| Index: generated/googleapis/lib/prediction/v1_6.dart
|
| diff --git a/generated/googleapis/lib/prediction/v1_6.dart b/generated/googleapis/lib/prediction/v1_6.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..fd148d8f701465c866e1056142f1363e67548d18
|
| --- /dev/null
|
| +++ b/generated/googleapis/lib/prediction/v1_6.dart
|
| @@ -0,0 +1,1459 @@
|
| +library googleapis.prediction.v1_6;
|
| +
|
| +import "dart:core" as core;
|
| +import "dart:collection" as collection;
|
| +import "dart:async" as async;
|
| +import "dart:convert" as convert;
|
| +
|
| +import "package:crypto/crypto.dart" as crypto;
|
| +import 'package:http/http.dart' as http;
|
| +import '../src/common_internal.dart' as common_internal;
|
| +import '../common/common.dart' as common;
|
| +
|
| +export '../common/common.dart' show ApiRequestError;
|
| +export '../common/common.dart' show DetailedApiRequestError;
|
| +
|
| +/**
|
| + * Lets you access a cloud hosted machine learning service that makes it easy to
|
| + * build smart apps
|
| + */
|
| +class PredictionApi {
|
| + /** Manage your data and permissions in Google Cloud Storage */
|
| + static const DevstorageFullControlScope = "https://www.googleapis.com/auth/devstorage.full_control";
|
| +
|
| + /** View your data in Google Cloud Storage */
|
| + static const DevstorageReadOnlyScope = "https://www.googleapis.com/auth/devstorage.read_only";
|
| +
|
| + /** Manage your data in Google Cloud Storage */
|
| + static const DevstorageReadWriteScope = "https://www.googleapis.com/auth/devstorage.read_write";
|
| +
|
| + /** Manage your data in the Google Prediction API */
|
| + static const PredictionScope = "https://www.googleapis.com/auth/prediction";
|
| +
|
| +
|
| + final common_internal.ApiRequester _requester;
|
| +
|
| + HostedmodelsResourceApi get hostedmodels => new HostedmodelsResourceApi(_requester);
|
| + TrainedmodelsResourceApi get trainedmodels => new TrainedmodelsResourceApi(_requester);
|
| +
|
| + PredictionApi(http.Client client) :
|
| + _requester = new common_internal.ApiRequester(client, "https://www.googleapis.com/", "/prediction/v1.6/projects/");
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class HostedmodelsResourceApi {
|
| + final common_internal.ApiRequester _requester;
|
| +
|
| + HostedmodelsResourceApi(common_internal.ApiRequester client) :
|
| + _requester = client;
|
| +
|
| + /**
|
| + * Submit input and request an output against a hosted model.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [hostedModelName] - The name of a hosted model.
|
| + *
|
| + * Completes with a [Output].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<Output> predict(Input request, core.String project, core.String hostedModelName) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (hostedModelName == null) {
|
| + throw new core.ArgumentError("Parameter hostedModelName is required.");
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/hostedmodels/' + common_internal.Escaper.ecapeVariable('$hostedModelName') + '/predict';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new Output.fromJson(data));
|
| + }
|
| +
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class TrainedmodelsResourceApi {
|
| + final common_internal.ApiRequester _requester;
|
| +
|
| + TrainedmodelsResourceApi(common_internal.ApiRequester client) :
|
| + _requester = client;
|
| +
|
| + /**
|
| + * Get analysis of the model and the data the model was trained on.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [id] - The unique name for the predictive model.
|
| + *
|
| + * Completes with a [Analyze].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<Analyze> analyze(core.String project, core.String id) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (id == null) {
|
| + throw new core.ArgumentError("Parameter id is required.");
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id') + '/analyze';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "GET",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new Analyze.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * Delete a trained model.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [id] - The unique name for the predictive model.
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future delete(core.String project, core.String id) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (id == null) {
|
| + throw new core.ArgumentError("Parameter id is required.");
|
| + }
|
| +
|
| + _downloadOptions = null;
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id');
|
| +
|
| + var _response = _requester.request(_url,
|
| + "DELETE",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => null);
|
| + }
|
| +
|
| + /**
|
| + * Check training status of your model.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [id] - The unique name for the predictive model.
|
| + *
|
| + * Completes with a [Insert2].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<Insert2> get(core.String project, core.String id) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (id == null) {
|
| + throw new core.ArgumentError("Parameter id is required.");
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id');
|
| +
|
| + var _response = _requester.request(_url,
|
| + "GET",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new Insert2.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * Train a Prediction API model.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * Completes with a [Insert2].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<Insert2> insert(Insert request, core.String project) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new Insert2.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * List available models.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [maxResults] - Maximum number of results to return.
