OLD | NEW |
| (Empty) |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "sync/notifier/ack_tracker.h" | |
6 | |
7 #include <algorithm> | |
8 #include <iterator> | |
9 #include <utility> | |
10 | |
11 #include "base/callback.h" | |
12 #include "base/stl_util.h" | |
13 #include "base/time/tick_clock.h" | |
14 #include "google/cacheinvalidation/include/types.h" | |
15 | |
16 namespace syncer { | |
17 | |
18 namespace { | |
19 | |
20 // All times are in milliseconds. | |
21 const net::BackoffEntry::Policy kDefaultBackoffPolicy = { | |
22 // Number of initial errors (in sequence) to ignore before applying | |
23 // exponential back-off rules. | |
24 // Note this value is set to 1 to work in conjunction with a hack in | |
25 // AckTracker::Track. | |
26 1, | |
27 | |
28 // Initial delay. The interpretation of this value depends on | |
29 // always_use_initial_delay. It's either how long we wait between | |
30 // requests before backoff starts, or how much we delay the first request | |
31 // after backoff starts. | |
32 60 * 1000, | |
33 | |
34 // Factor by which the waiting time will be multiplied. | |
35 2, | |
36 | |
37 // Fuzzing percentage. ex: 10% will spread requests randomly | |
38 // between 90%-100% of the calculated time. | |
39 0, | |
40 | |
41 // Maximum amount of time we are willing to delay our request, -1 | |
42 // for no maximum. | |
43 60 * 10 * 1000, | |
44 | |
45 // Time to keep an entry from being discarded even when it | |
46 // has no significant state, -1 to never discard. | |
47 -1, | |
48 | |
49 // If true, we always use a delay of initial_delay_ms, even before | |
50 // we've seen num_errors_to_ignore errors. Otherwise, initial_delay_ms | |
51 // is the first delay once we start exponential backoff. | |
52 // | |
53 // So if we're ignoring 1 error, we'll see (N, N, Nm, Nm^2, ...) if true, | |
54 // and (0, 0, N, Nm, ...) when false, where N is initial_backoff_ms and | |
55 // m is multiply_factor, assuming we've already seen one success. | |
56 true, | |
57 }; | |
58 | |
59 scoped_ptr<net::BackoffEntry> CreateDefaultBackoffEntry( | |
60 const net::BackoffEntry::Policy* const policy) { | |
61 return scoped_ptr<net::BackoffEntry>(new net::BackoffEntry(policy)); | |
62 } | |
63 | |
64 } // namespace | |
65 | |
66 AckTracker::Delegate::~Delegate() { | |
67 } | |
68 | |
69 AckTracker::Entry::Entry(scoped_ptr<net::BackoffEntry> backoff, | |
70 const ObjectIdSet& ids) | |
71 : backoff(backoff.Pass()), ids(ids) { | |
72 } | |
73 | |
74 AckTracker::Entry::~Entry() { | |
75 } | |
76 | |
77 AckTracker::AckTracker(base::TickClock* tick_clock, Delegate* delegate) | |
78 : create_backoff_entry_callback_(base::Bind(&CreateDefaultBackoffEntry)), | |
79 tick_clock_(tick_clock), | |
80 delegate_(delegate) { | |
81 DCHECK(tick_clock_); | |
82 DCHECK(delegate_); | |
83 } | |
84 | |
85 AckTracker::~AckTracker() { | |
86 DCHECK(thread_checker_.CalledOnValidThread()); | |
87 | |
88 Clear(); | |
89 } | |
90 | |
91 void AckTracker::Clear() { | |
92 DCHECK(thread_checker_.CalledOnValidThread()); | |
93 | |
94 timer_.Stop(); | |
95 STLDeleteValues(&queue_); | |
96 } | |
97 | |
98 void AckTracker::Track(const ObjectIdSet& ids) { | |
99 DCHECK(thread_checker_.CalledOnValidThread()); | |
100 DCHECK(!ids.empty()); | |
101 | |
102 scoped_ptr<Entry> entry(new Entry( | |
103 create_backoff_entry_callback_.Run(&kDefaultBackoffPolicy), ids)); | |
104 // This is a small hack. When net::BackoffRequest is first created, | |
105 // GetReleaseTime() always returns the default base::TimeTicks value: 0. | |
106 // In order to work around that, we mark it as failed right away. | |
107 entry->backoff->InformOfRequest(false /* succeeded */); | |
108 const base::TimeTicks release_time = entry->backoff->GetReleaseTime(); | |
109 queue_.insert(std::make_pair(release_time, entry.release())); | |
110 NudgeTimer(); | |
111 } | |
112 | |
113 void AckTracker::Ack(const ObjectIdSet& ids) { | |
114 DCHECK(thread_checker_.CalledOnValidThread()); | |
115 | |
