Index: icu46/source/i18n/uspoof_conf.cpp |
=================================================================== |
--- icu46/source/i18n/uspoof_conf.cpp (revision 0) |
+++ icu46/source/i18n/uspoof_conf.cpp (revision 0) |
@@ -0,0 +1,600 @@ |
+/* |
+****************************************************************************** |
+* |
+* Copyright (C) 2008-2010, International Business Machines |
+* Corporation and others. All Rights Reserved. |
+* |
+****************************************************************************** |
+* file name: uspoof_conf.cpp |
+* encoding: US-ASCII |
+* tab size: 8 (not used) |
+* indentation:4 |
+* |
+* created on: 2009Jan05 (refactoring earlier files) |
+* created by: Andy Heninger |
+* |
+* Internal classes for compililing confusable data into its binary (runtime) form. |
+*/ |
+ |
+#include "unicode/utypes.h" |
+#include "unicode/uspoof.h" |
+#if !UCONFIG_NO_REGULAR_EXPRESSIONS |
+#if !UCONFIG_NO_NORMALIZATION |
+ |
+#include "unicode/unorm.h" |
+#include "unicode/uregex.h" |
+#include "unicode/ustring.h" |
+#include "cmemory.h" |
+#include "uspoof_impl.h" |
+#include "uhash.h" |
+#include "uvector.h" |
+#include "uassert.h" |
+#include "uarrsort.h" |
+#include "uspoof_conf.h" |
+ |
+U_NAMESPACE_USE |
+ |
+ |
+//--------------------------------------------------------------------- |
+// |
+// buildConfusableData Compile the source confusable data, as defined by |
+// the Unicode data file confusables.txt, into the binary |
+// structures used by the confusable detector. |
+// |
+// The binary structures are described in uspoof_impl.h |
+// |
+// 1. parse the data, building 4 hash tables, one each for the SL, SA, ML and MA |
+// tables. Each maps from a UChar32 to a String. |
+// |
+// 2. Sort all of the strings encountered by length, since they will need to |
+// be stored in that order in the final string table. |
+// |
+// 3. Build a list of keys (UChar32s) from the four mapping tables. Sort the |
+// list because that will be the ordering of our runtime table. |
+// |
+// 4. Generate the run time string table. This is generated before the key & value |
+// tables because we need the string indexes when building those tables. |
+// |
+// 5. Build the run-time key and value tables. These are parallel tables, and are built |
+// at the same time |
+// |
+ |
+SPUString::SPUString(UnicodeString *s) { |
+ fStr = s; |
+ fStrTableIndex = 0; |
+} |
+ |
+ |
+SPUString::~SPUString() { |
+ delete fStr; |
+} |
+ |
+ |
+SPUStringPool::SPUStringPool(UErrorCode &status) : fVec(NULL), fHash(NULL) { |
+ fVec = new UVector(status); |
+ fHash = uhash_open(uhash_hashUnicodeString, // key hash function |
+ uhash_compareUnicodeString, // Key Comparator |
+ NULL, // Value Comparator |
+ &status); |
+} |
+ |
+ |
+SPUStringPool::~SPUStringPool() { |
+ int i; |
+ for (i=fVec->size()-1; i>=0; i--) { |
+ SPUString *s = static_cast<SPUString *>(fVec->elementAt(i)); |
+ delete s; |
+ } |
+ delete fVec; |
+ uhash_close(fHash); |
+} |
+ |
+ |
+int32_t SPUStringPool::size() { |
+ return fVec->size(); |
+} |
+ |
+SPUString *SPUStringPool::getByIndex(int32_t index) { |
+ SPUString *retString = (SPUString *)fVec->elementAt(index); |
+ return retString; |
+} |
+ |
+ |
+// Comparison function for ordering strings in the string pool. |
+// Compare by length first, then, within a group of the same length, |
+// by code point order. |
+// Conforms to the type signature for a USortComparator in uvector.h |
+ |
+static int8_t U_CALLCONV SPUStringCompare(UHashTok left, UHashTok right) { |
+ const SPUString *sL = const_cast<const SPUString *>( |
+ static_cast<SPUString *>(left.pointer)); |
+ const SPUString *sR = const_cast<const SPUString *>( |
