Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(438)

Side by Side Diff: discovery/googleapis/prediction__v1.6.json

Issue 559053002: Generate 0.1.0 version of googleapis/googleapis_beta (Closed) Base URL: git@github.com:dart-lang/googleapis.git@master
Patch Set: Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 {
2 "auth": {
3 "oauth2": {
4 "scopes": {
5 "https://www.googleapis.com/auth/devstorage.full_control": {
6 "description": "Manage your data and permissions in Google C loud Storage"
7 },
8 "https://www.googleapis.com/auth/devstorage.read_only": {
9 "description": "View your data in Google Cloud Storage"
10 },
11 "https://www.googleapis.com/auth/devstorage.read_write": {
12 "description": "Manage your data in Google Cloud Storage"
13 },
14 "https://www.googleapis.com/auth/prediction": {
15 "description": "Manage your data in the Google Prediction AP I"
16 }
17 }
18 }
19 },
20 "basePath": "/prediction/v1.6/projects/",
21 "baseUrl": "https://www.googleapis.com/prediction/v1.6/projects/",
22 "batchPath": "batch",
23 "description": "Lets you access a cloud hosted machine learning service that makes it easy to build smart apps",
24 "discoveryVersion": "v1",
25 "documentationLink": "https://developers.google.com/prediction/docs/develope r-guide",
26 "etag": "\"uUWyYHXmEn-ab7WLvo8qNz2S8ws/XH5kx6DVwHOxcDh-sCub5wYn1Ss\"",
27 "icons": {
28 "x16": "http://www.google.com/images/icons/feature/predictionapi-16.png" ,
29 "x32": "http://www.google.com/images/icons/feature/predictionapi-32.png"
30 },
31 "id": "prediction:v1.6",
32 "kind": "discovery#restDescription",
33 "name": "prediction",
34 "ownerDomain": "google.com",
35 "ownerName": "Google",
36 "parameters": {
37 "alt": {
38 "default": "json",
39 "description": "Data format for the response.",
40 "enum": [
41 "json"
42 ],
43 "enumDescriptions": [
44 "Responses with Content-Type of application/json"
45 ],
46 "location": "query",
47 "type": "string"
48 },
49 "fields": {
50 "description": "Selector specifying which fields to include in a par tial response.",
51 "location": "query",
52 "type": "string"
53 },
54 "key": {
55 "description": "API key. Your API key identifies your project and pr ovides you with API access, quota, and reports. Required unless you provide an O Auth 2.0 token.",
56 "location": "query",
57 "type": "string"
58 },
59 "oauth_token": {
60 "description": "OAuth 2.0 token for the current user.",
61 "location": "query",
62 "type": "string"
63 },
64 "prettyPrint": {
65 "default": "true",
66 "description": "Returns response with indentations and line breaks." ,
67 "location": "query",
68 "type": "boolean"
69 },
70 "quotaUser": {
71 "description": "Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exc eed 40 characters. Overrides userIp if both are provided.",
72 "location": "query",
73 "type": "string"
74 },
75 "userIp": {
76 "description": "IP address of the site where the request originates. Use this if you want to enforce per-user limits.",
77 "location": "query",
78 "type": "string"
79 }
80 },
81 "protocol": "rest",
82 "resources": {
83 "hostedmodels": {
84 "methods": {
85 "predict": {
86 "description": "Submit input and request an output against a hosted model.",
87 "httpMethod": "POST",
88 "id": "prediction.hostedmodels.predict",
89 "parameterOrder": [
90 "project",
91 "hostedModelName"
92 ],
93 "parameters": {
94 "hostedModelName": {
95 "description": "The name of a hosted model.",
96 "location": "path",
97 "required": true,
98 "type": "string"
99 },
100 "project": {
101 "description": "The project associated with the mode l.",
102 "location": "path",
103 "required": true,
104 "type": "string"
105 }
106 },
107 "path": "{project}/hostedmodels/{hostedModelName}/predict",
108 "request": {
109 "$ref": "Input"
110 },
111 "response": {
112 "$ref": "Output"
113 },
114 "scopes": [
115 "https://www.googleapis.com/auth/prediction"
116 ]
117 }
118 }
119 },
120 "trainedmodels": {
121 "methods": {
122 "analyze": {
123 "description": "Get analysis of the model and the data the m odel was trained on.",
124 "httpMethod": "GET",
125 "id": "prediction.trainedmodels.analyze",
126 "parameterOrder": [
127 "project",
128 "id"
129 ],
130 "parameters": {
131 "id": {
