Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(25)

Unified Diff: generated/googleapis/lib/prediction/v1_6.dart

Issue 559053002: Generate 0.1.0 version of googleapis/googleapis_beta (Closed) Base URL: git@github.com:dart-lang/googleapis.git@master
Patch Set: Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: generated/googleapis/lib/prediction/v1_6.dart
diff --git a/generated/googleapis/lib/prediction/v1_6.dart b/generated/googleapis/lib/prediction/v1_6.dart
new file mode 100644
index 0000000000000000000000000000000000000000..fd148d8f701465c866e1056142f1363e67548d18
--- /dev/null
+++ b/generated/googleapis/lib/prediction/v1_6.dart
@@ -0,0 +1,1459 @@
+library googleapis.prediction.v1_6;
+
+import "dart:core" as core;
+import "dart:collection" as collection;
+import "dart:async" as async;
+import "dart:convert" as convert;
+
+import "package:crypto/crypto.dart" as crypto;
+import 'package:http/http.dart' as http;
+import '../src/common_internal.dart' as common_internal;
+import '../common/common.dart' as common;
+
+export '../common/common.dart' show ApiRequestError;
+export '../common/common.dart' show DetailedApiRequestError;
+
+/**
+ * Lets you access a cloud hosted machine learning service that makes it easy to
+ * build smart apps
+ */
+class PredictionApi {
+ /** Manage your data and permissions in Google Cloud Storage */
+ static const DevstorageFullControlScope = "https://www.googleapis.com/auth/devstorage.full_control";
+
+ /** View your data in Google Cloud Storage */
+ static const DevstorageReadOnlyScope = "https://www.googleapis.com/auth/devstorage.read_only";
+
+ /** Manage your data in Google Cloud Storage */
+ static const DevstorageReadWriteScope = "https://www.googleapis.com/auth/devstorage.read_write";
+
+ /** Manage your data in the Google Prediction API */
+ static const PredictionScope = "https://www.googleapis.com/auth/prediction";
+
+
+ final common_internal.ApiRequester _requester;
+
+ HostedmodelsResourceApi get hostedmodels => new HostedmodelsResourceApi(_requester);
+ TrainedmodelsResourceApi get trainedmodels => new TrainedmodelsResourceApi(_requester);
+
+ PredictionApi(http.Client client) :
+ _requester = new common_internal.ApiRequester(client, "https://www.googleapis.com/", "/prediction/v1.6/projects/");
+}
+
+
+/** Not documented yet. */
+class HostedmodelsResourceApi {
+ final common_internal.ApiRequester _requester;
+
+ HostedmodelsResourceApi(common_internal.ApiRequester client) :
+ _requester = client;
+
+ /**
+ * Submit input and request an output against a hosted model.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [hostedModelName] - The name of a hosted model.
+ *
+ * Completes with a [Output].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<Output> predict(Input request, core.String project, core.String hostedModelName) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (hostedModelName == null) {
+ throw new core.ArgumentError("Parameter hostedModelName is required.");
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/hostedmodels/' + common_internal.Escaper.ecapeVariable('$hostedModelName') + '/predict';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new Output.fromJson(data));
+ }
+
+}
+
+
+/** Not documented yet. */
+class TrainedmodelsResourceApi {
+ final common_internal.ApiRequester _requester;
+
+ TrainedmodelsResourceApi(common_internal.ApiRequester client) :
+ _requester = client;
+
+ /**
+ * Get analysis of the model and the data the model was trained on.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [id] - The unique name for the predictive model.
+ *
+ * Completes with a [Analyze].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<Analyze> analyze(core.String project, core.String id) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (id == null) {
+ throw new core.ArgumentError("Parameter id is required.");
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id') + '/analyze';
+
+ var _response = _requester.request(_url,
+ "GET",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new Analyze.fromJson(data));
+ }
+
+ /**
+ * Delete a trained model.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [id] - The unique name for the predictive model.
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future delete(core.String project, core.String id) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (id == null) {
+ throw new core.ArgumentError("Parameter id is required.");
+ }
+
+ _downloadOptions = null;
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id');
+
+ var _response = _requester.request(_url,
+ "DELETE",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => null);
+ }
+
+ /**
+ * Check training status of your model.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [id] - The unique name for the predictive model.