|
| + *
|
| + * [pageToken] - Pagination token.
|
| + *
|
| + * Completes with a [List].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<List> list(core.String project, {core.int maxResults, core.String pageToken}) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (maxResults != null) {
|
| + _queryParams["maxResults"] = ["${maxResults}"];
|
| + }
|
| + if (pageToken != null) {
|
| + _queryParams["pageToken"] = [pageToken];
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/list';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "GET",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new List.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * Submit model id and request a prediction.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [id] - The unique name for the predictive model.
|
| + *
|
| + * Completes with a [Output].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<Output> predict(Input request, core.String project, core.String id) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (id == null) {
|
| + throw new core.ArgumentError("Parameter id is required.");
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id') + '/predict';
|
| +
|
| + var _response = _requester.request(_url,
|
| + "POST",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new Output.fromJson(data));
|
| + }
|
| +
|
| + /**
|
| + * Add new data to a trained model.
|
| + *
|
| + * [request] - The metadata request object.
|
| + *
|
| + * Request parameters:
|
| + *
|
| + * [project] - The project associated with the model.
|
| + *
|
| + * [id] - The unique name for the predictive model.
|
| + *
|
| + * Completes with a [Insert2].
|
| + *
|
| + * Completes with a [common.ApiRequestError] if the API endpoint returned an
|
| + * error.
|
| + *
|
| + * If the used [http.Client] completes with an error when making a REST call,
|
| + * this method will complete with the same error.
|
| + */
|
| + async.Future<Insert2> update(Update request, core.String project, core.String id) {
|
| + var _url = null;
|
| + var _queryParams = new core.Map();
|
| + var _uploadMedia = null;
|
| + var _uploadOptions = null;
|
| + var _downloadOptions = common.DownloadOptions.Metadata;
|
| + var _body = null;
|
| +
|
| + if (request != null) {
|
| + _body = convert.JSON.encode((request).toJson());
|
| + }
|
| + if (project == null) {
|
| + throw new core.ArgumentError("Parameter project is required.");
|
| + }
|
| + if (id == null) {
|
| + throw new core.ArgumentError("Parameter id is required.");
|
| + }
|
| +
|
| +
|
| + _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id');
|
| +
|
| + var _response = _requester.request(_url,
|
| + "PUT",
|
| + body: _body,
|
| + queryParams: _queryParams,
|
| + uploadOptions: _uploadOptions,
|
| + uploadMedia: _uploadMedia,
|
| + downloadOptions: _downloadOptions);
|
| + return _response.then((data) => new Insert2.fromJson(data));
|
| + }
|
| +
|
| +}
|
| +
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class AnalyzeDataDescriptionFeaturesCategoricalValues {
|
| + /** Number of times this feature had this value. */
|
| + core.String count;
|
| +
|
| + /** The category name. */
|
| + core.String value;
|
| +
|
| +
|
| + AnalyzeDataDescriptionFeaturesCategoricalValues();
|
| +
|
| + AnalyzeDataDescriptionFeaturesCategoricalValues.fromJson(core.Map _json) {
|
| + if (_json.containsKey("count")) {
|
| + count = _json["count"];
|
| + }
|
| + if (_json.containsKey("value")) {
|
| + value = _json["value"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (count != null) {
|
| + _json["count"] = count;
|
| + }
|
| + if (value != null) {
|
| + _json["value"] = value;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of the categorical values of this feature. */
|
| +class AnalyzeDataDescriptionFeaturesCategorical {
|
| + /** Number of categorical values for this feature in the data. */
|
| + core.String count;
|
| +
|
| + /** List of all the categories for this feature in the data set. */
|
| + core.List<AnalyzeDataDescriptionFeaturesCategoricalValues> values;
|
| +
|
| +
|
| + AnalyzeDataDescriptionFeaturesCategorical();
|
| +
|
| + AnalyzeDataDescriptionFeaturesCategorical.fromJson(core.Map _json) {
|
| + if (_json.containsKey("count")) {
|
| + count = _json["count"];
|
| + }
|
| + if (_json.containsKey("values")) {
|
| + values = _json["values"].map((value) => new AnalyzeDataDescriptionFeaturesCategoricalValues.fromJson(value)).toList();
