Index: generated/googleapis/lib/prediction/v1_6.dart |
diff --git a/generated/googleapis/lib/prediction/v1_6.dart b/generated/googleapis/lib/prediction/v1_6.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..fd148d8f701465c866e1056142f1363e67548d18 |
--- /dev/null |
+++ b/generated/googleapis/lib/prediction/v1_6.dart |
@@ -0,0 +1,1459 @@ |
+library googleapis.prediction.v1_6; |
+ |
+import "dart:core" as core; |
+import "dart:collection" as collection; |
+import "dart:async" as async; |
+import "dart:convert" as convert; |
+ |
+import "package:crypto/crypto.dart" as crypto; |
+import 'package:http/http.dart' as http; |
+import '../src/common_internal.dart' as common_internal; |
+import '../common/common.dart' as common; |
+ |
+export '../common/common.dart' show ApiRequestError; |
+export '../common/common.dart' show DetailedApiRequestError; |
+ |
+/** |
+ * Lets you access a cloud hosted machine learning service that makes it easy to |
+ * build smart apps |
+ */ |
+class PredictionApi { |
+ /** Manage your data and permissions in Google Cloud Storage */ |
+ static const DevstorageFullControlScope = "https://www.googleapis.com/auth/devstorage.full_control"; |
+ |
+ /** View your data in Google Cloud Storage */ |
+ static const DevstorageReadOnlyScope = "https://www.googleapis.com/auth/devstorage.read_only"; |
+ |
+ /** Manage your data in Google Cloud Storage */ |
+ static const DevstorageReadWriteScope = "https://www.googleapis.com/auth/devstorage.read_write"; |
+ |
+ /** Manage your data in the Google Prediction API */ |
+ static const PredictionScope = "https://www.googleapis.com/auth/prediction"; |
+ |
+ |
+ final common_internal.ApiRequester _requester; |
+ |
+ HostedmodelsResourceApi get hostedmodels => new HostedmodelsResourceApi(_requester); |
+ TrainedmodelsResourceApi get trainedmodels => new TrainedmodelsResourceApi(_requester); |
+ |
+ PredictionApi(http.Client client) : |
+ _requester = new common_internal.ApiRequester(client, "https://www.googleapis.com/", "/prediction/v1.6/projects/"); |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class HostedmodelsResourceApi { |
+ final common_internal.ApiRequester _requester; |
+ |
+ HostedmodelsResourceApi(common_internal.ApiRequester client) : |
+ _requester = client; |
+ |
+ /** |
+ * Submit input and request an output against a hosted model. |
+ * |
+ * [request] - The metadata request object. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [hostedModelName] - The name of a hosted model. |
+ * |
+ * Completes with a [Output]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<Output> predict(Input request, core.String project, core.String hostedModelName) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (request != null) { |
+ _body = convert.JSON.encode((request).toJson()); |
+ } |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (hostedModelName == null) { |
+ throw new core.ArgumentError("Parameter hostedModelName is required."); |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/hostedmodels/' + common_internal.Escaper.ecapeVariable('$hostedModelName') + '/predict'; |
+ |
+ var _response = _requester.request(_url, |
+ "POST", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new Output.fromJson(data)); |
+ } |
+ |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class TrainedmodelsResourceApi { |
+ final common_internal.ApiRequester _requester; |
+ |
+ TrainedmodelsResourceApi(common_internal.ApiRequester client) : |
+ _requester = client; |
+ |
+ /** |
+ * Get analysis of the model and the data the model was trained on. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [id] - The unique name for the predictive model. |
+ * |
+ * Completes with a [Analyze]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<Analyze> analyze(core.String project, core.String id) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (id == null) { |
+ throw new core.ArgumentError("Parameter id is required."); |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id') + '/analyze'; |
+ |
+ var _response = _requester.request(_url, |
+ "GET", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new Analyze.fromJson(data)); |
+ } |
+ |
+ /** |
+ * Delete a trained model. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [id] - The unique name for the predictive model. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future delete(core.String project, core.String id) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (id == null) { |