+ static_cast<SPUString *>(right.pointer)); |
+ int32_t lenL = sL->fStr->length(); |
+ int32_t lenR = sR->fStr->length(); |
+ if (lenL < lenR) { |
+ return -1; |
+ } else if (lenL > lenR) { |
+ return 1; |
+ } else { |
+ return sL->fStr->compare(*(sR->fStr)); |
+ } |
+} |
+ |
+void SPUStringPool::sort(UErrorCode &status) { |
+ fVec->sort(SPUStringCompare, status); |
+} |
+ |
+ |
+SPUString *SPUStringPool::addString(UnicodeString *src, UErrorCode &status) { |
+ SPUString *hashedString = static_cast<SPUString *>(uhash_get(fHash, src)); |
+ if (hashedString != NULL) { |
+ delete src; |
+ } else { |
+ hashedString = new SPUString(src); |
+ uhash_put(fHash, src, hashedString, &status); |
+ fVec->addElement(hashedString, status); |
+ } |
+ return hashedString; |
+} |
+ |
+ |
+ |
+ConfusabledataBuilder::ConfusabledataBuilder(SpoofImpl *spImpl, UErrorCode &status) : |
+ fSpoofImpl(spImpl), |
+ fInput(NULL), |
+ fSLTable(NULL), |
+ fSATable(NULL), |
+ fMLTable(NULL), |
+ fMATable(NULL), |
+ fKeySet(NULL), |
+ fKeyVec(NULL), |
+ fValueVec(NULL), |
+ fStringTable(NULL), |
+ fStringLengthsTable(NULL), |
+ stringPool(NULL), |
+ fParseLine(NULL), |
+ fParseHexNum(NULL), |
+ fLineNum(0) |
+{ |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ fSLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
+ fSATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
+ fMLTable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
+ fMATable = uhash_open(uhash_hashLong, uhash_compareLong, NULL, &status); |
+ fKeySet = new UnicodeSet(); |
+ fKeyVec = new UVector(status); |
+ fValueVec = new UVector(status); |
+ stringPool = new SPUStringPool(status); |
+} |
+ |
+ |
+ConfusabledataBuilder::~ConfusabledataBuilder() { |
+ uprv_free(fInput); |
+ uregex_close(fParseLine); |
+ uregex_close(fParseHexNum); |
+ uhash_close(fSLTable); |
+ uhash_close(fSATable); |
+ uhash_close(fMLTable); |
+ uhash_close(fMATable); |
+ delete fKeySet; |
+ delete fKeyVec; |
+ delete fStringTable; |
+ delete fStringLengthsTable; |
+ delete fValueVec; |
+ delete stringPool; |
+} |
+ |
+ |
+void ConfusabledataBuilder::buildConfusableData(SpoofImpl * spImpl, const char * confusables, |
+ int32_t confusablesLen, int32_t *errorType, UParseError *pe, UErrorCode &status) { |
+ |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ ConfusabledataBuilder builder(spImpl, status); |
+ builder.build(confusables, confusablesLen, status); |
+ if (U_FAILURE(status) && errorType != NULL) { |
+ *errorType = USPOOF_SINGLE_SCRIPT_CONFUSABLE; |
+ pe->line = builder.fLineNum; |
+ } |
+} |
+ |
+ |
+void ConfusabledataBuilder::build(const char * confusables, int32_t confusablesLen, |
+ UErrorCode &status) { |
+ |
+ // Convert the user input data from UTF-8 to UChar (UTF-16) |
+ int32_t inputLen = 0; |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ u_strFromUTF8(NULL, 0, &inputLen, confusables, confusablesLen, &status); |
+ if (status != U_BUFFER_OVERFLOW_ERROR) { |
+ return; |
+ } |
+ status = U_ZERO_ERROR; |
+ fInput = static_cast<UChar *>(uprv_malloc((inputLen+1) * sizeof(UChar))); |
+ if (fInput == NULL) { |
+ status = U_MEMORY_ALLOCATION_ERROR; |
+ } |
+ u_strFromUTF8(fInput, inputLen+1, NULL, confusables, confusablesLen, &status); |
+ |
+ |
+ // Regular Expression to parse a line from Confusables.txt. The expression will match |
+ // any line. What was matched is determined by examining which capture groups have a match. |
+ // Capture Group 1: the source char |
+ // Capture Group 2: the replacement chars |
+ // Capture Group 3-6 the table type, SL, SA, ML, or MA |
+ // Capture Group 7: A blank or comment only line. |
+ // Capture Group 8: A syntactically invalid line. Anything that didn't match before. |
+ // Example Line from the confusables.txt source file: |
