]
974
975 # Test that $nRow==1 and that statement execution was successful
976 # (rc==SQLITE_OK).
977 do_test e_select-4.$tn [list list $rc $nRow] {SQLITE_OK 1}
978 }
979
980 drop_all_tables
981 do_execsql_test e_select-4.9.0 {
982 CREATE TABLE b1(one PRIMARY KEY, two);
983 INSERT INTO b1 VALUES(1, 'o');
984 INSERT INTO b1 VALUES(4, 'f');
985 INSERT INTO b1 VALUES(3, 't');
986 INSERT INTO b1 VALUES(2, 't');
987 INSERT INTO b1 VALUES(5, 'f');
988 INSERT INTO b1 VALUES(7, 's');
989 INSERT INTO b1 VALUES(6, 's');
990
991 CREATE TABLE b2(x, y);
992 INSERT INTO b2 VALUES(NULL, 0);
993 INSERT INTO b2 VALUES(NULL, 1);
994 INSERT INTO b2 VALUES('xyz', 2);
995 INSERT INTO b2 VALUES('abc', 3);
996 INSERT INTO b2 VALUES('xyz', 4);
997
998 CREATE TABLE b3(a COLLATE nocase, b COLLATE binary);
999 INSERT INTO b3 VALUES('abc', 'abc');
1000 INSERT INTO b3 VALUES('aBC', 'aBC');
1001 INSERT INTO b3 VALUES('Def', 'Def');
1002 INSERT INTO b3 VALUES('dEF', 'dEF');
1003 } {}
1004
1005 # EVIDENCE-OF: R-57754-57109 If the SELECT statement is an aggregate
1006 # query with a GROUP BY clause, then each of the expressions specified
1007 # as part of the GROUP BY clause is evaluated for each row of the
1008 # dataset. Each row is then assigned to a "group" based on the results;
1009 # rows for which the results of evaluating the GROUP BY expressions are
1010 # the same are assigned to the same group.
1011 #
1012 # These tests also show that the following is not untrue:
1013 #
1014 # EVIDENCE-OF: R-25883-55063 The expressions in the GROUP BY clause do
1015 # not have to be expressions that appear in the result.
1016 #
1017 do_select_tests e_select-4.9 {
1018 1 "SELECT group_concat(one), two FROM b1 GROUP BY two" {
1019 4,5 f 1 o 7,6 s 3,2 t
1020 }
1021 2 "SELECT group_concat(one), sum(one) FROM b1 GROUP BY (one>4)" {
1022 1,4,3,2 10 5,7,6 18
1023 }
1024 3 "SELECT group_concat(one) FROM b1 GROUP BY (two>'o'), one%2" {
1025 4 1,5 2,6 3,7
1026 }
1027 4 "SELECT group_concat(one) FROM b1 GROUP BY (one==2 OR two=='o')" {
1028 4,3,5,7,6 1,2
1029 }
1030 }
1031
1032 # EVIDENCE-OF: R-14926-50129 For the purposes of grouping rows, NULL
1033 # values are considered equal.
1034 #
1035 do_select_tests e_select-4.10 {
1036 1 "SELECT group_concat(y) FROM b2 GROUP BY x" {0,1 3 2,4}
1037 2 "SELECT count(*) FROM b2 GROUP BY CASE WHEN y<4 THEN NULL ELSE 0 END" {4 1}
1038 }
1039
1040 # EVIDENCE-OF: R-10470-30318 The usual rules for selecting a collation
1041 # sequence with which to compare text values apply when evaluating
1042 # expressions in a GROUP BY clause.
1043 #
1044 do_select_tests e_select-4.11 {
1045 1 "SELECT count(*) FROM b3 GROUP BY b" {1 1 1 1}
1046 2 "SELECT count(*) FROM b3 GROUP BY a" {2 2}
1047 3 "SELECT count(*) FROM b3 GROUP BY +b" {1 1 1 1}
1048 4 "SELECT count(*) FROM b3 GROUP BY +a" {2 2}
1049 5 "SELECT count(*) FROM b3 GROUP BY b||''" {1 1 1 1}
1050 6 "SELECT count(*) FROM b3 GROUP BY a||''" {1 1 1 1}
1051 }
1052
1053 # EVIDENCE-OF: R-63573-50730 The expressions in a GROUP BY clause may
1054 # not be aggregate expressions.
1055 #
1056 foreach {tn select} {
1057 12.1 "SELECT * FROM b3 GROUP BY count(*)"
1058 12.2 "SELECT max(a) FROM b3 GROUP BY max(b)"
1059 12.3 "SELECT group_concat(a) FROM b3 GROUP BY a, max(b)"
1060 } {
1061 set res {1 {aggregate functions are not allowed in the GROUP BY clause}}
1062 do_catchsql_test e_select-4.$tn $select $res
1063 }
1064
1065 # EVIDENCE-OF: R-31537-00101 If a HAVING clause is specified, it is
1066 # evaluated once for each group of rows as a boolean expression. If the
1067 # result of evaluating the HAVING clause is false, the group is
1068 # discarded.
1069 #
1070 # This requirement is tested by all e_select-4.13.* tests.
1071 #
1072 # EVIDENCE-OF: R-04132-09474 If the HAVING clause is an aggregate
1073 # expression, it is evaluated across all rows in the group.
1074 #
1075 # Tested by e_select-4.13.1.*
1076 #
1077 # EVIDENCE-OF: R-28262-47447 If a HAVING clause is a non-aggregate
1078 # expression, it is evaluated with respect to an arbitrarily selected
1079 # row from the group.
1080 #
1081 # Tested by e_select-4.13.2.*
1082 #
1083 # Tests in this block also show that this is not untrue:
1084 #
1085 # EVIDENCE-OF: R-55403-13450 The HAVING expression may refer to values,
1086 # even aggregate functions, that are not in the result.
1087 #
1088 do_execsql_test e_select-4.13.0 {
1089 CREATE TABLE c1(up, down);
1090 INSERT INTO c1 VALUES('x', 1);
1091 INSERT INTO c1 VALUES('x', 2);
1092 INSERT INTO c1 VALUES('x', 4);
1093 INSERT INTO c1 VALUES('x', 8);
1094 INSERT INTO c1 VALUES('y', 16);
1095 INSERT INTO c1 VALUES('y', 32);
1096
1097 CREATE TABLE c2(i, j);
1098 INSERT INTO c2 VALUES(1, 0);
1099 INSERT INTO c2 VALUES(2, 1);
1100 INSERT INTO c2 VALUES(3, 3);
1101 INSERT INTO c2 VALUES(4, 6);
1102 INSERT INTO c2 VALUES(5, 10);
1103 INSERT INTO c2 VALUES(6, 15);
1104 INSERT INTO c2 VALUES(7, 21);
1105 INSERT INTO c2 VALUES(8, 28);
1106 INSERT INTO c2 VALUES(9, 36);
1107
1108 CREATE TABLE c3(i PRIMARY KEY, k TEXT);
1109 INSERT INTO c3 VALUES(1, 'hydrogen');
1110 INSERT INTO c3 VALUES(2, 'helium');
1111 INSERT INTO c3 VALUES(3, 'lithium');
1112 INSERT INTO c3 VALUES(4, 'beryllium');
1113 INSERT INTO c3 VALUES(5, 'boron');
1114 INSERT INTO c3 VALUES(94, 'plutonium');
1115 } {}
1116
1117 do_select_tests e_select-4.13 {
1118 1.1 "SELECT up FROM c1 GROUP BY up HAVING count(*)>3" {x}
1119 1.2 "SELECT up FROM c1 GROUP BY up HAVING sum(down)>16" {y}
1120 1.3 "SELECT up FROM c1 GROUP BY up HAVING sum(down)<16" {x}
1121 1.4 "SELECT up||down FROM c1 GROUP BY (down<5) HAVING max(down)<10" {x4}
1122
1123 2.1 "SELECT up FROM c1 GROUP BY up HAVING down>10" {y}
1124 2.2 "SELECT up FROM c1 GROUP BY up HAVING up='y'" {y}
1125
1126 2.3 "SELECT i, j FROM c2 GROUP BY i>4 HAVING i>6" {9 36}
1127 }
1128
1129 # EVIDENCE-OF: R-23927-54081 Each expression in the result-set is then
1130 # evaluated once for each group of rows.