+ throw new core.ArgumentError("Parameter id is required."); |
+ } |
+ |
+ _downloadOptions = null; |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id'); |
+ |
+ var _response = _requester.request(_url, |
+ "DELETE", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => null); |
+ } |
+ |
+ /** |
+ * Check training status of your model. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [id] - The unique name for the predictive model. |
+ * |
+ * Completes with a [Insert2]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<Insert2> get(core.String project, core.String id) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (id == null) { |
+ throw new core.ArgumentError("Parameter id is required."); |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id'); |
+ |
+ var _response = _requester.request(_url, |
+ "GET", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new Insert2.fromJson(data)); |
+ } |
+ |
+ /** |
+ * Train a Prediction API model. |
+ * |
+ * [request] - The metadata request object. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * Completes with a [Insert2]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<Insert2> insert(Insert request, core.String project) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (request != null) { |
+ _body = convert.JSON.encode((request).toJson()); |
+ } |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels'; |
+ |
+ var _response = _requester.request(_url, |
+ "POST", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new Insert2.fromJson(data)); |
+ } |
+ |
+ /** |
+ * List available models. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [maxResults] - Maximum number of results to return. |
+ * |
+ * [pageToken] - Pagination token. |
+ * |
+ * Completes with a [List]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<List> list(core.String project, {core.int maxResults, core.String pageToken}) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (maxResults != null) { |
+ _queryParams["maxResults"] = ["${maxResults}"]; |
+ } |
+ if (pageToken != null) { |
+ _queryParams["pageToken"] = [pageToken]; |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/list'; |
+ |
+ var _response = _requester.request(_url, |
+ "GET", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new List.fromJson(data)); |
+ } |
+ |
+ /** |
+ * Submit model id and request a prediction. |
+ * |
+ * [request] - The metadata request object. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [id] - The unique name for the predictive model. |
+ * |
+ * Completes with a [Output]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<Output> predict(Input request, core.String project, core.String id) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (request != null) { |
+ _body = convert.JSON.encode((request).toJson()); |
+ } |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (id == null) { |
+ throw new core.ArgumentError("Parameter id is required."); |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id') + '/predict'; |
+ |
+ var _response = _requester.request(_url, |
+ "POST", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new Output.fromJson(data)); |
+ } |
+ |
+ /** |
+ * Add new data to a trained model. |
+ * |
+ * [request] - The metadata request object. |
+ * |
+ * Request parameters: |
+ * |
+ * [project] - The project associated with the model. |
+ * |
+ * [id] - The unique name for the predictive model. |
+ * |
+ * Completes with a [Insert2]. |
+ * |
+ * Completes with a [common.ApiRequestError] if the API endpoint returned an |
+ * error. |
+ * |
+ * If the used [http.Client] completes with an error when making a REST call, |
+ * this method will complete with the same error. |
+ */ |
+ async.Future<Insert2> update(Update request, core.String project, core.String id) { |
+ var _url = null; |
+ var _queryParams = new core.Map(); |
+ var _uploadMedia = null; |
+ var _uploadOptions = null; |
+ var _downloadOptions = common.DownloadOptions.Metadata; |
+ var _body = null; |
+ |
+ if (request != null) { |
+ _body = convert.JSON.encode((request).toJson()); |
+ } |
+ if (project == null) { |
+ throw new core.ArgumentError("Parameter project is required."); |
+ } |
+ if (id == null) { |
+ throw new core.ArgumentError("Parameter id is required."); |
+ } |
+ |
+ |