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (count != null) {
|
| + _json["count"] = count;
|
| + }
|
| + if (values != null) {
|
| + _json["values"] = values.map((value) => (value).toJson()).toList();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of the numeric values of this feature. */
|
| +class AnalyzeDataDescriptionFeaturesNumeric {
|
| + /** Number of numeric values for this feature in the data set. */
|
| + core.String count;
|
| +
|
| + /** Mean of the numeric values of this feature in the data set. */
|
| + core.String mean;
|
| +
|
| + /** Variance of the numeric values of this feature in the data set. */
|
| + core.String variance;
|
| +
|
| +
|
| + AnalyzeDataDescriptionFeaturesNumeric();
|
| +
|
| + AnalyzeDataDescriptionFeaturesNumeric.fromJson(core.Map _json) {
|
| + if (_json.containsKey("count")) {
|
| + count = _json["count"];
|
| + }
|
| + if (_json.containsKey("mean")) {
|
| + mean = _json["mean"];
|
| + }
|
| + if (_json.containsKey("variance")) {
|
| + variance = _json["variance"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (count != null) {
|
| + _json["count"] = count;
|
| + }
|
| + if (mean != null) {
|
| + _json["mean"] = mean;
|
| + }
|
| + if (variance != null) {
|
| + _json["variance"] = variance;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of multiple-word text values of this feature. */
|
| +class AnalyzeDataDescriptionFeaturesText {
|
| + /** Number of multiple-word text values for this feature. */
|
| + core.String count;
|
| +
|
| +
|
| + AnalyzeDataDescriptionFeaturesText();
|
| +
|
| + AnalyzeDataDescriptionFeaturesText.fromJson(core.Map _json) {
|
| + if (_json.containsKey("count")) {
|
| + count = _json["count"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (count != null) {
|
| + _json["count"] = count;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class AnalyzeDataDescriptionFeatures {
|
| + /** Description of the categorical values of this feature. */
|
| + AnalyzeDataDescriptionFeaturesCategorical categorical;
|
| +
|
| + /** The feature index. */
|
| + core.String index;
|
| +
|
| + /** Description of the numeric values of this feature. */
|
| + AnalyzeDataDescriptionFeaturesNumeric numeric;
|
| +
|
| + /** Description of multiple-word text values of this feature. */
|
| + AnalyzeDataDescriptionFeaturesText text;
|
| +
|
| +
|
| + AnalyzeDataDescriptionFeatures();
|
| +
|
| + AnalyzeDataDescriptionFeatures.fromJson(core.Map _json) {
|
| + if (_json.containsKey("categorical")) {
|
| + categorical = new AnalyzeDataDescriptionFeaturesCategorical.fromJson(_json["categorical"]);
|
| + }
|
| + if (_json.containsKey("index")) {
|
| + index = _json["index"];
|
| + }
|
| + if (_json.containsKey("numeric")) {
|
| + numeric = new AnalyzeDataDescriptionFeaturesNumeric.fromJson(_json["numeric"]);
|
| + }
|
| + if (_json.containsKey("text")) {
|
| + text = new AnalyzeDataDescriptionFeaturesText.fromJson(_json["text"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (categorical != null) {
|
| + _json["categorical"] = (categorical).toJson();
|
| + }
|
| + if (index != null) {
|
| + _json["index"] = index;
|
| + }
|
| + if (numeric != null) {
|
| + _json["numeric"] = (numeric).toJson();
|
| + }
|
| + if (text != null) {
|
| + _json["text"] = (text).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of the output values in the data set. */
|
| +class AnalyzeDataDescriptionOutputFeatureNumeric {
|
| + /** Number of numeric output values in the data set. */
|
| + core.String count;
|
| +
|
| + /** Mean of the output values in the data set. */
|
| + core.String mean;
|
| +
|
| + /** Variance of the output values in the data set. */
|
| + core.String variance;
|
| +
|
| +
|
| + AnalyzeDataDescriptionOutputFeatureNumeric();
|
| +
|
| + AnalyzeDataDescriptionOutputFeatureNumeric.fromJson(core.Map _json) {
|
| + if (_json.containsKey("count")) {
|
| + count = _json["count"];
|
| + }
|
| + if (_json.containsKey("mean")) {
|
| + mean = _json["mean"];
|
| + }
|
| + if (_json.containsKey("variance")) {
|
| + variance = _json["variance"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (count != null) {
|
| + _json["count"] = count;
|
| + }
|
| + if (mean != null) {
|
| + _json["mean"] = mean;
|
| + }
|
| + if (variance != null) {
|
| + _json["variance"] = variance;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class AnalyzeDataDescriptionOutputFeatureText {
|
| + /** Number of times the output label occurred in the data set. */
|
| + core.String count;
|
| +