+ *
+ * Completes with a [Insert2].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<Insert2> get(core.String project, core.String id) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (id == null) {
+ throw new core.ArgumentError("Parameter id is required.");
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id');
+
+ var _response = _requester.request(_url,
+ "GET",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new Insert2.fromJson(data));
+ }
+
+ /**
+ * Train a Prediction API model.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * Completes with a [Insert2].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<Insert2> insert(Insert request, core.String project) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new Insert2.fromJson(data));
+ }
+
+ /**
+ * List available models.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [maxResults] - Maximum number of results to return.
+ *
+ * [pageToken] - Pagination token.
+ *
+ * Completes with a [List].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<List> list(core.String project, {core.int maxResults, core.String pageToken}) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (maxResults != null) {
+ _queryParams["maxResults"] = ["${maxResults}"];
+ }
+ if (pageToken != null) {
+ _queryParams["pageToken"] = [pageToken];
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/list';
+
+ var _response = _requester.request(_url,
+ "GET",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new List.fromJson(data));
+ }
+
+ /**
+ * Submit model id and request a prediction.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [id] - The unique name for the predictive model.
+ *
+ * Completes with a [Output].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<Output> predict(Input request, core.String project, core.String id) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (id == null) {
+ throw new core.ArgumentError("Parameter id is required.");
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id') + '/predict';
+
+ var _response = _requester.request(_url,
+ "POST",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new Output.fromJson(data));
+ }
+
+ /**
+ * Add new data to a trained model.
+ *
+ * [request] - The metadata request object.
+ *
+ * Request parameters:
+ *
+ * [project] - The project associated with the model.
+ *
+ * [id] - The unique name for the predictive model.
+ *
+ * Completes with a [Insert2].
+ *
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an
+ * error.
+ *
+ * If the used [http.Client] completes with an error when making a REST call,
+ * this method will complete with the same error.
+ */
+ async.Future<Insert2> update(Update request, core.String project, core.String id) {
+ var _url = null;
+ var _queryParams = new core.Map();
+ var _uploadMedia = null;
+ var _uploadOptions = null;
+ var _downloadOptions = common.DownloadOptions.Metadata;
+ var _body = null;
+
+ if (request != null) {
+ _body = convert.JSON.encode((request).toJson());
+ }
+ if (project == null) {
+ throw new core.ArgumentError("Parameter project is required.");
+ }
+ if (id == null) {
+ throw new core.ArgumentError("Parameter id is required.");
+ }
+
+
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id');
+
+ var _response = _requester.request(_url,
+ "PUT",
+ body: _body,
+ queryParams: _queryParams,
+ uploadOptions: _uploadOptions,
+ uploadMedia: _uploadMedia,
+ downloadOptions: _downloadOptions);
+ return _response.then((data) => new Insert2.fromJson(data));
+ }
+
+}
+
+
+
+/** Not documented yet. */
+class AnalyzeDataDescriptionFeaturesCategoricalValues {
+ /** Number of times this feature had this value. */
+ core.String count;
+
+ /** The category name. */
+ core.String value;
+
+
+ AnalyzeDataDescriptionFeaturesCategoricalValues();
+
+ AnalyzeDataDescriptionFeaturesCategoricalValues.fromJson(core.Map _json) {
+ if (_json.containsKey("count")) {
+ count = _json["count"];