+ _url = common_internal.Escaper.ecapeVariable('$project') + '/trainedmodels/' + common_internal.Escaper.ecapeVariable('$id'); |
+ |
+ var _response = _requester.request(_url, |
+ "PUT", |
+ body: _body, |
+ queryParams: _queryParams, |
+ uploadOptions: _uploadOptions, |
+ uploadMedia: _uploadMedia, |
+ downloadOptions: _downloadOptions); |
+ return _response.then((data) => new Insert2.fromJson(data)); |
+ } |
+ |
+} |
+ |
+ |
+ |
+/** Not documented yet. */ |
+class AnalyzeDataDescriptionFeaturesCategoricalValues { |
+ /** Number of times this feature had this value. */ |
+ core.String count; |
+ |
+ /** The category name. */ |
+ core.String value; |
+ |
+ |
+ AnalyzeDataDescriptionFeaturesCategoricalValues(); |
+ |
+ AnalyzeDataDescriptionFeaturesCategoricalValues.fromJson(core.Map _json) { |
+ if (_json.containsKey("count")) { |
+ count = _json["count"]; |
+ } |
+ if (_json.containsKey("value")) { |
+ value = _json["value"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (count != null) { |
+ _json["count"] = count; |
+ } |
+ if (value != null) { |
+ _json["value"] = value; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of the categorical values of this feature. */ |
+class AnalyzeDataDescriptionFeaturesCategorical { |
+ /** Number of categorical values for this feature in the data. */ |
+ core.String count; |
+ |
+ /** List of all the categories for this feature in the data set. */ |
+ core.List<AnalyzeDataDescriptionFeaturesCategoricalValues> values; |
+ |
+ |
+ AnalyzeDataDescriptionFeaturesCategorical(); |
+ |
+ AnalyzeDataDescriptionFeaturesCategorical.fromJson(core.Map _json) { |
+ if (_json.containsKey("count")) { |
+ count = _json["count"]; |
+ } |
+ if (_json.containsKey("values")) { |
+ values = _json["values"].map((value) => new AnalyzeDataDescriptionFeaturesCategoricalValues.fromJson(value)).toList(); |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (count != null) { |
+ _json["count"] = count; |
+ } |
+ if (values != null) { |
+ _json["values"] = values.map((value) => (value).toJson()).toList(); |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of the numeric values of this feature. */ |
+class AnalyzeDataDescriptionFeaturesNumeric { |
+ /** Number of numeric values for this feature in the data set. */ |
+ core.String count; |
+ |
+ /** Mean of the numeric values of this feature in the data set. */ |
+ core.String mean; |
+ |
+ /** Variance of the numeric values of this feature in the data set. */ |
+ core.String variance; |
+ |
+ |
+ AnalyzeDataDescriptionFeaturesNumeric(); |
+ |
+ AnalyzeDataDescriptionFeaturesNumeric.fromJson(core.Map _json) { |
+ if (_json.containsKey("count")) { |
+ count = _json["count"]; |
+ } |
+ if (_json.containsKey("mean")) { |
+ mean = _json["mean"]; |
+ } |
+ if (_json.containsKey("variance")) { |
+ variance = _json["variance"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (count != null) { |
+ _json["count"] = count; |
+ } |
+ if (mean != null) { |
+ _json["mean"] = mean; |
+ } |
+ if (variance != null) { |
+ _json["variance"] = variance; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of multiple-word text values of this feature. */ |
+class AnalyzeDataDescriptionFeaturesText { |
+ /** Number of multiple-word text values for this feature. */ |
+ core.String count; |
+ |
+ |
+ AnalyzeDataDescriptionFeaturesText(); |
+ |
+ AnalyzeDataDescriptionFeaturesText.fromJson(core.Map _json) { |
+ if (_json.containsKey("count")) { |
+ count = _json["count"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (count != null) { |
+ _json["count"] = count; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class AnalyzeDataDescriptionFeatures { |
+ /** Description of the categorical values of this feature. */ |
+ AnalyzeDataDescriptionFeaturesCategorical categorical; |
+ |
+ /** The feature index. */ |
+ core.String index; |
+ |
+ /** Description of the numeric values of this feature. */ |
+ AnalyzeDataDescriptionFeaturesNumeric numeric; |
+ |
+ /** Description of multiple-word text values of this feature. */ |
+ AnalyzeDataDescriptionFeaturesText text; |
+ |
+ |
+ AnalyzeDataDescriptionFeatures(); |
+ |
+ AnalyzeDataDescriptionFeatures.fromJson(core.Map _json) { |
+ if (_json.containsKey("categorical")) { |
+ categorical = new AnalyzeDataDescriptionFeaturesCategorical.fromJson(_json["categorical"]); |
+ } |
+ if (_json.containsKey("index")) { |
+ index = _json["index"]; |
+ } |
+ if (_json.containsKey("numeric")) { |