132 "description": "The unique name for the predictive m odel.",
133 "location": "path",
134 "required": true,
135 "type": "string"
136 },
137 "project": {
138 "description": "The project associated with the mode l.",
139 "location": "path",
140 "required": true,
141 "type": "string"
142 }
143 },
144 "path": "{project}/trainedmodels/{id}/analyze",
145 "response": {
146 "$ref": "Analyze"
147 },
148 "scopes": [
149 "https://www.googleapis.com/auth/prediction"
150 ]
151 },
152 "delete": {
153 "description": "Delete a trained model.",
154 "httpMethod": "DELETE",
155 "id": "prediction.trainedmodels.delete",
156 "parameterOrder": [
157 "project",
158 "id"
159 ],
160 "parameters": {
161 "id": {
162 "description": "The unique name for the predictive m odel.",
163 "location": "path",
164 "required": true,
165 "type": "string"
166 },
167 "project": {
168 "description": "The project associated with the mode l.",
169 "location": "path",
170 "required": true,
171 "type": "string"
172 }
173 },
174 "path": "{project}/trainedmodels/{id}",
175 "scopes": [
176 "https://www.googleapis.com/auth/prediction"
177 ]
178 },
179 "get": {
180 "description": "Check training status of your model.",
181 "httpMethod": "GET",
182 "id": "prediction.trainedmodels.get",
183 "parameterOrder": [
184 "project",
185 "id"
186 ],
187 "parameters": {
188 "id": {
189 "description": "The unique name for the predictive m odel.",
190 "location": "path",
191 "required": true,
192 "type": "string"
193 },
194 "project": {
195 "description": "The project associated with the mode l.",
196 "location": "path",
197 "required": true,
198 "type": "string"
199 }
200 },
201 "path": "{project}/trainedmodels/{id}",
202 "response": {
203 "$ref": "Insert2"
204 },
205 "scopes": [
206 "https://www.googleapis.com/auth/prediction"
207 ]
208 },
209 "insert": {
210 "description": "Train a Prediction API model.",
211 "httpMethod": "POST",
212 "id": "prediction.trainedmodels.insert",
213 "parameterOrder": [
214 "project"
215 ],
216 "parameters": {
217 "project": {
218 "description": "The project associated with the mode l.",
219 "location": "path",
220 "required": true,
221 "type": "string"
222 }
223 },
224 "path": "{project}/trainedmodels",
225 "request": {
226 "$ref": "Insert"
227 },
228 "response": {
229 "$ref": "Insert2"
230 },
231 "scopes": [
232 "https://www.googleapis.com/auth/devstorage.full_control ",
233 "https://www.googleapis.com/auth/devstorage.read_only",
234 "https://www.googleapis.com/auth/devstorage.read_write",
235 "https://www.googleapis.com/auth/prediction"
236 ]
237 },
238 "list": {
239 "description": "List available models.",
240 "httpMethod": "GET",
241 "id": "prediction.trainedmodels.list",
242 "parameterOrder": [
243 "project"
244 ],
245 "parameters": {
246 "maxResults": {
247 "description": "Maximum number of results to return. ",
248 "format": "uint32",
249 "location": "query",
250 "minimum": "0",
251 "type": "integer"
252 },
253 "pageToken": {
254 "description": "Pagination token.",
255 "location": "query",
256 "type": "string"
257 },
258 "project": {
259 "description": "The project associated with the mode l.",
260 "location": "path",
261 "required": true,
262 "type": "string"
263 }
264 },
265 "path": "{project}/trainedmodels/list",
266 "response": {
267 "$ref": "List"
268 },
269 "scopes": [
270 "https://www.googleapis.com/auth/prediction"
271 ]
272 },
273 "predict": {
274 "description": "Submit model id and request a prediction.",
275 "httpMethod": "POST",
276 "id": "prediction.trainedmodels.predict",
277 "parameterOrder": [
278 "project",
279 "id"
280 ],
281 "parameters": {
282 "id": {
283 "description": "The unique name for the predictive m odel.",
284 "location": "path",
285 "required": true,
286 "type": "string"
287 },
288 "project": {
289 "description": "The project associated with the mode l.",
290 "location": "path",
291 "required": true,
292 "type": "string"
293 }
294 },
295 "path": "{project}/trainedmodels/{id}/predict",
296 "request": {
297 "$ref": "Input"
298 },
299 "response": {
300 "$ref": "Output"
301 },
302 "scopes": [
303 "https://www.googleapis.com/auth/prediction"
304 ]
305 },
306 "update": {
307 "description": "Add new data to a trained model.",
