| Index: src/platform/vboot_reference/crypto/sha1.c
|
| diff --git a/src/platform/vboot_reference/crypto/sha1.c b/src/platform/vboot_reference/crypto/sha1.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..d19a5a2d8b8a0a28fa672c809f8d56c7843d14c5
|
| --- /dev/null
|
| +++ b/src/platform/vboot_reference/crypto/sha1.c
|
| @@ -0,0 +1,289 @@
|
| +/* Copyright (c) 2010 The Chromium OS Authors. All rights reserved.
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +/* SHA-1 implementation largely based on libmincrypt in the the Android
|
| + * Open Source Project (platorm/system/core.git/libmincrypt/sha.c
|
| + */
|
| +
|
| +#include "sha.h"
|
| +
|
| +/* Some machines lack byteswap.h and endian.h. These have to use the
|
| + * slower code, even if they're little-endian.
|
| + */
|
| +
|
| +#if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN)
|
| +
|
| +#include <byteswap.h>
|
| +#include <memory.h>
|
| +
|
| +/* This version is about 28% faster than the generic version below,
|
| + * but assumes little-endianness.
|
| + */
|
| +static inline uint32_t ror27(uint32_t val) {
|
| + return (val >> 27) | (val << 5);
|
| +}
|
| +static inline uint32_t ror2(uint32_t val) {
|
| + return (val >> 2) | (val << 30);
|
| +}
|
| +static inline uint32_t ror31(uint32_t val) {
|
| + return (val >> 31) | (val << 1);
|
| +}
|
| +
|
| +static void SHA1_Transform(SHA_CTX* ctx) {
|
| + uint32_t W[80];
|
| + register uint32_t A, B, C, D, E;
|
| + int t;
|
| +
|
| + A = ctx->state[0];
|
| + B = ctx->state[1];
|
| + C = ctx->state[2];
|
| + D = ctx->state[3];
|
| + E = ctx->state[4];
|
| +
|
| +#define SHA_F1(A,B,C,D,E,t) \
|
| + E += ror27(A) + \
|
| + (W[t] = bswap_32(ctx->buf.w[t])) + \
|
| + (D^(B&(C^D))) + 0x5A827999; \
|
| + B = ror2(B);
|
| +
|
| + for (t = 0; t < 15; t += 5) {
|
| + SHA_F1(A,B,C,D,E,t + 0);
|
| + SHA_F1(E,A,B,C,D,t + 1);
|
| + SHA_F1(D,E,A,B,C,t + 2);
|
| + SHA_F1(C,D,E,A,B,t + 3);
|
| + SHA_F1(B,C,D,E,A,t + 4);
|
| + }
|
| + SHA_F1(A,B,C,D,E,t + 0); /* 16th one, t == 15 */
|
| +
|
| +#undef SHA_F1
|
| +
|
| +#define SHA_F1(A,B,C,D,E,t) \
|
| + E += ror27(A) + \
|
| + (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
| + (D^(B&(C^D))) + 0x5A827999; \
|
| + B = ror2(B);
|
| +
|
| + SHA_F1(E,A,B,C,D,t + 1);
|
| + SHA_F1(D,E,A,B,C,t + 2);
|
| + SHA_F1(C,D,E,A,B,t + 3);
|
| + SHA_F1(B,C,D,E,A,t + 4);
|
| +
|
| +#undef SHA_F1
|
| +
|
| +#define SHA_F2(A,B,C,D,E,t) \
|
| + E += ror27(A) + \
|
| + (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
| + (B^C^D) + 0x6ED9EBA1; \
|
| + B = ror2(B);
|
| +
|