+ numeric = new AnalyzeDataDescriptionFeaturesNumeric.fromJson(_json["numeric"]); |
+ } |
+ if (_json.containsKey("text")) { |
+ text = new AnalyzeDataDescriptionFeaturesText.fromJson(_json["text"]); |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (categorical != null) { |
+ _json["categorical"] = (categorical).toJson(); |
+ } |
+ if (index != null) { |
+ _json["index"] = index; |
+ } |
+ if (numeric != null) { |
+ _json["numeric"] = (numeric).toJson(); |
+ } |
+ if (text != null) { |
+ _json["text"] = (text).toJson(); |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of the output values in the data set. */ |
+class AnalyzeDataDescriptionOutputFeatureNumeric { |
+ /** Number of numeric output values in the data set. */ |
+ core.String count; |
+ |
+ /** Mean of the output values in the data set. */ |
+ core.String mean; |
+ |
+ /** Variance of the output values in the data set. */ |
+ core.String variance; |
+ |
+ |
+ AnalyzeDataDescriptionOutputFeatureNumeric(); |
+ |
+ AnalyzeDataDescriptionOutputFeatureNumeric.fromJson(core.Map _json) { |
+ if (_json.containsKey("count")) { |
+ count = _json["count"]; |
+ } |
+ if (_json.containsKey("mean")) { |
+ mean = _json["mean"]; |
+ } |
+ if (_json.containsKey("variance")) { |
+ variance = _json["variance"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (count != null) { |
+ _json["count"] = count; |
+ } |
+ if (mean != null) { |
+ _json["mean"] = mean; |
+ } |
+ if (variance != null) { |
+ _json["variance"] = variance; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class AnalyzeDataDescriptionOutputFeatureText { |
+ /** Number of times the output label occurred in the data set. */ |
+ core.String count; |
+ |
+ /** The output label. */ |
+ core.String value; |
+ |
+ |
+ AnalyzeDataDescriptionOutputFeatureText(); |
+ |
+ AnalyzeDataDescriptionOutputFeatureText.fromJson(core.Map _json) { |
+ if (_json.containsKey("count")) { |
+ count = _json["count"]; |
+ } |
+ if (_json.containsKey("value")) { |
+ value = _json["value"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (count != null) { |
+ _json["count"] = count; |
+ } |
+ if (value != null) { |
+ _json["value"] = value; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of the output value or label. */ |
+class AnalyzeDataDescriptionOutputFeature { |
+ /** Description of the output values in the data set. */ |
+ AnalyzeDataDescriptionOutputFeatureNumeric numeric; |
+ |
+ /** Description of the output labels in the data set. */ |
+ core.List<AnalyzeDataDescriptionOutputFeatureText> text; |
+ |
+ |
+ AnalyzeDataDescriptionOutputFeature(); |
+ |
+ AnalyzeDataDescriptionOutputFeature.fromJson(core.Map _json) { |
+ if (_json.containsKey("numeric")) { |
+ numeric = new AnalyzeDataDescriptionOutputFeatureNumeric.fromJson(_json["numeric"]); |
+ } |
+ if (_json.containsKey("text")) { |
+ text = _json["text"].map((value) => new AnalyzeDataDescriptionOutputFeatureText.fromJson(value)).toList(); |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (numeric != null) { |
+ _json["numeric"] = (numeric).toJson(); |
+ } |
+ if (text != null) { |
+ _json["text"] = text.map((value) => (value).toJson()).toList(); |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of the data the model was trained on. */ |
+class AnalyzeDataDescription { |
+ /** Description of the input features in the data set. */ |
+ core.List<AnalyzeDataDescriptionFeatures> features; |
+ |
+ /** Description of the output value or label. */ |
+ AnalyzeDataDescriptionOutputFeature outputFeature; |
+ |
+ |
+ AnalyzeDataDescription(); |
+ |
+ AnalyzeDataDescription.fromJson(core.Map _json) { |
+ if (_json.containsKey("features")) { |
+ features = _json["features"].map((value) => new AnalyzeDataDescriptionFeatures.fromJson(value)).toList(); |
+ } |
+ if (_json.containsKey("outputFeature")) { |
+ outputFeature = new AnalyzeDataDescriptionOutputFeature.fromJson(_json["outputFeature"]); |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (features != null) { |
+ _json["features"] = features.map((value) => (value).toJson()).toList(); |
+ } |
+ if (outputFeature != null) { |
+ _json["outputFeature"] = (outputFeature).toJson(); |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Description of the model. */ |
+class AnalyzeModelDescription { |
+ /** |
+ * An output confusion matrix. This shows an estimate for how this model will |
+ * do in predictions. This is first indexed by the true class label. For each |