1131 #
1132 # EVIDENCE-OF: R-53735-47017 If the expression is an aggregate
1133 # expression, it is evaluated across all rows in the group.
1134 #
1135 do_select_tests e_select-4.15 {
1136 1 "SELECT sum(down) FROM c1 GROUP BY up" {15 48}
1137 2 "SELECT sum(j), max(j) FROM c2 GROUP BY (i%3)" {54 36 27 21 39 28}
1138 3 "SELECT sum(j), max(j) FROM c2 GROUP BY (j%2)" {80 36 40 21}
1139 4 "SELECT 1+sum(j), max(j)+1 FROM c2 GROUP BY (j%2)" {81 37 41 22}
1140 5 "SELECT count(*), round(avg(i),2) FROM c1, c2 ON (i=down) GROUP BY j%2"
1141 {3 4.33 1 2.0}
1142 }
1143
1144 # EVIDENCE-OF: R-62913-19830 Otherwise, it is evaluated against a single
1145 # arbitrarily chosen row from within the group.
1146 #
1147 # EVIDENCE-OF: R-53924-08809 If there is more than one non-aggregate
1148 # expression in the result-set, then all such expressions are evaluated
1149 # for the same row.
1150 #
1151 do_select_tests e_select-4.15 {
1152 1 "SELECT i, j FROM c2 GROUP BY i%2" {8 28 9 36}
1153 2 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j<30" {8 28}
1154 3 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1155 4 "SELECT i, j FROM c2 GROUP BY i%2 HAVING j>30" {9 36}
1156 5 "SELECT count(*), i, k FROM c2 NATURAL JOIN c3 GROUP BY substr(k, 1, 1)"
1157 {2 5 boron 2 2 helium 1 3 lithium}
1158 }
1159
1160 # EVIDENCE-OF: R-19334-12811 Each group of input dataset rows
1161 # contributes a single row to the set of result rows.
1162 #
1163 # EVIDENCE-OF: R-02223-49279 Subject to filtering associated with the
1164 # DISTINCT keyword, the number of rows returned by an aggregate query
1165 # with a GROUP BY clause is the same as the number of groups of rows
1166 # produced by applying the GROUP BY and HAVING clauses to the filtered
1167 # input dataset.
1168 #
1169 do_select_tests e_select.4.16 -count {
1170 1 "SELECT i, j FROM c2 GROUP BY i%2" 2
1171 2 "SELECT i, j FROM c2 GROUP BY i" 9
1172 3 "SELECT i, j FROM c2 GROUP BY i HAVING i<5" 4
1173 }
1174
1175 #-------------------------------------------------------------------------
1176 # The following tests attempt to verify statements made regarding the ALL
1177 # and DISTINCT keywords.
1178 #
1179 drop_all_tables
1180 do_execsql_test e_select-5.1.0 {
1181 CREATE TABLE h1(a, b);
1182 INSERT INTO h1 VALUES(1, 'one');
1183 INSERT INTO h1 VALUES(1, 'I');
1184 INSERT INTO h1 VALUES(1, 'i');
1185 INSERT INTO h1 VALUES(4, 'four');
1186 INSERT INTO h1 VALUES(4, 'IV');
1187 INSERT INTO h1 VALUES(4, 'iv');
1188
1189 CREATE TABLE h2(x COLLATE nocase);
1190 INSERT INTO h2 VALUES('One');
1191 INSERT INTO h2 VALUES('Two');
1192 INSERT INTO h2 VALUES('Three');
1193 INSERT INTO h2 VALUES('Four');
1194 INSERT INTO h2 VALUES('one');
1195 INSERT INTO h2 VALUES('two');
1196 INSERT INTO h2 VALUES('three');
1197 INSERT INTO h2 VALUES('four');
1198
1199 CREATE TABLE h3(c, d);
1200 INSERT INTO h3 VALUES(1, NULL);
1201 INSERT INTO h3 VALUES(2, NULL);
1202 INSERT INTO h3 VALUES(3, NULL);
1203 INSERT INTO h3 VALUES(4, '2');
1204 INSERT INTO h3 VALUES(5, NULL);
1205 INSERT INTO h3 VALUES(6, '2,3');
1206 INSERT INTO h3 VALUES(7, NULL);
1207 INSERT INTO h3 VALUES(8, '2,4');
1208 INSERT INTO h3 VALUES(9, '3');
1209 } {}
1210
1211 # EVIDENCE-OF: R-60770-10612 One of the ALL or DISTINCT keywords may
1212 # follow the SELECT keyword in a simple SELECT statement.
1213 #
1214 do_select_tests e_select-5.1 {
1215 1 "SELECT ALL a FROM h1" {1 1 1 4 4 4}
1216 2 "SELECT DISTINCT a FROM h1" {1 4}
1217 }
1218
1219 # EVIDENCE-OF: R-08861-34280 If the simple SELECT is a SELECT ALL, then
1220 # the entire set of result rows are returned by the SELECT.
1221 #
1222 # EVIDENCE-OF: R-47911-02086 If neither ALL or DISTINCT are present,
1223 # then the behaviour is as if ALL were specified.
1224 #
1225 # EVIDENCE-OF: R-14442-41305 If the simple SELECT is a SELECT DISTINCT,
1226 # then duplicate rows are removed from the set of result rows before it
1227 # is returned.
1228 #
1229 # The three testable statements above are tested by e_select-5.2.*,
1230 # 5.3.* and 5.4.* respectively.
1231 #
1232 do_select_tests e_select-5 {
1233 3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
1234 3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}
1235
1236 3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
1237 3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}
1238
1239 4.1 "SELECT DISTINCT x FROM h2" {four one three two}
1240 4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {four one}
1241 }
1242
1243 # EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
1244 # rows, two NULL values are considered to be equal.
1245 #
1246 do_select_tests e_select-5.5 {
1247 1 "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
1248 }
1249
1250 # EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
1251 # sequence to compare text values with apply.
1252 #
1253 do_select_tests e_select-5.6 {
1254 1 "SELECT DISTINCT b FROM h1" {I IV four i iv one}
1255 2 "SELECT DISTINCT b COLLATE nocase FROM h1" {four i iv one}
1256 3 "SELECT DISTINCT x FROM h2" {four one three two}
1257 4 "SELECT DISTINCT x COLLATE binary FROM h2" {
1258 Four One Three Two four one three two
1259 }
1260 }
1261
1262 #-------------------------------------------------------------------------
1263 # The following tests - e_select-7.* - test that statements made to do
1264 # with compound SELECT statements are correct.
1265 #
1266
1267 # EVIDENCE-OF: R-39368-64333 In a compound SELECT, all the constituent
1268 # SELECTs must return the same number of result columns.
1269 #
1270 # All the other tests in this section use compound SELECTs created
1271 # using component SELECTs that do return the same number of columns.
1272 # So the tests here just show that it is an error to attempt otherwise.