308 "httpMethod": "PUT",
309 "id": "prediction.trainedmodels.update",
310 "parameterOrder": [
311 "project",
312 "id"
313 ],
314 "parameters": {
315 "id": {
316 "description": "The unique name for the predictive m odel.",
317 "location": "path",
318 "required": true,
319 "type": "string"
320 },
321 "project": {
322 "description": "The project associated with the mode l.",
323 "location": "path",
324 "required": true,
325 "type": "string"
326 }
327 },
328 "path": "{project}/trainedmodels/{id}",
329 "request": {
330 "$ref": "Update"
331 },
332 "response": {
333 "$ref": "Insert2"
334 },
335 "scopes": [
336 "https://www.googleapis.com/auth/prediction"
337 ]
338 }
339 }
340 }
341 },
342 "revision": "20140522",
343 "rootUrl": "https://www.googleapis.com/",
344 "schemas": {
345 "Analyze": {
346 "id": "Analyze",
347 "properties": {
348 "dataDescription": {
349 "description": "Description of the data the model was traine d on.",
350 "properties": {
351 "features": {
352 "description": "Description of the input features in the data set.",
353 "items": {
354 "properties": {
355 "categorical": {
356 "description": "Description of the categ orical values of this feature.",
357 "properties": {
358 "count": {
359 "description": "Number of catego rical values for this feature in the data.",
360 "format": "int64",
361 "type": "string"
362 },
363 "values": {
364 "description": "List of all the categories for this feature in the data set.",
365 "items": {
366 "properties": {
367 "count": {
368 "description": "Numb er of times this feature had this value.",
369 "format": "int64",
370 "type": "string"
371 },
372 "value": {
373 "description": "The category name.",
374 "type": "string"
375 }
376 },
377 "type": "object"
378 },
379 "type": "array"
380 }
381 },
382 "type": "object"
383 },
384 "index": {
385 "description": "The feature index.",
386 "format": "int64",
387 "type": "string"
388 },
389 "numeric": {
390 "description": "Description of the numer ic values of this feature.",
391 "properties": {
392 "count": {
393 "description": "Number of numeri c values for this feature in the data set.",
394 "format": "int64",
395 "type": "string"
396 },
397 "mean": {
398 "description": "Mean of the nume ric values of this feature in the data set.",
399 "type": "string"
400 },
401 "variance": {
402 "description": "Variance of the numeric values of this feature in the data set.",
403 "type": "string"
404 }
405 },
406 "type": "object"
407 },
408 "text": {
409 "description": "Description of multiple- word text values of this feature.",
410 "properties": {
411 "count": {
412 "description": "Number of multip le-word text values for this feature.",
413 "format": "int64",
414 "type": "string"
415 }
416 },
417 "type": "object"
418 }
419 },
420 "type": "object"
421 },
422 "type": "array"
423 },
424 "outputFeature": {
425 "description": "Description of the output value or l abel.",
426 "properties": {
427 "numeric": {
428 "description": "Description of the output va lues in the data set.",
429 "properties": {
430 "count": {
431 "description": "Number of numeric ou tput values in the data set.",
432 "format": "int64",
433 "type": "string"
434 },
435 "mean": {
436 "description": "Mean of the output v alues in the data set.",
437 "type": "string"
438 },
439 "variance": {
440 "description": "Variance of the outp ut values in the data set.",
441 "type": "string"
442 }
443 },
444 "type": "object"
445 },
446 "text": {
447 "description": "Description of the output la bels in the data set.",
448 "items": {
449 "properties": {
450 "count": {
451 "description": "Number of times the output label occurred in the data set.",
452 "format": "int64",
453 "type": "string"
454 },
455 "value": {
456 "description": "The output label .",
457 "type": "string"
458 }
459 },
460 "type": "object"
461 },
462 "type": "array"
463 }
464 },
465 "type": "object"
466 }
467 },
468 "type": "object"
469 },
470 "errors": {
471 "description": "List of errors with the data.",
472 "items": {
473 "additionalProperties": {
474 "description": "Error level followed by a detailed e rror message.",
475 "type": "string"
476 },
477 "type": "object"
478 },
479 "type": "array"
480 },
481 "id": {
482 "description": "The unique name for the predictive model.",