+ * true class label, this provides a pair {predicted_label, count}, where |
+ * count is the estimated number of times the model will predict the predicted |
+ * label given the true label. Will not output if more then 100 classes |
+ * (Categorical models only). |
+ */ |
+ core.Map<core.String, core.Map<core.String, core.String>> confusionMatrix; |
+ |
+ /** A list of the confusion matrix row totals. */ |
+ core.Map<core.String, core.String> confusionMatrixRowTotals; |
+ |
+ /** Basic information about the model. */ |
+ Insert2 modelinfo; |
+ |
+ |
+ AnalyzeModelDescription(); |
+ |
+ AnalyzeModelDescription.fromJson(core.Map _json) { |
+ if (_json.containsKey("confusionMatrix")) { |
+ confusionMatrix = _json["confusionMatrix"]; |
+ } |
+ if (_json.containsKey("confusionMatrixRowTotals")) { |
+ confusionMatrixRowTotals = _json["confusionMatrixRowTotals"]; |
+ } |
+ if (_json.containsKey("modelinfo")) { |
+ modelinfo = new Insert2.fromJson(_json["modelinfo"]); |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (confusionMatrix != null) { |
+ _json["confusionMatrix"] = confusionMatrix; |
+ } |
+ if (confusionMatrixRowTotals != null) { |
+ _json["confusionMatrixRowTotals"] = confusionMatrixRowTotals; |
+ } |
+ if (modelinfo != null) { |
+ _json["modelinfo"] = (modelinfo).toJson(); |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class Analyze { |
+ /** Description of the data the model was trained on. */ |
+ AnalyzeDataDescription dataDescription; |
+ |
+ /** List of errors with the data. */ |
+ core.List<core.Map<core.String, core.String>> errors; |
+ |
+ /** The unique name for the predictive model. */ |
+ core.String id; |
+ |
+ /** What kind of resource this is. */ |
+ core.String kind; |
+ |
+ /** Description of the model. */ |
+ AnalyzeModelDescription modelDescription; |
+ |
+ /** A URL to re-request this resource. */ |
+ core.String selfLink; |
+ |
+ |
+ Analyze(); |
+ |
+ Analyze.fromJson(core.Map _json) { |
+ if (_json.containsKey("dataDescription")) { |
+ dataDescription = new AnalyzeDataDescription.fromJson(_json["dataDescription"]); |
+ } |
+ if (_json.containsKey("errors")) { |
+ errors = _json["errors"]; |
+ } |
+ if (_json.containsKey("id")) { |
+ id = _json["id"]; |
+ } |
+ if (_json.containsKey("kind")) { |
+ kind = _json["kind"]; |
+ } |
+ if (_json.containsKey("modelDescription")) { |
+ modelDescription = new AnalyzeModelDescription.fromJson(_json["modelDescription"]); |
+ } |
+ if (_json.containsKey("selfLink")) { |
+ selfLink = _json["selfLink"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (dataDescription != null) { |
+ _json["dataDescription"] = (dataDescription).toJson(); |
+ } |
+ if (errors != null) { |
+ _json["errors"] = errors; |
+ } |
+ if (id != null) { |
+ _json["id"] = id; |
+ } |
+ if (kind != null) { |
+ _json["kind"] = kind; |
+ } |
+ if (modelDescription != null) { |
+ _json["modelDescription"] = (modelDescription).toJson(); |
+ } |
+ if (selfLink != null) { |
+ _json["selfLink"] = selfLink; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Input to the model for a prediction. */ |
+class InputInput { |
+ /** |
+ * A list of input features, these can be strings or doubles. |
+ * |
+ * The values for Object must be JSON objects. It can consist of `num`, |
+ * `String`, `bool` and `null` as well as `Map` and `List` values. |
+ */ |
+ core.List<core.Object> csvInstance; |
+ |
+ |
+ InputInput(); |
+ |
+ InputInput.fromJson(core.Map _json) { |
+ if (_json.containsKey("csvInstance")) { |
+ csvInstance = _json["csvInstance"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (csvInstance != null) { |
+ _json["csvInstance"] = csvInstance; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class Input { |
+ /** Input to the model for a prediction. */ |
+ InputInput input; |
+ |
+ |
+ Input(); |
+ |
+ Input.fromJson(core.Map _json) { |
+ if (_json.containsKey("input")) { |
+ input = new InputInput.fromJson(_json["input"]); |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (input != null) { |
+ _json["input"] = (input).toJson(); |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class InsertTrainingInstances { |
+ /** |
+ * The input features for this instance. |
+ * |
+ * The values for Object must be JSON objects. It can consist of `num`, |
+ * `String`, `bool` and `null` as well as `Map` and `List` values. |
+ */ |
+ core.List<core.Object> csvInstance; |
+ |