|
| + /** The output label. */
|
| + core.String value;
|
| +
|
| +
|
| + AnalyzeDataDescriptionOutputFeatureText();
|
| +
|
| + AnalyzeDataDescriptionOutputFeatureText.fromJson(core.Map _json) {
|
| + if (_json.containsKey("count")) {
|
| + count = _json["count"];
|
| + }
|
| + if (_json.containsKey("value")) {
|
| + value = _json["value"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (count != null) {
|
| + _json["count"] = count;
|
| + }
|
| + if (value != null) {
|
| + _json["value"] = value;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of the output value or label. */
|
| +class AnalyzeDataDescriptionOutputFeature {
|
| + /** Description of the output values in the data set. */
|
| + AnalyzeDataDescriptionOutputFeatureNumeric numeric;
|
| +
|
| + /** Description of the output labels in the data set. */
|
| + core.List<AnalyzeDataDescriptionOutputFeatureText> text;
|
| +
|
| +
|
| + AnalyzeDataDescriptionOutputFeature();
|
| +
|
| + AnalyzeDataDescriptionOutputFeature.fromJson(core.Map _json) {
|
| + if (_json.containsKey("numeric")) {
|
| + numeric = new AnalyzeDataDescriptionOutputFeatureNumeric.fromJson(_json["numeric"]);
|
| + }
|
| + if (_json.containsKey("text")) {
|
| + text = _json["text"].map((value) => new AnalyzeDataDescriptionOutputFeatureText.fromJson(value)).toList();
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (numeric != null) {
|
| + _json["numeric"] = (numeric).toJson();
|
| + }
|
| + if (text != null) {
|
| + _json["text"] = text.map((value) => (value).toJson()).toList();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of the data the model was trained on. */
|
| +class AnalyzeDataDescription {
|
| + /** Description of the input features in the data set. */
|
| + core.List<AnalyzeDataDescriptionFeatures> features;
|
| +
|
| + /** Description of the output value or label. */
|
| + AnalyzeDataDescriptionOutputFeature outputFeature;
|
| +
|
| +
|
| + AnalyzeDataDescription();
|
| +
|
| + AnalyzeDataDescription.fromJson(core.Map _json) {
|
| + if (_json.containsKey("features")) {
|
| + features = _json["features"].map((value) => new AnalyzeDataDescriptionFeatures.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("outputFeature")) {
|
| + outputFeature = new AnalyzeDataDescriptionOutputFeature.fromJson(_json["outputFeature"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (features != null) {
|
| + _json["features"] = features.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (outputFeature != null) {
|
| + _json["outputFeature"] = (outputFeature).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Description of the model. */
|
| +class AnalyzeModelDescription {
|
| + /**
|
| + * An output confusion matrix. This shows an estimate for how this model will
|
| + * do in predictions. This is first indexed by the true class label. For each
|
| + * true class label, this provides a pair {predicted_label, count}, where
|
| + * count is the estimated number of times the model will predict the predicted
|
| + * label given the true label. Will not output if more then 100 classes
|
| + * (Categorical models only).
|
| + */
|
| + core.Map<core.String, core.Map<core.String, core.String>> confusionMatrix;
|
| +
|
| + /** A list of the confusion matrix row totals. */
|
| + core.Map<core.String, core.String> confusionMatrixRowTotals;
|
| +
|
| + /** Basic information about the model. */
|
| + Insert2 modelinfo;
|
| +
|
| +
|
| + AnalyzeModelDescription();
|
| +
|
| + AnalyzeModelDescription.fromJson(core.Map _json) {
|
| + if (_json.containsKey("confusionMatrix")) {
|
| + confusionMatrix = _json["confusionMatrix"];
|
| + }
|
| + if (_json.containsKey("confusionMatrixRowTotals")) {
|
| + confusionMatrixRowTotals = _json["confusionMatrixRowTotals"];
|
| + }
|
| + if (_json.containsKey("modelinfo")) {
|
| + modelinfo = new Insert2.fromJson(_json["modelinfo"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (confusionMatrix != null) {
|
| + _json["confusionMatrix"] = confusionMatrix;
|
| + }
|
| + if (confusionMatrixRowTotals != null) {
|
| + _json["confusionMatrixRowTotals"] = confusionMatrixRowTotals;
|
| + }
|
| + if (modelinfo != null) {
|
| + _json["modelinfo"] = (modelinfo).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class Analyze {
|
| + /** Description of the data the model was trained on. */
|
| + AnalyzeDataDescription dataDescription;
|
| +
|
| + /** List of errors with the data. */
|
| + core.List<core.Map<core.String, core.String>> errors;