| + for (t = 20; t < 40; t += 5) {
|
| + SHA_F2(A,B,C,D,E,t + 0);
|
| + SHA_F2(E,A,B,C,D,t + 1);
|
| + SHA_F2(D,E,A,B,C,t + 2);
|
| + SHA_F2(C,D,E,A,B,t + 3);
|
| + SHA_F2(B,C,D,E,A,t + 4);
|
| + }
|
| +
|
| +#undef SHA_F2
|
| +
|
| +#define SHA_F3(A,B,C,D,E,t) \
|
| + E += ror27(A) + \
|
| + (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
| + ((B&C)|(D&(B|C))) + 0x8F1BBCDC; \
|
| + B = ror2(B);
|
| +
|
| + for (; t < 60; t += 5) {
|
| + SHA_F3(A,B,C,D,E,t + 0);
|
| + SHA_F3(E,A,B,C,D,t + 1);
|
| + SHA_F3(D,E,A,B,C,t + 2);
|
| + SHA_F3(C,D,E,A,B,t + 3);
|
| + SHA_F3(B,C,D,E,A,t + 4);
|
| + }
|
| +
|
| +#undef SHA_F3
|
| +
|
| +#define SHA_F4(A,B,C,D,E,t) \
|
| + E += ror27(A) + \
|
| + (W[t] = ror31(W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16])) + \
|
| + (B^C^D) + 0xCA62C1D6; \
|
| + B = ror2(B);
|
| +
|
| + for (; t < 80; t += 5) {
|
| + SHA_F4(A,B,C,D,E,t + 0);
|
| + SHA_F4(E,A,B,C,D,t + 1);
|
| + SHA_F4(D,E,A,B,C,t + 2);
|
| + SHA_F4(C,D,E,A,B,t + 3);
|
| + SHA_F4(B,C,D,E,A,t + 4);
|
| + }
|
| +
|
| +#undef SHA_F4
|
| +
|
| + ctx->state[0] += A;
|
| + ctx->state[1] += B;
|
| + ctx->state[2] += C;
|
| + ctx->state[3] += D;
|
| + ctx->state[4] += E;
|
| +}
|
| +
|
| +void SHA1_update(SHA1_CTX* ctx, const uint8_t* data, size_t len) {
|
| + int i = ctx->count % sizeof(ctx->buf);
|
| + const uint8_t* p = (const uint8_t*)data;
|
| +
|
| + ctx->count += len;
|
| +
|
| + while (len > sizeof(ctx->buf) - i) {
|
| + memcpy(&ctx->buf.b[i], p, sizeof(ctx->buf) - i);
|
| + len -= sizeof(ctx->buf) - i;
|
| + p += sizeof(ctx->buf) - i;
|
| + SHA1_Transform(ctx);
|
| + i = 0;
|
| + }
|
| +
|
| + while (len--) {
|
| + ctx->buf.b[i++] = *p++;
|
| + if (i == sizeof(ctx->buf)) {
|
| + SHA1_Transform(ctx);
|
| + i = 0;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +uint8_t* SHA1_final(SHA_CTX* ctx) {
|
| + uint64_t cnt = ctx->count * 8;
|
| + int i;
|
| +
|
| + SHA1_update(ctx, (uint8_t*)"\x80", 1);
|
| + while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
|
| + SHA1_update(ctx, (uint8_t*)"\0", 1);
|
| + }
|
| + for (i = 0; i < 8; ++i) {
|
| + uint8_t tmp = cnt >> ((7 - i) * 8);
|
| + SHA1_update(ctx, &tmp, 1);
|
| + }
|
| +
|
| + for (i = 0; i < 5; i++) {
|
| + ctx->buf.w[i] = bswap_32(ctx->state[i]);
|
| + }
|
| +
|
| + return ctx->buf.b;
|
| +}
|
| +
|
| +#else /* #if defined(HAVE_ENDIAN_H) && defined(HAVE_LITTLE_ENDIAN) */
|
| +
|
| +#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))
|
| +
|
| +static void SHA1_transform(SHA1_CTX *ctx) {
|
| + uint32_t W[80];
|
| + uint32_t A, B, C, D, E;
|
| + uint8_t *p = ctx->buf;