+ /** The generic output value - could be regression or class label. */ |
+ core.String output; |
+ |
+ |
+ InsertTrainingInstances(); |
+ |
+ InsertTrainingInstances.fromJson(core.Map _json) { |
+ if (_json.containsKey("csvInstance")) { |
+ csvInstance = _json["csvInstance"]; |
+ } |
+ if (_json.containsKey("output")) { |
+ output = _json["output"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (csvInstance != null) { |
+ _json["csvInstance"] = csvInstance; |
+ } |
+ if (output != null) { |
+ _json["output"] = output; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class Insert { |
+ /** The unique name for the predictive model. */ |
+ core.String id; |
+ |
+ /** Type of predictive model (classification or regression). */ |
+ core.String modelType; |
+ |
+ /** The Id of the model to be copied over. */ |
+ core.String sourceModel; |
+ |
+ /** Google storage location of the training data file. */ |
+ core.String storageDataLocation; |
+ |
+ /** Google storage location of the preprocessing pmml file. */ |
+ core.String storagePMMLLocation; |
+ |
+ /** Google storage location of the pmml model file. */ |
+ core.String storagePMMLModelLocation; |
+ |
+ /** Instances to train model on. */ |
+ core.List<InsertTrainingInstances> trainingInstances; |
+ |
+ /** |
+ * A class weighting function, which allows the importance weights for class |
+ * labels to be specified (Categorical models only). |
+ */ |
+ core.List<core.Map<core.String, core.double>> utility; |
+ |
+ |
+ Insert(); |
+ |
+ Insert.fromJson(core.Map _json) { |
+ if (_json.containsKey("id")) { |
+ id = _json["id"]; |
+ } |
+ if (_json.containsKey("modelType")) { |
+ modelType = _json["modelType"]; |
+ } |
+ if (_json.containsKey("sourceModel")) { |
+ sourceModel = _json["sourceModel"]; |
+ } |
+ if (_json.containsKey("storageDataLocation")) { |
+ storageDataLocation = _json["storageDataLocation"]; |
+ } |
+ if (_json.containsKey("storagePMMLLocation")) { |
+ storagePMMLLocation = _json["storagePMMLLocation"]; |
+ } |
+ if (_json.containsKey("storagePMMLModelLocation")) { |
+ storagePMMLModelLocation = _json["storagePMMLModelLocation"]; |
+ } |
+ if (_json.containsKey("trainingInstances")) { |
+ trainingInstances = _json["trainingInstances"].map((value) => new InsertTrainingInstances.fromJson(value)).toList(); |
+ } |
+ if (_json.containsKey("utility")) { |
+ utility = _json["utility"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (id != null) { |
+ _json["id"] = id; |
+ } |
+ if (modelType != null) { |
+ _json["modelType"] = modelType; |
+ } |
+ if (sourceModel != null) { |
+ _json["sourceModel"] = sourceModel; |
+ } |
+ if (storageDataLocation != null) { |
+ _json["storageDataLocation"] = storageDataLocation; |
+ } |
+ if (storagePMMLLocation != null) { |
+ _json["storagePMMLLocation"] = storagePMMLLocation; |
+ } |
+ if (storagePMMLModelLocation != null) { |
+ _json["storagePMMLModelLocation"] = storagePMMLModelLocation; |
+ } |
+ if (trainingInstances != null) { |
+ _json["trainingInstances"] = trainingInstances.map((value) => (value).toJson()).toList(); |
+ } |
+ if (utility != null) { |
+ _json["utility"] = utility; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Model metadata. */ |
+class Insert2ModelInfo { |
+ /** |
+ * Estimated accuracy of model taking utility weights into account |
+ * (Categorical models only). |
+ */ |
+ core.String classWeightedAccuracy; |
+ |
+ /** |
+ * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an |
+ * estimate, based on the amount and quality of the training data, of the |
+ * estimated prediction accuracy. You can use this is a guide to decide |
+ * whether the results are accurate enough for your needs. This estimate will |
+ * be more reliable if your real input data is similar to your training data |
+ * (Categorical models only). |
+ */ |
+ core.String classificationAccuracy; |
+ |
+ /** |
+ * An estimated mean squared error. The can be used to measure the quality of |
+ * the predicted model (Regression models only). |
+ */ |
+ core.String meanSquaredError; |
+ |
+ /** Type of predictive model (CLASSIFICATION or REGRESSION). */ |
+ core.String modelType; |
+ |
+ /** Number of valid data instances used in the trained model. */ |
+ core.String numberInstances; |
+ |
+ /** Number of class labels in the trained model (Categorical models only). */ |
+ core.String numberLabels; |
+ |
+ |
+ Insert2ModelInfo(); |
+ |
+ Insert2ModelInfo.fromJson(core.Map _json) { |