|
| +
|
| + /** The unique name for the predictive model. */
|
| + core.String id;
|
| +
|
| + /** What kind of resource this is. */
|
| + core.String kind;
|
| +
|
| + /** Description of the model. */
|
| + AnalyzeModelDescription modelDescription;
|
| +
|
| + /** A URL to re-request this resource. */
|
| + core.String selfLink;
|
| +
|
| +
|
| + Analyze();
|
| +
|
| + Analyze.fromJson(core.Map _json) {
|
| + if (_json.containsKey("dataDescription")) {
|
| + dataDescription = new AnalyzeDataDescription.fromJson(_json["dataDescription"]);
|
| + }
|
| + if (_json.containsKey("errors")) {
|
| + errors = _json["errors"];
|
| + }
|
| + if (_json.containsKey("id")) {
|
| + id = _json["id"];
|
| + }
|
| + if (_json.containsKey("kind")) {
|
| + kind = _json["kind"];
|
| + }
|
| + if (_json.containsKey("modelDescription")) {
|
| + modelDescription = new AnalyzeModelDescription.fromJson(_json["modelDescription"]);
|
| + }
|
| + if (_json.containsKey("selfLink")) {
|
| + selfLink = _json["selfLink"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (dataDescription != null) {
|
| + _json["dataDescription"] = (dataDescription).toJson();
|
| + }
|
| + if (errors != null) {
|
| + _json["errors"] = errors;
|
| + }
|
| + if (id != null) {
|
| + _json["id"] = id;
|
| + }
|
| + if (kind != null) {
|
| + _json["kind"] = kind;
|
| + }
|
| + if (modelDescription != null) {
|
| + _json["modelDescription"] = (modelDescription).toJson();
|
| + }
|
| + if (selfLink != null) {
|
| + _json["selfLink"] = selfLink;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Input to the model for a prediction. */
|
| +class InputInput {
|
| + /**
|
| + * A list of input features, these can be strings or doubles.
|
| + *
|
| + * The values for Object must be JSON objects. It can consist of `num`,
|
| + * `String`, `bool` and `null` as well as `Map` and `List` values.
|
| + */
|
| + core.List<core.Object> csvInstance;
|
| +
|
| +
|
| + InputInput();
|
| +
|
| + InputInput.fromJson(core.Map _json) {
|
| + if (_json.containsKey("csvInstance")) {
|
| + csvInstance = _json["csvInstance"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (csvInstance != null) {
|
| + _json["csvInstance"] = csvInstance;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class Input {
|
| + /** Input to the model for a prediction. */
|
| + InputInput input;
|
| +
|
| +
|
| + Input();
|
| +
|
| + Input.fromJson(core.Map _json) {
|
| + if (_json.containsKey("input")) {
|
| + input = new InputInput.fromJson(_json["input"]);
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (input != null) {
|
| + _json["input"] = (input).toJson();
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class InsertTrainingInstances {
|
| + /**
|
| + * The input features for this instance.
|
| + *
|
| + * The values for Object must be JSON objects. It can consist of `num`,
|
| + * `String`, `bool` and `null` as well as `Map` and `List` values.
|
| + */
|
| + core.List<core.Object> csvInstance;
|
| +
|
| + /** The generic output value - could be regression or class label. */
|
| + core.String output;
|
| +
|
| +
|
| + InsertTrainingInstances();
|
| +
|
| + InsertTrainingInstances.fromJson(core.Map _json) {
|
| + if (_json.containsKey("csvInstance")) {
|
| + csvInstance = _json["csvInstance"];
|
| + }
|
| + if (_json.containsKey("output")) {
|
| + output = _json["output"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (csvInstance != null) {
|
| + _json["csvInstance"] = csvInstance;
|
| + }
|
| + if (output != null) {
|
| + _json["output"] = output;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class Insert {
|
| + /** The unique name for the predictive model. */
|
| + core.String id;
|
| +
|
| + /** Type of predictive model (classification or regression). */
|
| + core.String modelType;
|
| +
|
| + /** The Id of the model to be copied over. */
|
| + core.String sourceModel;
|
| +
|
| + /** Google storage location of the training data file. */
|
| + core.String storageDataLocation;
|
| +
|
| + /** Google storage location of the preprocessing pmml file. */
|
| + core.String storagePMMLLocation;
|
| +
|
| + /** Google storage location of the pmml model file. */
|
| + core.String storagePMMLModelLocation;
|
| +
|
| + /** Instances to train model on. */
|
| + core.List<InsertTrainingInstances> trainingInstances;
|
| +
|
| + /**
|
| + * A class weighting function, which allows the importance weights for class
|
| + * labels to be specified (Categorical models only).