483 "type": "string"
484 },
485 "kind": {
486 "default": "prediction#analyze",
487 "description": "What kind of resource this is.",
488 "type": "string"
489 },
490 "modelDescription": {
491 "description": "Description of the model.",
492 "properties": {
493 "confusionMatrix": {
494 "additionalProperties": {
495 "additionalProperties": {
496 "description": "Average number of times an i nstance with correct class label modelDescription.confusionMatrix.(key) was wron gfully classified as this label.",
497 "type": "string"
498 },
499 "description": "Confusion matrix information for the true class label.",
500 "type": "object"
501 },
502 "description": "An output confusion matrix. This sho ws an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predic ted_label, count}, where count is the estimated number of times the model will p redict the predicted label given the true label. Will not output if more then 10 0 classes (Categorical models only).",
503 "type": "object"
504 },
505 "confusionMatrixRowTotals": {
506 "additionalProperties": {
507 "type": "string"
508 },
509 "description": "A list of the confusion matrix row t otals.",
510 "type": "object"
511 },
512 "modelinfo": {
513 "$ref": "Insert2",
514 "description": "Basic information about the model."
515 }
516 },
517 "type": "object"
518 },
519 "selfLink": {
520 "description": "A URL to re-request this resource.",
521 "type": "string"
522 }
523 },
524 "type": "object"
525 },
526 "Input": {
527 "id": "Input",
528 "properties": {
529 "input": {
530 "description": "Input to the model for a prediction.",
531 "properties": {
532 "csvInstance": {
533 "description": "A list of input features, these can be strings or doubles.",
534 "items": {
535 "type": "any"
536 },
537 "type": "array"
538 }
539 },
540 "type": "object"
541 }
542 },
543 "type": "object"
544 },
545 "Insert": {
546 "id": "Insert",
547 "properties": {
548 "id": {
549 "description": "The unique name for the predictive model.",
550 "type": "string"
551 },
552 "modelType": {
553 "description": "Type of predictive model (classification or regression).",
554 "type": "string"
555 },
556 "sourceModel": {
557 "description": "The Id of the model to be copied over.",
558 "type": "string"
559 },
560 "storageDataLocation": {
561 "description": "Google storage location of the training data file.",
562 "type": "string"
563 },
564 "storagePMMLLocation": {
565 "description": "Google storage location of the preprocessing pmml file.",
566 "type": "string"
567 },
568 "storagePMMLModelLocation": {
569 "description": "Google storage location of the pmml model fi le.",
570 "type": "string"
571 },
572 "trainingInstances": {
573 "description": "Instances to train model on.",
574 "items": {
575 "properties": {
576 "csvInstance": {
577 "description": "The input features for this inst ance.",
578 "items": {
579 "type": "any"
580 },
581 "type": "array"
582 },
583 "output": {
584 "description": "The generic output value - could be regression or class label.",
585 "type": "string"
586 }
587 },
588 "type": "object"
589 },
590 "type": "array"
591 },
592 "utility": {
593 "description": "A class weighting function, which allows the importance weights for class labels to be specified (Categorical models only)." ,
594 "items": {
595 "additionalProperties": {
596 "format": "double",
597 "type": "number"
598 },
599 "description": "Class label (string).",
600 "type": "object"
601 },
602 "type": "array"
603 }
604 },
605 "type": "object"
606 },
607 "Insert2": {
608 "id": "Insert2",
609 "properties": {
610 "created": {
611 "description": "Insert time of the model (as a RFC 3339 time stamp).",
612 "format": "date-time",
613 "type": "string"
614 },
615 "id": {
616 "description": "The unique name for the predictive model.",
617 "type": "string"
618 },
619 "kind": {
620 "default": "prediction#training",
621 "description": "What kind of resource this is.",
622 "type": "string"
623 },
624 "modelInfo": {
625 "description": "Model metadata.",
626 "properties": {
627 "classWeightedAccuracy": {
628 "description": "Estimated accuracy of model taking u tility weights into account (Categorical models only).",
629 "type": "string"
630 },
631 "classificationAccuracy": {
632 "description": "A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of th e training data, of the estimated prediction accuracy. You can use this is a gui de to decide whether the results are accurate enough for your needs. This estima te will be more reliable if your real input data is similar to your training dat a (Categorical models only).",
633 "type": "string"
634 },
635 "meanSquaredError": {
636 "description": "An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models on ly).",
637 "type": "string"
638 },
639 "modelType": {
640 "description": "Type of predictive model (CLASSIFICA TION or REGRESSION).",
641 "type": "string"
642 },
643 "numberInstances": {
644 "description": "Number of valid data instances used in the trained model.",
645 "format": "int64",
646 "type": "string"
647 },
648 "numberLabels": {
649 "description": "Number of class labels in the traine d model (Categorical models only).",
650 "format": "int64",
651 "type": "string"
652 }
653 },
654 "type": "object"
655 },
656 "modelType": {
657 "description": "Type of predictive model (CLASSIFICATION or REGRESSION).",
658 "type": "string"
659 },
660 "selfLink": {
661 "description": "A URL to re-request this resource.",
662 "type": "string"
663 },
664 "storageDataLocation": {
665 "description": "Google storage location of the training data file.",
666 "type": "string"
667 },
668 "storagePMMLLocation": {
669 "description": "Google storage location of the preprocessing pmml file.",
670 "type": "string"
671 },
672 "storagePMMLModelLocation": {
673 "description": "Google storage location of the pmml model fi le.",
674 "type": "string"
675 },
676 "trainingComplete": {
677 "description": "Training completion time (as a RFC 3339 time stamp).",
678 "format": "date-time",
679 "type": "string"
680 },
681 "trainingStatus": {
682 "description": "The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND",
683 "type": "string"
684 }
685 },
686 "type": "object"
687 },
688 "List": {
689 "id": "List",
690 "properties": {
691 "items": {
692 "description": "List of models.",
693 "items": {
694 "$ref": "Insert2"
695 },
696 "type": "array"
697 },
698 "kind": {
699 "default": "prediction#list",
700 "description": "What kind of resource this is.",
701 "type": "string"
702 },
703 "nextPageToken": {
704 "description": "Pagination token to fetch the next page, if one exists.",
705 "type": "string"
706 },
707 "selfLink": {
708 "description": "A URL to re-request this resource.",
709 "type": "string"
710 }
711 },
712 "type": "object"
713 },
714 "Output": {
715 "id": "Output",
716 "properties": {
717 "id": {
718 "description": "The unique name for the predictive model.",
719 "type": "string"
720 },
721 "kind": {
722 "default": "prediction#output",
723 "description": "What kind of resource this is.",
724 "type": "string"
725 },
726 "outputLabel": {
727 "description": "The most likely class label (Categorical mod els only).",
728 "type": "string"
729 },
730 "outputMulti": {
731 "description": "A list of class labels with their estimated probabilities (Categorical models only).",
732 "items": {
733 "properties": {
734 "label": {
735 "description": "The class label.",
736 "type": "string"
737 },
738 "score": {
739 "description": "The probability of the class lab el.",
740 "type": "string"
741 }
742 },
743 "type": "object"
744 },
745 "type": "array"
746 },
747 "outputValue": {
748 "description": "The estimated regression value (Regression m odels only).",
749 "format": "double",
750 "type": "number"
751 },
752 "selfLink": {
753 "description": "A URL to re-request this resource.",
754 "type": "string"
755 }
756 },
757 "type": "object"
758 },
759 "Update": {
760 "id": "Update",
761 "properties": {
762 "csvInstance": {
763 "description": "The input features for this instance.",
764 "items": {
765 "type": "any"
766 },
767 "type": "array"
768 },
769 "output": {
770 "description": "The generic output value - could be regressi on or class label.",
771 "type": "string"
772 }
773 },
774 "type": "object"
775 }
776 },
777 "servicePath": "prediction/v1.6/projects/",
778 "title": "Prediction API",
779 "version": "v1.6"
780 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698