1273 #
1274 drop_all_tables
1275 do_execsql_test e_select-7.1.0 {
1276 CREATE TABLE j1(a, b, c);
1277 CREATE TABLE j2(e, f);
1278 CREATE TABLE j3(g);
1279 } {}
1280 do_select_tests e_select-7.1 -error {
1281 SELECTs to the left and right of %s do not have the same number of result colu mns
1282 } {
1283 1 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}}
1284 2 "SELECT * FROM j1 UNION ALL SELECT * FROM j3" {{UNION ALL}}
1285 3 "SELECT a, b FROM j1 UNION ALL SELECT g FROM j3" {{UNION ALL}}
1286 4 "SELECT a, b FROM j1 UNION ALL SELECT * FROM j3,j2" {{UNION ALL}}
1287 5 "SELECT * FROM j3,j2 UNION ALL SELECT a, b FROM j1" {{UNION ALL}}
1288
1289 6 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION}
1290 7 "SELECT * FROM j1 UNION SELECT * FROM j3" {UNION}
1291 8 "SELECT a, b FROM j1 UNION SELECT g FROM j3" {UNION}
1292 9 "SELECT a, b FROM j1 UNION SELECT * FROM j3,j2" {UNION}
1293 10 "SELECT * FROM j3,j2 UNION SELECT a, b FROM j1" {UNION}
1294
1295 11 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT}
1296 12 "SELECT * FROM j1 INTERSECT SELECT * FROM j3" {INTERSECT}
1297 13 "SELECT a, b FROM j1 INTERSECT SELECT g FROM j3" {INTERSECT}
1298 14 "SELECT a, b FROM j1 INTERSECT SELECT * FROM j3,j2" {INTERSECT}
1299 15 "SELECT * FROM j3,j2 INTERSECT SELECT a, b FROM j1" {INTERSECT}
1300
1301 16 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT}
1302 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j3" {EXCEPT}
1303 18 "SELECT a, b FROM j1 EXCEPT SELECT g FROM j3" {EXCEPT}
1304 19 "SELECT a, b FROM j1 EXCEPT SELECT * FROM j3,j2" {EXCEPT}
1305 20 "SELECT * FROM j3,j2 EXCEPT SELECT a, b FROM j1" {EXCEPT}
1306 }
1307
1308 # EVIDENCE-OF: R-01450-11152 As the components of a compound SELECT must
1309 # be simple SELECT statements, they may not contain ORDER BY or LIMIT
1310 # clauses.
1311 #
1312 foreach {tn select op1 op2} {
1313 1 "SELECT * FROM j1 ORDER BY a UNION ALL SELECT * FROM j2,j3"
1314 {ORDER BY} {UNION ALL}
1315 2 "SELECT count(*) FROM j1 ORDER BY 1 UNION ALL SELECT max(e) FROM j2"
1316 {ORDER BY} {UNION ALL}
1317 3 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION ALL SELECT *,* FROM j2"
1318 {ORDER BY} {UNION ALL}
1319 4 "SELECT * FROM j1 LIMIT 10 UNION ALL SELECT * FROM j2,j3"
1320 LIMIT {UNION ALL}
1321 5 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION ALL SELECT * FROM j2,j3"
1322 LIMIT {UNION ALL}
1323 6 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION ALL SELECT g FROM j2,j3"
1324 LIMIT {UNION ALL}
1325
1326 7 "SELECT * FROM j1 ORDER BY a UNION SELECT * FROM j2,j3"
1327 {ORDER BY} {UNION}
1328 8 "SELECT count(*) FROM j1 ORDER BY 1 UNION SELECT max(e) FROM j2"
1329 {ORDER BY} {UNION}
1330 9 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 UNION SELECT *,* FROM j2"
1331 {ORDER BY} {UNION}
1332 10 "SELECT * FROM j1 LIMIT 10 UNION SELECT * FROM j2,j3"
1333 LIMIT {UNION}
1334 11 "SELECT * FROM j1 LIMIT 10 OFFSET 5 UNION SELECT * FROM j2,j3"
1335 LIMIT {UNION}
1336 12 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) UNION SELECT g FROM j2,j3"
1337 LIMIT {UNION}
1338
1339 13 "SELECT * FROM j1 ORDER BY a EXCEPT SELECT * FROM j2,j3"
1340 {ORDER BY} {EXCEPT}
1341 14 "SELECT count(*) FROM j1 ORDER BY 1 EXCEPT SELECT max(e) FROM j2"
1342 {ORDER BY} {EXCEPT}
1343 15 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 EXCEPT SELECT *,* FROM j2"
1344 {ORDER BY} {EXCEPT}
1345 16 "SELECT * FROM j1 LIMIT 10 EXCEPT SELECT * FROM j2,j3"
1346 LIMIT {EXCEPT}
1347 17 "SELECT * FROM j1 LIMIT 10 OFFSET 5 EXCEPT SELECT * FROM j2,j3"
1348 LIMIT {EXCEPT}
1349 18 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) EXCEPT SELECT g FROM j2,j3"
1350 LIMIT {EXCEPT}
1351
1352 19 "SELECT * FROM j1 ORDER BY a INTERSECT SELECT * FROM j2,j3"
1353 {ORDER BY} {INTERSECT}
1354 20 "SELECT count(*) FROM j1 ORDER BY 1 INTERSECT SELECT max(e) FROM j2"
1355 {ORDER BY} {INTERSECT}
1356 21 "SELECT count(*), * FROM j1 ORDER BY 1,2,3 INTERSECT SELECT *,* FROM j2"
1357 {ORDER BY} {INTERSECT}
1358 22 "SELECT * FROM j1 LIMIT 10 INTERSECT SELECT * FROM j2,j3"
1359 LIMIT {INTERSECT}
1360 23 "SELECT * FROM j1 LIMIT 10 OFFSET 5 INTERSECT SELECT * FROM j2,j3"
1361 LIMIT {INTERSECT}
1362 24 "SELECT a FROM j1 LIMIT (SELECT e FROM j2) INTERSECT SELECT g FROM j2,j3"
1363 LIMIT {INTERSECT}
1364 } {
1365 set err "$op1 clause should come after $op2 not before"
1366 do_catchsql_test e_select-7.2.$tn $select [list 1 $err]
1367 }
1368
1369 # EVIDENCE-OF: R-22874-32655 ORDER BY and LIMIT clauses may only occur
1370 # at the end of the entire compound SELECT.
1371 #
1372 foreach {tn select} {
1373 1 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 ORDER BY a"
1374 2 "SELECT count(*) FROM j1 UNION ALL SELECT max(e) FROM j2 ORDER BY 1"
1375 3 "SELECT count(*), * FROM j1 UNION ALL SELECT *,* FROM j2 ORDER BY 1,2,3"
1376 4 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10"
1377 5 "SELECT * FROM j1 UNION ALL SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1378 6 "SELECT a FROM j1 UNION ALL SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1379
1380 7 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 ORDER BY a"
1381 8 "SELECT count(*) FROM j1 UNION SELECT max(e) FROM j2 ORDER BY 1"
1382 9 "SELECT count(*), * FROM j1 UNION SELECT *,* FROM j2 ORDER BY 1,2,3"
1383 10 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10"
1384 11 "SELECT * FROM j1 UNION SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1385 12 "SELECT a FROM j1 UNION SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1386
1387 13 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 ORDER BY a"
1388 14 "SELECT count(*) FROM j1 EXCEPT SELECT max(e) FROM j2 ORDER BY 1"
1389 15 "SELECT count(*), * FROM j1 EXCEPT SELECT *,* FROM j2 ORDER BY 1,2,3"
1390 16 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10"
1391 17 "SELECT * FROM j1 EXCEPT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1392 18 "SELECT a FROM j1 EXCEPT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1393
1394 19 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 ORDER BY a"
1395 20 "SELECT count(*) FROM j1 INTERSECT SELECT max(e) FROM j2 ORDER BY 1"
1396 21 "SELECT count(*), * FROM j1 INTERSECT SELECT *,* FROM j2 ORDER BY 1,2,3"
1397 22 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10"
1398 23 "SELECT * FROM j1 INTERSECT SELECT * FROM j2,j3 LIMIT 10 OFFSET 5"
1399 24 "SELECT a FROM j1 INTERSECT SELECT g FROM j2,j3 LIMIT (SELECT 10)"
1400 } {
1401 do_test e_select-7.3.$tn { catch {execsql $select} msg } 0
1402 }
1403
1404 # EVIDENCE-OF: R-08531-36543 A compound SELECT created using UNION ALL
1405 # operator returns all the rows from the SELECT to the left of the UNION
1406 # ALL operator, and all the rows from the SELECT to the right of it.