+ if (_json.containsKey("classWeightedAccuracy")) { |
+ classWeightedAccuracy = _json["classWeightedAccuracy"]; |
+ } |
+ if (_json.containsKey("classificationAccuracy")) { |
+ classificationAccuracy = _json["classificationAccuracy"]; |
+ } |
+ if (_json.containsKey("meanSquaredError")) { |
+ meanSquaredError = _json["meanSquaredError"]; |
+ } |
+ if (_json.containsKey("modelType")) { |
+ modelType = _json["modelType"]; |
+ } |
+ if (_json.containsKey("numberInstances")) { |
+ numberInstances = _json["numberInstances"]; |
+ } |
+ if (_json.containsKey("numberLabels")) { |
+ numberLabels = _json["numberLabels"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (classWeightedAccuracy != null) { |
+ _json["classWeightedAccuracy"] = classWeightedAccuracy; |
+ } |
+ if (classificationAccuracy != null) { |
+ _json["classificationAccuracy"] = classificationAccuracy; |
+ } |
+ if (meanSquaredError != null) { |
+ _json["meanSquaredError"] = meanSquaredError; |
+ } |
+ if (modelType != null) { |
+ _json["modelType"] = modelType; |
+ } |
+ if (numberInstances != null) { |
+ _json["numberInstances"] = numberInstances; |
+ } |
+ if (numberLabels != null) { |
+ _json["numberLabels"] = numberLabels; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class Insert2 { |
+ /** Insert time of the model (as a RFC 3339 timestamp). */ |
+ core.DateTime created; |
+ |
+ /** The unique name for the predictive model. */ |
+ core.String id; |
+ |
+ /** What kind of resource this is. */ |
+ core.String kind; |
+ |
+ /** Model metadata. */ |
+ Insert2ModelInfo modelInfo; |
+ |
+ /** Type of predictive model (CLASSIFICATION or REGRESSION). */ |
+ core.String modelType; |
+ |
+ /** A URL to re-request this resource. */ |
+ core.String selfLink; |
+ |
+ /** Google storage location of the training data file. */ |
+ core.String storageDataLocation; |
+ |
+ /** Google storage location of the preprocessing pmml file. */ |
+ core.String storagePMMLLocation; |
+ |
+ /** Google storage location of the pmml model file. */ |
+ core.String storagePMMLModelLocation; |
+ |
+ /** Training completion time (as a RFC 3339 timestamp). */ |
+ core.DateTime trainingComplete; |
+ |
+ /** |
+ * The current status of the training job. This can be one of following: |
+ * RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND |
+ */ |
+ core.String trainingStatus; |
+ |
+ |
+ Insert2(); |
+ |
+ Insert2.fromJson(core.Map _json) { |
+ if (_json.containsKey("created")) { |
+ created = core.DateTime.parse(_json["created"]); |
+ } |
+ if (_json.containsKey("id")) { |
+ id = _json["id"]; |
+ } |
+ if (_json.containsKey("kind")) { |
+ kind = _json["kind"]; |
+ } |
+ if (_json.containsKey("modelInfo")) { |
+ modelInfo = new Insert2ModelInfo.fromJson(_json["modelInfo"]); |
+ } |
+ if (_json.containsKey("modelType")) { |
+ modelType = _json["modelType"]; |
+ } |
+ if (_json.containsKey("selfLink")) { |
+ selfLink = _json["selfLink"]; |
+ } |
+ if (_json.containsKey("storageDataLocation")) { |
+ storageDataLocation = _json["storageDataLocation"]; |
+ } |
+ if (_json.containsKey("storagePMMLLocation")) { |
+ storagePMMLLocation = _json["storagePMMLLocation"]; |
+ } |
+ if (_json.containsKey("storagePMMLModelLocation")) { |
+ storagePMMLModelLocation = _json["storagePMMLModelLocation"]; |
+ } |
+ if (_json.containsKey("trainingComplete")) { |
+ trainingComplete = core.DateTime.parse(_json["trainingComplete"]); |
+ } |
+ if (_json.containsKey("trainingStatus")) { |
+ trainingStatus = _json["trainingStatus"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (created != null) { |
+ _json["created"] = (created).toIso8601String(); |
+ } |
+ if (id != null) { |
+ _json["id"] = id; |
+ } |
+ if (kind != null) { |
+ _json["kind"] = kind; |
+ } |
+ if (modelInfo != null) { |
+ _json["modelInfo"] = (modelInfo).toJson(); |
+ } |
+ if (modelType != null) { |
+ _json["modelType"] = modelType; |
+ } |
+ if (selfLink != null) { |
+ _json["selfLink"] = selfLink; |
+ } |
+ if (storageDataLocation != null) { |
+ _json["storageDataLocation"] = storageDataLocation; |
+ } |
+ if (storagePMMLLocation != null) { |
+ _json["storagePMMLLocation"] = storagePMMLLocation; |
+ } |
+ if (storagePMMLModelLocation != null) { |
+ _json["storagePMMLModelLocation"] = storagePMMLModelLocation; |
+ } |
+ if (trainingComplete != null) { |
+ _json["trainingComplete"] = (trainingComplete).toIso8601String(); |
+ } |
+ if (trainingStatus != null) { |