|
| + */
|
| + core.List<core.Map<core.String, core.double>> utility;
|
| +
|
| +
|
| + Insert();
|
| +
|
| + Insert.fromJson(core.Map _json) {
|
| + if (_json.containsKey("id")) {
|
| + id = _json["id"];
|
| + }
|
| + if (_json.containsKey("modelType")) {
|
| + modelType = _json["modelType"];
|
| + }
|
| + if (_json.containsKey("sourceModel")) {
|
| + sourceModel = _json["sourceModel"];
|
| + }
|
| + if (_json.containsKey("storageDataLocation")) {
|
| + storageDataLocation = _json["storageDataLocation"];
|
| + }
|
| + if (_json.containsKey("storagePMMLLocation")) {
|
| + storagePMMLLocation = _json["storagePMMLLocation"];
|
| + }
|
| + if (_json.containsKey("storagePMMLModelLocation")) {
|
| + storagePMMLModelLocation = _json["storagePMMLModelLocation"];
|
| + }
|
| + if (_json.containsKey("trainingInstances")) {
|
| + trainingInstances = _json["trainingInstances"].map((value) => new InsertTrainingInstances.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("utility")) {
|
| + utility = _json["utility"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (id != null) {
|
| + _json["id"] = id;
|
| + }
|
| + if (modelType != null) {
|
| + _json["modelType"] = modelType;
|
| + }
|
| + if (sourceModel != null) {
|
| + _json["sourceModel"] = sourceModel;
|
| + }
|
| + if (storageDataLocation != null) {
|
| + _json["storageDataLocation"] = storageDataLocation;
|
| + }
|
| + if (storagePMMLLocation != null) {
|
| + _json["storagePMMLLocation"] = storagePMMLLocation;
|
| + }
|
| + if (storagePMMLModelLocation != null) {
|
| + _json["storagePMMLModelLocation"] = storagePMMLModelLocation;
|
| + }
|
| + if (trainingInstances != null) {
|
| + _json["trainingInstances"] = trainingInstances.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (utility != null) {
|
| + _json["utility"] = utility;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Model metadata. */
|
| +class Insert2ModelInfo {
|
| + /**
|
| + * Estimated accuracy of model taking utility weights into account
|
| + * (Categorical models only).
|
| + */
|
| + core.String classWeightedAccuracy;
|
| +
|
| + /**
|
| + * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an
|
| + * estimate, based on the amount and quality of the training data, of the
|
| + * estimated prediction accuracy. You can use this is a guide to decide
|
| + * whether the results are accurate enough for your needs. This estimate will
|
| + * be more reliable if your real input data is similar to your training data
|
| + * (Categorical models only).
|
| + */
|
| + core.String classificationAccuracy;
|
| +
|
| + /**
|
| + * An estimated mean squared error. The can be used to measure the quality of
|
| + * the predicted model (Regression models only).
|
| + */
|
| + core.String meanSquaredError;
|
| +
|
| + /** Type of predictive model (CLASSIFICATION or REGRESSION). */
|
| + core.String modelType;
|
| +
|
| + /** Number of valid data instances used in the trained model. */
|
| + core.String numberInstances;
|
| +
|
| + /** Number of class labels in the trained model (Categorical models only). */
|
| + core.String numberLabels;
|
| +
|
| +
|
| + Insert2ModelInfo();
|
| +
|
| + Insert2ModelInfo.fromJson(core.Map _json) {
|
| + if (_json.containsKey("classWeightedAccuracy")) {
|
| + classWeightedAccuracy = _json["classWeightedAccuracy"];
|
| + }
|
| + if (_json.containsKey("classificationAccuracy")) {
|
| + classificationAccuracy = _json["classificationAccuracy"];
|
| + }
|
| + if (_json.containsKey("meanSquaredError")) {
|
| + meanSquaredError = _json["meanSquaredError"];
|
| + }
|
| + if (_json.containsKey("modelType")) {
|
| + modelType = _json["modelType"];
|
| + }
|
| + if (_json.containsKey("numberInstances")) {
|
| + numberInstances = _json["numberInstances"];
|
| + }
|
| + if (_json.containsKey("numberLabels")) {
|
| + numberLabels = _json["numberLabels"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (classWeightedAccuracy != null) {
|
| + _json["classWeightedAccuracy"] = classWeightedAccuracy;
|
| + }
|
| + if (classificationAccuracy != null) {
|
| + _json["classificationAccuracy"] = classificationAccuracy;
|
| + }
|
| + if (meanSquaredError != null) {
|
| + _json["meanSquaredError"] = meanSquaredError;
|
| + }
|
| + if (modelType != null) {
|
| + _json["modelType"] = modelType;
|
| + }
|
| + if (numberInstances != null) {
|
| + _json["numberInstances"] = numberInstances;
|
| + }
|
| + if (numberLabels != null) {
|
| + _json["numberLabels"] = numberLabels;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class Insert2 {
|
| + /** Insert time of the model (as a RFC 3339 timestamp). */
|
| + core.DateTime created;
|
| +
|
| + /** The unique name for the predictive model. */
|
| + core.String id;
|
| +
|
| + /** What kind of resource this is. */
|
| + core.String kind;
|
| +
|
| + /** Model metadata. */
|
| + Insert2ModelInfo modelInfo;
|
| +
|
| + /** Type of predictive model (CLASSIFICATION or REGRESSION). */
|
| + core.String modelType;
|
| +
|
| + /** A URL to re-request this resource. */
|
| + core.String selfLink;
|
| +
|
| + /** Google storage location of the training data file. */
|
| + core.String storageDataLocation;
|
| +
|
| + /** Google storage location of the preprocessing pmml file. */
|
| + core.String storagePMMLLocation;
|
| +
|
| + /** Google storage location of the pmml model file. */
|
| + core.String storagePMMLModelLocation;
|
| +
|
| + /** Training completion time (as a RFC 3339 timestamp). */
|
| + core.DateTime trainingComplete;
|
| +
|
| + /**
|
| + * The current status of the training job. This can be one of following:
|
| + * RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
|
| + */
|
| + core.String trainingStatus;
|
| +
|
| +
|
| + Insert2();
|
| +
|
| + Insert2.fromJson(core.Map _json) {
|
| + if (_json.containsKey("created")) {
|
| + created = core.DateTime.parse(_json["created"]);
|
| + }
|
| + if (_json.containsKey("id")) {
|
| + id = _json["id"];
|
| + }
|
| + if (_json.containsKey("kind")) {
|
| + kind = _json["kind"];
|
| + }
|
| + if (_json.containsKey("modelInfo")) {
|
| + modelInfo = new Insert2ModelInfo.fromJson(_json["modelInfo"]);
|
| + }
|
| + if (_json.containsKey("modelType")) {
|
| + modelType = _json["modelType"];
|
| + }
|
| + if (_json.containsKey("selfLink")) {
|
| + selfLink = _json["selfLink"];
|
| + }
|
| + if (_json.containsKey("storageDataLocation")) {
|
| + storageDataLocation = _json["storageDataLocation"];
|
| + }
|
| + if (_json.containsKey("storagePMMLLocation")) {
|
| + storagePMMLLocation = _json["storagePMMLLocation"];
|
| + }
|
| + if (_json.containsKey("storagePMMLModelLocation")) {
|
| + storagePMMLModelLocation = _json["storagePMMLModelLocation"];
|
| + }
|
| + if (_json.containsKey("trainingComplete")) {
|
| + trainingComplete = core.DateTime.parse(_json["trainingComplete"]);
|
| + }
|
| + if (_json.containsKey("trainingStatus")) {
|
| + trainingStatus = _json["trainingStatus"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (created != null) {
|
| + _json["created"] = (created).toIso8601String();
|
| + }
|
| + if (id != null) {
|
| + _json["id"] = id;
|
| + }
|
| + if (kind != null) {
|
| + _json["kind"] = kind;
|
| + }
|
| + if (modelInfo != null) {
|
| + _json["modelInfo"] = (modelInfo).toJson();
|
| + }
|
| + if (modelType != null) {
|
| + _json["modelType"] = modelType;
|
| + }
|
| + if (selfLink != null) {
|
| + _json["selfLink"] = selfLink;
|
| + }
|
| + if (storageDataLocation != null) {
|
| + _json["storageDataLocation"] = storageDataLocation;
|
| + }
|
| + if (storagePMMLLocation != null) {
|
| + _json["storagePMMLLocation"] = storagePMMLLocation;
|
| + }
|
| + if (storagePMMLModelLocation != null) {
|
| + _json["storagePMMLModelLocation"] = storagePMMLModelLocation;
|
| + }
|
| + if (trainingComplete != null) {
|
| + _json["trainingComplete"] = (trainingComplete).toIso8601String();
|
| + }
|
| + if (trainingStatus != null) {
|
| + _json["trainingStatus"] = trainingStatus;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class List {
|
| + /** List of models. */
|
| + core.List<Insert2> items;
|
| +
|
| + /** What kind of resource this is. */
|
| + core.String kind;
|
| +
|
| + /** Pagination token to fetch the next page, if one exists. */
|
| + core.String nextPageToken;
|
| +
|
| + /** A URL to re-request this resource. */
|
| + core.String selfLink;
|
| +
|
| +
|
| + List();
|
| +
|
| + List.fromJson(core.Map _json) {
|