1407 #
1408 drop_all_tables
1409 do_execsql_test e_select-7.4.0 {
1410 CREATE TABLE q1(a TEXT, b INTEGER, c);
1411 CREATE TABLE q2(d NUMBER, e BLOB);
1412 CREATE TABLE q3(f REAL, g);
1413
1414 INSERT INTO q1 VALUES(16, -87.66, NULL);
1415 INSERT INTO q1 VALUES('legible', 94, -42.47);
1416 INSERT INTO q1 VALUES('beauty', 36, NULL);
1417
1418 INSERT INTO q2 VALUES('legible', 1);
1419 INSERT INTO q2 VALUES('beauty', 2);
1420 INSERT INTO q2 VALUES(-65.91, 4);
1421 INSERT INTO q2 VALUES('emanating', -16.56);
1422
1423 INSERT INTO q3 VALUES('beauty', 2);
1424 INSERT INTO q3 VALUES('beauty', 2);
1425 } {}
1426 do_select_tests e_select-7.4 {
1427 1 {SELECT a FROM q1 UNION ALL SELECT d FROM q2}
1428 {16 legible beauty legible beauty -65.91 emanating}
1429
1430 2 {SELECT * FROM q1 WHERE a=16 UNION ALL SELECT 'x', * FROM q2 WHERE oid=1}
1431 {16 -87.66 {} x legible 1}
1432
1433 3 {SELECT count(*) FROM q1 UNION ALL SELECT min(e) FROM q2}
1434 {3 -16.56}
1435
1436 4 {SELECT * FROM q2 UNION ALL SELECT * FROM q3}
1437 {legible 1 beauty 2 -65.91 4 emanating -16.56 beauty 2 beauty 2}
1438 }
1439
1440 # EVIDENCE-OF: R-20560-39162 The UNION operator works the same way as
1441 # UNION ALL, except that duplicate rows are removed from the final
1442 # result set.
1443 #
1444 do_select_tests e_select-7.5 {
1445 1 {SELECT a FROM q1 UNION SELECT d FROM q2}
1446 {-65.91 16 beauty emanating legible}
1447
1448 2 {SELECT * FROM q1 WHERE a=16 UNION SELECT 'x', * FROM q2 WHERE oid=1}
1449 {16 -87.66 {} x legible 1}
1450
1451 3 {SELECT count(*) FROM q1 UNION SELECT min(e) FROM q2}
1452 {-16.56 3}
1453
1454 4 {SELECT * FROM q2 UNION SELECT * FROM q3}
1455 {-65.91 4 beauty 2 emanating -16.56 legible 1}
1456 }
1457
1458 # EVIDENCE-OF: R-45764-31737 The INTERSECT operator returns the
1459 # intersection of the results of the left and right SELECTs.
1460 #
1461 do_select_tests e_select-7.6 {
1462 1 {SELECT a FROM q1 INTERSECT SELECT d FROM q2} {beauty legible}
1463 2 {SELECT * FROM q2 INTERSECT SELECT * FROM q3} {beauty 2}
1464 }
1465
1466 # EVIDENCE-OF: R-25787-28949 The EXCEPT operator returns the subset of
1467 # rows returned by the left SELECT that are not also returned by the
1468 # right-hand SELECT.
1469 #
1470 do_select_tests e_select-7.7 {
1471 1 {SELECT a FROM q1 EXCEPT SELECT d FROM q2} {16}
1472
1473 2 {SELECT * FROM q2 EXCEPT SELECT * FROM q3}
1474 {-65.91 4 emanating -16.56 legible 1}
1475 }
1476
1477 # EVIDENCE-OF: R-40729-56447 Duplicate rows are removed from the results
1478 # of INTERSECT and EXCEPT operators before the result set is returned.
1479 #
1480 do_select_tests e_select-7.8 {
1481 0 {SELECT * FROM q3} {beauty 2 beauty 2}
1482
1483 1 {SELECT * FROM q3 INTERSECT SELECT * FROM q3} {beauty 2}
1484 2 {SELECT * FROM q3 EXCEPT SELECT a,b FROM q1} {beauty 2}
1485 }
1486
1487 # EVIDENCE-OF: R-46765-43362 For the purposes of determining duplicate
1488 # rows for the results of compound SELECT operators, NULL values are
1489 # considered equal to other NULL values and distinct from all non-NULL
1490 # values.
1491 #
1492 db nullvalue null
1493 do_select_tests e_select-7.9 {
1494 1 {SELECT NULL UNION ALL SELECT NULL} {null null}
1495 2 {SELECT NULL UNION SELECT NULL} {null}
1496 3 {SELECT NULL INTERSECT SELECT NULL} {null}
1497 4 {SELECT NULL EXCEPT SELECT NULL} {}
1498
1499 5 {SELECT NULL UNION ALL SELECT 'ab'} {null ab}
1500 6 {SELECT NULL UNION SELECT 'ab'} {null ab}
1501 7 {SELECT NULL INTERSECT SELECT 'ab'} {}
1502 8 {SELECT NULL EXCEPT SELECT 'ab'} {null}
1503
1504 9 {SELECT NULL UNION ALL SELECT 0} {null 0}
1505 10 {SELECT NULL UNION SELECT 0} {null 0}
1506 11 {SELECT NULL INTERSECT SELECT 0} {}
1507 12 {SELECT NULL EXCEPT SELECT 0} {null}
1508
1509 13 {SELECT c FROM q1 UNION ALL SELECT g FROM q3} {null -42.47 null 2 2}
1510 14 {SELECT c FROM q1 UNION SELECT g FROM q3} {null -42.47 2}
1511 15 {SELECT c FROM q1 INTERSECT SELECT g FROM q3} {}
1512 16 {SELECT c FROM q1 EXCEPT SELECT g FROM q3} {null -42.47}
1513 }
1514 db nullvalue {}
1515
1516 # EVIDENCE-OF: R-51232-50224 The collation sequence used to compare two
1517 # text values is determined as if the columns of the left and right-hand
1518 # SELECT statements were the left and right-hand operands of the equals
1519 # (=) operator, except that greater precedence is not assigned to a
1520 # collation sequence specified with the postfix COLLATE operator.
1521 #
1522 drop_all_tables
1523 do_execsql_test e_select-7.10.0 {
1524 CREATE TABLE y1(a COLLATE nocase, b COLLATE binary, c);
1525 INSERT INTO y1 VALUES('Abc', 'abc', 'aBC');
1526 } {}
1527 do_select_tests e_select-7.10 {
1528 1 {SELECT 'abc' UNION SELECT 'ABC'} {ABC abc}
1529 2 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC'} {ABC}
1530 3 {SELECT 'abc' UNION SELECT 'ABC' COLLATE nocase} {ABC}
1531 4 {SELECT 'abc' COLLATE binary UNION SELECT 'ABC' COLLATE nocase} {ABC abc}
1532 5 {SELECT 'abc' COLLATE nocase UNION SELECT 'ABC' COLLATE binary} {ABC}
1533
1534 6 {SELECT a FROM y1 UNION SELECT b FROM y1} {abc}
1535 7 {SELECT b FROM y1 UNION SELECT a FROM y1} {Abc abc}
1536 8 {SELECT a FROM y1 UNION SELECT c FROM y1} {aBC}
1537
1538 9 {SELECT a FROM y1 UNION SELECT c COLLATE binary FROM y1} {aBC}
1539 }
1540
1541 # EVIDENCE-OF: R-32706-07403 No affinity transformations are applied to
1542 # any values when comparing rows as part of a compound SELECT.