+ // "1D702 ; 006E 0329 ; SL # MATHEMATICAL ITALIC SMALL ETA ... " |
+ fParseLine = uregex_openC( |
+ "(?m)^[ \\t]*([0-9A-Fa-f]+)[ \\t]+;" // Match the source char |
+ "[ \\t]*([0-9A-Fa-f]+" // Match the replacement char(s) |
+ "(?:[ \\t]+[0-9A-Fa-f]+)*)[ \\t]*;" // (continued) |
+ "\\s*(?:(SL)|(SA)|(ML)|(MA))" // Match the table type |
+ "[ \\t]*(?:#.*?)?$" // Match any trailing #comment |
+ "|^([ \\t]*(?:#.*?)?)$" // OR match empty lines or lines with only a #comment |
+ "|^(.*?)$", // OR match any line, which catches illegal lines. |
+ 0, NULL, &status); |
+ |
+ // Regular expression for parsing a hex number out of a space-separated list of them. |
+ // Capture group 1 gets the number, with spaces removed. |
+ fParseHexNum = uregex_openC("\\s*([0-9A-F]+)", 0, NULL, &status); |
+ |
+ // Zap any Byte Order Mark at the start of input. Changing it to a space is benign |
+ // given the syntax of the input. |
+ if (*fInput == 0xfeff) { |
+ *fInput = 0x20; |
+ } |
+ |
+ // Parse the input, one line per iteration of this loop. |
+ uregex_setText(fParseLine, fInput, inputLen, &status); |
+ while (uregex_findNext(fParseLine, &status)) { |
+ fLineNum++; |
+ if (uregex_start(fParseLine, 7, &status) >= 0) { |
+ // this was a blank or comment line. |
+ continue; |
+ } |
+ if (uregex_start(fParseLine, 8, &status) >= 0) { |
+ // input file syntax error. |
+ status = U_PARSE_ERROR; |
+ return; |
+ } |
+ |
+ // We have a good input line. Extract the key character and mapping string, and |
+ // put them into the appropriate mapping table. |
+ UChar32 keyChar = SpoofImpl::ScanHex(fInput, uregex_start(fParseLine, 1, &status), |
+ uregex_end(fParseLine, 1, &status), status); |
+ |
+ int32_t mapStringStart = uregex_start(fParseLine, 2, &status); |
+ int32_t mapStringLength = uregex_end(fParseLine, 2, &status) - mapStringStart; |
+ uregex_setText(fParseHexNum, &fInput[mapStringStart], mapStringLength, &status); |
+ |
+ UnicodeString *mapString = new UnicodeString(); |
+ if (mapString == NULL) { |
+ status = U_MEMORY_ALLOCATION_ERROR; |
+ return; |
+ } |
+ while (uregex_findNext(fParseHexNum, &status)) { |
+ UChar32 c = SpoofImpl::ScanHex(&fInput[mapStringStart], uregex_start(fParseHexNum, 1, &status), |
+ uregex_end(fParseHexNum, 1, &status), status); |
+ mapString->append(c); |
+ } |
+ U_ASSERT(mapString->length() >= 1); |
+ |
+ // Put the map (value) string into the string pool |
+ // This a little like a Java intern() - any duplicates will be eliminated. |
+ SPUString *smapString = stringPool->addString(mapString, status); |
+ |
+ // Add the UChar32 -> string mapping to the appropriate table. |
+ UHashtable *table = uregex_start(fParseLine, 3, &status) >= 0 ? fSLTable : |
+ uregex_start(fParseLine, 4, &status) >= 0 ? fSATable : |
+ uregex_start(fParseLine, 5, &status) >= 0 ? fMLTable : |
+ uregex_start(fParseLine, 6, &status) >= 0 ? fMATable : |
+ NULL; |
+ U_ASSERT(table != NULL); |
+ uhash_iput(table, keyChar, smapString, &status); |
+ fKeySet->add(keyChar); |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ } |
+ |
+ // Input data is now all parsed and collected. |
+ // Now create the run-time binary form of the data. |
+ // |
+ // This is done in two steps. First the data is assembled into vectors and strings, |
+ // for ease of construction, then the contents of these collections are dumped |
+ // into the actual raw-bytes data storage. |
+ |
+ // Build up the string array, and record the index of each string therein |
+ // in the (build time only) string pool. |
+ // Strings of length one are not entered into the strings array. |
+ // At the same time, build up the string lengths table, which records the |
+ // position in the string table of the first string of each length >= 4. |