116 // We could be clever and maintain a mapping of object IDs to their position | |
117 // in the multimap, but that makes things a lot more complicated. | |
118 for (std::multimap<base::TimeTicks, Entry*>::iterator it = queue_.begin(); | |
119 it != queue_.end(); ) { | |
120 ObjectIdSet remaining_ids; | |
121 std::set_difference(it->second->ids.begin(), it->second->ids.end(), | |
122 ids.begin(), ids.end(), | |
123 std::inserter(remaining_ids, remaining_ids.begin()), | |
124 ids.value_comp()); | |
125 it->second->ids.swap(remaining_ids); | |
126 if (it->second->ids.empty()) { | |
127 std::multimap<base::TimeTicks, Entry*>::iterator erase_it = it; | |
128 ++it; | |
129 delete erase_it->second; | |
130 queue_.erase(erase_it); | |
131 } else { | |
132 ++it; | |
133 } | |
134 } | |
135 NudgeTimer(); | |
136 } | |
137 | |
138 void AckTracker::NudgeTimer() { | |
139 DCHECK(thread_checker_.CalledOnValidThread()); | |
140 | |
141 if (queue_.empty()) { | |
142 return; | |
143 } | |
144 | |
145 const base::TimeTicks now = tick_clock_->NowTicks(); | |
146 // There are two cases when the timer needs to be started: | |
147 // 1. |desired_run_time_| is in the past. By definition, the timer has already | |
148 // fired at this point. Since the queue is non-empty, we need to set the | |
149 // timer to fire again. | |
150 // 2. The timer is already running but we need it to fire sooner if the first | |
151 // entry's timeout occurs before |desired_run_time_|. | |
152 if (desired_run_time_ <= now || queue_.begin()->first < desired_run_time_) { | |
153 base::TimeDelta delay = queue_.begin()->first - now; | |
154 if (delay < base::TimeDelta()) { | |
155 delay = base::TimeDelta(); | |
156 } | |
157 timer_.Start(FROM_HERE, delay, this, &AckTracker::OnTimeout); | |
158 desired_run_time_ = queue_.begin()->first; | |
159 } | |
160 } | |
161 | |
162 void AckTracker::OnTimeout() { | |
163 DCHECK(thread_checker_.CalledOnValidThread()); | |
164 | |
165 OnTimeoutAt(tick_clock_->NowTicks()); | |
166 } | |
167 | |
168 void AckTracker::OnTimeoutAt(base::TimeTicks now) { | |
169 DCHECK(thread_checker_.CalledOnValidThread()); | |
170 | |
171 if (queue_.empty()) | |
172 return; | |
173 | |
174 ObjectIdSet expired_ids; | |
175 std::multimap<base::TimeTicks, Entry*>::iterator end = | |
176 queue_.upper_bound(now); | |
177 std::vector<Entry*> expired_entries; | |
178 for (std::multimap<base::TimeTicks, Entry*>::iterator it = queue_.begin(); | |
179 it != end; ++it) { | |
180 expired_ids.insert(it->second->ids.begin(), it->second->ids.end()); | |
181 it->second->backoff->InformOfRequest(false /* succeeded */); | |
182 expired_entries.push_back(it->second); | |
183 } | |
184 queue_.erase(queue_.begin(), end); | |
185 for (std::vector<Entry*>::const_iterator it = expired_entries.begin(); | |
186 it != expired_entries.end(); ++it) { | |
187 queue_.insert(std::make_pair((*it)->backoff->GetReleaseTime(), *it)); | |
188 } | |
189 delegate_->OnTimeout(expired_ids); | |
190 NudgeTimer(); | |
191 } | |
192 | |
193 // Testing helpers. | |
194 void AckTracker::SetCreateBackoffEntryCallbackForTest( | |
195 const CreateBackoffEntryCallback& create_backoff_entry_callback) { | |
196 DCHECK(thread_checker_.CalledOnValidThread()); | |
197 | |
198 create_backoff_entry_callback_ = create_backoff_entry_callback; | |
199 } | |
200 | |
201 bool AckTracker::TriggerTimeoutAtForTest(base::TimeTicks now) { | |
202 DCHECK(thread_checker_.CalledOnValidThread()); | |
203 | |
204 bool no_timeouts_before_now = (queue_.lower_bound(now) == queue_.begin()); | |
205 OnTimeoutAt(now); | |
206 return no_timeouts_before_now; | |
207 } | |
208 | |
209 bool AckTracker::IsQueueEmptyForTest() const { | |
210 DCHECK(thread_checker_.CalledOnValidThread()); | |
211 | |
212 return queue_.empty(); | |
213 } | |
214 | |
215 const base::Timer& AckTracker::GetTimerForTest() const { | |
216 DCHECK(thread_checker_.CalledOnValidThread()); | |
217 | |
218 return timer_; | |
219 } | |
220 | |
221 } // namespace syncer | |
OLD | NEW |