1543 #
1544 drop_all_tables
1545 do_execsql_test e_select-7.10.0 {
1546 CREATE TABLE w1(a TEXT, b NUMBER);
1547 CREATE TABLE w2(a, b TEXT);
1548
1549 INSERT INTO w1 VALUES('1', 4.1);
1550 INSERT INTO w2 VALUES(1, 4.1);
1551 } {}
1552
1553 do_select_tests e_select-7.11 {
1554 1 { SELECT a FROM w1 UNION SELECT a FROM w2 } {1 1}
1555 2 { SELECT a FROM w2 UNION SELECT a FROM w1 } {1 1}
1556 3 { SELECT b FROM w1 UNION SELECT b FROM w2 } {4.1 4.1}
1557 4 { SELECT b FROM w2 UNION SELECT b FROM w1 } {4.1 4.1}
1558
1559 5 { SELECT a FROM w1 INTERSECT SELECT a FROM w2 } {}
1560 6 { SELECT a FROM w2 INTERSECT SELECT a FROM w1 } {}
1561 7 { SELECT b FROM w1 INTERSECT SELECT b FROM w2 } {}
1562 8 { SELECT b FROM w2 INTERSECT SELECT b FROM w1 } {}
1563
1564 9 { SELECT a FROM w1 EXCEPT SELECT a FROM w2 } {1}
1565 10 { SELECT a FROM w2 EXCEPT SELECT a FROM w1 } {1}
1566 11 { SELECT b FROM w1 EXCEPT SELECT b FROM w2 } {4.1}
1567 12 { SELECT b FROM w2 EXCEPT SELECT b FROM w1 } {4.1}
1568 }
1569
1570
1571 # EVIDENCE-OF: R-32562-20566 When three or more simple SELECTs are
1572 # connected into a compound SELECT, they group from left to right. In
1573 # other words, if "A", "B" and "C" are all simple SELECT statements, (A
1574 # op B op C) is processed as ((A op B) op C).
1575 #
1576 # e_select-7.12.1: Precedence of UNION vs. INTERSECT
1577 # e_select-7.12.2: Precedence of UNION vs. UNION ALL
1578 # e_select-7.12.3: Precedence of UNION vs. EXCEPT
1579 # e_select-7.12.4: Precedence of INTERSECT vs. UNION ALL
1580 # e_select-7.12.5: Precedence of INTERSECT vs. EXCEPT
1581 # e_select-7.12.6: Precedence of UNION ALL vs. EXCEPT
1582 # e_select-7.12.7: Check that "a EXCEPT b EXCEPT c" is processed as
1583 # "(a EXCEPT b) EXCEPT c".
1584 #
1585 # The INTERSECT and EXCEPT operations are mutually commutative. So
1586 # the e_select-7.12.5 test cases do not prove very much.
1587 #
1588 drop_all_tables
1589 do_execsql_test e_select-7.12.0 {
1590 CREATE TABLE t1(x);
1591 INSERT INTO t1 VALUES(1);
1592 INSERT INTO t1 VALUES(2);
1593 INSERT INTO t1 VALUES(3);
1594 } {}
1595 foreach {tn select res} {
1596 1a "(1,2) INTERSECT (1) UNION (3)" {1 3}
1597 1b "(3) UNION (1,2) INTERSECT (1)" {1}
1598
1599 2a "(1,2) UNION (3) UNION ALL (1)" {1 2 3 1}
1600 2b "(1) UNION ALL (3) UNION (1,2)" {1 2 3}
1601
1602 3a "(1,2) UNION (3) EXCEPT (1)" {2 3}
1603 3b "(1,2) EXCEPT (3) UNION (1)" {1 2}
1604
1605 4a "(1,2) INTERSECT (1) UNION ALL (3)" {1 3}
1606 4b "(3) UNION (1,2) INTERSECT (1)" {1}
1607
1608 5a "(1,2) INTERSECT (2) EXCEPT (2)" {}
1609 5b "(2,3) EXCEPT (2) INTERSECT (2)" {}
1610
1611 6a "(2) UNION ALL (2) EXCEPT (2)" {}
1612 6b "(2) EXCEPT (2) UNION ALL (2)" {2}
1613
1614 7 "(2,3) EXCEPT (2) EXCEPT (3)" {}
1615 } {
1616 set select [string map {( {SELECT x FROM t1 WHERE x IN (}} $select]
1617 do_execsql_test e_select-7.12.$tn $select [list {*}$res]
1618 }
1619
1620
1621 #-------------------------------------------------------------------------
1622 # ORDER BY clauses
1623 #
1624
1625 drop_all_tables
1626 do_execsql_test e_select-8.1.0 {
1627 CREATE TABLE d1(x, y, z);
1628
1629 INSERT INTO d1 VALUES(1, 2, 3);
1630 INSERT INTO d1 VALUES(2, 5, -1);
1631 INSERT INTO d1 VALUES(1, 2, 8);
1632 INSERT INTO d1 VALUES(1, 2, 7);
1633 INSERT INTO d1 VALUES(2, 4, 93);
1634 INSERT INTO d1 VALUES(1, 2, -20);
1635 INSERT INTO d1 VALUES(1, 4, 93);
1636 INSERT INTO d1 VALUES(1, 5, -1);
1637
1638 CREATE TABLE d2(a, b);
1639 INSERT INTO d2 VALUES('gently', 'failings');
1640 INSERT INTO d2 VALUES('commercials', 'bathrobe');
1641 INSERT INTO d2 VALUES('iterate', 'sexton');
1642 INSERT INTO d2 VALUES('babied', 'charitableness');
1643 INSERT INTO d2 VALUES('solemnness', 'annexed');
1644 INSERT INTO d2 VALUES('rejoicing', 'liabilities');
1645 INSERT INTO d2 VALUES('pragmatist', 'guarded');
1646 INSERT INTO d2 VALUES('barked', 'interrupted');
1647 INSERT INTO d2 VALUES('reemphasizes', 'reply');
1648 INSERT INTO d2 VALUES('lad', 'relenting');
1649 } {}
1650
1651 # EVIDENCE-OF: R-44988-41064 Rows are first sorted based on the results
1652 # of evaluating the left-most expression in the ORDER BY list, then ties
1653 # are broken by evaluating the second left-most expression and so on.
1654 #
1655 do_select_tests e_select-8.1 {
1656 1 "SELECT * FROM d1 ORDER BY x, y, z" {
1657 1 2 -20 1 2 3 1 2 7 1 2 8
1658 1 4 93 1 5 -1 2 4 93 2 5 -1
1659 }
1660 }
1661
1662 # EVIDENCE-OF: R-06617-54588 Each ORDER BY expression may be optionally
1663 # followed by one of the keywords ASC (smaller values are returned
1664 # first) or DESC (larger values are returned first).
1665 #
1666 # Test cases e_select-8.2.* test the above.
1667 #
1668 # EVIDENCE-OF: R-18705-33393 If neither ASC or DESC are specified, rows
1669 # are sorted in ascending (smaller values first) order by default.
1670 #
1671 # Test cases e_select-8.3.* test the above. All 8.3 test cases are
1672 # copies of 8.2 test cases with the explicit "ASC" removed.
1673 #
1674 do_select_tests e_select-8 {
1675 2.1 "SELECT * FROM d1 ORDER BY x ASC, y ASC, z ASC" {
1676 1 2 -20 1 2 3 1 2 7 1 2 8
1677 1 4 93 1 5 -1 2 4 93 2 5 -1
1678 }
1679 2.2 "SELECT * FROM d1 ORDER BY x DESC, y DESC, z DESC" {
1680 2 5 -1 2 4 93 1 5 -1 1 4 93
1681 1 2 8 1 2 7 1 2 3 1 2 -20
1682 }
1683 2.3 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z DESC" {
1684 2 4 93 2 5 -1 1 2 8 1 2 7
1685 1 2 3 1 2 -20 1 4 93 1 5 -1
1686 }
1687 2.4 "SELECT * FROM d1 ORDER BY x DESC, y ASC, z ASC" {
1688 2 4 93 2 5 -1 1 2 -20 1 2 3
1689 1 2 7 1 2 8 1 4 93 1 5 -1
1690 }
1691
1692 3.1 "SELECT * FROM d1 ORDER BY x, y, z" {
1693 1 2 -20 1 2 3 1 2 7 1 2 8
1694 1 4 93 1 5 -1 2 4 93 2 5 -1
1695 }
1696 3.3 "SELECT * FROM d1 ORDER BY x DESC, y, z DESC" {
1697 2 4 93 2 5 -1 1 2 8 1 2 7
1698 1 2 3 1 2 -20 1 4 93 1 5 -1
1699 }
1700 3.4 "SELECT * FROM d1 ORDER BY x DESC, y, z" {
1701 2 4 93 2 5 -1 1 2 -20 1 2 3
1702 1 2 7 1 2 8 1 4 93 1 5 -1
1703 }
1704 }
1705
1706 # EVIDENCE-OF: R-29779-04281 If the ORDER BY expression is a constant
1707 # integer K then the expression is considered an alias for the K-th
1708 # column of the result set (columns are numbered from left to right
1709 # starting with 1).