| + if (_json.containsKey("items")) {
|
| + items = _json["items"].map((value) => new Insert2.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("kind")) {
|
| + kind = _json["kind"];
|
| + }
|
| + if (_json.containsKey("nextPageToken")) {
|
| + nextPageToken = _json["nextPageToken"];
|
| + }
|
| + if (_json.containsKey("selfLink")) {
|
| + selfLink = _json["selfLink"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (items != null) {
|
| + _json["items"] = items.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (kind != null) {
|
| + _json["kind"] = kind;
|
| + }
|
| + if (nextPageToken != null) {
|
| + _json["nextPageToken"] = nextPageToken;
|
| + }
|
| + if (selfLink != null) {
|
| + _json["selfLink"] = selfLink;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class OutputOutputMulti {
|
| + /** The class label. */
|
| + core.String label;
|
| +
|
| + /** The probability of the class label. */
|
| + core.String score;
|
| +
|
| +
|
| + OutputOutputMulti();
|
| +
|
| + OutputOutputMulti.fromJson(core.Map _json) {
|
| + if (_json.containsKey("label")) {
|
| + label = _json["label"];
|
| + }
|
| + if (_json.containsKey("score")) {
|
| + score = _json["score"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (label != null) {
|
| + _json["label"] = label;
|
| + }
|
| + if (score != null) {
|
| + _json["score"] = score;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class Output {
|
| + /** The unique name for the predictive model. */
|
| + core.String id;
|
| +
|
| + /** What kind of resource this is. */
|
| + core.String kind;
|
| +
|
| + /** The most likely class label (Categorical models only). */
|
| + core.String outputLabel;
|
| +
|
| + /**
|
| + * A list of class labels with their estimated probabilities (Categorical
|
| + * models only).
|
| + */
|
| + core.List<OutputOutputMulti> outputMulti;
|
| +
|
| + /** The estimated regression value (Regression models only). */
|
| + core.double outputValue;
|
| +
|
| + /** A URL to re-request this resource. */
|
| + core.String selfLink;
|
| +
|
| +
|
| + Output();
|
| +
|
| + Output.fromJson(core.Map _json) {
|
| + if (_json.containsKey("id")) {
|
| + id = _json["id"];
|
| + }
|
| + if (_json.containsKey("kind")) {
|
| + kind = _json["kind"];
|
| + }
|
| + if (_json.containsKey("outputLabel")) {
|
| + outputLabel = _json["outputLabel"];
|
| + }
|
| + if (_json.containsKey("outputMulti")) {
|
| + outputMulti = _json["outputMulti"].map((value) => new OutputOutputMulti.fromJson(value)).toList();
|
| + }
|
| + if (_json.containsKey("outputValue")) {
|
| + outputValue = _json["outputValue"];
|
| + }
|
| + if (_json.containsKey("selfLink")) {
|
| + selfLink = _json["selfLink"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (id != null) {
|
| + _json["id"] = id;
|
| + }
|
| + if (kind != null) {
|
| + _json["kind"] = kind;
|
| + }
|
| + if (outputLabel != null) {
|
| + _json["outputLabel"] = outputLabel;
|
| + }
|
| + if (outputMulti != null) {
|
| + _json["outputMulti"] = outputMulti.map((value) => (value).toJson()).toList();
|
| + }
|
| + if (outputValue != null) {
|
| + _json["outputValue"] = outputValue;
|
| + }
|
| + if (selfLink != null) {
|
| + _json["selfLink"] = selfLink;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
| +/** Not documented yet. */
|
| +class Update {
|
| + /**
|
| + * The input features for this instance.
|
| + *
|
| + * The values for Object must be JSON objects. It can consist of `num`,
|
| + * `String`, `bool` and `null` as well as `Map` and `List` values.
|
| + */
|
| + core.List<core.Object> csvInstance;
|
| +
|
| + /** The generic output value - could be regression or class label. */
|
| + core.String output;
|
| +
|
| +
|
| + Update();
|
| +
|
| + Update.fromJson(core.Map _json) {
|
| + if (_json.containsKey("csvInstance")) {
|
| + csvInstance = _json["csvInstance"];
|
| + }
|
| + if (_json.containsKey("output")) {
|
| + output = _json["output"];
|
| + }
|
| + }
|
| +
|
| + core.Map toJson() {
|
| + var _json = new core.Map();
|
| + if (csvInstance != null) {
|
| + _json["csvInstance"] = csvInstance;
|
| + }
|
| + if (output != null) {
|
| + _json["output"] = output;
|
| + }
|
| + return _json;
|
| + }
|
| +}
|
| +
|
| +
|
|
|