+ // (Strings in the table are sorted by length) |
+ stringPool->sort(status); |
+ fStringTable = new UnicodeString(); |
+ fStringLengthsTable = new UVector(status); |
+ int32_t previousStringLength = 0; |
+ int32_t previousStringIndex = 0; |
+ int32_t poolSize = stringPool->size(); |
+ int32_t i; |
+ for (i=0; i<poolSize; i++) { |
+ SPUString *s = stringPool->getByIndex(i); |
+ int32_t strLen = s->fStr->length(); |
+ int32_t strIndex = fStringTable->length(); |
+ U_ASSERT(strLen >= previousStringLength); |
+ if (strLen == 1) { |
+ // strings of length one do not get an entry in the string table. |
+ // Keep the single string character itself here, which is the same |
+ // convention that is used in the final run-time string table index. |
+ s->fStrTableIndex = s->fStr->charAt(0); |
+ } else { |
+ if ((strLen > previousStringLength) && (previousStringLength >= 4)) { |
+ fStringLengthsTable->addElement(previousStringIndex, status); |
+ fStringLengthsTable->addElement(previousStringLength, status); |
+ } |
+ s->fStrTableIndex = strIndex; |
+ fStringTable->append(*(s->fStr)); |
+ } |
+ previousStringLength = strLen; |
+ previousStringIndex = strIndex; |
+ } |
+ // Make the final entry to the string lengths table. |
+ // (it holds an entry for the _last_ string of each length, so adding the |
+ // final one doesn't happen in the main loop because no longer string was encountered.) |
+ if (previousStringLength >= 4) { |
+ fStringLengthsTable->addElement(previousStringIndex, status); |
+ fStringLengthsTable->addElement(previousStringLength, status); |
+ } |
+ |
+ // Construct the compile-time Key and Value tables |
+ // |
+ // For each key code point, check which mapping tables it applies to, |
+ // and create the final data for the key & value structures. |
+ // |
+ // The four logical mapping tables are conflated into one combined table. |
+ // If multiple logical tables have the same mapping for some key, they |
+ // share a single entry in the combined table. |
+ // If more than one mapping exists for the same key code point, multiple |
+ // entries will be created in the table |
+ |
+ for (int32_t range=0; range<fKeySet->getRangeCount(); range++) { |
+ // It is an oddity of the UnicodeSet API that simply enumerating the contained |
+ // code points requires a nested loop. |
+ for (UChar32 keyChar=fKeySet->getRangeStart(range); |
+ keyChar <= fKeySet->getRangeEnd(range); keyChar++) { |
+ addKeyEntry(keyChar, fSLTable, USPOOF_SL_TABLE_FLAG, status); |
+ addKeyEntry(keyChar, fSATable, USPOOF_SA_TABLE_FLAG, status); |
+ addKeyEntry(keyChar, fMLTable, USPOOF_ML_TABLE_FLAG, status); |
+ addKeyEntry(keyChar, fMATable, USPOOF_MA_TABLE_FLAG, status); |
+ } |
+ } |
+ |
+ // Put the assembled data into the flat runtime array |
+ outputData(status); |
+ |
+ // All of the intermediate allocated data belongs to the ConfusabledataBuilder |
+ // object (this), and is deleted in the destructor. |
+ return; |
+} |
+ |
+// |
+// outputData The confusable data has been compiled and stored in intermediate |
+// collections and strings. Copy it from there to the final flat |
+// binary array. |
+// |
+// Note that as each section is added to the output data, the |
+// expand (reserveSpace() function will likely relocate it in memory. |
+// Be careful with pointers. |
+// |
+void ConfusabledataBuilder::outputData(UErrorCode &status) { |
+ |
+ U_ASSERT(fSpoofImpl->fSpoofData->fDataOwned == TRUE); |
+ |
+ // The Key Table |
+ // While copying the keys to the runtime array, |
+ // also sanity check that they are sorted. |
+ |
+ int32_t numKeys = fKeyVec->size(); |
+ int32_t *keys = |