1710 #
1711 do_select_tests e_select-8.4 {
1712 1 "SELECT * FROM d1 ORDER BY 1 ASC, 2 ASC, 3 ASC" {
1713 1 2 -20 1 2 3 1 2 7 1 2 8
1714 1 4 93 1 5 -1 2 4 93 2 5 -1
1715 }
1716 2 "SELECT * FROM d1 ORDER BY 1 DESC, 2 DESC, 3 DESC" {
1717 2 5 -1 2 4 93 1 5 -1 1 4 93
1718 1 2 8 1 2 7 1 2 3 1 2 -20
1719 }
1720 3 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 DESC" {
1721 2 4 93 2 5 -1 1 2 8 1 2 7
1722 1 2 3 1 2 -20 1 4 93 1 5 -1
1723 }
1724 4 "SELECT * FROM d1 ORDER BY 1 DESC, 2 ASC, 3 ASC" {
1725 2 4 93 2 5 -1 1 2 -20 1 2 3
1726 1 2 7 1 2 8 1 4 93 1 5 -1
1727 }
1728 5 "SELECT * FROM d1 ORDER BY 1, 2, 3" {
1729 1 2 -20 1 2 3 1 2 7 1 2 8
1730 1 4 93 1 5 -1 2 4 93 2 5 -1
1731 }
1732 6 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3 DESC" {
1733 2 4 93 2 5 -1 1 2 8 1 2 7
1734 1 2 3 1 2 -20 1 4 93 1 5 -1
1735 }
1736 7 "SELECT * FROM d1 ORDER BY 1 DESC, 2, 3" {
1737 2 4 93 2 5 -1 1 2 -20 1 2 3
1738 1 2 7 1 2 8 1 4 93 1 5 -1
1739 }
1740 8 "SELECT z, x FROM d1 ORDER BY 2" {
1741 3 1 8 1 7 1 -20 1
1742 93 1 -1 1 -1 2 93 2
1743 }
1744 9 "SELECT z, x FROM d1 ORDER BY 1" {
1745 -20 1 -1 2 -1 1 3 1
1746 7 1 8 1 93 2 93 1
1747 }
1748 }
1749
1750 # EVIDENCE-OF: R-63286-51977 If the ORDER BY expression is an identifier
1751 # that corresponds to the alias of one of the output columns, then the
1752 # expression is considered an alias for that column.
1753 #
1754 do_select_tests e_select-8.5 {
1755 1 "SELECT z+1 AS abc FROM d1 ORDER BY abc" {
1756 -19 0 0 4 8 9 94 94
1757 }
1758 2 "SELECT z+1 AS abc FROM d1 ORDER BY abc DESC" {
1759 94 94 9 8 4 0 0 -19
1760 }
1761 3 "SELECT z AS x, x AS z FROM d1 ORDER BY z" {
1762 3 1 8 1 7 1 -20 1 93 1 -1 1 -1 2 93 2
1763 }
1764 4 "SELECT z AS x, x AS z FROM d1 ORDER BY x" {
1765 -20 1 -1 2 -1 1 3 1 7 1 8 1 93 2 93 1
1766 }
1767 }
1768
1769 # EVIDENCE-OF: R-27923-38747 Otherwise, if the ORDER BY expression is
1770 # any other expression, it is evaluated and the the returned value used
1771 # to order the output rows.
1772 #
1773 # EVIDENCE-OF: R-03421-57988 If the SELECT statement is a simple SELECT,
1774 # then an ORDER BY may contain any arbitrary expressions.
1775 #
1776 do_select_tests e_select-8.6 {
1777 1 "SELECT * FROM d1 ORDER BY x+y+z" {
1778 1 2 -20 1 5 -1 1 2 3 2 5 -1
1779 1 2 7 1 2 8 1 4 93 2 4 93
1780 }
1781 2 "SELECT * FROM d1 ORDER BY x*z" {
1782 1 2 -20 2 5 -1 1 5 -1 1 2 3
1783 1 2 7 1 2 8 1 4 93 2 4 93
1784 }
1785 3 "SELECT * FROM d1 ORDER BY y*z" {
1786 1 2 -20 2 5 -1 1 5 -1 1 2 3
1787 1 2 7 1 2 8 2 4 93 1 4 93
1788 }
1789 }
1790
1791 # EVIDENCE-OF: R-28853-08147 However, if the SELECT is a compound
1792 # SELECT, then ORDER BY expressions that are not aliases to output
1793 # columns must be exactly the same as an expression used as an output
1794 # column.
1795 #
1796 do_select_tests e_select-8.7.1 -error {
1797 %s ORDER BY term does not match any column in the result set
1798 } {
1799 1 "SELECT x FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" 1st
1800 2 "SELECT x,z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" 2nd
1801 }
1802
1803 do_select_tests e_select-8.7.2 {
1804 1 "SELECT x*z FROM d1 UNION ALL SELECT a FROM d2 ORDER BY x*z" {
1805 -20 -2 -1 3 7 8 93 186 babied barked commercials gently
1806 iterate lad pragmatist reemphasizes rejoicing solemnness
1807 }
1808 2 "SELECT x, x/z FROM d1 UNION ALL SELECT a,b FROM d2 ORDER BY x, x/z" {
1809 1 -1 1 0 1 0 1 0 1 0 1 0 2 -2 2 0
1810 babied charitableness barked interrupted commercials bathrobe gently
1811 failings iterate sexton lad relenting pragmatist guarded reemphasizes reply
1812 rejoicing liabilities solemnness annexed
1813 }
1814 }
1815
1816 do_execsql_test e_select-8.8.0 {
1817 CREATE TABLE d3(a);
1818 INSERT INTO d3 VALUES('text');
1819 INSERT INTO d3 VALUES(14.1);
1820 INSERT INTO d3 VALUES(13);
1821 INSERT INTO d3 VALUES(X'78787878');
1822 INSERT INTO d3 VALUES(15);
1823 INSERT INTO d3 VALUES(12.9);
1824 INSERT INTO d3 VALUES(null);
1825
1826 CREATE TABLE d4(x COLLATE nocase);
1827 INSERT INTO d4 VALUES('abc');
1828 INSERT INTO d4 VALUES('ghi');
1829 INSERT INTO d4 VALUES('DEF');
1830 INSERT INTO d4 VALUES('JKL');
1831 } {}
1832
1833 # EVIDENCE-OF: R-10883-17697 For the purposes of sorting rows, values
1834 # are compared in the same way as for comparison expressions.
1835 #
1836 # The following tests verify that values of different types are sorted
1837 # correctly, and that mixed real and integer values are compared properly.
1838 #
1839 do_execsql_test e_select-8.8.1 {
1840 SELECT a FROM d3 ORDER BY a
1841 } {{} 12.9 13 14.1 15 text xxxx}
1842 do_execsql_test e_select-8.8.2 {
1843 SELECT a FROM d3 ORDER BY a DESC
1844 } {xxxx text 15 14.1 13 12.9 {}}
1845
1846
1847 # EVIDENCE-OF: R-64199-22471 If the ORDER BY expression is assigned a
1848 # collation sequence using the postfix COLLATE operator, then the
1849 # specified collation sequence is used.
1850 #
1851 do_execsql_test e_select-8.9.1 {
1852 SELECT x FROM d4 ORDER BY 1 COLLATE binary
1853 } {DEF JKL abc ghi}
1854 do_execsql_test e_select-8.9.2 {
1855 SELECT x COLLATE binary FROM d4 ORDER BY 1 COLLATE nocase
1856 } {abc DEF ghi JKL}
1857
1858 # EVIDENCE-OF: R-09398-26102 Otherwise, if the ORDER BY expression is
1859 # an alias to an expression that has been assigned a collation sequence
1860 # using the postfix COLLATE operator, then the collation sequence
1861 # assigned to the aliased expression is used.