|
| + int t;
|
| +
|
| + for(t = 0; t < 16; ++t) {
|
| + uint32_t tmp = *p++ << 24;
|
| + tmp |= *p++ << 16;
|
| + tmp |= *p++ << 8;
|
| + tmp |= *p++;
|
| + W[t] = tmp;
|
| + }
|
| +
|
| + for(; t < 80; t++) {
|
| + W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
|
| + }
|
| +
|
| + A = ctx->state[0];
|
| + B = ctx->state[1];
|
| + C = ctx->state[2];
|
| + D = ctx->state[3];
|
| + E = ctx->state[4];
|
| +
|
| + for(t = 0; t < 80; t++) {
|
| + uint32_t tmp = rol(5,A) + E + W[t];
|
| +
|
| + if (t < 20)
|
| + tmp += (D^(B&(C^D))) + 0x5A827999;
|
| + else if ( t < 40)
|
| + tmp += (B^C^D) + 0x6ED9EBA1;
|
| + else if ( t < 60)
|
| + tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
|
| + else
|
| + tmp += (B^C^D) + 0xCA62C1D6;
|
| +
|
| + E = D;
|
| + D = C;
|
| + C = rol(30,B);
|
| + B = A;
|
| + A = tmp;
|
| + }
|
| +
|
| + ctx->state[0] += A;
|
| + ctx->state[1] += B;
|
| + ctx->state[2] += C;
|
| + ctx->state[3] += D;
|
| + ctx->state[4] += E;
|
| +}
|
| +
|
| +void SHA1_update(SHA1_CTX *ctx, const uint8_t *data, int len) {
|
| + int i = ctx->count % sizeof(ctx->buf);
|
| + const uint8_t* p = (const uint8_t*) data;
|
| +
|
| + ctx->count += len;
|
| +
|
| + while (len--) {
|
| + ctx->buf[i++] = *p++;
|
| + if (i == sizeof(ctx->buf)) {
|
| + SHA1_transform(ctx);
|
| + i = 0;
|
| + }
|
| + }
|
| +}
|
| +uint8_t* SHA1_final(SHA1_CTX *ctx) {
|
| + uint8_t *p = ctx->buf;
|
| + uint64_t cnt = ctx->count * 8;
|
| + int i;
|
| +
|
| + SHA1_update(ctx, (uint8_t*)"\x80", 1);
|
| + while ((ctx->count % sizeof(ctx->buf)) != (sizeof(ctx->buf) - 8)) {
|
| + SHA1_update(ctx, (uint8_t*)"\0", 1);
|
| + }
|
| + for (i = 0; i < 8; ++i) {
|
| + uint8_t tmp = cnt >> ((7 - i) * 8);
|
| + SHA1_update(ctx, &tmp, 1);
|
| + }
|
| +
|
| + for (i = 0; i < 5; i++) {
|
| + uint32_t tmp = ctx->state[i];
|
| + *p++ = tmp >> 24;
|
| + *p++ = tmp >> 16;
|
| + *p++ = tmp >> 8;
|
| + *p++ = tmp >> 0;
|
| + }
|
| +
|
| + return ctx->buf;
|
| +}
|
| +
|
| +#endif /* endianness */
|
| +
|
| +void SHA1_init(SHA1_CTX* ctx) {
|
| + ctx->state[0] = 0x67452301;
|
| + ctx->state[1] = 0xEFCDAB89;
|
| + ctx->state[2] = 0x98BADCFE;
|
| + ctx->state[3] = 0x10325476;
|
| + ctx->state[4] = 0xC3D2E1F0;
|
| + ctx->count = 0;
|
| +}
|
| +
|
| +uint8_t* SHA1(const void *data, int len, uint8_t *digest) {
|
| + const uint8_t *p;
|
| + int i;
|
| + SHA1_CTX ctx;
|
| + SHA1_init(&ctx);
|
| + SHA1_update(&ctx, data, len);
|
| + p = SHA1_final(&ctx);
|
| + for (i = 0; i < SHA1_DIGEST_SIZE; ++i) {
|
| + digest[i] = *p++;
|
| + }
|
| + return digest;
|
| +}
|
|
|