+ static_cast<int32_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(int32_t), status)); |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ int i; |
+ int32_t previousKey = 0; |
+ for (i=0; i<numKeys; i++) { |
+ int32_t key = fKeyVec->elementAti(i); |
+ U_ASSERT((key & 0x00ffffff) >= (previousKey & 0x00ffffff)); |
+ U_ASSERT((key & 0xff000000) != 0); |
+ keys[i] = key; |
+ previousKey = key; |
+ } |
+ SpoofDataHeader *rawData = fSpoofImpl->fSpoofData->fRawData; |
+ rawData->fCFUKeys = (int32_t)((char *)keys - (char *)rawData); |
+ rawData->fCFUKeysSize = numKeys; |
+ fSpoofImpl->fSpoofData->fCFUKeys = keys; |
+ |
+ |
+ // The Value Table, parallels the key table |
+ int32_t numValues = fValueVec->size(); |
+ U_ASSERT(numKeys == numValues); |
+ uint16_t *values = |
+ static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(numKeys*sizeof(uint16_t), status)); |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ for (i=0; i<numValues; i++) { |
+ uint32_t value = static_cast<uint32_t>(fValueVec->elementAti(i)); |
+ U_ASSERT(value < 0xffff); |
+ values[i] = static_cast<uint16_t>(value); |
+ } |
+ rawData = fSpoofImpl->fSpoofData->fRawData; |
+ rawData->fCFUStringIndex = (int32_t)((char *)values - (char *)rawData); |
+ rawData->fCFUStringIndexSize = numValues; |
+ fSpoofImpl->fSpoofData->fCFUValues = values; |
+ |
+ // The Strings Table. |
+ |
+ uint32_t stringsLength = fStringTable->length(); |
+ // Reserve an extra space so the string will be nul-terminated. This is |
+ // only a convenience, for when debugging; it is not needed otherwise. |
+ UChar *strings = |
+ static_cast<UChar *>(fSpoofImpl->fSpoofData->reserveSpace(stringsLength*sizeof(UChar)+2, status)); |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ fStringTable->extract(strings, stringsLength+1, status); |
+ rawData = fSpoofImpl->fSpoofData->fRawData; |
+ U_ASSERT(rawData->fCFUStringTable == 0); |
+ rawData->fCFUStringTable = (int32_t)((char *)strings - (char *)rawData); |
+ rawData->fCFUStringTableLen = stringsLength; |
+ fSpoofImpl->fSpoofData->fCFUStrings = strings; |
+ |
+ // The String Lengths Table |
+ // While copying into the runtime array do some sanity checks on the values |
+ // Each complete entry contains two fields, an index and an offset. |
+ // Lengths should increase with each entry. |
+ // Offsets should be less than the size of the string table. |
+ int32_t lengthTableLength = fStringLengthsTable->size(); |
+ uint16_t *stringLengths = |
+ static_cast<uint16_t *>(fSpoofImpl->fSpoofData->reserveSpace(lengthTableLength*sizeof(uint16_t), status)); |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ int32_t destIndex = 0; |
+ uint32_t previousLength = 0; |
+ for (i=0; i<lengthTableLength; i+=2) { |
+ uint32_t offset = static_cast<uint32_t>(fStringLengthsTable->elementAti(i)); |
+ uint32_t length = static_cast<uint32_t>(fStringLengthsTable->elementAti(i+1)); |
+ U_ASSERT(offset < stringsLength); |
+ U_ASSERT(length < 40); |
+ U_ASSERT(length > previousLength); |
+ stringLengths[destIndex++] = static_cast<uint16_t>(offset); |
+ stringLengths[destIndex++] = static_cast<uint16_t>(length); |
+ previousLength = length; |
+ } |
+ rawData = fSpoofImpl->fSpoofData->fRawData; |
+ rawData->fCFUStringLengths = (int32_t)((char *)stringLengths - (char *)rawData); |
+ // Note: StringLengthsSize in the raw data is the number of complete entries, |
+ // each consisting of a pair of 16 bit values, hence the divide by 2. |
+ rawData->fCFUStringLengthsSize = lengthTableLength / 2; |
+ fSpoofImpl->fSpoofData->fCFUStringLengths = |
+ reinterpret_cast<SpoofStringLengthsElement *>(stringLengths); |
+} |
+ |
+ |
+ |
+// addKeyEntry Construction of the confusable Key and Mapping Values tables. |
+// This is an intermediate point in the building process. |