1862 #
1863 # In the test 8.10.2, the only result-column expression has no alias. So the
1864 # ORDER BY expression is not a reference to it and therefore does not inherit
1865 # the collation sequence. In test 8.10.3, "x" is the alias (as well as the
1866 # column name), so the ORDER BY expression is interpreted as an alias and the
1867 # collation sequence attached to the result column is used for sorting.
1868 #
1869 do_execsql_test e_select-8.10.1 {
1870 SELECT x COLLATE binary FROM d4 ORDER BY 1
1871 } {DEF JKL abc ghi}
1872 do_execsql_test e_select-8.10.2 {
1873 SELECT x COLLATE binary FROM d4 ORDER BY x
1874 } {abc DEF ghi JKL}
1875 do_execsql_test e_select-8.10.3 {
1876 SELECT x COLLATE binary AS x FROM d4 ORDER BY x
1877 } {DEF JKL abc ghi}
1878
1879 # EVIDENCE-OF: R-27301-09658 Otherwise, if the ORDER BY expression is a
1880 # column or an alias of an expression that is a column, then the default
1881 # collation sequence for the column is used.
1882 #
1883 do_execsql_test e_select-8.11.1 {
1884 SELECT x AS y FROM d4 ORDER BY y
1885 } {abc DEF ghi JKL}
1886 do_execsql_test e_select-8.11.2 {
1887 SELECT x||'' FROM d4 ORDER BY x
1888 } {abc DEF ghi JKL}
1889
1890 # EVIDENCE-OF: R-49925-55905 Otherwise, the BINARY collation sequence is
1891 # used.
1892 #
1893 do_execsql_test e_select-8.12.1 {
1894 SELECT x FROM d4 ORDER BY x||''
1895 } {DEF JKL abc ghi}
1896
1897 # EVIDENCE-OF: R-44130-32593 If an ORDER BY expression is not an integer
1898 # alias, then SQLite searches the left-most SELECT in the compound for a
1899 # result column that matches either the second or third rules above. If
1900 # a match is found, the search stops and the expression is handled as an
1901 # alias for the result column that it has been matched against.
1902 # Otherwise, the next SELECT to the right is tried, and so on.
1903 #
1904 do_execsql_test e_select-8.13.0 {
1905 CREATE TABLE d5(a, b);
1906 CREATE TABLE d6(c, d);
1907 CREATE TABLE d7(e, f);
1908
1909 INSERT INTO d5 VALUES(1, 'f');
1910 INSERT INTO d6 VALUES(2, 'e');
1911 INSERT INTO d7 VALUES(3, 'd');
1912 INSERT INTO d5 VALUES(4, 'c');
1913 INSERT INTO d6 VALUES(5, 'b');
1914 INSERT INTO d7 VALUES(6, 'a');
1915
1916 CREATE TABLE d8(x COLLATE nocase);
1917 CREATE TABLE d9(y COLLATE nocase);
1918
1919 INSERT INTO d8 VALUES('a');
1920 INSERT INTO d9 VALUES('B');
1921 INSERT INTO d8 VALUES('c');
1922 INSERT INTO d9 VALUES('D');
1923 } {}
1924 do_select_tests e_select-8.13 {
1925 1 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1926 ORDER BY a
1927 } {1 2 3 4 5 6}
1928 2 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1929 ORDER BY c
1930 } {1 2 3 4 5 6}
1931 3 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1932 ORDER BY e
1933 } {1 2 3 4 5 6}
1934 4 { SELECT a FROM d5 UNION ALL SELECT c FROM d6 UNION ALL SELECT e FROM d7
1935 ORDER BY 1
1936 } {1 2 3 4 5 6}
1937
1938 5 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY b }
1939 {f 1 c 4 4 c 1 f}
1940 6 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 2 }
1941 {f 1 c 4 4 c 1 f}
1942
1943 7 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY a }
1944 {1 f 4 c c 4 f 1}
1945 8 { SELECT a, b FROM d5 UNION ALL SELECT b, a FROM d5 ORDER BY 1 }
1946 {1 f 4 c c 4 f 1}
1947
1948 9 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1949 {f 2 c 5 4 c 1 f}
1950 10 { SELECT a, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 2 }
1951 {f 2 c 5 4 c 1 f}
1952
1953 11 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY a+1 }
1954 {2 f 5 c c 5 f 2}
1955 12 { SELECT a+1, b FROM d5 UNION ALL SELECT b, a+1 FROM d5 ORDER BY 1 }
1956 {2 f 5 c c 5 f 2}
1957 }
1958
1959 # EVIDENCE-OF: R-39265-04070 If no matching expression can be found in
1960 # the result columns of any constituent SELECT, it is an error.
1961 #
1962 do_select_tests e_select-8.14 -error {
1963 %s ORDER BY term does not match any column in the result set
1964 } {
1965 1 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a+1 } 1st
1966 2 { SELECT a FROM d5 UNION SELECT c FROM d6 ORDER BY a, a+1 } 2nd
1967 3 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY 'hello' } 1st
1968 4 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY blah } 1st
1969 5 { SELECT * FROM d5 INTERSECT SELECT * FROM d6 ORDER BY c,d,c+d } 3rd
1970 6 { SELECT * FROM d5 EXCEPT SELECT * FROM d7 ORDER BY 1,2,b,a/b } 4th
1971 }
1972
1973 # EVIDENCE-OF: R-03407-11483 Each term of the ORDER BY clause is
1974 # processed separately and may be matched against result columns from
1975 # different SELECT statements in the compound.
1976 #
1977 do_select_tests e_select-8.15 {
1978 1 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY a, d }
1979 {1 e 1 f 4 b 4 c}
1980 2 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY c-1, b }
1981 {1 e 1 f 4 b 4 c}
1982 3 { SELECT a, b FROM d5 UNION ALL SELECT c-1, d FROM d6 ORDER BY 1, 2 }
1983 {1 e 1 f 4 b 4 c}
1984 }
1985
1986
1987 #-------------------------------------------------------------------------
1988 # Tests related to statements made about the LIMIT/OFFSET clause.
1989 #
1990 do_execsql_test e_select-9.0 {
1991 CREATE TABLE f1(a, b);
1992 INSERT INTO f1 VALUES(26, 'z');
1993 INSERT INTO f1 VALUES(25, 'y');
1994 INSERT INTO f1 VALUES(24, 'x');
1995 INSERT INTO f1 VALUES(23, 'w');
1996 INSERT INTO f1 VALUES(22, 'v');
1997 INSERT INTO f1 VALUES(21, 'u');
1998 INSERT INTO f1 VALUES(20, 't');
1999 INSERT INTO f1 VALUES(19, 's');
2000 INSERT INTO f1 VALUES(18, 'r');
2001 INSERT INTO f1 VALUES(17, 'q');
2002 INSERT INTO f1 VALUES(16, 'p');
2003 INSERT INTO f1 VALUES(15, 'o');
2004 INSERT INTO f1 VALUES(14, 'n');
2005 INSERT INTO f1 VALUES(13, 'm');
2006 INSERT INTO f1 VALUES(12, 'l');
2007 INSERT INTO f1 VALUES(11, 'k');
2008 INSERT INTO f1 VALUES(10, 'j');
2009 INSERT INTO f1 VALUES(9, 'i');
2010 INSERT INTO f1 VALUES(8, 'h');
2011 INSERT INTO f1 VALUES(7, 'g');
2012 INSERT INTO f1 VALUES(6, 'f');
2013 INSERT INTO f1 VALUES(5, 'e');
2014 INSERT INTO f1 VALUES(4, 'd');
2015 INSERT INTO f1 VALUES(3, 'c');
2016 INSERT INTO f1 VALUES(2, 'b');
2017 INSERT INTO f1 VALUES(1, 'a');
2018 } {}
2019
2020 # EVIDENCE-OF: R-30481-56627 Any scalar expression may be used in the
2021 # LIMIT clause, so long as it evaluates to an integer or a value that
2022 # can be losslessly converted to an integer.
2023 #
2024 do_select_tests e_select-9.1 {
2025 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 } {a b c d e}
2026 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 } {a b c d e}
2027 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT a FROM f1 WHERE b = 'e') }
2028 {a b c d e}
2029 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.0 } {a b c d e}
2030 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' } {a b c d e}
2031 }
2032
2033 # EVIDENCE-OF: R-46155-47219 If the expression evaluates to a NULL value
2034 # or any other value that cannot be losslessly converted to an integer,
2035 # an error is returned.
2036 #
2037
2038 do_select_tests e_select-9.2 -error "datatype mismatch" {
2039 1 { SELECT b FROM f1 ORDER BY a LIMIT 'hello' } {}
2040 2 { SELECT b FROM f1 ORDER BY a LIMIT NULL } {}
2041 3 { SELECT b FROM f1 ORDER BY a LIMIT X'ABCD' } {}
2042 4 { SELECT b FROM f1 ORDER BY a LIMIT 5.1 } {}
2043 5 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT group_concat(b) FROM f1) } {}
2044 }
2045
2046 # EVIDENCE-OF: R-03014-26414 If the LIMIT expression evaluates to a
2047 # negative value, then there is no upper bound on the number of rows
2048 # returned.
2049 #
2050 do_select_tests e_select-9.4 {
2051 1 { SELECT b FROM f1 ORDER BY a LIMIT -1 }
2052 {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2053 2 { SELECT b FROM f1 ORDER BY a LIMIT length('abc')-100 }
2054 {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2055 3 { SELECT b FROM f1 ORDER BY a LIMIT (SELECT count(*) FROM f1)/2 - 14 }
2056 {a b c d e f g h i j k l m n o p q r s t u v w x y z}
2057 }
2058
2059 # EVIDENCE-OF: R-33750-29536 Otherwise, the SELECT returns the first N
2060 # rows of its result set only, where N is the value that the LIMIT
2061 # expression evaluates to.
2062 #
2063 do_select_tests e_select-9.5 {
2064 1 { SELECT b FROM f1 ORDER BY a LIMIT 0 } {}
2065 2 { SELECT b FROM f1 ORDER BY a DESC LIMIT 4 } {z y x w}
2066 3 { SELECT b FROM f1 ORDER BY a DESC LIMIT 8 } {z y x w v u t s}
2067 4 { SELECT b FROM f1 ORDER BY a DESC LIMIT '12.0' } {z y x w v u t s r q p o}
2068 }
2069
2070 # EVIDENCE-OF: R-54935-19057 Or, if the SELECT statement would return
2071 # less than N rows without a LIMIT clause, then the entire result set is
2072 # returned.
2073 #
2074 do_select_tests e_select-9.6 {
2075 1 { SELECT b FROM f1 WHERE a>21 ORDER BY a LIMIT 10 } {v w x y z}
2076 2 { SELECT count(*) FROM f1 GROUP BY a/5 ORDER BY 1 LIMIT 10 } {2 4 5 5 5 5}
2077 }
2078
2079
2080 # EVIDENCE-OF: R-24188-24349 The expression attached to the optional
2081 # OFFSET clause that may follow a LIMIT clause must also evaluate to an
2082 # integer, or a value that can be losslessly converted to an integer.
2083 #
2084 foreach {tn select} {
2085 1 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 'hello' }
2086 2 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET NULL }
2087 3 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET X'ABCD' }
2088 4 { SELECT b FROM f1 ORDER BY a LIMIT 2 OFFSET 5.1 }
2089 5 { SELECT b FROM f1 ORDER BY a
2090 LIMIT 2 OFFSET (SELECT group_concat(b) FROM f1)
2091 }
2092 } {
2093 do_catchsql_test e_select-9.7.$tn $select {1 {datatype mismatch}}
2094 }
2095
2096 # EVIDENCE-OF: R-20467-43422 If an expression has an OFFSET clause, then
2097 # the first M rows are omitted from the result set returned by the
2098 # SELECT statement and the next N rows are returned, where M and N are
2099 # the values that the OFFSET and LIMIT clauses evaluate to,
2100 # respectively.
2101 #
2102 do_select_tests e_select-9.8 {
2103 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 5} {f g h i j k l m n o}
2104 2 { SELECT b FROM f1 ORDER BY a LIMIT 2+3 OFFSET 10} {k l m n o}
2105 3 { SELECT b FROM f1 ORDER BY a
2106 LIMIT (SELECT a FROM f1 WHERE b='j')
2107 OFFSET (SELECT a FROM f1 WHERE b='b')
2108 } {c d e f g h i j k l}
2109 4 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 3.0 } {d e f g h}
2110 5 { SELECT b FROM f1 ORDER BY a LIMIT '5' OFFSET 0 } {a b c d e}
2111 6 { SELECT b FROM f1 ORDER BY a LIMIT 0 OFFSET 10 } {}
2112 7 { SELECT b FROM f1 ORDER BY a LIMIT 3 OFFSET '1'||'5' } {p q r}
2113 }
2114
2115 # EVIDENCE-OF: R-34648-44875 Or, if the SELECT would return less than
2116 # M+N rows if it did not have a LIMIT clause, then the first M rows are
2117 # skipped and the remaining rows (if any) are returned.
2118 #
2119 do_select_tests e_select-9.9 {
2120 1 { SELECT b FROM f1 ORDER BY a LIMIT 10 OFFSET 20} {u v w x y z}
2121 2 { SELECT a FROM f1 ORDER BY a DESC LIMIT 100 OFFSET 18+4} {4 3 2 1}
2122 }
2123
2124
2125 # EVIDENCE-OF: R-23293-62447 If the OFFSET clause evaluates to a
2126 # negative value, the results are the same as if it had evaluated to
2127 # zero.
2128 #
2129 do_select_tests e_select-9.10 {
2130 1 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -1 } {a b c d e}
2131 2 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET -500 } {a b c d e}
2132 3 { SELECT b FROM f1 ORDER BY a LIMIT 5 OFFSET 0 } {a b c d e}
2133 }
2134
2135 # EVIDENCE-OF: R-19509-40356 Instead of a separate OFFSET clause, the
2136 # LIMIT clause may specify two scalar expressions separated by a comma.
2137 #
2138 # EVIDENCE-OF: R-33788-46243 In this case, the first expression is used
2139 # as the OFFSET expression and the second as the LIMIT expression.
2140 #
2141 do_select_tests e_select-9.11 {
2142 1 { SELECT b FROM f1 ORDER BY a LIMIT 5, 10 } {f g h i j k l m n o}
2143 2 { SELECT b FROM f1 ORDER BY a LIMIT 10, 2+3 } {k l m n o}
2144 3 { SELECT b FROM f1 ORDER BY a
2145 LIMIT (SELECT a FROM f1 WHERE b='b'), (SELECT a FROM f1 WHERE b='j')
2146 } {c d e f g h i j k l}
2147 4 { SELECT b FROM f1 ORDER BY a LIMIT 3.0, '5' } {d e f g h}
2148 5 { SELECT b FROM f1 ORDER BY a LIMIT 0, '5' } {a b c d e}
2149 6 { SELECT b FROM f1 ORDER BY a LIMIT 10, 0 } {}
2150 7 { SELECT b FROM f1 ORDER BY a LIMIT '1'||'5', 3 } {p q r}
2151
2152 8 { SELECT b FROM f1 ORDER BY a LIMIT 20, 10 } {u v w x y z}
2153 9 { SELECT a FROM f1 ORDER BY a DESC LIMIT 18+4, 100 } {4 3 2 1}
2154
2155 10 { SELECT b FROM f1 ORDER BY a LIMIT -1, 5 } {a b c d e}
2156 11 { SELECT b FROM f1 ORDER BY a LIMIT -500, 5 } {a b c d e}
2157 12 { SELECT b FROM f1 ORDER BY a LIMIT 0, 5 } {a b c d e}
2158 }
2159
2160 finish_test
OLDNEW
« no previous file with comments | « third_party/sqlite/src/test/e_reindex.test ('k') | third_party/sqlite/src/test/e_select2.test » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698