+ }
+ if (_json.containsKey("value")) {
+ value = _json["value"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (count != null) {
+ _json["count"] = count;
+ }
+ if (value != null) {
+ _json["value"] = value;
+ }
+ return _json;
+ }
+}
+
+
+/** Description of the categorical values of this feature. */
+class AnalyzeDataDescriptionFeaturesCategorical {
+ /** Number of categorical values for this feature in the data. */
+ core.String count;
+
+ /** List of all the categories for this feature in the data set. */
+ core.List<AnalyzeDataDescriptionFeaturesCategoricalValues> values;
+
+
+ AnalyzeDataDescriptionFeaturesCategorical();
+
+ AnalyzeDataDescriptionFeaturesCategorical.fromJson(core.Map _json) {
+ if (_json.containsKey("count")) {
+ count = _json["count"];
+ }
+ if (_json.containsKey("values")) {
+ values = _json["values"].map((value) => new AnalyzeDataDescriptionFeaturesCategoricalValues.fromJson(value)).toList();
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (count != null) {
+ _json["count"] = count;
+ }
+ if (values != null) {
+ _json["values"] = values.map((value) => (value).toJson()).toList();
+ }
+ return _json;
+ }
+}
+
+
+/** Description of the numeric values of this feature. */
+class AnalyzeDataDescriptionFeaturesNumeric {
+ /** Number of numeric values for this feature in the data set. */
+ core.String count;
+
+ /** Mean of the numeric values of this feature in the data set. */
+ core.String mean;
+
+ /** Variance of the numeric values of this feature in the data set. */
+ core.String variance;
+
+
+ AnalyzeDataDescriptionFeaturesNumeric();
+
+ AnalyzeDataDescriptionFeaturesNumeric.fromJson(core.Map _json) {
+ if (_json.containsKey("count")) {
+ count = _json["count"];
+ }
+ if (_json.containsKey("mean")) {
+ mean = _json["mean"];
+ }
+ if (_json.containsKey("variance")) {
+ variance = _json["variance"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (count != null) {
+ _json["count"] = count;
+ }
+ if (mean != null) {
+ _json["mean"] = mean;
+ }
+ if (variance != null) {
+ _json["variance"] = variance;
+ }
+ return _json;
+ }
+}
+
+
+/** Description of multiple-word text values of this feature. */
+class AnalyzeDataDescriptionFeaturesText {
+ /** Number of multiple-word text values for this feature. */
+ core.String count;
+
+
+ AnalyzeDataDescriptionFeaturesText();
+
+ AnalyzeDataDescriptionFeaturesText.fromJson(core.Map _json) {
+ if (_json.containsKey("count")) {
+ count = _json["count"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (count != null) {
+ _json["count"] = count;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class AnalyzeDataDescriptionFeatures {
+ /** Description of the categorical values of this feature. */
+ AnalyzeDataDescriptionFeaturesCategorical categorical;
+
+ /** The feature index. */
+ core.String index;
+
+ /** Description of the numeric values of this feature. */
+ AnalyzeDataDescriptionFeaturesNumeric numeric;
+
+ /** Description of multiple-word text values of this feature. */
+ AnalyzeDataDescriptionFeaturesText text;
+
+
+ AnalyzeDataDescriptionFeatures();
+
+ AnalyzeDataDescriptionFeatures.fromJson(core.Map _json) {
+ if (_json.containsKey("categorical")) {
+ categorical = new AnalyzeDataDescriptionFeaturesCategorical.fromJson(_json["categorical"]);
+ }
+ if (_json.containsKey("index")) {
+ index = _json["index"];
+ }
+ if (_json.containsKey("numeric")) {
+ numeric = new AnalyzeDataDescriptionFeaturesNumeric.fromJson(_json["numeric"]);
+ }
+ if (_json.containsKey("text")) {
+ text = new AnalyzeDataDescriptionFeaturesText.fromJson(_json["text"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (categorical != null) {
+ _json["categorical"] = (categorical).toJson();
+ }
+ if (index != null) {
+ _json["index"] = index;
+ }
+ if (numeric != null) {
+ _json["numeric"] = (numeric).toJson();
+ }
+ if (text != null) {
+ _json["text"] = (text).toJson();
+ }
+ return _json;
+ }
+}
+
+
+/** Description of the output values in the data set. */
+class AnalyzeDataDescriptionOutputFeatureNumeric {
+ /** Number of numeric output values in the data set. */
+ core.String count;
+
+ /** Mean of the output values in the data set. */
+ core.String mean;
+
+ /** Variance of the output values in the data set. */
+ core.String variance;
+
+
+ AnalyzeDataDescriptionOutputFeatureNumeric();
+
+ AnalyzeDataDescriptionOutputFeatureNumeric.fromJson(core.Map _json) {
+ if (_json.containsKey("count")) {
+ count = _json["count"];
+ }
+ if (_json.containsKey("mean")) {
+ mean = _json["mean"];
+ }
+ if (_json.containsKey("variance")) {
+ variance = _json["variance"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (count != null) {
+ _json["count"] = count;
+ }
+ if (mean != null) {
+ _json["mean"] = mean;
+ }
+ if (variance != null) {
+ _json["variance"] = variance;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class AnalyzeDataDescriptionOutputFeatureText {
+ /** Number of times the output label occurred in the data set. */
+ core.String count;
+
+ /** The output label. */
+ core.String value;
+
+
+ AnalyzeDataDescriptionOutputFeatureText();
+
+ AnalyzeDataDescriptionOutputFeatureText.fromJson(core.Map _json) {
+ if (_json.containsKey("count")) {
+ count = _json["count"];
+ }
+ if (_json.containsKey("value")) {
+ value = _json["value"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (count != null) {
+ _json["count"] = count;
+ }
+ if (value != null) {
+ _json["value"] = value;
+ }
+ return _json;
+ }
+}
+
+
+/** Description of the output value or label. */
+class AnalyzeDataDescriptionOutputFeature {
+ /** Description of the output values in the data set. */
+ AnalyzeDataDescriptionOutputFeatureNumeric numeric;
+
+ /** Description of the output labels in the data set. */
+ core.List<AnalyzeDataDescriptionOutputFeatureText> text;
+
+
+ AnalyzeDataDescriptionOutputFeature();
+
+ AnalyzeDataDescriptionOutputFeature.fromJson(core.Map _json) {
+ if (_json.containsKey("numeric")) {
+ numeric = new AnalyzeDataDescriptionOutputFeatureNumeric.fromJson(_json["numeric"]);
+ }
+ if (_json.containsKey("text")) {
+ text = _json["text"].map((value) => new AnalyzeDataDescriptionOutputFeatureText.fromJson(value)).toList();
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (numeric != null) {
+ _json["numeric"] = (numeric).toJson();
+ }
+ if (text != null) {
+ _json["text"] = text.map((value) => (value).toJson()).toList();
+ }
+ return _json;
+ }
+}
+
+
+/** Description of the data the model was trained on. */
+class AnalyzeDataDescription {
+ /** Description of the input features in the data set. */
+ core.List<AnalyzeDataDescriptionFeatures> features;
+
+ /** Description of the output value or label. */
+ AnalyzeDataDescriptionOutputFeature outputFeature;
+
+
+ AnalyzeDataDescription();
+
+ AnalyzeDataDescription.fromJson(core.Map _json) {
+ if (_json.containsKey("features")) {
+ features = _json["features"].map((value) => new AnalyzeDataDescriptionFeatures.fromJson(value)).toList();
+ }
+ if (_json.containsKey("outputFeature")) {
+ outputFeature = new AnalyzeDataDescriptionOutputFeature.fromJson(_json["outputFeature"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (features != null) {
+ _json["features"] = features.map((value) => (value).toJson()).toList();
+ }
+ if (outputFeature != null) {
+ _json["outputFeature"] = (outputFeature).toJson();
+ }
+ return _json;
+ }
+}
+
+
+/** Description of the model. */
+class AnalyzeModelDescription {
+ /**
+ * An output confusion matrix. This shows an estimate for how this model will
+ * do in predictions. This is first indexed by the true class label. For each
+ * true class label, this provides a pair {predicted_label, count}, where
+ * count is the estimated number of times the model will predict the predicted
+ * label given the true label. Will not output if more then 100 classes
+ * (Categorical models only).
+ */
+ core.Map<core.String, core.Map<core.String, core.String>> confusionMatrix;
+
+ /** A list of the confusion matrix row totals. */
+ core.Map<core.String, core.String> confusionMatrixRowTotals;
+
+ /** Basic information about the model. */
+ Insert2 modelinfo;
+
+
+ AnalyzeModelDescription();
+
+ AnalyzeModelDescription.fromJson(core.Map _json) {
+ if (_json.containsKey("confusionMatrix")) {
+ confusionMatrix = _json["confusionMatrix"];
+ }
+ if (_json.containsKey("confusionMatrixRowTotals")) {
+ confusionMatrixRowTotals = _json["confusionMatrixRowTotals"];
+ }
+ if (_json.containsKey("modelinfo")) {
+ modelinfo = new Insert2.fromJson(_json["modelinfo"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (confusionMatrix != null) {
+ _json["confusionMatrix"] = confusionMatrix;
+ }
+ if (confusionMatrixRowTotals != null) {
+ _json["confusionMatrixRowTotals"] = confusionMatrixRowTotals;
+ }
+ if (modelinfo != null) {
+ _json["modelinfo"] = (modelinfo).toJson();
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class Analyze {
+ /** Description of the data the model was trained on. */
+ AnalyzeDataDescription dataDescription;
+
+ /** List of errors with the data. */
+ core.List<core.Map<core.String, core.String>> errors;
+
+ /** The unique name for the predictive model. */
+ core.String id;
+
+ /** What kind of resource this is. */
+ core.String kind;
+
+ /** Description of the model. */
+ AnalyzeModelDescription modelDescription;
+
+ /** A URL to re-request this resource. */
+ core.String selfLink;
+
+
+ Analyze();
+
+ Analyze.fromJson(core.Map _json) {
+ if (_json.containsKey("dataDescription")) {
+ dataDescription = new AnalyzeDataDescription.fromJson(_json["dataDescription"]);
+ }
+ if (_json.containsKey("errors")) {
+ errors = _json["errors"];
+ }
+ if (_json.containsKey("id")) {
+ id = _json["id"];
+ }
+ if (_json.containsKey("kind")) {
+ kind = _json["kind"];
+ }
+ if (_json.containsKey("modelDescription")) {
+ modelDescription = new AnalyzeModelDescription.fromJson(_json["modelDescription"]);
+ }
+ if (_json.containsKey("selfLink")) {
+ selfLink = _json["selfLink"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (dataDescription != null) {
+ _json["dataDescription"] = (dataDescription).toJson();
+ }
+ if (errors != null) {
+ _json["errors"] = errors;
+ }
+ if (id != null) {
+ _json["id"] = id;
+ }
+ if (kind != null) {
+ _json["kind"] = kind;
+ }
+ if (modelDescription != null) {
+ _json["modelDescription"] = (modelDescription).toJson();
+ }
+ if (selfLink != null) {
+ _json["selfLink"] = selfLink;
+ }
+ return _json;
+ }
+}
+
+
+/** Input to the model for a prediction. */
+class InputInput {
+ /**
+ * A list of input features, these can be strings or doubles.
+ *
+ * The values for Object must be JSON objects. It can consist of `num`,
+ * `String`, `bool` and `null` as well as `Map` and `List` values.
+ */
+ core.List<core.Object> csvInstance;
+
+
+ InputInput();
+
+ InputInput.fromJson(core.Map _json) {
+ if (_json.containsKey("csvInstance")) {
+ csvInstance = _json["csvInstance"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (csvInstance != null) {
+ _json["csvInstance"] = csvInstance;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class Input {
+ /** Input to the model for a prediction. */
+ InputInput input;
+
+
+ Input();
+
+ Input.fromJson(core.Map _json) {
+ if (_json.containsKey("input")) {
+ input = new InputInput.fromJson(_json["input"]);
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (input != null) {
+ _json["input"] = (input).toJson();
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class InsertTrainingInstances {
+ /**
+ * The input features for this instance.
+ *
+ * The values for Object must be JSON objects. It can consist of `num`,
+ * `String`, `bool` and `null` as well as `Map` and `List` values.
+ */
+ core.List<core.Object> csvInstance;
+
+ /** The generic output value - could be regression or class label. */
+ core.String output;
+
+
+ InsertTrainingInstances();
+
+ InsertTrainingInstances.fromJson(core.Map _json) {
+ if (_json.containsKey("csvInstance")) {
+ csvInstance = _json["csvInstance"];
+ }
+ if (_json.containsKey("output")) {
+ output = _json["output"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (csvInstance != null) {
+ _json["csvInstance"] = csvInstance;
+ }
+ if (output != null) {
+ _json["output"] = output;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class Insert {
+ /** The unique name for the predictive model. */
+ core.String id;
+
+ /** Type of predictive model (classification or regression). */
+ core.String modelType;
+
+ /** The Id of the model to be copied over. */
+ core.String sourceModel;
+
+ /** Google storage location of the training data file. */
+ core.String storageDataLocation;
+
+ /** Google storage location of the preprocessing pmml file. */
+ core.String storagePMMLLocation;
+
+ /** Google storage location of the pmml model file. */
+ core.String storagePMMLModelLocation;
+
+ /** Instances to train model on. */
+ core.List<InsertTrainingInstances> trainingInstances;
+
+ /**
+ * A class weighting function, which allows the importance weights for class
+ * labels to be specified (Categorical models only).
+ */
+ core.List<core.Map<core.String, core.double>> utility;
+
+
+ Insert();
+
+ Insert.fromJson(core.Map _json) {
+ if (_json.containsKey("id")) {
+ id = _json["id"];
+ }
+ if (_json.containsKey("modelType")) {
+ modelType = _json["modelType"];
+ }
+ if (_json.containsKey("sourceModel")) {
+ sourceModel = _json["sourceModel"];
+ }
+ if (_json.containsKey("storageDataLocation")) {
+ storageDataLocation = _json["storageDataLocation"];
+ }
+ if (_json.containsKey("storagePMMLLocation")) {
+ storagePMMLLocation = _json["storagePMMLLocation"];
+ }
+ if (_json.containsKey("storagePMMLModelLocation")) {
+ storagePMMLModelLocation = _json["storagePMMLModelLocation"];
+ }
+ if (_json.containsKey("trainingInstances")) {
+ trainingInstances = _json["trainingInstances"].map((value) => new InsertTrainingInstances.fromJson(value)).toList();
+ }
+ if (_json.containsKey("utility")) {
+ utility = _json["utility"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (id != null) {
+ _json["id"] = id;
+ }
+ if (modelType != null) {
+ _json["modelType"] = modelType;
+ }
+ if (sourceModel != null) {
+ _json["sourceModel"] = sourceModel;
+ }
+ if (storageDataLocation != null) {
+ _json["storageDataLocation"] = storageDataLocation;
+ }
+ if (storagePMMLLocation != null) {
+ _json["storagePMMLLocation"] = storagePMMLLocation;
+ }
+ if (storagePMMLModelLocation != null) {
+ _json["storagePMMLModelLocation"] = storagePMMLModelLocation;
+ }
+ if (trainingInstances != null) {
+ _json["trainingInstances"] = trainingInstances.map((value) => (value).toJson()).toList();
+ }
+ if (utility != null) {
+ _json["utility"] = utility;
+ }
+ return _json;
+ }
+}
+
+
+/** Model metadata. */
+class Insert2ModelInfo {
+ /**
+ * Estimated accuracy of model taking utility weights into account
+ * (Categorical models only).
+ */
+ core.String classWeightedAccuracy;
+
+ /**
+ * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an
+ * estimate, based on the amount and quality of the training data, of the
+ * estimated prediction accuracy. You can use this is a guide to decide
+ * whether the results are accurate enough for your needs. This estimate will
+ * be more reliable if your real input data is similar to your training data
+ * (Categorical models only).
+ */
+ core.String classificationAccuracy;
+
+ /**
+ * An estimated mean squared error. The can be used to measure the quality of
+ * the predicted model (Regression models only).
+ */
+ core.String meanSquaredError;
+
+ /** Type of predictive model (CLASSIFICATION or REGRESSION). */
+ core.String modelType;
+
+ /** Number of valid data instances used in the trained model. */
+ core.String numberInstances;
+
+ /** Number of class labels in the trained model (Categorical models only). */
+ core.String numberLabels;
+
+
+ Insert2ModelInfo();
+
+ Insert2ModelInfo.fromJson(core.Map _json) {
+ if (_json.containsKey("classWeightedAccuracy")) {
+ classWeightedAccuracy = _json["classWeightedAccuracy"];
+ }
+ if (_json.containsKey("classificationAccuracy")) {
+ classificationAccuracy = _json["classificationAccuracy"];
+ }
+ if (_json.containsKey("meanSquaredError")) {
+ meanSquaredError = _json["meanSquaredError"];
+ }
+ if (_json.containsKey("modelType")) {
+ modelType = _json["modelType"];
+ }
+ if (_json.containsKey("numberInstances")) {
+ numberInstances = _json["numberInstances"];
+ }
+ if (_json.containsKey("numberLabels")) {
+ numberLabels = _json["numberLabels"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (classWeightedAccuracy != null) {
+ _json["classWeightedAccuracy"] = classWeightedAccuracy;
+ }
+ if (classificationAccuracy != null) {
+ _json["classificationAccuracy"] = classificationAccuracy;
+ }
+ if (meanSquaredError != null) {
+ _json["meanSquaredError"] = meanSquaredError;
+ }
+ if (modelType != null) {
+ _json["modelType"] = modelType;
+ }
+ if (numberInstances != null) {
+ _json["numberInstances"] = numberInstances;
+ }
+ if (numberLabels != null) {
+ _json["numberLabels"] = numberLabels;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class Insert2 {
+ /** Insert time of the model (as a RFC 3339 timestamp). */
+ core.DateTime created;
+
+ /** The unique name for the predictive model. */
+ core.String id;
+
+ /** What kind of resource this is. */
+ core.String kind;
+
+ /** Model metadata. */
+ Insert2ModelInfo modelInfo;
+
+ /** Type of predictive model (CLASSIFICATION or REGRESSION). */
+ core.String modelType;
+
+ /** A URL to re-request this resource. */
+ core.String selfLink;
+
+ /** Google storage location of the training data file. */
+ core.String storageDataLocation;
+
+ /** Google storage location of the preprocessing pmml file. */
+ core.String storagePMMLLocation;
+
+ /** Google storage location of the pmml model file. */
+ core.String storagePMMLModelLocation;
+
+ /** Training completion time (as a RFC 3339 timestamp). */
+ core.DateTime trainingComplete;
+
+ /**
+ * The current status of the training job. This can be one of following:
+ * RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
+ */
+ core.String trainingStatus;
+
+
+ Insert2();
+
+ Insert2.fromJson(core.Map _json) {
+ if (_json.containsKey("created")) {
+ created = core.DateTime.parse(_json["created"]);
+ }
+ if (_json.containsKey("id")) {
+ id = _json["id"];
+ }
+ if (_json.containsKey("kind")) {
+ kind = _json["kind"];
+ }
+ if (_json.containsKey("modelInfo")) {
+ modelInfo = new Insert2ModelInfo.fromJson(_json["modelInfo"]);
+ }
+ if (_json.containsKey("modelType")) {
+ modelType = _json["modelType"];
+ }
+ if (_json.containsKey("selfLink")) {
+ selfLink = _json["selfLink"];
+ }
+ if (_json.containsKey("storageDataLocation")) {
+ storageDataLocation = _json["storageDataLocation"];
+ }
+ if (_json.containsKey("storagePMMLLocation")) {
+ storagePMMLLocation = _json["storagePMMLLocation"];
+ }
+ if (_json.containsKey("storagePMMLModelLocation")) {
+ storagePMMLModelLocation = _json["storagePMMLModelLocation"];
+ }
+ if (_json.containsKey("trainingComplete")) {
+ trainingComplete = core.DateTime.parse(_json["trainingComplete"]);
+ }
+ if (_json.containsKey("trainingStatus")) {
+ trainingStatus = _json["trainingStatus"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (created != null) {
+ _json["created"] = (created).toIso8601String();
+ }
+ if (id != null) {
+ _json["id"] = id;
+ }
+ if (kind != null) {
+ _json["kind"] = kind;
+ }
+ if (modelInfo != null) {
+ _json["modelInfo"] = (modelInfo).toJson();
+ }
+ if (modelType != null) {
+ _json["modelType"] = modelType;
+ }
+ if (selfLink != null) {
+ _json["selfLink"] = selfLink;
+ }
+ if (storageDataLocation != null) {
+ _json["storageDataLocation"] = storageDataLocation;
+ }
+ if (storagePMMLLocation != null) {
+ _json["storagePMMLLocation"] = storagePMMLLocation;
+ }
+ if (storagePMMLModelLocation != null) {
+ _json["storagePMMLModelLocation"] = storagePMMLModelLocation;
+ }
+ if (trainingComplete != null) {
+ _json["trainingComplete"] = (trainingComplete).toIso8601String();
+ }
+ if (trainingStatus != null) {
+ _json["trainingStatus"] = trainingStatus;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class List {
+ /** List of models. */
+ core.List<Insert2> items;
+
+ /** What kind of resource this is. */
+ core.String kind;
+
+ /** Pagination token to fetch the next page, if one exists. */
+ core.String nextPageToken;
+
+ /** A URL to re-request this resource. */
+ core.String selfLink;
+
+
+ List();
+
+ List.fromJson(core.Map _json) {
+ if (_json.containsKey("items")) {
+ items = _json["items"].map((value) => new Insert2.fromJson(value)).toList();
+ }
+ if (_json.containsKey("kind")) {
+ kind = _json["kind"];
+ }
+ if (_json.containsKey("nextPageToken")) {
+ nextPageToken = _json["nextPageToken"];
+ }
+ if (_json.containsKey("selfLink")) {
+ selfLink = _json["selfLink"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (items != null) {
+ _json["items"] = items.map((value) => (value).toJson()).toList();
+ }
+ if (kind != null) {
+ _json["kind"] = kind;
+ }
+ if (nextPageToken != null) {
+ _json["nextPageToken"] = nextPageToken;
+ }
+ if (selfLink != null) {
+ _json["selfLink"] = selfLink;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class OutputOutputMulti {
+ /** The class label. */
+ core.String label;
+
+ /** The probability of the class label. */
+ core.String score;
+
+
+ OutputOutputMulti();
+
+ OutputOutputMulti.fromJson(core.Map _json) {
+ if (_json.containsKey("label")) {
+ label = _json["label"];
+ }
+ if (_json.containsKey("score")) {
+ score = _json["score"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (label != null) {
+ _json["label"] = label;
+ }
+ if (score != null) {
+ _json["score"] = score;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class Output {
+ /** The unique name for the predictive model. */
+ core.String id;
+
+ /** What kind of resource this is. */
+ core.String kind;
+
+ /** The most likely class label (Categorical models only). */
+ core.String outputLabel;
+
+ /**
+ * A list of class labels with their estimated probabilities (Categorical
+ * models only).
+ */
+ core.List<OutputOutputMulti> outputMulti;
+
+ /** The estimated regression value (Regression models only). */
+ core.double outputValue;
+
+ /** A URL to re-request this resource. */
+ core.String selfLink;
+
+
+ Output();
+
+ Output.fromJson(core.Map _json) {
+ if (_json.containsKey("id")) {
+ id = _json["id"];
+ }
+ if (_json.containsKey("kind")) {
+ kind = _json["kind"];
+ }
+ if (_json.containsKey("outputLabel")) {
+ outputLabel = _json["outputLabel"];
+ }
+ if (_json.containsKey("outputMulti")) {
+ outputMulti = _json["outputMulti"].map((value) => new OutputOutputMulti.fromJson(value)).toList();
+ }
+ if (_json.containsKey("outputValue")) {
+ outputValue = _json["outputValue"];
+ }
+ if (_json.containsKey("selfLink")) {
+ selfLink = _json["selfLink"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (id != null) {
+ _json["id"] = id;
+ }
+ if (kind != null) {
+ _json["kind"] = kind;
+ }
+ if (outputLabel != null) {
+ _json["outputLabel"] = outputLabel;
+ }
+ if (outputMulti != null) {
+ _json["outputMulti"] = outputMulti.map((value) => (value).toJson()).toList();
+ }
+ if (outputValue != null) {
+ _json["outputValue"] = outputValue;
+ }
+ if (selfLink != null) {
+ _json["selfLink"] = selfLink;
+ }
+ return _json;
+ }
+}
+
+
+/** Not documented yet. */
+class Update {
+ /**
+ * The input features for this instance.
+ *
+ * The values for Object must be JSON objects. It can consist of `num`,
+ * `String`, `bool` and `null` as well as `Map` and `List` values.
+ */
+ core.List<core.Object> csvInstance;
+
+ /** The generic output value - could be regression or class label. */
+ core.String output;
+
+
+ Update();
+
+ Update.fromJson(core.Map _json) {
+ if (_json.containsKey("csvInstance")) {
+ csvInstance = _json["csvInstance"];
+ }
+ if (_json.containsKey("output")) {
+ output = _json["output"];
+ }
+ }
+
+ core.Map toJson() {
+ var _json = new core.Map();
+ if (csvInstance != null) {
+ _json["csvInstance"] = csvInstance;
+ }
+ if (output != null) {
+ _json["output"] = output;
+ }
+ return _json;
+ }
+}
+
+

Powered by Google App Engine
This is Rietveld 408576698