+ _json["trainingStatus"] = trainingStatus; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class List { |
+ /** List of models. */ |
+ core.List<Insert2> items; |
+ |
+ /** What kind of resource this is. */ |
+ core.String kind; |
+ |
+ /** Pagination token to fetch the next page, if one exists. */ |
+ core.String nextPageToken; |
+ |
+ /** A URL to re-request this resource. */ |
+ core.String selfLink; |
+ |
+ |
+ List(); |
+ |
+ List.fromJson(core.Map _json) { |
+ if (_json.containsKey("items")) { |
+ items = _json["items"].map((value) => new Insert2.fromJson(value)).toList(); |
+ } |
+ if (_json.containsKey("kind")) { |
+ kind = _json["kind"]; |
+ } |
+ if (_json.containsKey("nextPageToken")) { |
+ nextPageToken = _json["nextPageToken"]; |
+ } |
+ if (_json.containsKey("selfLink")) { |
+ selfLink = _json["selfLink"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (items != null) { |
+ _json["items"] = items.map((value) => (value).toJson()).toList(); |
+ } |
+ if (kind != null) { |
+ _json["kind"] = kind; |
+ } |
+ if (nextPageToken != null) { |
+ _json["nextPageToken"] = nextPageToken; |
+ } |
+ if (selfLink != null) { |
+ _json["selfLink"] = selfLink; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class OutputOutputMulti { |
+ /** The class label. */ |
+ core.String label; |
+ |
+ /** The probability of the class label. */ |
+ core.String score; |
+ |
+ |
+ OutputOutputMulti(); |
+ |
+ OutputOutputMulti.fromJson(core.Map _json) { |
+ if (_json.containsKey("label")) { |
+ label = _json["label"]; |
+ } |
+ if (_json.containsKey("score")) { |
+ score = _json["score"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (label != null) { |
+ _json["label"] = label; |
+ } |
+ if (score != null) { |
+ _json["score"] = score; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class Output { |
+ /** The unique name for the predictive model. */ |
+ core.String id; |
+ |
+ /** What kind of resource this is. */ |
+ core.String kind; |
+ |
+ /** The most likely class label (Categorical models only). */ |
+ core.String outputLabel; |
+ |
+ /** |
+ * A list of class labels with their estimated probabilities (Categorical |
+ * models only). |
+ */ |
+ core.List<OutputOutputMulti> outputMulti; |
+ |
+ /** The estimated regression value (Regression models only). */ |
+ core.double outputValue; |
+ |
+ /** A URL to re-request this resource. */ |
+ core.String selfLink; |
+ |
+ |
+ Output(); |
+ |
+ Output.fromJson(core.Map _json) { |
+ if (_json.containsKey("id")) { |
+ id = _json["id"]; |
+ } |
+ if (_json.containsKey("kind")) { |
+ kind = _json["kind"]; |
+ } |
+ if (_json.containsKey("outputLabel")) { |
+ outputLabel = _json["outputLabel"]; |
+ } |
+ if (_json.containsKey("outputMulti")) { |
+ outputMulti = _json["outputMulti"].map((value) => new OutputOutputMulti.fromJson(value)).toList(); |
+ } |
+ if (_json.containsKey("outputValue")) { |
+ outputValue = _json["outputValue"]; |
+ } |
+ if (_json.containsKey("selfLink")) { |
+ selfLink = _json["selfLink"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (id != null) { |
+ _json["id"] = id; |
+ } |
+ if (kind != null) { |
+ _json["kind"] = kind; |
+ } |
+ if (outputLabel != null) { |
+ _json["outputLabel"] = outputLabel; |
+ } |
+ if (outputMulti != null) { |
+ _json["outputMulti"] = outputMulti.map((value) => (value).toJson()).toList(); |
+ } |
+ if (outputValue != null) { |
+ _json["outputValue"] = outputValue; |
+ } |
+ if (selfLink != null) { |
+ _json["selfLink"] = selfLink; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |
+/** Not documented yet. */ |
+class Update { |
+ /** |
+ * The input features for this instance. |
+ * |
+ * The values for Object must be JSON objects. It can consist of `num`, |
+ * `String`, `bool` and `null` as well as `Map` and `List` values. |
+ */ |
+ core.List<core.Object> csvInstance; |
+ |
+ /** The generic output value - could be regression or class label. */ |
+ core.String output; |
+ |
+ |
+ Update(); |
+ |
+ Update.fromJson(core.Map _json) { |
+ if (_json.containsKey("csvInstance")) { |
+ csvInstance = _json["csvInstance"]; |
+ } |
+ if (_json.containsKey("output")) { |
+ output = _json["output"]; |
+ } |
+ } |
+ |
+ core.Map toJson() { |
+ var _json = new core.Map(); |
+ if (csvInstance != null) { |
+ _json["csvInstance"] = csvInstance; |
+ } |
+ if (output != null) { |
+ _json["output"] = output; |
+ } |
+ return _json; |
+ } |
+} |
+ |
+ |