+// We already have the mappings in the hash tables fSLTable, etc. |
+// This function builds corresponding run-time style table entries into |
+// fKeyVec and fValueVec |
+ |
+void ConfusabledataBuilder::addKeyEntry( |
+ UChar32 keyChar, // The key character |
+ UHashtable *table, // The table, one of SATable, MATable, etc. |
+ int32_t tableFlag, // One of USPOOF_SA_TABLE_FLAG, etc. |
+ UErrorCode &status) { |
+ |
+ SPUString *targetMapping = static_cast<SPUString *>(uhash_iget(table, keyChar)); |
+ if (targetMapping == NULL) { |
+ // No mapping for this key character. |
+ // (This function is called for all four tables for each key char that |
+ // is seen anywhere, so this no entry cases are very much expected.) |
+ return; |
+ } |
+ |
+ // Check whether there is already an entry with the correct mapping. |
+ // If so, simply set the flag in the keyTable saying that the existing entry |
+ // applies to the table that we're doing now. |
+ |
+ UBool keyHasMultipleValues = FALSE; |
+ int32_t i; |
+ for (i=fKeyVec->size()-1; i>=0 ; i--) { |
+ int32_t key = fKeyVec->elementAti(i); |
+ if ((key & 0x0ffffff) != keyChar) { |
+ // We have now checked all existing key entries for this key char (if any) |
+ // without finding one with the same mapping. |
+ break; |
+ } |
+ UnicodeString mapping = getMapping(i); |
+ if (mapping == *(targetMapping->fStr)) { |
+ // The run time entry we are currently testing has the correct mapping. |
+ // Set the flag in it indicating that it applies to the new table also. |
+ key |= tableFlag; |
+ fKeyVec->setElementAt(key, i); |
+ return; |
+ } |
+ keyHasMultipleValues = TRUE; |
+ } |
+ |
+ // Need to add a new entry to the binary data being built for this mapping. |
+ // Includes adding entries to both the key table and the parallel values table. |
+ |
+ int32_t newKey = keyChar | tableFlag; |
+ if (keyHasMultipleValues) { |
+ newKey |= USPOOF_KEY_MULTIPLE_VALUES; |
+ } |
+ int32_t adjustedMappingLength = targetMapping->fStr->length() - 1; |
+ if (adjustedMappingLength>3) { |
+ adjustedMappingLength = 3; |
+ } |
+ newKey |= adjustedMappingLength << USPOOF_KEY_LENGTH_SHIFT; |
+ |
+ int32_t newData = targetMapping->fStrTableIndex; |
+ |
+ fKeyVec->addElement(newKey, status); |
+ fValueVec->addElement(newData, status); |
+ |
+ // If the preceding key entry is for the same key character (but with a different mapping) |
+ // set the multiple-values flag on it. |
+ if (keyHasMultipleValues) { |
+ int32_t previousKeyIndex = fKeyVec->size() - 2; |
+ int32_t previousKey = fKeyVec->elementAti(previousKeyIndex); |
+ previousKey |= USPOOF_KEY_MULTIPLE_VALUES; |
+ fKeyVec->setElementAt(previousKey, previousKeyIndex); |
+ } |
+} |
+ |
+ |
+ |
+UnicodeString ConfusabledataBuilder::getMapping(int32_t index) { |
+ int32_t key = fKeyVec->elementAti(index); |
+ int32_t value = fValueVec->elementAti(index); |
+ int32_t length = USPOOF_KEY_LENGTH_FIELD(key); |
+ int32_t lastIndexWithLen; |
+ switch (length) { |
+ case 0: |
+ return UnicodeString(static_cast<UChar>(value)); |
+ case 1: |
+ case 2: |
+ return UnicodeString(*fStringTable, value, length+1); |
+ case 3: |
+ length = 0; |
+ int32_t i; |
+ for (i=0; i<fStringLengthsTable->size(); i+=2) { |
+ lastIndexWithLen = fStringLengthsTable->elementAti(i); |
+ if (value <= lastIndexWithLen) { |
+ length = fStringLengthsTable->elementAti(i+1); |
+ break; |
+ } |
+ } |
+ U_ASSERT(length>=3); |
+ return UnicodeString(*fStringTable, value, length); |
+ default: |
+ U_ASSERT(FALSE); |
+ } |
+ return UnicodeString(); |
+} |
+ |
+#endif |
+#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS |
+ |
Property changes on: icu46/source/i18n/uspoof_conf.cpp |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |