| Index: icu46/source/i18n/ucol.cpp
|
| ===================================================================
|
| --- icu46/source/i18n/ucol.cpp (revision 0)
|
| +++ icu46/source/i18n/ucol.cpp (revision 0)
|
| @@ -0,0 +1,8593 @@
|
| +/*
|
| +*******************************************************************************
|
| +* Copyright (C) 1996-2010, International Business Machines
|
| +* Corporation and others. All Rights Reserved.
|
| +*******************************************************************************
|
| +* file name: ucol.cpp
|
| +* encoding: US-ASCII
|
| +* tab size: 8 (not used)
|
| +* indentation:4
|
| +*
|
| +* Modification history
|
| +* Date Name Comments
|
| +* 1996-1999 various members of ICU team maintained C API for collation framework
|
| +* 02/16/2001 synwee Added internal method getPrevSpecialCE
|
| +* 03/01/2001 synwee Added maxexpansion functionality.
|
| +* 03/16/2001 weiv Collation framework is rewritten in C and made UCA compliant
|
| +*/
|
| +
|
| +#include "unicode/utypes.h"
|
| +
|
| +#if !UCONFIG_NO_COLLATION
|
| +
|
| +#include "unicode/coleitr.h"
|
| +#include "unicode/unorm.h"
|
| +#include "unicode/udata.h"
|
| +#include "unicode/ustring.h"
|
| +
|
| +#include "ucol_imp.h"
|
| +#include "bocsu.h"
|
| +
|
| +#include "normalizer2impl.h"
|
| +#include "unorm_it.h"
|
| +#include "umutex.h"
|
| +#include "cmemory.h"
|
| +#include "ucln_in.h"
|
| +#include "cstring.h"
|
| +#include "utracimp.h"
|
| +#include "putilimp.h"
|
| +#include "uassert.h"
|
| +
|
| +#ifdef UCOL_DEBUG
|
| +#include <stdio.h>
|
| +#endif
|
| +
|
| +U_NAMESPACE_USE
|
| +
|
| +#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0]))
|
| +
|
| +#define LAST_BYTE_MASK_ 0xFF
|
| +#define SECOND_LAST_BYTE_SHIFT_ 8
|
| +
|
| +#define ZERO_CC_LIMIT_ 0xC0
|
| +
|
| +// this is static pointer to the normalizer fcdTrieIndex
|
| +// it is always the same between calls to u_cleanup
|
| +// and therefore writing to it is not synchronized.
|
| +// It is cleaned in ucol_cleanup
|
| +static const uint16_t *fcdTrieIndex=NULL;
|
| +// Code points at fcdHighStart and above have a zero FCD value.
|
| +static UChar32 fcdHighStart = 0;
|
| +
|
| +// These are values from UCA required for
|
| +// implicit generation and supressing sort key compression
|
| +// they should regularly be in the UCA, but if one
|
| +// is running without UCA, it could be a problem
|
| +static const int32_t maxRegularPrimary = 0x7A;
|
| +static const int32_t minImplicitPrimary = 0xE0;
|
| +static const int32_t maxImplicitPrimary = 0xE4;
|
| +
|
| +U_CDECL_BEGIN
|
| +static UBool U_CALLCONV
|
| +ucol_cleanup(void)
|
| +{
|
| + fcdTrieIndex = NULL;
|
| + return TRUE;
|
| +}
|
| +
|
| +static int32_t U_CALLCONV
|
| +_getFoldingOffset(uint32_t data) {
|
| + return (int32_t)(data&0xFFFFFF);
|
| +}
|
| +
|
| +U_CDECL_END
|
| +
|
| +// init FCD data
|
| +static inline
|
| +UBool initializeFCD(UErrorCode *status) {
|
| + if (fcdTrieIndex != NULL) {
|
| + return TRUE;
|
| + } else {
|
| + // The result is constant, until the library is reloaded.
|
| + fcdTrieIndex = unorm_getFCDTrieIndex(fcdHighStart, status);
|
| + ucln_i18n_registerCleanup(UCLN_I18N_UCOL, ucol_cleanup);
|
| + return U_SUCCESS(*status);
|
| + }
|
| +}
|
| +
|
| +static
|
| +inline void IInit_collIterate(const UCollator *collator, const UChar *sourceString,
|
| + int32_t sourceLen, collIterate *s,
|
| + UErrorCode *status)
|
| +{
|
| + (s)->string = (s)->pos = sourceString;
|
| + (s)->origFlags = 0;
|
| + (s)->flags = 0;
|
| + if (sourceLen >= 0) {
|
| + s->flags |= UCOL_ITER_HASLEN;
|
| + (s)->endp = (UChar *)sourceString+sourceLen;
|
| + }
|
| + else {
|
| + /* change to enable easier checking for end of string for fcdpositon */
|
| + (s)->endp = NULL;
|
| + }
|
| + (s)->extendCEs = NULL;
|
| + (s)->extendCEsSize = 0;
|
| + (s)->CEpos = (s)->toReturn = (s)->CEs;
|
| + (s)->offsetBuffer = NULL;
|
| + (s)->offsetBufferSize = 0;
|
| + (s)->offsetReturn = (s)->offsetStore = NULL;
|
| + (s)->offsetRepeatCount = (s)->offsetRepeatValue = 0;
|
| + (s)->coll = (collator);
|
| + (s)->nfd = Normalizer2Factory::getNFDInstance(*status);
|
| + (s)->fcdPosition = 0;
|
| + if(collator->normalizationMode == UCOL_ON) {
|
| + (s)->flags |= UCOL_ITER_NORM;
|
| + }
|
| + if(collator->hiraganaQ == UCOL_ON && collator->strength >= UCOL_QUATERNARY) {
|
| + (s)->flags |= UCOL_HIRAGANA_Q;
|
| + }
|
| + (s)->iterator = NULL;
|
| + //(s)->iteratorIndex = 0;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +uprv_init_collIterate(const UCollator *collator, const UChar *sourceString,
|
| + int32_t sourceLen, collIterate *s,
|
| + UErrorCode *status) {
|
| + /* Out-of-line version for use from other files. */
|
| + IInit_collIterate(collator, sourceString, sourceLen, s, status);
|
| +}
|
| +
|
| +U_CAPI collIterate * U_EXPORT2
|
| +uprv_new_collIterate(UErrorCode *status) {
|
| + if(U_FAILURE(*status)) {
|
| + return NULL;
|
| + }
|
| + collIterate *s = new collIterate;
|
| + if(s == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| + return s;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +uprv_delete_collIterate(collIterate *s) {
|
| + delete s;
|
| +}
|
| +
|
| +U_CAPI UBool U_EXPORT2
|
| +uprv_collIterateAtEnd(collIterate *s) {
|
| + return s == NULL || s->pos == s->endp;
|
| +}
|
| +
|
| +/**
|
| +* Backup the state of the collIterate struct data
|
| +* @param data collIterate to backup
|
| +* @param backup storage
|
| +*/
|
| +static
|
| +inline void backupState(const collIterate *data, collIterateState *backup)
|
| +{
|
| + backup->fcdPosition = data->fcdPosition;
|
| + backup->flags = data->flags;
|
| + backup->origFlags = data->origFlags;
|
| + backup->pos = data->pos;
|
| + backup->bufferaddress = data->writableBuffer.getBuffer();
|
| + backup->buffersize = data->writableBuffer.length();
|
| + backup->iteratorMove = 0;
|
| + backup->iteratorIndex = 0;
|
| + if(data->iterator != NULL) {
|
| + //backup->iteratorIndex = data->iterator->getIndex(data->iterator, UITER_CURRENT);
|
| + backup->iteratorIndex = data->iterator->getState(data->iterator);
|
| + // no we try to fixup if we're using a normalizing iterator and we get UITER_NO_STATE
|
| + if(backup->iteratorIndex == UITER_NO_STATE) {
|
| + while((backup->iteratorIndex = data->iterator->getState(data->iterator)) == UITER_NO_STATE) {
|
| + backup->iteratorMove++;
|
| + data->iterator->move(data->iterator, -1, UITER_CURRENT);
|
| + }
|
| + data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/**
|
| +* Loads the state into the collIterate struct data
|
| +* @param data collIterate to backup
|
| +* @param backup storage
|
| +* @param forwards boolean to indicate if forwards iteration is used,
|
| +* false indicates backwards iteration
|
| +*/
|
| +static
|
| +inline void loadState(collIterate *data, const collIterateState *backup,
|
| + UBool forwards)
|
| +{
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + data->flags = backup->flags;
|
| + data->origFlags = backup->origFlags;
|
| + if(data->iterator != NULL) {
|
| + //data->iterator->move(data->iterator, backup->iteratorIndex, UITER_ZERO);
|
| + data->iterator->setState(data->iterator, backup->iteratorIndex, &status);
|
| + if(backup->iteratorMove != 0) {
|
| + data->iterator->move(data->iterator, backup->iteratorMove, UITER_CURRENT);
|
| + }
|
| + }
|
| + data->pos = backup->pos;
|
| +
|
| + if ((data->flags & UCOL_ITER_INNORMBUF) &&
|
| + data->writableBuffer.getBuffer() != backup->bufferaddress) {
|
| + /*
|
| + this is when a new buffer has been reallocated and we'll have to
|
| + calculate the new position.
|
| + note the new buffer has to contain the contents of the old buffer.
|
| + */
|
| + if (forwards) {
|
| + data->pos = data->writableBuffer.getTerminatedBuffer() +
|
| + (data->pos - backup->bufferaddress);
|
| + }
|
| + else {
|
| + /* backwards direction */
|
| + int32_t temp = backup->buffersize -
|
| + (int32_t)(data->pos - backup->bufferaddress);
|
| + data->pos = data->writableBuffer.getTerminatedBuffer() + (data->writableBuffer.length() - temp);
|
| + }
|
| + }
|
| + if ((data->flags & UCOL_ITER_INNORMBUF) == 0) {
|
| + /*
|
| + this is alittle tricky.
|
| + if we are initially not in the normalization buffer, even if we
|
| + normalize in the later stage, the data in the buffer will be
|
| + ignored, since we skip back up to the data string.
|
| + however if we are already in the normalization buffer, any
|
| + further normalization will pull data into the normalization
|
| + buffer and modify the fcdPosition.
|
| + since we are keeping the data in the buffer for use, the
|
| + fcdPosition can not be reverted back.
|
| + arrgghh....
|
| + */
|
| + data->fcdPosition = backup->fcdPosition;
|
| + }
|
| +}
|
| +
|
| +static UBool
|
| +reallocCEs(collIterate *data, int32_t newCapacity) {
|
| + uint32_t *oldCEs = data->extendCEs;
|
| + if(oldCEs == NULL) {
|
| + oldCEs = data->CEs;
|
| + }
|
| + int32_t length = data->CEpos - oldCEs;
|
| + uint32_t *newCEs = (uint32_t *)uprv_malloc(newCapacity * 4);
|
| + if(newCEs == NULL) {
|
| + return FALSE;
|
| + }
|
| + uprv_memcpy(newCEs, oldCEs, length * 4);
|
| + uprv_free(data->extendCEs);
|
| + data->extendCEs = newCEs;
|
| + data->extendCEsSize = newCapacity;
|
| + data->CEpos = newCEs + length;
|
| + return TRUE;
|
| +}
|
| +
|
| +static UBool
|
| +increaseCEsCapacity(collIterate *data) {
|
| + int32_t oldCapacity;
|
| + if(data->extendCEs != NULL) {
|
| + oldCapacity = data->extendCEsSize;
|
| + } else {
|
| + oldCapacity = LENGTHOF(data->CEs);
|
| + }
|
| + return reallocCEs(data, 2 * oldCapacity);
|
| +}
|
| +
|
| +static UBool
|
| +ensureCEsCapacity(collIterate *data, int32_t minCapacity) {
|
| + int32_t oldCapacity;
|
| + if(data->extendCEs != NULL) {
|
| + oldCapacity = data->extendCEsSize;
|
| + } else {
|
| + oldCapacity = LENGTHOF(data->CEs);
|
| + }
|
| + if(minCapacity <= oldCapacity) {
|
| + return TRUE;
|
| + }
|
| + oldCapacity *= 2;
|
| + return reallocCEs(data, minCapacity > oldCapacity ? minCapacity : oldCapacity);
|
| +}
|
| +
|
| +void collIterate::appendOffset(int32_t offset, UErrorCode &errorCode) {
|
| + if(U_FAILURE(errorCode)) {
|
| + return;
|
| + }
|
| + int32_t length = offsetStore == NULL ? 0 : (int32_t)(offsetStore - offsetBuffer);
|
| + if(length >= offsetBufferSize) {
|
| + int32_t newCapacity = 2 * offsetBufferSize + UCOL_EXPAND_CE_BUFFER_SIZE;
|
| + int32_t *newBuffer = reinterpret_cast<int32_t *>(uprv_malloc(newCapacity * 4));
|
| + if(newBuffer == NULL) {
|
| + errorCode = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| + if(length > 0) {
|
| + uprv_memcpy(newBuffer, offsetBuffer, length * 4);
|
| + }
|
| + uprv_free(offsetBuffer);
|
| + offsetBuffer = newBuffer;
|
| + offsetStore = offsetBuffer + length;
|
| + offsetBufferSize = newCapacity;
|
| + }
|
| + *offsetStore++ = offset;
|
| +}
|
| +
|
| +/*
|
| +* collIter_eos()
|
| +* Checks for a collIterate being positioned at the end of
|
| +* its source string.
|
| +*
|
| +*/
|
| +static
|
| +inline UBool collIter_eos(collIterate *s) {
|
| + if(s->flags & UCOL_USE_ITERATOR) {
|
| + return !(s->iterator->hasNext(s->iterator));
|
| + }
|
| + if ((s->flags & UCOL_ITER_HASLEN) == 0 && *s->pos != 0) {
|
| + // Null terminated string, but not at null, so not at end.
|
| + // Whether in main or normalization buffer doesn't matter.
|
| + return FALSE;
|
| + }
|
| +
|
| + // String with length. Can't be in normalization buffer, which is always
|
| + // null termintated.
|
| + if (s->flags & UCOL_ITER_HASLEN) {
|
| + return (s->pos == s->endp);
|
| + }
|
| +
|
| + // We are at a null termination, could be either normalization buffer or main string.
|
| + if ((s->flags & UCOL_ITER_INNORMBUF) == 0) {
|
| + // At null at end of main string.
|
| + return TRUE;
|
| + }
|
| +
|
| + // At null at end of normalization buffer. Need to check whether there there are
|
| + // any characters left in the main buffer.
|
| + if(s->origFlags & UCOL_USE_ITERATOR) {
|
| + return !(s->iterator->hasNext(s->iterator));
|
| + } else if ((s->origFlags & UCOL_ITER_HASLEN) == 0) {
|
| + // Null terminated main string. fcdPosition is the 'return' position into main buf.
|
| + return (*s->fcdPosition == 0);
|
| + }
|
| + else {
|
| + // Main string with an end pointer.
|
| + return s->fcdPosition == s->endp;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +* collIter_bos()
|
| +* Checks for a collIterate being positioned at the start of
|
| +* its source string.
|
| +*
|
| +*/
|
| +static
|
| +inline UBool collIter_bos(collIterate *source) {
|
| + // if we're going backwards, we need to know whether there is more in the
|
| + // iterator, even if we are in the side buffer
|
| + if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) {
|
| + return !source->iterator->hasPrevious(source->iterator);
|
| + }
|
| + if (source->pos <= source->string ||
|
| + ((source->flags & UCOL_ITER_INNORMBUF) &&
|
| + *(source->pos - 1) == 0 && source->fcdPosition == NULL)) {
|
| + return TRUE;
|
| + }
|
| + return FALSE;
|
| +}
|
| +
|
| +/*static
|
| +inline UBool collIter_SimpleBos(collIterate *source) {
|
| + // if we're going backwards, we need to know whether there is more in the
|
| + // iterator, even if we are in the side buffer
|
| + if(source->flags & UCOL_USE_ITERATOR || source->origFlags & UCOL_USE_ITERATOR) {
|
| + return !source->iterator->hasPrevious(source->iterator);
|
| + }
|
| + if (source->pos == source->string) {
|
| + return TRUE;
|
| + }
|
| + return FALSE;
|
| +}*/
|
| + //return (data->pos == data->string) ||
|
| +
|
| +
|
| +/****************************************************************************/
|
| +/* Following are the open/close functions */
|
| +/* */
|
| +/****************************************************************************/
|
| +
|
| +static UCollator*
|
| +ucol_initFromBinary(const uint8_t *bin, int32_t length,
|
| + const UCollator *base,
|
| + UCollator *fillIn,
|
| + UErrorCode *status)
|
| +{
|
| + UCollator *result = fillIn;
|
| + if(U_FAILURE(*status)) {
|
| + return NULL;
|
| + }
|
| + /*
|
| + if(base == NULL) {
|
| + // we don't support null base yet
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return NULL;
|
| + }
|
| + */
|
| + // We need these and we could be running without UCA
|
| + uprv_uca_initImplicitConstants(status);
|
| + UCATableHeader *colData = (UCATableHeader *)bin;
|
| + // do we want version check here? We're trying to figure out whether collators are compatible
|
| + if((base && (uprv_memcmp(colData->UCAVersion, base->image->UCAVersion, sizeof(UVersionInfo)) != 0 ||
|
| + uprv_memcmp(colData->UCDVersion, base->image->UCDVersion, sizeof(UVersionInfo)) != 0)) ||
|
| + colData->version[0] != UCOL_BUILDER_VERSION)
|
| + {
|
| + *status = U_COLLATOR_VERSION_MISMATCH;
|
| + return NULL;
|
| + }
|
| + else {
|
| + if((uint32_t)length > (paddedsize(sizeof(UCATableHeader)) + paddedsize(sizeof(UColOptionSet)))) {
|
| + result = ucol_initCollator((const UCATableHeader *)bin, result, base, status);
|
| + if(U_FAILURE(*status)){
|
| + return NULL;
|
| + }
|
| + result->hasRealData = TRUE;
|
| + }
|
| + else {
|
| + if(base) {
|
| + result = ucol_initCollator(base->image, result, base, status);
|
| + ucol_setOptionsFromHeader(result, (UColOptionSet *)(bin+((const UCATableHeader *)bin)->options), status);
|
| + if(U_FAILURE(*status)){
|
| + return NULL;
|
| + }
|
| + result->hasRealData = FALSE;
|
| + }
|
| + else {
|
| + *status = U_USELESS_COLLATOR_ERROR;
|
| + return NULL;
|
| + }
|
| + }
|
| + result->freeImageOnClose = FALSE;
|
| + }
|
| + result->actualLocale = NULL;
|
| + result->validLocale = NULL;
|
| + result->requestedLocale = NULL;
|
| + result->rules = NULL;
|
| + result->rulesLength = 0;
|
| + result->freeRulesOnClose = FALSE;
|
| + result->ucaRules = NULL;
|
| + return result;
|
| +}
|
| +
|
| +U_CAPI UCollator* U_EXPORT2
|
| +ucol_openBinary(const uint8_t *bin, int32_t length,
|
| + const UCollator *base,
|
| + UErrorCode *status)
|
| +{
|
| + return ucol_initFromBinary(bin, length, base, NULL, status);
|
| +}
|
| +
|
| +U_CAPI int32_t U_EXPORT2
|
| +ucol_cloneBinary(const UCollator *coll,
|
| + uint8_t *buffer, int32_t capacity,
|
| + UErrorCode *status)
|
| +{
|
| + int32_t length = 0;
|
| + if(U_FAILURE(*status)) {
|
| + return length;
|
| + }
|
| + if(capacity < 0) {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return length;
|
| + }
|
| + if(coll->hasRealData == TRUE) {
|
| + length = coll->image->size;
|
| + if(length <= capacity) {
|
| + uprv_memcpy(buffer, coll->image, length);
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + } else {
|
| + length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
|
| + if(length <= capacity) {
|
| + /* build the UCATableHeader with minimal entries */
|
| + /* do not copy the header from the UCA file because its values are wrong! */
|
| + /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
|
| +
|
| + /* reset everything */
|
| + uprv_memset(buffer, 0, length);
|
| +
|
| + /* set the tailoring-specific values */
|
| + UCATableHeader *myData = (UCATableHeader *)buffer;
|
| + myData->size = length;
|
| +
|
| + /* offset for the options, the only part of the data that is present after the header */
|
| + myData->options = sizeof(UCATableHeader);
|
| +
|
| + /* need to always set the expansion value for an upper bound of the options */
|
| + myData->expansion = myData->options + sizeof(UColOptionSet);
|
| +
|
| + myData->magic = UCOL_HEADER_MAGIC;
|
| + myData->isBigEndian = U_IS_BIG_ENDIAN;
|
| + myData->charSetFamily = U_CHARSET_FAMILY;
|
| +
|
| + /* copy UCA's version; genrb will override all but the builder version with tailoring data */
|
| + uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
|
| +
|
| + uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
|
| + uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
|
| + uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
|
| + myData->jamoSpecial = coll->image->jamoSpecial;
|
| +
|
| + /* copy the collator options */
|
| + uprv_memcpy(buffer+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| + return length;
|
| +}
|
| +
|
| +U_CAPI UCollator* U_EXPORT2
|
| +ucol_safeClone(const UCollator *coll, void *stackBuffer, int32_t * pBufferSize, UErrorCode *status)
|
| +{
|
| + UCollator * localCollator;
|
| + int32_t bufferSizeNeeded = (int32_t)sizeof(UCollator);
|
| + char *stackBufferChars = (char *)stackBuffer;
|
| + int32_t imageSize = 0;
|
| + int32_t rulesSize = 0;
|
| + int32_t rulesPadding = 0;
|
| + uint8_t *image;
|
| + UChar *rules;
|
| + UBool colAllocated = FALSE;
|
| + UBool imageAllocated = FALSE;
|
| +
|
| + if (status == NULL || U_FAILURE(*status)){
|
| + return 0;
|
| + }
|
| + if ((stackBuffer && !pBufferSize) || !coll){
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return 0;
|
| + }
|
| + if (coll->rules && coll->freeRulesOnClose) {
|
| + rulesSize = (int32_t)(coll->rulesLength + 1)*sizeof(UChar);
|
| + rulesPadding = (int32_t)(bufferSizeNeeded % sizeof(UChar));
|
| + bufferSizeNeeded += rulesSize + rulesPadding;
|
| + }
|
| +
|
| + if (stackBuffer && *pBufferSize <= 0){ /* 'preflighting' request - set needed size into *pBufferSize */
|
| + *pBufferSize = bufferSizeNeeded;
|
| + return 0;
|
| + }
|
| +
|
| + /* Pointers on 64-bit platforms need to be aligned
|
| + * on a 64-bit boundry in memory.
|
| + */
|
| + if (U_ALIGNMENT_OFFSET(stackBuffer) != 0) {
|
| + int32_t offsetUp = (int32_t)U_ALIGNMENT_OFFSET_UP(stackBufferChars);
|
| + if (*pBufferSize > offsetUp) {
|
| + *pBufferSize -= offsetUp;
|
| + stackBufferChars += offsetUp;
|
| + }
|
| + else {
|
| + /* prevent using the stack buffer but keep the size > 0 so that we do not just preflight */
|
| + *pBufferSize = 1;
|
| + }
|
| + }
|
| + stackBuffer = (void *)stackBufferChars;
|
| +
|
| + if (stackBuffer == NULL || *pBufferSize < bufferSizeNeeded) {
|
| + /* allocate one here...*/
|
| + stackBufferChars = (char *)uprv_malloc(bufferSizeNeeded);
|
| + // Null pointer check.
|
| + if (stackBufferChars == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| + colAllocated = TRUE;
|
| + if (U_SUCCESS(*status)) {
|
| + *status = U_SAFECLONE_ALLOCATED_WARNING;
|
| + }
|
| + }
|
| + localCollator = (UCollator *)stackBufferChars;
|
| + rules = (UChar *)(stackBufferChars + sizeof(UCollator) + rulesPadding);
|
| + {
|
| + UErrorCode tempStatus = U_ZERO_ERROR;
|
| + imageSize = ucol_cloneBinary(coll, NULL, 0, &tempStatus);
|
| + }
|
| + if (coll->freeImageOnClose) {
|
| + image = (uint8_t *)uprv_malloc(imageSize);
|
| + // Null pointer check
|
| + if (image == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| + ucol_cloneBinary(coll, image, imageSize, status);
|
| + imageAllocated = TRUE;
|
| + }
|
| + else {
|
| + image = (uint8_t *)coll->image;
|
| + }
|
| + localCollator = ucol_initFromBinary(image, imageSize, coll->UCA, localCollator, status);
|
| + if (U_FAILURE(*status)) {
|
| + return NULL;
|
| + }
|
| +
|
| + if (coll->rules) {
|
| + if (coll->freeRulesOnClose) {
|
| + localCollator->rules = u_strcpy(rules, coll->rules);
|
| + //bufferEnd += rulesSize;
|
| + }
|
| + else {
|
| + localCollator->rules = coll->rules;
|
| + }
|
| + localCollator->freeRulesOnClose = FALSE;
|
| + localCollator->rulesLength = coll->rulesLength;
|
| + }
|
| +
|
| + int32_t i;
|
| + for(i = 0; i < UCOL_ATTRIBUTE_COUNT; i++) {
|
| + ucol_setAttribute(localCollator, (UColAttribute)i, ucol_getAttribute(coll, (UColAttribute)i, status), status);
|
| + }
|
| + // zero copies of pointers
|
| + localCollator->actualLocale = NULL;
|
| + localCollator->validLocale = NULL;
|
| + localCollator->requestedLocale = NULL;
|
| + localCollator->ucaRules = coll->ucaRules; // There should only be one copy here.
|
| + localCollator->freeOnClose = colAllocated;
|
| + localCollator->freeImageOnClose = imageAllocated;
|
| + return localCollator;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +ucol_close(UCollator *coll)
|
| +{
|
| + UTRACE_ENTRY_OC(UTRACE_UCOL_CLOSE);
|
| + UTRACE_DATA1(UTRACE_INFO, "coll = %p", coll);
|
| + if(coll != NULL) {
|
| + // these are always owned by each UCollator struct,
|
| + // so we always free them
|
| + if(coll->validLocale != NULL) {
|
| + uprv_free(coll->validLocale);
|
| + }
|
| + if(coll->actualLocale != NULL) {
|
| + uprv_free(coll->actualLocale);
|
| + }
|
| + if(coll->requestedLocale != NULL) {
|
| + uprv_free(coll->requestedLocale);
|
| + }
|
| + if(coll->latinOneCEs != NULL) {
|
| + uprv_free(coll->latinOneCEs);
|
| + }
|
| + if(coll->options != NULL && coll->freeOptionsOnClose) {
|
| + uprv_free(coll->options);
|
| + }
|
| + if(coll->rules != NULL && coll->freeRulesOnClose) {
|
| + uprv_free((UChar *)coll->rules);
|
| + }
|
| + if(coll->image != NULL && coll->freeImageOnClose) {
|
| + uprv_free((UCATableHeader *)coll->image);
|
| + }
|
| + if(coll->leadBytePermutationTable != NULL) {
|
| + uprv_free(coll->leadBytePermutationTable);
|
| + }
|
| + if(coll->reorderCodes != NULL) {
|
| + uprv_free(coll->reorderCodes);
|
| + }
|
| +
|
| + /* Here, it would be advisable to close: */
|
| + /* - UData for UCA (unless we stuff it in the root resb */
|
| + /* Again, do we need additional housekeeping... HMMM! */
|
| + UTRACE_DATA1(UTRACE_INFO, "coll->freeOnClose: %d", coll->freeOnClose);
|
| + if(coll->freeOnClose){
|
| + /* for safeClone, if freeOnClose is FALSE,
|
| + don't free the other instance data */
|
| + uprv_free(coll);
|
| + }
|
| + }
|
| + UTRACE_EXIT();
|
| +}
|
| +
|
| +/* This one is currently used by genrb & tests. After constructing from rules (tailoring),*/
|
| +/* you should be able to get the binary chunk to write out... Doesn't look very full now */
|
| +U_CFUNC uint8_t* U_EXPORT2
|
| +ucol_cloneRuleData(const UCollator *coll, int32_t *length, UErrorCode *status)
|
| +{
|
| + uint8_t *result = NULL;
|
| + if(U_FAILURE(*status)) {
|
| + return NULL;
|
| + }
|
| + if(coll->hasRealData == TRUE) {
|
| + *length = coll->image->size;
|
| + result = (uint8_t *)uprv_malloc(*length);
|
| + /* test for NULL */
|
| + if (result == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| + uprv_memcpy(result, coll->image, *length);
|
| + } else {
|
| + *length = (int32_t)(paddedsize(sizeof(UCATableHeader))+paddedsize(sizeof(UColOptionSet)));
|
| + result = (uint8_t *)uprv_malloc(*length);
|
| + /* test for NULL */
|
| + if (result == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| +
|
| + /* build the UCATableHeader with minimal entries */
|
| + /* do not copy the header from the UCA file because its values are wrong! */
|
| + /* uprv_memcpy(result, UCA->image, sizeof(UCATableHeader)); */
|
| +
|
| + /* reset everything */
|
| + uprv_memset(result, 0, *length);
|
| +
|
| + /* set the tailoring-specific values */
|
| + UCATableHeader *myData = (UCATableHeader *)result;
|
| + myData->size = *length;
|
| +
|
| + /* offset for the options, the only part of the data that is present after the header */
|
| + myData->options = sizeof(UCATableHeader);
|
| +
|
| + /* need to always set the expansion value for an upper bound of the options */
|
| + myData->expansion = myData->options + sizeof(UColOptionSet);
|
| +
|
| + myData->magic = UCOL_HEADER_MAGIC;
|
| + myData->isBigEndian = U_IS_BIG_ENDIAN;
|
| + myData->charSetFamily = U_CHARSET_FAMILY;
|
| +
|
| + /* copy UCA's version; genrb will override all but the builder version with tailoring data */
|
| + uprv_memcpy(myData->version, coll->image->version, sizeof(UVersionInfo));
|
| +
|
| + uprv_memcpy(myData->UCAVersion, coll->image->UCAVersion, sizeof(UVersionInfo));
|
| + uprv_memcpy(myData->UCDVersion, coll->image->UCDVersion, sizeof(UVersionInfo));
|
| + uprv_memcpy(myData->formatVersion, coll->image->formatVersion, sizeof(UVersionInfo));
|
| + myData->jamoSpecial = coll->image->jamoSpecial;
|
| +
|
| + /* copy the collator options */
|
| + uprv_memcpy(result+paddedsize(sizeof(UCATableHeader)), coll->options, sizeof(UColOptionSet));
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +void ucol_setOptionsFromHeader(UCollator* result, UColOptionSet * opts, UErrorCode *status) {
|
| + if(U_FAILURE(*status)) {
|
| + return;
|
| + }
|
| + result->caseFirst = (UColAttributeValue)opts->caseFirst;
|
| + result->caseLevel = (UColAttributeValue)opts->caseLevel;
|
| + result->frenchCollation = (UColAttributeValue)opts->frenchCollation;
|
| + result->normalizationMode = (UColAttributeValue)opts->normalizationMode;
|
| + if(result->normalizationMode == UCOL_ON && !initializeFCD(status)) {
|
| + return;
|
| + }
|
| + result->strength = (UColAttributeValue)opts->strength;
|
| + result->variableTopValue = opts->variableTopValue;
|
| + result->alternateHandling = (UColAttributeValue)opts->alternateHandling;
|
| + result->hiraganaQ = (UColAttributeValue)opts->hiraganaQ;
|
| + result->numericCollation = (UColAttributeValue)opts->numericCollation;
|
| + result->caseFirstisDefault = TRUE;
|
| + result->caseLevelisDefault = TRUE;
|
| + result->frenchCollationisDefault = TRUE;
|
| + result->normalizationModeisDefault = TRUE;
|
| + result->strengthisDefault = TRUE;
|
| + result->variableTopValueisDefault = TRUE;
|
| + result->alternateHandlingisDefault = TRUE;
|
| + result->hiraganaQisDefault = TRUE;
|
| + result->numericCollationisDefault = TRUE;
|
| +
|
| + ucol_updateInternalState(result, status);
|
| +
|
| + result->options = opts;
|
| +}
|
| +
|
| +
|
| +/**
|
| +* Approximate determination if a character is at a contraction end.
|
| +* Guaranteed to be TRUE if a character is at the end of a contraction,
|
| +* otherwise it is not deterministic.
|
| +* @param c character to be determined
|
| +* @param coll collator
|
| +*/
|
| +static
|
| +inline UBool ucol_contractionEndCP(UChar c, const UCollator *coll) {
|
| + if (c < coll->minContrEndCP) {
|
| + return FALSE;
|
| + }
|
| +
|
| + int32_t hash = c;
|
| + uint8_t htbyte;
|
| + if (hash >= UCOL_UNSAFECP_TABLE_SIZE*8) {
|
| + if (U16_IS_TRAIL(c)) {
|
| + return TRUE;
|
| + }
|
| + hash = (hash & UCOL_UNSAFECP_TABLE_MASK) + 256;
|
| + }
|
| + htbyte = coll->contrEndCP[hash>>3];
|
| + return (((htbyte >> (hash & 7)) & 1) == 1);
|
| +}
|
| +
|
| +
|
| +
|
| +/*
|
| +* i_getCombiningClass()
|
| +* A fast, at least partly inline version of u_getCombiningClass()
|
| +* This is a candidate for further optimization. Used heavily
|
| +* in contraction processing.
|
| +*/
|
| +static
|
| +inline uint8_t i_getCombiningClass(UChar32 c, const UCollator *coll) {
|
| + uint8_t sCC = 0;
|
| + if ((c >= 0x300 && ucol_unsafeCP(c, coll)) || c > 0xFFFF) {
|
| + sCC = u_getCombiningClass(c);
|
| + }
|
| + return sCC;
|
| +}
|
| +
|
| +UCollator* ucol_initCollator(const UCATableHeader *image, UCollator *fillIn, const UCollator *UCA, UErrorCode *status) {
|
| + UChar c;
|
| + UCollator *result = fillIn;
|
| + if(U_FAILURE(*status) || image == NULL) {
|
| + return NULL;
|
| + }
|
| +
|
| + if(result == NULL) {
|
| + result = (UCollator *)uprv_malloc(sizeof(UCollator));
|
| + if(result == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return result;
|
| + }
|
| + result->freeOnClose = TRUE;
|
| + } else {
|
| + result->freeOnClose = FALSE;
|
| + }
|
| +
|
| + result->image = image;
|
| + result->mapping.getFoldingOffset = _getFoldingOffset;
|
| + const uint8_t *mapping = (uint8_t*)result->image+result->image->mappingPosition;
|
| + utrie_unserialize(&result->mapping, mapping, result->image->endExpansionCE - result->image->mappingPosition, status);
|
| + if(U_FAILURE(*status)) {
|
| + if(result->freeOnClose == TRUE) {
|
| + uprv_free(result);
|
| + result = NULL;
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + result->latinOneMapping = UTRIE_GET32_LATIN1(&result->mapping);
|
| + result->contractionCEs = (uint32_t*)((uint8_t*)result->image+result->image->contractionCEs);
|
| + result->contractionIndex = (UChar*)((uint8_t*)result->image+result->image->contractionIndex);
|
| + result->expansion = (uint32_t*)((uint8_t*)result->image+result->image->expansion);
|
| + result->rules = NULL;
|
| + result->rulesLength = 0;
|
| + result->freeRulesOnClose = FALSE;
|
| + result->reorderCodes = NULL;
|
| + result->reorderCodesLength = 0;
|
| + result->leadBytePermutationTable = NULL;
|
| +
|
| + /* get the version info from UCATableHeader and populate the Collator struct*/
|
| + result->dataVersion[0] = result->image->version[0]; /* UCA Builder version*/
|
| + result->dataVersion[1] = result->image->version[1]; /* UCA Tailoring rules version*/
|
| + result->dataVersion[2] = 0;
|
| + result->dataVersion[3] = 0;
|
| +
|
| + result->unsafeCP = (uint8_t *)result->image + result->image->unsafeCP;
|
| + result->minUnsafeCP = 0;
|
| + for (c=0; c<0x300; c++) { // Find the smallest unsafe char.
|
| + if (ucol_unsafeCP(c, result)) break;
|
| + }
|
| + result->minUnsafeCP = c;
|
| +
|
| + result->contrEndCP = (uint8_t *)result->image + result->image->contrEndCP;
|
| + result->minContrEndCP = 0;
|
| + for (c=0; c<0x300; c++) { // Find the Contraction-ending char.
|
| + if (ucol_contractionEndCP(c, result)) break;
|
| + }
|
| + result->minContrEndCP = c;
|
| +
|
| + /* max expansion tables */
|
| + result->endExpansionCE = (uint32_t*)((uint8_t*)result->image +
|
| + result->image->endExpansionCE);
|
| + result->lastEndExpansionCE = result->endExpansionCE +
|
| + result->image->endExpansionCECount - 1;
|
| + result->expansionCESize = (uint8_t*)result->image +
|
| + result->image->expansionCESize;
|
| +
|
| +
|
| + //result->errorCode = *status;
|
| +
|
| + result->latinOneCEs = NULL;
|
| +
|
| + result->latinOneRegenTable = FALSE;
|
| + result->latinOneFailed = FALSE;
|
| + result->UCA = UCA;
|
| +
|
| + /* Normally these will be set correctly later. This is the default if you use UCA or the default. */
|
| + result->ucaRules = NULL;
|
| + result->actualLocale = NULL;
|
| + result->validLocale = NULL;
|
| + result->requestedLocale = NULL;
|
| + result->hasRealData = FALSE; // real data lives in .dat file...
|
| + result->freeImageOnClose = FALSE;
|
| +
|
| + /* set attributes */
|
| + ucol_setOptionsFromHeader(
|
| + result,
|
| + (UColOptionSet*)((uint8_t*)result->image+result->image->options),
|
| + status);
|
| + result->freeOptionsOnClose = FALSE;
|
| +
|
| + return result;
|
| +}
|
| +
|
| +/* new Mark's code */
|
| +
|
| +/**
|
| + * For generation of Implicit CEs
|
| + * @author Davis
|
| + *
|
| + * Cleaned up so that changes can be made more easily.
|
| + * Old values:
|
| +# First Implicit: E26A792D
|
| +# Last Implicit: E3DC70C0
|
| +# First CJK: E0030300
|
| +# Last CJK: E0A9DD00
|
| +# First CJK_A: E0A9DF00
|
| +# Last CJK_A: E0DE3100
|
| + */
|
| +/* Following is a port of Mark's code for new treatment of implicits.
|
| + * It is positioned here, since ucol_initUCA need to initialize the
|
| + * variables below according to the data in the fractional UCA.
|
| + */
|
| +
|
| +/**
|
| + * Function used to:
|
| + * a) collapse the 2 different Han ranges from UCA into one (in the right order), and
|
| + * b) bump any non-CJK characters by 10FFFF.
|
| + * The relevant blocks are:
|
| + * A: 4E00..9FFF; CJK Unified Ideographs
|
| + * F900..FAFF; CJK Compatibility Ideographs
|
| + * B: 3400..4DBF; CJK Unified Ideographs Extension A
|
| + * 20000..XX; CJK Unified Ideographs Extension B (and others later on)
|
| + * As long as
|
| + * no new B characters are allocated between 4E00 and FAFF, and
|
| + * no new A characters are outside of this range,
|
| + * (very high probability) this simple code will work.
|
| + * The reordered blocks are:
|
| + * Block1 is CJK
|
| + * Block2 is CJK_COMPAT_USED
|
| + * Block3 is CJK_A
|
| + * (all contiguous)
|
| + * Any other CJK gets its normal code point
|
| + * Any non-CJK gets +10FFFF
|
| + * When we reorder Block1, we make sure that it is at the very start,
|
| + * so that it will use a 3-byte form.
|
| + * Warning: the we only pick up the compatibility characters that are
|
| + * NOT decomposed, so that block is smaller!
|
| + */
|
| +
|
| +// CONSTANTS
|
| +static const UChar32
|
| + NON_CJK_OFFSET = 0x110000,
|
| + UCOL_MAX_INPUT = 0x220001; // 2 * Unicode range + 2
|
| +
|
| +/**
|
| + * Precomputed by initImplicitConstants()
|
| + */
|
| +static int32_t
|
| + final3Multiplier = 0,
|
| + final4Multiplier = 0,
|
| + final3Count = 0,
|
| + final4Count = 0,
|
| + medialCount = 0,
|
| + min3Primary = 0,
|
| + min4Primary = 0,
|
| + max4Primary = 0,
|
| + minTrail = 0,
|
| + maxTrail = 0,
|
| + max3Trail = 0,
|
| + max4Trail = 0,
|
| + min4Boundary = 0;
|
| +
|
| +static const UChar32
|
| + // 4E00;<CJK Ideograph, First>;Lo;0;L;;;;;N;;;;;
|
| + // 9FCB;<CJK Ideograph, Last>;Lo;0;L;;;;;N;;;;;
|
| + CJK_BASE = 0x4E00,
|
| + CJK_LIMIT = 0x9FCB+1,
|
| + // Unified CJK ideographs in the compatibility ideographs block.
|
| + CJK_COMPAT_USED_BASE = 0xFA0E,
|
| + CJK_COMPAT_USED_LIMIT = 0xFA2F+1,
|
| + // 3400;<CJK Ideograph Extension A, First>;Lo;0;L;;;;;N;;;;;
|
| + // 4DB5;<CJK Ideograph Extension A, Last>;Lo;0;L;;;;;N;;;;;
|
| + CJK_A_BASE = 0x3400,
|
| + CJK_A_LIMIT = 0x4DB5+1,
|
| + // 20000;<CJK Ideograph Extension B, First>;Lo;0;L;;;;;N;;;;;
|
| + // 2A6D6;<CJK Ideograph Extension B, Last>;Lo;0;L;;;;;N;;;;;
|
| + CJK_B_BASE = 0x20000,
|
| + CJK_B_LIMIT = 0x2A6D6+1,
|
| + // 2A700;<CJK Ideograph Extension C, First>;Lo;0;L;;;;;N;;;;;
|
| + // 2B734;<CJK Ideograph Extension C, Last>;Lo;0;L;;;;;N;;;;;
|
| + CJK_C_BASE = 0x2A700,
|
| + CJK_C_LIMIT = 0x2B734+1,
|
| + // 2B740;<CJK Ideograph Extension D, First>;Lo;0;L;;;;;N;;;;;
|
| + // 2B81D;<CJK Ideograph Extension D, Last>;Lo;0;L;;;;;N;;;;;
|
| + CJK_D_BASE = 0x2B740,
|
| + CJK_D_LIMIT = 0x2B81D+1;
|
| + // when adding to this list, look for all occurrences (in project)
|
| + // of CJK_C_BASE and CJK_C_LIMIT, etc. to check for code that needs changing!!!!
|
| +
|
| +static UChar32 swapCJK(UChar32 i) {
|
| + if (i < CJK_A_BASE) {
|
| + // non-CJK
|
| + } else if (i < CJK_A_LIMIT) {
|
| + // Extension A has lower code points than the original Unihan+compat
|
| + // but sorts higher.
|
| + return i - CJK_A_BASE
|
| + + (CJK_LIMIT - CJK_BASE)
|
| + + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE);
|
| + } else if (i < CJK_BASE) {
|
| + // non-CJK
|
| + } else if (i < CJK_LIMIT) {
|
| + return i - CJK_BASE;
|
| + } else if (i < CJK_COMPAT_USED_BASE) {
|
| + // non-CJK
|
| + } else if (i < CJK_COMPAT_USED_LIMIT) {
|
| + return i - CJK_COMPAT_USED_BASE
|
| + + (CJK_LIMIT - CJK_BASE);
|
| + } else if (i < CJK_B_BASE) {
|
| + // non-CJK
|
| + } else if (i < CJK_B_LIMIT) {
|
| + return i; // non-BMP-CJK
|
| + } else if (i < CJK_C_BASE) {
|
| + // non-CJK
|
| + } else if (i < CJK_C_LIMIT) {
|
| + return i; // non-BMP-CJK
|
| + } else if (i < CJK_D_BASE) {
|
| + // non-CJK
|
| + } else if (i < CJK_D_LIMIT) {
|
| + return i; // non-BMP-CJK
|
| + }
|
| + return i + NON_CJK_OFFSET; // non-CJK
|
| +}
|
| +
|
| +U_CAPI UChar32 U_EXPORT2
|
| +uprv_uca_getRawFromCodePoint(UChar32 i) {
|
| + return swapCJK(i)+1;
|
| +}
|
| +
|
| +U_CAPI UChar32 U_EXPORT2
|
| +uprv_uca_getCodePointFromRaw(UChar32 i) {
|
| + i--;
|
| + UChar32 result = 0;
|
| + if(i >= NON_CJK_OFFSET) {
|
| + result = i - NON_CJK_OFFSET;
|
| + } else if(i >= CJK_B_BASE) {
|
| + result = i;
|
| + } else if(i < CJK_A_LIMIT + (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) { // rest of CJKs, compacted
|
| + if(i < CJK_LIMIT - CJK_BASE) {
|
| + result = i + CJK_BASE;
|
| + } else if(i < (CJK_LIMIT - CJK_BASE) + (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE)) {
|
| + result = i + CJK_COMPAT_USED_BASE - (CJK_LIMIT - CJK_BASE);
|
| + } else {
|
| + result = i + CJK_A_BASE - (CJK_LIMIT - CJK_BASE) - (CJK_COMPAT_USED_LIMIT - CJK_COMPAT_USED_BASE);
|
| + }
|
| + } else {
|
| + result = -1;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +// GET IMPLICIT PRIMARY WEIGHTS
|
| +// Return value is left justified primary key
|
| +U_CAPI uint32_t U_EXPORT2
|
| +uprv_uca_getImplicitFromRaw(UChar32 cp) {
|
| + /*
|
| + if (cp < 0 || cp > UCOL_MAX_INPUT) {
|
| + throw new IllegalArgumentException("Code point out of range " + Utility.hex(cp));
|
| + }
|
| + */
|
| + int32_t last0 = cp - min4Boundary;
|
| + if (last0 < 0) {
|
| + int32_t last1 = cp / final3Count;
|
| + last0 = cp % final3Count;
|
| +
|
| + int32_t last2 = last1 / medialCount;
|
| + last1 %= medialCount;
|
| +
|
| + last0 = minTrail + last0*final3Multiplier; // spread out, leaving gap at start
|
| + last1 = minTrail + last1; // offset
|
| + last2 = min3Primary + last2; // offset
|
| + /*
|
| + if (last2 >= min4Primary) {
|
| + throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last2));
|
| + }
|
| + */
|
| + return (last2 << 24) + (last1 << 16) + (last0 << 8);
|
| + } else {
|
| + int32_t last1 = last0 / final4Count;
|
| + last0 %= final4Count;
|
| +
|
| + int32_t last2 = last1 / medialCount;
|
| + last1 %= medialCount;
|
| +
|
| + int32_t last3 = last2 / medialCount;
|
| + last2 %= medialCount;
|
| +
|
| + last0 = minTrail + last0*final4Multiplier; // spread out, leaving gap at start
|
| + last1 = minTrail + last1; // offset
|
| + last2 = minTrail + last2; // offset
|
| + last3 = min4Primary + last3; // offset
|
| + /*
|
| + if (last3 > max4Primary) {
|
| + throw new IllegalArgumentException("4-byte out of range: " + Utility.hex(cp) + ", " + Utility.hex(last3));
|
| + }
|
| + */
|
| + return (last3 << 24) + (last2 << 16) + (last1 << 8) + last0;
|
| + }
|
| +}
|
| +
|
| +static uint32_t U_EXPORT2
|
| +uprv_uca_getImplicitPrimary(UChar32 cp) {
|
| + //fprintf(stdout, "Incoming: %04x\n", cp);
|
| + //if (DEBUG) System.out.println("Incoming: " + Utility.hex(cp));
|
| +
|
| + cp = swapCJK(cp);
|
| + cp++;
|
| + // we now have a range of numbers from 0 to 21FFFF.
|
| +
|
| + //if (DEBUG) System.out.println("CJK swapped: " + Utility.hex(cp));
|
| + //fprintf(stdout, "CJK swapped: %04x\n", cp);
|
| +
|
| + return uprv_uca_getImplicitFromRaw(cp);
|
| +}
|
| +
|
| +/**
|
| + * Converts implicit CE into raw integer ("code point")
|
| + * @param implicit
|
| + * @return -1 if illegal format
|
| + */
|
| +U_CAPI UChar32 U_EXPORT2
|
| +uprv_uca_getRawFromImplicit(uint32_t implicit) {
|
| + UChar32 result;
|
| + UChar32 b3 = implicit & 0xFF;
|
| + UChar32 b2 = (implicit >> 8) & 0xFF;
|
| + UChar32 b1 = (implicit >> 16) & 0xFF;
|
| + UChar32 b0 = (implicit >> 24) & 0xFF;
|
| +
|
| + // simple parameter checks
|
| + if (b0 < min3Primary || b0 > max4Primary
|
| + || b1 < minTrail || b1 > maxTrail)
|
| + return -1;
|
| + // normal offsets
|
| + b1 -= minTrail;
|
| +
|
| + // take care of the final values, and compose
|
| + if (b0 < min4Primary) {
|
| + if (b2 < minTrail || b2 > max3Trail || b3 != 0)
|
| + return -1;
|
| + b2 -= minTrail;
|
| + UChar32 remainder = b2 % final3Multiplier;
|
| + if (remainder != 0)
|
| + return -1;
|
| + b0 -= min3Primary;
|
| + b2 /= final3Multiplier;
|
| + result = ((b0 * medialCount) + b1) * final3Count + b2;
|
| + } else {
|
| + if (b2 < minTrail || b2 > maxTrail
|
| + || b3 < minTrail || b3 > max4Trail)
|
| + return -1;
|
| + b2 -= minTrail;
|
| + b3 -= minTrail;
|
| + UChar32 remainder = b3 % final4Multiplier;
|
| + if (remainder != 0)
|
| + return -1;
|
| + b3 /= final4Multiplier;
|
| + b0 -= min4Primary;
|
| + result = (((b0 * medialCount) + b1) * medialCount + b2) * final4Count + b3 + min4Boundary;
|
| + }
|
| + // final check
|
| + if (result < 0 || result > UCOL_MAX_INPUT)
|
| + return -1;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +static inline int32_t divideAndRoundUp(int a, int b) {
|
| + return 1 + (a-1)/b;
|
| +}
|
| +
|
| +/* this function is either called from initUCA or from genUCA before
|
| + * doing canonical closure for the UCA.
|
| + */
|
| +
|
| +/**
|
| + * Set up to generate implicits.
|
| + * Maintenance Note: this function may end up being called more than once, due
|
| + * to threading races during initialization. Make sure that
|
| + * none of the Constants is ever transiently assigned an
|
| + * incorrect value.
|
| + * @param minPrimary
|
| + * @param maxPrimary
|
| + * @param minTrail final byte
|
| + * @param maxTrail final byte
|
| + * @param gap3 the gap we leave for tailoring for 3-byte forms
|
| + * @param gap4 the gap we leave for tailoring for 4-byte forms
|
| + */
|
| +static void initImplicitConstants(int minPrimary, int maxPrimary,
|
| + int minTrailIn, int maxTrailIn,
|
| + int gap3, int primaries3count,
|
| + UErrorCode *status) {
|
| + // some simple parameter checks
|
| + if ((minPrimary < 0 || minPrimary >= maxPrimary || maxPrimary > 0xFF)
|
| + || (minTrailIn < 0 || minTrailIn >= maxTrailIn || maxTrailIn > 0xFF)
|
| + || (primaries3count < 1))
|
| + {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + };
|
| +
|
| + minTrail = minTrailIn;
|
| + maxTrail = maxTrailIn;
|
| +
|
| + min3Primary = minPrimary;
|
| + max4Primary = maxPrimary;
|
| + // compute constants for use later.
|
| + // number of values we can use in trailing bytes
|
| + // leave room for empty values between AND above, e.g. if gap = 2
|
| + // range 3..7 => +3 -4 -5 -6 -7: so 1 value
|
| + // range 3..8 => +3 -4 -5 +6 -7 -8: so 2 values
|
| + // range 3..9 => +3 -4 -5 +6 -7 -8 -9: so 2 values
|
| + final3Multiplier = gap3 + 1;
|
| + final3Count = (maxTrail - minTrail + 1) / final3Multiplier;
|
| + max3Trail = minTrail + (final3Count - 1) * final3Multiplier;
|
| +
|
| + // medials can use full range
|
| + medialCount = (maxTrail - minTrail + 1);
|
| + // find out how many values fit in each form
|
| + int32_t threeByteCount = medialCount * final3Count;
|
| + // now determine where the 3/4 boundary is.
|
| + // we use 3 bytes below the boundary, and 4 above
|
| + int32_t primariesAvailable = maxPrimary - minPrimary + 1;
|
| + int32_t primaries4count = primariesAvailable - primaries3count;
|
| +
|
| +
|
| + int32_t min3ByteCoverage = primaries3count * threeByteCount;
|
| + min4Primary = minPrimary + primaries3count;
|
| + min4Boundary = min3ByteCoverage;
|
| + // Now expand out the multiplier for the 4 bytes, and redo.
|
| +
|
| + int32_t totalNeeded = UCOL_MAX_INPUT - min4Boundary;
|
| + int32_t neededPerPrimaryByte = divideAndRoundUp(totalNeeded, primaries4count);
|
| + int32_t neededPerFinalByte = divideAndRoundUp(neededPerPrimaryByte, medialCount * medialCount);
|
| + int32_t gap4 = (maxTrail - minTrail - 1) / neededPerFinalByte;
|
| + if (gap4 < 1) {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| + final4Multiplier = gap4 + 1;
|
| + final4Count = neededPerFinalByte;
|
| + max4Trail = minTrail + (final4Count - 1) * final4Multiplier;
|
| +}
|
| +
|
| + /**
|
| + * Supply parameters for generating implicit CEs
|
| + */
|
| +U_CAPI void U_EXPORT2
|
| +uprv_uca_initImplicitConstants(UErrorCode *status) {
|
| + // 13 is the largest 4-byte gap we can use without getting 2 four-byte forms.
|
| + //initImplicitConstants(minPrimary, maxPrimary, 0x04, 0xFE, 1, 1, status);
|
| + initImplicitConstants(minImplicitPrimary, maxImplicitPrimary, 0x04, 0xFE, 1, 1, status);
|
| +}
|
| +
|
| +
|
| +/* collIterNormalize Incremental Normalization happens here. */
|
| +/* pick up the range of chars identifed by FCD, */
|
| +/* normalize it into the collIterate's writable buffer, */
|
| +/* switch the collIterate's state to use the writable buffer. */
|
| +/* */
|
| +static
|
| +void collIterNormalize(collIterate *collationSource)
|
| +{
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + const UChar *srcP = collationSource->pos - 1; /* Start of chars to normalize */
|
| + const UChar *endP = collationSource->fcdPosition; /* End of region to normalize+1 */
|
| +
|
| + collationSource->nfd->normalize(UnicodeString(FALSE, srcP, (int32_t)(endP - srcP)),
|
| + collationSource->writableBuffer,
|
| + status);
|
| + if (U_FAILURE(status)) {
|
| +#ifdef UCOL_DEBUG
|
| + fprintf(stderr, "collIterNormalize(), NFD failed, status = %s\n", u_errorName(status));
|
| +#endif
|
| + return;
|
| + }
|
| +
|
| + collationSource->pos = collationSource->writableBuffer.getTerminatedBuffer();
|
| + collationSource->origFlags = collationSource->flags;
|
| + collationSource->flags |= UCOL_ITER_INNORMBUF;
|
| + collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
|
| +}
|
| +
|
| +
|
| +// This function takes the iterator and extracts normalized stuff up to the next boundary
|
| +// It is similar in the end results to the collIterNormalize, but for the cases when we
|
| +// use an iterator
|
| +/*static
|
| +inline void normalizeIterator(collIterate *collationSource) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + UBool wasNormalized = FALSE;
|
| + //int32_t iterIndex = collationSource->iterator->getIndex(collationSource->iterator, UITER_CURRENT);
|
| + uint32_t iterIndex = collationSource->iterator->getState(collationSource->iterator);
|
| + int32_t normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer,
|
| + (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status);
|
| + if(status == U_BUFFER_OVERFLOW_ERROR || normLen == (int32_t)collationSource->writableBufSize) {
|
| + // reallocate and terminate
|
| + if(!u_growBufferFromStatic(collationSource->stackWritableBuffer,
|
| + &collationSource->writableBuffer,
|
| + (int32_t *)&collationSource->writableBufSize, normLen + 1,
|
| + 0)
|
| + ) {
|
| + #ifdef UCOL_DEBUG
|
| + fprintf(stderr, "normalizeIterator(), out of memory\n");
|
| + #endif
|
| + return;
|
| + }
|
| + status = U_ZERO_ERROR;
|
| + //collationSource->iterator->move(collationSource->iterator, iterIndex, UITER_ZERO);
|
| + collationSource->iterator->setState(collationSource->iterator, iterIndex, &status);
|
| + normLen = unorm_next(collationSource->iterator, collationSource->writableBuffer,
|
| + (int32_t)collationSource->writableBufSize, UNORM_FCD, 0, TRUE, &wasNormalized, &status);
|
| + }
|
| + // Terminate the buffer - we already checked that it is big enough
|
| + collationSource->writableBuffer[normLen] = 0;
|
| + if(collationSource->writableBuffer != collationSource->stackWritableBuffer) {
|
| + collationSource->flags |= UCOL_ITER_ALLOCATED;
|
| + }
|
| + collationSource->pos = collationSource->writableBuffer;
|
| + collationSource->origFlags = collationSource->flags;
|
| + collationSource->flags |= UCOL_ITER_INNORMBUF;
|
| + collationSource->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
|
| +}*/
|
| +
|
| +
|
| +/* Incremental FCD check and normalize */
|
| +/* Called from getNextCE when normalization state is suspect. */
|
| +/* When entering, the state is known to be this: */
|
| +/* o We are working in the main buffer of the collIterate, not the side */
|
| +/* writable buffer. When in the side buffer, normalization mode is always off, */
|
| +/* so we won't get here. */
|
| +/* o The leading combining class from the current character is 0 or */
|
| +/* the trailing combining class of the previous char was zero. */
|
| +/* True because the previous call to this function will have always exited */
|
| +/* that way, and we get called for every char where cc might be non-zero. */
|
| +static
|
| +inline UBool collIterFCD(collIterate *collationSource) {
|
| + const UChar *srcP, *endP;
|
| + uint8_t leadingCC;
|
| + uint8_t prevTrailingCC = 0;
|
| + uint16_t fcd;
|
| + UBool needNormalize = FALSE;
|
| +
|
| + srcP = collationSource->pos-1;
|
| +
|
| + if (collationSource->flags & UCOL_ITER_HASLEN) {
|
| + endP = collationSource->endp;
|
| + } else {
|
| + endP = NULL;
|
| + }
|
| +
|
| + // Get the trailing combining class of the current character. If it's zero,
|
| + // we are OK.
|
| + /* trie access */
|
| + fcd = unorm_nextFCD16(fcdTrieIndex, fcdHighStart, srcP, endP);
|
| + if (fcd != 0) {
|
| + prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_);
|
| +
|
| + if (prevTrailingCC != 0) {
|
| + // The current char has a non-zero trailing CC. Scan forward until we find
|
| + // a char with a leading cc of zero.
|
| + while (endP == NULL || srcP != endP)
|
| + {
|
| + const UChar *savedSrcP = srcP;
|
| +
|
| + /* trie access */
|
| + fcd = unorm_nextFCD16(fcdTrieIndex, fcdHighStart, srcP, endP);
|
| + leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_);
|
| + if (leadingCC == 0) {
|
| + srcP = savedSrcP; // Hit char that is not part of combining sequence.
|
| + // back up over it. (Could be surrogate pair!)
|
| + break;
|
| + }
|
| +
|
| + if (leadingCC < prevTrailingCC) {
|
| + needNormalize = TRUE;
|
| + }
|
| +
|
| + prevTrailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_);
|
| + }
|
| + }
|
| + }
|
| +
|
| + collationSource->fcdPosition = (UChar *)srcP;
|
| +
|
| + return needNormalize;
|
| +}
|
| +
|
| +/****************************************************************************/
|
| +/* Following are the CE retrieval functions */
|
| +/* */
|
| +/****************************************************************************/
|
| +
|
| +static uint32_t getImplicit(UChar32 cp, collIterate *collationSource);
|
| +static uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource);
|
| +
|
| +/* there should be a macro version of this function in the header file */
|
| +/* This is the first function that tries to fetch a collation element */
|
| +/* If it's not succesfull or it encounters a more difficult situation */
|
| +/* some more sofisticated and slower functions are invoked */
|
| +static
|
| +inline uint32_t ucol_IGetNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) {
|
| + uint32_t order = 0;
|
| + if (collationSource->CEpos > collationSource->toReturn) { /* Are there any CEs from previous expansions? */
|
| + order = *(collationSource->toReturn++); /* if so, return them */
|
| + if(collationSource->CEpos == collationSource->toReturn) {
|
| + collationSource->CEpos = collationSource->toReturn = collationSource->extendCEs ? collationSource->extendCEs : collationSource->CEs;
|
| + }
|
| + return order;
|
| + }
|
| +
|
| + UChar ch = 0;
|
| + collationSource->offsetReturn = NULL;
|
| +
|
| + for (;;) /* Loop handles case when incremental normalize switches */
|
| + { /* to or from the side buffer / original string, and we */
|
| + /* need to start again to get the next character. */
|
| +
|
| + if ((collationSource->flags & (UCOL_ITER_HASLEN | UCOL_ITER_INNORMBUF | UCOL_ITER_NORM | UCOL_HIRAGANA_Q | UCOL_USE_ITERATOR)) == 0)
|
| + {
|
| + // The source string is null terminated and we're not working from the side buffer,
|
| + // and we're not normalizing. This is the fast path.
|
| + // (We can be in the side buffer for Thai pre-vowel reordering even when not normalizing.)
|
| + ch = *collationSource->pos++;
|
| + if (ch != 0) {
|
| + break;
|
| + }
|
| + else {
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + }
|
| +
|
| + if (collationSource->flags & UCOL_ITER_HASLEN) {
|
| + // Normal path for strings when length is specified.
|
| + // (We can't be in side buffer because it is always null terminated.)
|
| + if (collationSource->pos >= collationSource->endp) {
|
| + // Ran off of the end of the main source string. We're done.
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + ch = *collationSource->pos++;
|
| + }
|
| + else if(collationSource->flags & UCOL_USE_ITERATOR) {
|
| + UChar32 iterCh = collationSource->iterator->next(collationSource->iterator);
|
| + if(iterCh == U_SENTINEL) {
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + ch = (UChar)iterCh;
|
| + }
|
| + else
|
| + {
|
| + // Null terminated string.
|
| + ch = *collationSource->pos++;
|
| + if (ch == 0) {
|
| + // Ran off end of buffer.
|
| + if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) {
|
| + // Ran off end of main string. backing up one character.
|
| + collationSource->pos--;
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + else
|
| + {
|
| + // Hit null in the normalize side buffer.
|
| + // Usually this means the end of the normalized data,
|
| + // except for one odd case: a null followed by combining chars,
|
| + // which is the case if we are at the start of the buffer.
|
| + if (collationSource->pos == collationSource->writableBuffer.getBuffer()+1) {
|
| + break;
|
| + }
|
| +
|
| + // Null marked end of side buffer.
|
| + // Revert to the main string and
|
| + // loop back to top to try again to get a character.
|
| + collationSource->pos = collationSource->fcdPosition;
|
| + collationSource->flags = collationSource->origFlags;
|
| + continue;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(collationSource->flags&UCOL_HIRAGANA_Q) {
|
| + /* Codepoints \u3099-\u309C are both Hiragana and Katakana. Set the flag
|
| + * based on whether the previous codepoint was Hiragana or Katakana.
|
| + */
|
| + if(((ch>=0x3040 && ch<=0x3096) || (ch >= 0x309d && ch <= 0x309f)) ||
|
| + ((collationSource->flags & UCOL_WAS_HIRAGANA) && (ch >= 0x3099 && ch <= 0x309C))) {
|
| + collationSource->flags |= UCOL_WAS_HIRAGANA;
|
| + } else {
|
| + collationSource->flags &= ~UCOL_WAS_HIRAGANA;
|
| + }
|
| + }
|
| +
|
| + // We've got a character. See if there's any fcd and/or normalization stuff to do.
|
| + // Note that UCOL_ITER_NORM flag is always zero when we are in the side buffer.
|
| + if ((collationSource->flags & UCOL_ITER_NORM) == 0) {
|
| + break;
|
| + }
|
| +
|
| + if (collationSource->fcdPosition >= collationSource->pos) {
|
| + // An earlier FCD check has already covered the current character.
|
| + // We can go ahead and process this char.
|
| + break;
|
| + }
|
| +
|
| + if (ch < ZERO_CC_LIMIT_ ) {
|
| + // Fast fcd safe path. Trailing combining class == 0. This char is OK.
|
| + break;
|
| + }
|
| +
|
| + if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) {
|
| + // We need to peek at the next character in order to tell if we are FCD
|
| + if ((collationSource->flags & UCOL_ITER_HASLEN) && collationSource->pos >= collationSource->endp) {
|
| + // We are at the last char of source string.
|
| + // It is always OK for FCD check.
|
| + break;
|
| + }
|
| +
|
| + // Not at last char of source string (or we'll check against terminating null). Do the FCD fast test
|
| + if (*collationSource->pos < NFC_ZERO_CC_BLOCK_LIMIT_) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| +
|
| + // Need a more complete FCD check and possible normalization.
|
| + if (collIterFCD(collationSource)) {
|
| + collIterNormalize(collationSource);
|
| + }
|
| + if ((collationSource->flags & UCOL_ITER_INNORMBUF) == 0) {
|
| + // No normalization was needed. Go ahead and process the char we already had.
|
| + break;
|
| + }
|
| +
|
| + // Some normalization happened. Next loop iteration will pick up a char
|
| + // from the normalization buffer.
|
| +
|
| + } // end for (;;)
|
| +
|
| +
|
| + if (ch <= 0xFF) {
|
| + /* For latin-1 characters we never need to fall back to the UCA table */
|
| + /* because all of the UCA data is replicated in the latinOneMapping array */
|
| + order = coll->latinOneMapping[ch];
|
| + if (order > UCOL_NOT_FOUND) {
|
| + order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status);
|
| + }
|
| + }
|
| + else
|
| + {
|
| + // Always use UCA for Han, Hangul
|
| + // (Han extension A is before main Han block)
|
| + // **** Han compatibility chars ?? ****
|
| + if ((collationSource->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 &&
|
| + (ch >= UCOL_FIRST_HAN_A && ch <= UCOL_LAST_HANGUL)) {
|
| + if (ch > UCOL_LAST_HAN && ch < UCOL_FIRST_HANGUL) {
|
| + // between the two target ranges; do normal lookup
|
| + // **** this range is YI, Modifier tone letters, ****
|
| + // **** Latin-D, Syloti Nagari, Phagas-pa. ****
|
| + // **** Latin-D might be tailored, so we need to ****
|
| + // **** do the normal lookup for these guys. ****
|
| + order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
|
| + } else {
|
| + // in one of the target ranges; use UCA
|
| + order = UCOL_NOT_FOUND;
|
| + }
|
| + } else {
|
| + order = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
|
| + }
|
| +
|
| + if(order > UCOL_NOT_FOUND) { /* if a CE is special */
|
| + order = ucol_prv_getSpecialCE(coll, ch, order, collationSource, status); /* and try to get the special CE */
|
| + }
|
| +
|
| + if(order == UCOL_NOT_FOUND && coll->UCA) { /* We couldn't find a good CE in the tailoring */
|
| + /* if we got here, the codepoint MUST be over 0xFF - so we look directly in the trie */
|
| + order = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
|
| +
|
| + if(order > UCOL_NOT_FOUND) { /* UCA also gives us a special CE */
|
| + order = ucol_prv_getSpecialCE(coll->UCA, ch, order, collationSource, status);
|
| + }
|
| + }
|
| + }
|
| + if(order == UCOL_NOT_FOUND) {
|
| + order = getImplicit(ch, collationSource);
|
| + }
|
| + return order; /* return the CE */
|
| +}
|
| +
|
| +/* ucol_getNextCE, out-of-line version for use from other files. */
|
| +U_CAPI uint32_t U_EXPORT2
|
| +ucol_getNextCE(const UCollator *coll, collIterate *collationSource, UErrorCode *status) {
|
| + return ucol_IGetNextCE(coll, collationSource, status);
|
| +}
|
| +
|
| +
|
| +/**
|
| +* Incremental previous normalization happens here. Pick up the range of chars
|
| +* identifed by FCD, normalize it into the collIterate's writable buffer,
|
| +* switch the collIterate's state to use the writable buffer.
|
| +* @param data collation iterator data
|
| +*/
|
| +static
|
| +void collPrevIterNormalize(collIterate *data)
|
| +{
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + const UChar *pEnd = data->pos; /* End normalize + 1 */
|
| + const UChar *pStart;
|
| +
|
| + /* Start normalize */
|
| + if (data->fcdPosition == NULL) {
|
| + pStart = data->string;
|
| + }
|
| + else {
|
| + pStart = data->fcdPosition + 1;
|
| + }
|
| +
|
| + int32_t normLen =
|
| + data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)((pEnd - pStart) + 1)),
|
| + data->writableBuffer,
|
| + status).
|
| + length();
|
| + if(U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + /*
|
| + this puts the null termination infront of the normalized string instead
|
| + of the end
|
| + */
|
| + data->writableBuffer.insert(0, (UChar)0);
|
| +
|
| + /*
|
| + * The usual case at this point is that we've got a base
|
| + * character followed by marks that were normalized. If
|
| + * fcdPosition is NULL, that means that we backed up to
|
| + * the beginning of the string and there's no base character.
|
| + *
|
| + * Forward processing will usually normalize when it sees
|
| + * the first mark, so that mark will get it's natural offset
|
| + * and the rest will get the offset of the character following
|
| + * the marks. The base character will also get its natural offset.
|
| + *
|
| + * We write the offset of the base character, if there is one,
|
| + * followed by the offset of the first mark and then the offsets
|
| + * of the rest of the marks.
|
| + */
|
| + int32_t firstMarkOffset = 0;
|
| + int32_t trailOffset = (int32_t)(data->pos - data->string + 1);
|
| + int32_t trailCount = normLen - 1;
|
| +
|
| + if (data->fcdPosition != NULL) {
|
| + int32_t baseOffset = (int32_t)(data->fcdPosition - data->string);
|
| + UChar baseChar = *data->fcdPosition;
|
| +
|
| + firstMarkOffset = baseOffset + 1;
|
| +
|
| + /*
|
| + * If the base character is the start of a contraction, forward processing
|
| + * will normalize the marks while checking for the contraction, which means
|
| + * that the offset of the first mark will the same as the other marks.
|
| + *
|
| + * **** THIS IS PROBABLY NOT A COMPLETE TEST ****
|
| + */
|
| + if (baseChar >= 0x100) {
|
| + uint32_t baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->mapping, baseChar);
|
| +
|
| + if (baseOrder == UCOL_NOT_FOUND && data->coll->UCA) {
|
| + baseOrder = UTRIE_GET32_FROM_LEAD(&data->coll->UCA->mapping, baseChar);
|
| + }
|
| +
|
| + if (baseOrder > UCOL_NOT_FOUND && getCETag(baseOrder) == CONTRACTION_TAG) {
|
| + firstMarkOffset = trailOffset;
|
| + }
|
| + }
|
| +
|
| + data->appendOffset(baseOffset, status);
|
| + }
|
| +
|
| + data->appendOffset(firstMarkOffset, status);
|
| +
|
| + for (int32_t i = 0; i < trailCount; i += 1) {
|
| + data->appendOffset(trailOffset, status);
|
| + }
|
| +
|
| + data->offsetRepeatValue = trailOffset;
|
| +
|
| + data->offsetReturn = data->offsetStore - 1;
|
| + if (data->offsetReturn == data->offsetBuffer) {
|
| + data->offsetStore = data->offsetBuffer;
|
| + }
|
| +
|
| + data->pos = data->writableBuffer.getTerminatedBuffer() + 1 + normLen;
|
| + data->origFlags = data->flags;
|
| + data->flags |= UCOL_ITER_INNORMBUF;
|
| + data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
|
| +}
|
| +
|
| +
|
| +/**
|
| +* Incremental FCD check for previous iteration and normalize. Called from
|
| +* getPrevCE when normalization state is suspect.
|
| +* When entering, the state is known to be this:
|
| +* o We are working in the main buffer of the collIterate, not the side
|
| +* writable buffer. When in the side buffer, normalization mode is always
|
| +* off, so we won't get here.
|
| +* o The leading combining class from the current character is 0 or the
|
| +* trailing combining class of the previous char was zero.
|
| +* True because the previous call to this function will have always exited
|
| +* that way, and we get called for every char where cc might be non-zero.
|
| +* @param data collation iterate struct
|
| +* @return normalization status, TRUE for normalization to be done, FALSE
|
| +* otherwise
|
| +*/
|
| +static
|
| +inline UBool collPrevIterFCD(collIterate *data)
|
| +{
|
| + const UChar *src, *start;
|
| + uint8_t leadingCC;
|
| + uint8_t trailingCC = 0;
|
| + uint16_t fcd;
|
| + UBool result = FALSE;
|
| +
|
| + start = data->string;
|
| + src = data->pos + 1;
|
| +
|
| + /* Get the trailing combining class of the current character. */
|
| + fcd = unorm_prevFCD16(fcdTrieIndex, fcdHighStart, start, src);
|
| +
|
| + leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_);
|
| +
|
| + if (leadingCC != 0) {
|
| + /*
|
| + The current char has a non-zero leading combining class.
|
| + Scan backward until we find a char with a trailing cc of zero.
|
| + */
|
| + for (;;)
|
| + {
|
| + if (start == src) {
|
| + data->fcdPosition = NULL;
|
| + return result;
|
| + }
|
| +
|
| + fcd = unorm_prevFCD16(fcdTrieIndex, fcdHighStart, start, src);
|
| +
|
| + trailingCC = (uint8_t)(fcd & LAST_BYTE_MASK_);
|
| +
|
| + if (trailingCC == 0) {
|
| + break;
|
| + }
|
| +
|
| + if (leadingCC < trailingCC) {
|
| + result = TRUE;
|
| + }
|
| +
|
| + leadingCC = (uint8_t)(fcd >> SECOND_LAST_BYTE_SHIFT_);
|
| + }
|
| + }
|
| +
|
| + data->fcdPosition = (UChar *)src;
|
| +
|
| + return result;
|
| +}
|
| +
|
| +/** gets a code unit from the string at a given offset
|
| + * Handles both normal and iterative cases.
|
| + * No error checking - caller beware!
|
| + */
|
| +static inline
|
| +UChar peekCodeUnit(collIterate *source, int32_t offset) {
|
| + if(source->pos != NULL) {
|
| + return *(source->pos + offset);
|
| + } else if(source->iterator != NULL) {
|
| + UChar32 c;
|
| + if(offset != 0) {
|
| + source->iterator->move(source->iterator, offset, UITER_CURRENT);
|
| + c = source->iterator->next(source->iterator);
|
| + source->iterator->move(source->iterator, -offset-1, UITER_CURRENT);
|
| + } else {
|
| + c = source->iterator->current(source->iterator);
|
| + }
|
| + return c >= 0 ? (UChar)c : 0xfffd; // If the caller works properly, we should never see c<0.
|
| + } else {
|
| + return 0xfffd;
|
| + }
|
| +}
|
| +
|
| +// Code point version. Treats the offset as a _code point_ delta.
|
| +// We cannot use U16_FWD_1_UNSAFE and similar because we might not have well-formed UTF-16.
|
| +// We cannot use U16_FWD_1 and similar because we do not know the start and limit of the buffer.
|
| +static inline
|
| +UChar32 peekCodePoint(collIterate *source, int32_t offset) {
|
| + UChar32 c;
|
| + if(source->pos != NULL) {
|
| + const UChar *p = source->pos;
|
| + if(offset >= 0) {
|
| + // Skip forward over (offset-1) code points.
|
| + while(--offset >= 0) {
|
| + if(U16_IS_LEAD(*p++) && U16_IS_TRAIL(*p)) {
|
| + ++p;
|
| + }
|
| + }
|
| + // Read the code point there.
|
| + c = *p++;
|
| + UChar trail;
|
| + if(U16_IS_LEAD(c) && U16_IS_TRAIL(trail = *p)) {
|
| + c = U16_GET_SUPPLEMENTARY(c, trail);
|
| + }
|
| + } else /* offset<0 */ {
|
| + // Skip backward over (offset-1) code points.
|
| + while(++offset < 0) {
|
| + if(U16_IS_TRAIL(*--p) && U16_IS_LEAD(*(p - 1))) {
|
| + --p;
|
| + }
|
| + }
|
| + // Read the code point before that.
|
| + c = *--p;
|
| + UChar lead;
|
| + if(U16_IS_TRAIL(c) && U16_IS_LEAD(lead = *(p - 1))) {
|
| + c = U16_GET_SUPPLEMENTARY(lead, c);
|
| + }
|
| + }
|
| + } else if(source->iterator != NULL) {
|
| + if(offset >= 0) {
|
| + // Skip forward over (offset-1) code points.
|
| + int32_t fwd = offset;
|
| + while(fwd-- > 0) {
|
| + uiter_next32(source->iterator);
|
| + }
|
| + // Read the code point there.
|
| + c = uiter_current32(source->iterator);
|
| + // Return to the starting point, skipping backward over (offset-1) code points.
|
| + while(offset-- > 0) {
|
| + uiter_previous32(source->iterator);
|
| + }
|
| + } else /* offset<0 */ {
|
| + // Read backward, reading offset code points, remember only the last-read one.
|
| + int32_t back = offset;
|
| + do {
|
| + c = uiter_previous32(source->iterator);
|
| + } while(++back < 0);
|
| + // Return to the starting position, skipping forward over offset code points.
|
| + do {
|
| + uiter_next32(source->iterator);
|
| + } while(++offset < 0);
|
| + }
|
| + } else {
|
| + c = U_SENTINEL;
|
| + }
|
| + return c;
|
| +}
|
| +
|
| +/**
|
| +* Determines if we are at the start of the data string in the backwards
|
| +* collation iterator
|
| +* @param data collation iterator
|
| +* @return TRUE if we are at the start
|
| +*/
|
| +static
|
| +inline UBool isAtStartPrevIterate(collIterate *data) {
|
| + if(data->pos == NULL && data->iterator != NULL) {
|
| + return !data->iterator->hasPrevious(data->iterator);
|
| + }
|
| + //return (collIter_bos(data)) ||
|
| + return (data->pos == data->string) ||
|
| + ((data->flags & UCOL_ITER_INNORMBUF) &&
|
| + *(data->pos - 1) == 0 && data->fcdPosition == NULL);
|
| +}
|
| +
|
| +static
|
| +inline void goBackOne(collIterate *data) {
|
| +# if 0
|
| + // somehow, it looks like we need to keep iterator synced up
|
| + // at all times, as above.
|
| + if(data->pos) {
|
| + data->pos--;
|
| + }
|
| + if(data->iterator) {
|
| + data->iterator->previous(data->iterator);
|
| + }
|
| +#endif
|
| + if(data->iterator && (data->flags & UCOL_USE_ITERATOR)) {
|
| + data->iterator->previous(data->iterator);
|
| + }
|
| + if(data->pos) {
|
| + data->pos --;
|
| + }
|
| +}
|
| +
|
| +/**
|
| +* Inline function that gets a simple CE.
|
| +* So what it does is that it will first check the expansion buffer. If the
|
| +* expansion buffer is not empty, ie the end pointer to the expansion buffer
|
| +* is different from the string pointer, we return the collation element at the
|
| +* return pointer and decrement it.
|
| +* For more complicated CEs it resorts to getComplicatedCE.
|
| +* @param coll collator data
|
| +* @param data collation iterator struct
|
| +* @param status error status
|
| +*/
|
| +static
|
| +inline uint32_t ucol_IGetPrevCE(const UCollator *coll, collIterate *data,
|
| + UErrorCode *status)
|
| +{
|
| + uint32_t result = (uint32_t)UCOL_NULLORDER;
|
| +
|
| + if (data->offsetReturn != NULL) {
|
| + if (data->offsetRepeatCount > 0) {
|
| + data->offsetRepeatCount -= 1;
|
| + } else {
|
| + if (data->offsetReturn == data->offsetBuffer) {
|
| + data->offsetReturn = NULL;
|
| + data->offsetStore = data->offsetBuffer;
|
| + } else {
|
| + data->offsetReturn -= 1;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if ((data->extendCEs && data->toReturn > data->extendCEs) ||
|
| + (!data->extendCEs && data->toReturn > data->CEs))
|
| + {
|
| + data->toReturn -= 1;
|
| + result = *(data->toReturn);
|
| + if (data->CEs == data->toReturn || data->extendCEs == data->toReturn) {
|
| + data->CEpos = data->toReturn;
|
| + }
|
| + }
|
| + else {
|
| + UChar ch = 0;
|
| +
|
| + /*
|
| + Loop handles case when incremental normalize switches to or from the
|
| + side buffer / original string, and we need to start again to get the
|
| + next character.
|
| + */
|
| + for (;;) {
|
| + if (data->flags & UCOL_ITER_HASLEN) {
|
| + /*
|
| + Normal path for strings when length is specified.
|
| + Not in side buffer because it is always null terminated.
|
| + */
|
| + if (data->pos <= data->string) {
|
| + /* End of the main source string */
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + data->pos --;
|
| + ch = *data->pos;
|
| + }
|
| + // we are using an iterator to go back. Pray for us!
|
| + else if (data->flags & UCOL_USE_ITERATOR) {
|
| + UChar32 iterCh = data->iterator->previous(data->iterator);
|
| + if(iterCh == U_SENTINEL) {
|
| + return UCOL_NO_MORE_CES;
|
| + } else {
|
| + ch = (UChar)iterCh;
|
| + }
|
| + }
|
| + else {
|
| + data->pos --;
|
| + ch = *data->pos;
|
| + /* we are in the side buffer. */
|
| + if (ch == 0) {
|
| + /*
|
| + At the start of the normalize side buffer.
|
| + Go back to string.
|
| + Because pointer points to the last accessed character,
|
| + hence we have to increment it by one here.
|
| + */
|
| + data->flags = data->origFlags;
|
| + data->offsetRepeatValue = 0;
|
| +
|
| + if (data->fcdPosition == NULL) {
|
| + data->pos = data->string;
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + else {
|
| + data->pos = data->fcdPosition + 1;
|
| + }
|
| +
|
| + continue;
|
| + }
|
| + }
|
| +
|
| + if(data->flags&UCOL_HIRAGANA_Q) {
|
| + if(ch>=0x3040 && ch<=0x309f) {
|
| + data->flags |= UCOL_WAS_HIRAGANA;
|
| + } else {
|
| + data->flags &= ~UCOL_WAS_HIRAGANA;
|
| + }
|
| + }
|
| +
|
| + /*
|
| + * got a character to determine if there's fcd and/or normalization
|
| + * stuff to do.
|
| + * if the current character is not fcd.
|
| + * if current character is at the start of the string
|
| + * Trailing combining class == 0.
|
| + * Note if pos is in the writablebuffer, norm is always 0
|
| + */
|
| + if (ch < ZERO_CC_LIMIT_ ||
|
| + // this should propel us out of the loop in the iterator case
|
| + (data->flags & UCOL_ITER_NORM) == 0 ||
|
| + (data->fcdPosition != NULL && data->fcdPosition <= data->pos)
|
| + || data->string == data->pos) {
|
| + break;
|
| + }
|
| +
|
| + if (ch < NFC_ZERO_CC_BLOCK_LIMIT_) {
|
| + /* if next character is FCD */
|
| + if (data->pos == data->string) {
|
| + /* First char of string is always OK for FCD check */
|
| + break;
|
| + }
|
| +
|
| + /* Not first char of string, do the FCD fast test */
|
| + if (*(data->pos - 1) < NFC_ZERO_CC_BLOCK_LIMIT_) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + /* Need a more complete FCD check and possible normalization. */
|
| + if (collPrevIterFCD(data)) {
|
| + collPrevIterNormalize(data);
|
| + }
|
| +
|
| + if ((data->flags & UCOL_ITER_INNORMBUF) == 0) {
|
| + /* No normalization. Go ahead and process the char. */
|
| + break;
|
| + }
|
| +
|
| + /*
|
| + Some normalization happened.
|
| + Next loop picks up a char from the normalization buffer.
|
| + */
|
| + }
|
| +
|
| + /* attempt to handle contractions, after removal of the backwards
|
| + contraction
|
| + */
|
| + if (ucol_contractionEndCP(ch, coll) && !isAtStartPrevIterate(data)) {
|
| + result = ucol_prv_getSpecialPrevCE(coll, ch, UCOL_CONTRACTION, data, status);
|
| + } else {
|
| + if (ch <= 0xFF) {
|
| + result = coll->latinOneMapping[ch];
|
| + }
|
| + else {
|
| + // Always use UCA for [3400..9FFF], [AC00..D7AF]
|
| + // **** [FA0E..FA2F] ?? ****
|
| + if ((data->flags & UCOL_FORCE_HAN_IMPLICIT) != 0 &&
|
| + (ch >= 0x3400 && ch <= 0xD7AF)) {
|
| + if (ch > 0x9FFF && ch < 0xAC00) {
|
| + // between the two target ranges; do normal lookup
|
| + // **** this range is YI, Modifier tone letters, ****
|
| + // **** Latin-D, Syloti Nagari, Phagas-pa. ****
|
| + // **** Latin-D might be tailored, so we need to ****
|
| + // **** do the normal lookup for these guys. ****
|
| + result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
|
| + } else {
|
| + result = UCOL_NOT_FOUND;
|
| + }
|
| + } else {
|
| + result = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
|
| + }
|
| + }
|
| + if (result > UCOL_NOT_FOUND) {
|
| + result = ucol_prv_getSpecialPrevCE(coll, ch, result, data, status);
|
| + }
|
| + if (result == UCOL_NOT_FOUND) { // Not found in master list
|
| + if (!isAtStartPrevIterate(data) &&
|
| + ucol_contractionEndCP(ch, data->coll))
|
| + {
|
| + result = UCOL_CONTRACTION;
|
| + } else {
|
| + if(coll->UCA) {
|
| + result = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
|
| + }
|
| + }
|
| +
|
| + if (result > UCOL_NOT_FOUND) {
|
| + if(coll->UCA) {
|
| + result = ucol_prv_getSpecialPrevCE(coll->UCA, ch, result, data, status);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(result == UCOL_NOT_FOUND) {
|
| + result = getPrevImplicit(ch, data);
|
| + }
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +
|
| +/* ucol_getPrevCE, out-of-line version for use from other files. */
|
| +U_CFUNC uint32_t U_EXPORT2
|
| +ucol_getPrevCE(const UCollator *coll, collIterate *data,
|
| + UErrorCode *status) {
|
| + return ucol_IGetPrevCE(coll, data, status);
|
| +}
|
| +
|
| +
|
| +/* this should be connected to special Jamo handling */
|
| +U_CFUNC uint32_t U_EXPORT2
|
| +ucol_getFirstCE(const UCollator *coll, UChar u, UErrorCode *status) {
|
| + collIterate colIt;
|
| + IInit_collIterate(coll, &u, 1, &colIt, status);
|
| + if(U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| + return ucol_IGetNextCE(coll, &colIt, status);
|
| +}
|
| +
|
| +/**
|
| +* Inserts the argument character into the end of the buffer pushing back the
|
| +* null terminator.
|
| +* @param data collIterate struct data
|
| +* @param ch character to be appended
|
| +* @return the position of the new addition
|
| +*/
|
| +static
|
| +inline const UChar * insertBufferEnd(collIterate *data, UChar ch)
|
| +{
|
| + int32_t oldLength = data->writableBuffer.length();
|
| + return data->writableBuffer.append(ch).getTerminatedBuffer() + oldLength;
|
| +}
|
| +
|
| +/**
|
| +* Inserts the argument string into the end of the buffer pushing back the
|
| +* null terminator.
|
| +* @param data collIterate struct data
|
| +* @param string to be appended
|
| +* @param length of the string to be appended
|
| +* @return the position of the new addition
|
| +*/
|
| +static
|
| +inline const UChar * insertBufferEnd(collIterate *data, const UChar *str, int32_t length)
|
| +{
|
| + int32_t oldLength = data->writableBuffer.length();
|
| + return data->writableBuffer.append(str, length).getTerminatedBuffer() + oldLength;
|
| +}
|
| +
|
| +/**
|
| +* Special normalization function for contraction in the forwards iterator.
|
| +* This normalization sequence will place the current character at source->pos
|
| +* and its following normalized sequence into the buffer.
|
| +* The fcd position, pos will be changed.
|
| +* pos will now point to positions in the buffer.
|
| +* Flags will be changed accordingly.
|
| +* @param data collation iterator data
|
| +*/
|
| +static
|
| +inline void normalizeNextContraction(collIterate *data)
|
| +{
|
| + int32_t strsize;
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + /* because the pointer points to the next character */
|
| + const UChar *pStart = data->pos - 1;
|
| + const UChar *pEnd;
|
| +
|
| + if ((data->flags & UCOL_ITER_INNORMBUF) == 0) {
|
| + data->writableBuffer.setTo(*(pStart - 1));
|
| + strsize = 1;
|
| + }
|
| + else {
|
| + strsize = data->writableBuffer.length();
|
| + }
|
| +
|
| + pEnd = data->fcdPosition;
|
| +
|
| + data->writableBuffer.append(
|
| + data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)), status));
|
| + if(U_FAILURE(status)) {
|
| + return;
|
| + }
|
| +
|
| + data->pos = data->writableBuffer.getTerminatedBuffer() + strsize;
|
| + data->origFlags = data->flags;
|
| + data->flags |= UCOL_ITER_INNORMBUF;
|
| + data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
|
| +}
|
| +
|
| +/**
|
| +* Contraction character management function that returns the next character
|
| +* for the forwards iterator.
|
| +* Does nothing if the next character is in buffer and not the first character
|
| +* in it.
|
| +* Else it checks next character in data string to see if it is normalizable.
|
| +* If it is not, the character is simply copied into the buffer, else
|
| +* the whole normalized substring is copied into the buffer, including the
|
| +* current character.
|
| +* @param data collation element iterator data
|
| +* @return next character
|
| +*/
|
| +static
|
| +inline UChar getNextNormalizedChar(collIterate *data)
|
| +{
|
| + UChar nextch;
|
| + UChar ch;
|
| + // Here we need to add the iterator code. One problem is the way
|
| + // end of string is handled. If we just return next char, it could
|
| + // be the sentinel. Most of the cases already check for this, but we
|
| + // need to be sure.
|
| + if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ) {
|
| + /* if no normalization and not in buffer. */
|
| + if(data->flags & UCOL_USE_ITERATOR) {
|
| + return (UChar)data->iterator->next(data->iterator);
|
| + } else {
|
| + return *(data->pos ++);
|
| + }
|
| + }
|
| +
|
| + //if (data->flags & UCOL_ITER_NORM && data->flags & UCOL_USE_ITERATOR) {
|
| + //normalizeIterator(data);
|
| + //}
|
| +
|
| + UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF);
|
| + if ((innormbuf && *data->pos != 0) ||
|
| + (data->fcdPosition != NULL && !innormbuf &&
|
| + data->pos < data->fcdPosition)) {
|
| + /*
|
| + if next character is in normalized buffer, no further normalization
|
| + is required
|
| + */
|
| + return *(data->pos ++);
|
| + }
|
| +
|
| + if (data->flags & UCOL_ITER_HASLEN) {
|
| + /* in data string */
|
| + if (data->pos + 1 == data->endp) {
|
| + return *(data->pos ++);
|
| + }
|
| + }
|
| + else {
|
| + if (innormbuf) {
|
| + // inside the normalization buffer, but at the end
|
| + // (since we encountered zero). This means, in the
|
| + // case we're using char iterator, that we need to
|
| + // do another round of normalization.
|
| + //if(data->origFlags & UCOL_USE_ITERATOR) {
|
| + // we need to restore original flags,
|
| + // otherwise, we'll lose them
|
| + //data->flags = data->origFlags;
|
| + //normalizeIterator(data);
|
| + //return *(data->pos++);
|
| + //} else {
|
| + /*
|
| + in writable buffer, at this point fcdPosition can not be
|
| + pointing to the end of the data string. see contracting tag.
|
| + */
|
| + if(data->fcdPosition) {
|
| + if (*(data->fcdPosition + 1) == 0 ||
|
| + data->fcdPosition + 1 == data->endp) {
|
| + /* at the end of the string, dump it into the normalizer */
|
| + data->pos = insertBufferEnd(data, *(data->fcdPosition)) + 1;
|
| + // Check if data->pos received a null pointer
|
| + if (data->pos == NULL) {
|
| + return (UChar)-1; // Return to indicate error.
|
| + }
|
| + return *(data->fcdPosition ++);
|
| + }
|
| + data->pos = data->fcdPosition;
|
| + } else if(data->origFlags & UCOL_USE_ITERATOR) {
|
| + // if we are here, we're using a normalizing iterator.
|
| + // we should just continue further.
|
| + data->flags = data->origFlags;
|
| + data->pos = NULL;
|
| + return (UChar)data->iterator->next(data->iterator);
|
| + }
|
| + //}
|
| + }
|
| + else {
|
| + if (*(data->pos + 1) == 0) {
|
| + return *(data->pos ++);
|
| + }
|
| + }
|
| + }
|
| +
|
| + ch = *data->pos ++;
|
| + nextch = *data->pos;
|
| +
|
| + /*
|
| + * if the current character is not fcd.
|
| + * Trailing combining class == 0.
|
| + */
|
| + if ((data->fcdPosition == NULL || data->fcdPosition < data->pos) &&
|
| + (nextch >= NFC_ZERO_CC_BLOCK_LIMIT_ ||
|
| + ch >= NFC_ZERO_CC_BLOCK_LIMIT_)) {
|
| + /*
|
| + Need a more complete FCD check and possible normalization.
|
| + normalize substring will be appended to buffer
|
| + */
|
| + if (collIterFCD(data)) {
|
| + normalizeNextContraction(data);
|
| + return *(data->pos ++);
|
| + }
|
| + else if (innormbuf) {
|
| + /* fcdposition shifted even when there's no normalization, if we
|
| + don't input the rest into this, we'll get the wrong position when
|
| + we reach the end of the writableBuffer */
|
| + int32_t length = (int32_t)(data->fcdPosition - data->pos + 1);
|
| + data->pos = insertBufferEnd(data, data->pos - 1, length);
|
| + // Check if data->pos received a null pointer
|
| + if (data->pos == NULL) {
|
| + return (UChar)-1; // Return to indicate error.
|
| + }
|
| + return *(data->pos ++);
|
| + }
|
| + }
|
| +
|
| + if (innormbuf) {
|
| + /*
|
| + no normalization is to be done hence only one character will be
|
| + appended to the buffer.
|
| + */
|
| + data->pos = insertBufferEnd(data, ch) + 1;
|
| + // Check if data->pos received a null pointer
|
| + if (data->pos == NULL) {
|
| + return (UChar)-1; // Return to indicate error.
|
| + }
|
| + }
|
| +
|
| + /* points back to the pos in string */
|
| + return ch;
|
| +}
|
| +
|
| +
|
| +
|
| +/**
|
| +* Function to copy the buffer into writableBuffer and sets the fcd position to
|
| +* the correct position
|
| +* @param source data string source
|
| +* @param buffer character buffer
|
| +*/
|
| +static
|
| +inline void setDiscontiguosAttribute(collIterate *source, const UnicodeString &buffer)
|
| +{
|
| + /* okay confusing part here. to ensure that the skipped characters are
|
| + considered later, we need to place it in the appropriate position in the
|
| + normalization buffer and reassign the pos pointer. simple case if pos
|
| + reside in string, simply copy to normalization buffer and
|
| + fcdposition = pos, pos = start of normalization buffer. if pos in
|
| + normalization buffer, we'll insert the copy infront of pos and point pos
|
| + to the start of the normalization buffer. why am i doing these copies?
|
| + well, so that the whole chunk of codes in the getNextCE, ucol_prv_getSpecialCE does
|
| + not require any changes, which be really painful. */
|
| + if (source->flags & UCOL_ITER_INNORMBUF) {
|
| + int32_t replaceLength = source->pos - source->writableBuffer.getBuffer();
|
| + source->writableBuffer.replace(0, replaceLength, buffer);
|
| + }
|
| + else {
|
| + source->fcdPosition = source->pos;
|
| + source->origFlags = source->flags;
|
| + source->flags |= UCOL_ITER_INNORMBUF;
|
| + source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN | UCOL_USE_ITERATOR);
|
| + source->writableBuffer = buffer;
|
| + }
|
| +
|
| + source->pos = source->writableBuffer.getTerminatedBuffer();
|
| +}
|
| +
|
| +/**
|
| +* Function to get the discontiguos collation element within the source.
|
| +* Note this function will set the position to the appropriate places.
|
| +* @param coll current collator used
|
| +* @param source data string source
|
| +* @param constart index to the start character in the contraction table
|
| +* @return discontiguos collation element offset
|
| +*/
|
| +static
|
| +uint32_t getDiscontiguous(const UCollator *coll, collIterate *source,
|
| + const UChar *constart)
|
| +{
|
| + /* source->pos currently points to the second combining character after
|
| + the start character */
|
| + const UChar *temppos = source->pos;
|
| + UnicodeString buffer;
|
| + const UChar *tempconstart = constart;
|
| + uint8_t tempflags = source->flags;
|
| + UBool multicontraction = FALSE;
|
| + collIterateState discState;
|
| +
|
| + backupState(source, &discState);
|
| +
|
| + buffer.setTo(peekCodePoint(source, -1));
|
| + for (;;) {
|
| + UChar *UCharOffset;
|
| + UChar schar,
|
| + tchar;
|
| + uint32_t result;
|
| +
|
| + if (((source->flags & UCOL_ITER_HASLEN) && source->pos >= source->endp)
|
| + || (peekCodeUnit(source, 0) == 0 &&
|
| + //|| (*source->pos == 0 &&
|
| + ((source->flags & UCOL_ITER_INNORMBUF) == 0 ||
|
| + source->fcdPosition == NULL ||
|
| + source->fcdPosition == source->endp ||
|
| + *(source->fcdPosition) == 0 ||
|
| + u_getCombiningClass(*(source->fcdPosition)) == 0)) ||
|
| + /* end of string in null terminated string or stopped by a
|
| + null character, note fcd does not always point to a base
|
| + character after the discontiguos change */
|
| + u_getCombiningClass(peekCodePoint(source, 0)) == 0) {
|
| + //u_getCombiningClass(*(source->pos)) == 0) {
|
| + //constart = (UChar *)coll->image + getContractOffset(CE);
|
| + if (multicontraction) {
|
| + source->pos = temppos - 1;
|
| + setDiscontiguosAttribute(source, buffer);
|
| + return *(coll->contractionCEs +
|
| + (tempconstart - coll->contractionIndex));
|
| + }
|
| + constart = tempconstart;
|
| + break;
|
| + }
|
| +
|
| + UCharOffset = (UChar *)(tempconstart + 1); /* skip the backward offset*/
|
| + schar = getNextNormalizedChar(source);
|
| +
|
| + while (schar > (tchar = *UCharOffset)) {
|
| + UCharOffset++;
|
| + }
|
| +
|
| + if (schar != tchar) {
|
| + /* not the correct codepoint. we stuff the current codepoint into
|
| + the discontiguos buffer and try the next character */
|
| + buffer.append(schar);
|
| + continue;
|
| + }
|
| + else {
|
| + if (u_getCombiningClass(schar) ==
|
| + u_getCombiningClass(peekCodePoint(source, -2))) {
|
| + buffer.append(schar);
|
| + continue;
|
| + }
|
| + result = *(coll->contractionCEs +
|
| + (UCharOffset - coll->contractionIndex));
|
| + }
|
| +
|
| + if (result == UCOL_NOT_FOUND) {
|
| + break;
|
| + } else if (isContraction(result)) {
|
| + /* this is a multi-contraction*/
|
| + tempconstart = (UChar *)coll->image + getContractOffset(result);
|
| + if (*(coll->contractionCEs + (constart - coll->contractionIndex))
|
| + != UCOL_NOT_FOUND) {
|
| + multicontraction = TRUE;
|
| + temppos = source->pos + 1;
|
| + }
|
| + } else {
|
| + setDiscontiguosAttribute(source, buffer);
|
| + return result;
|
| + }
|
| + }
|
| +
|
| + /* no problems simply reverting just like that,
|
| + if we are in string before getting into this function, points back to
|
| + string hence no problem.
|
| + if we are in normalization buffer before getting into this function,
|
| + since we'll never use another normalization within this function, we
|
| + know that fcdposition points to a base character. the normalization buffer
|
| + never change, hence this revert works. */
|
| + loadState(source, &discState, TRUE);
|
| + goBackOne(source);
|
| +
|
| + //source->pos = temppos - 1;
|
| + source->flags = tempflags;
|
| + return *(coll->contractionCEs + (constart - coll->contractionIndex));
|
| +}
|
| +
|
| +/* now uses Mark's getImplicitPrimary code */
|
| +static
|
| +inline uint32_t getImplicit(UChar32 cp, collIterate *collationSource) {
|
| + uint32_t r = uprv_uca_getImplicitPrimary(cp);
|
| + *(collationSource->CEpos++) = ((r & 0x0000FFFF)<<16) | 0x000000C0;
|
| + collationSource->offsetRepeatCount += 1;
|
| + return (r & UCOL_PRIMARYMASK) | 0x00000505; // This was 'order'
|
| +}
|
| +
|
| +/**
|
| +* Inserts the argument character into the front of the buffer replacing the
|
| +* front null terminator.
|
| +* @param data collation element iterator data
|
| +* @param ch character to be appended
|
| +*/
|
| +static
|
| +inline void insertBufferFront(collIterate *data, UChar ch)
|
| +{
|
| + data->pos = data->writableBuffer.setCharAt(0, ch).insert(0, (UChar)0).getTerminatedBuffer() + 2;
|
| +}
|
| +
|
| +/**
|
| +* Special normalization function for contraction in the previous iterator.
|
| +* This normalization sequence will place the current character at source->pos
|
| +* and its following normalized sequence into the buffer.
|
| +* The fcd position, pos will be changed.
|
| +* pos will now point to positions in the buffer.
|
| +* Flags will be changed accordingly.
|
| +* @param data collation iterator data
|
| +*/
|
| +static
|
| +inline void normalizePrevContraction(collIterate *data, UErrorCode *status)
|
| +{
|
| + const UChar *pEnd = data->pos + 1; /* End normalize + 1 */
|
| + const UChar *pStart;
|
| +
|
| + UnicodeString endOfBuffer;
|
| + if (data->flags & UCOL_ITER_HASLEN) {
|
| + /*
|
| + normalization buffer not used yet, we'll pull down the next
|
| + character into the end of the buffer
|
| + */
|
| + endOfBuffer.setTo(*pEnd);
|
| + }
|
| + else {
|
| + endOfBuffer.setTo(data->writableBuffer, 1); // after the leading NUL
|
| + }
|
| +
|
| + if (data->fcdPosition == NULL) {
|
| + pStart = data->string;
|
| + }
|
| + else {
|
| + pStart = data->fcdPosition + 1;
|
| + }
|
| + int32_t normLen =
|
| + data->nfd->normalize(UnicodeString(FALSE, pStart, (int32_t)(pEnd - pStart)),
|
| + data->writableBuffer,
|
| + *status).
|
| + length();
|
| + if(U_FAILURE(*status)) {
|
| + return;
|
| + }
|
| + /*
|
| + this puts the null termination infront of the normalized string instead
|
| + of the end
|
| + */
|
| + data->pos =
|
| + data->writableBuffer.insert(0, (UChar)0).append(endOfBuffer).getTerminatedBuffer() +
|
| + 1 + normLen;
|
| + data->origFlags = data->flags;
|
| + data->flags |= UCOL_ITER_INNORMBUF;
|
| + data->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
|
| +}
|
| +
|
| +/**
|
| +* Contraction character management function that returns the previous character
|
| +* for the backwards iterator.
|
| +* Does nothing if the previous character is in buffer and not the first
|
| +* character in it.
|
| +* Else it checks previous character in data string to see if it is
|
| +* normalizable.
|
| +* If it is not, the character is simply copied into the buffer, else
|
| +* the whole normalized substring is copied into the buffer, including the
|
| +* current character.
|
| +* @param data collation element iterator data
|
| +* @return previous character
|
| +*/
|
| +static
|
| +inline UChar getPrevNormalizedChar(collIterate *data, UErrorCode *status)
|
| +{
|
| + UChar prevch;
|
| + UChar ch;
|
| + const UChar *start;
|
| + UBool innormbuf = (UBool)(data->flags & UCOL_ITER_INNORMBUF);
|
| + if ((data->flags & (UCOL_ITER_NORM | UCOL_ITER_INNORMBUF)) == 0 ||
|
| + (innormbuf && *(data->pos - 1) != 0)) {
|
| + /*
|
| + if no normalization.
|
| + if previous character is in normalized buffer, no further normalization
|
| + is required
|
| + */
|
| + if(data->flags & UCOL_USE_ITERATOR) {
|
| + data->iterator->move(data->iterator, -1, UITER_CURRENT);
|
| + return (UChar)data->iterator->next(data->iterator);
|
| + } else {
|
| + return *(data->pos - 1);
|
| + }
|
| + }
|
| +
|
| + start = data->pos;
|
| + if ((data->fcdPosition==NULL)||(data->flags & UCOL_ITER_HASLEN)) {
|
| + /* in data string */
|
| + if ((start - 1) == data->string) {
|
| + return *(start - 1);
|
| + }
|
| + start --;
|
| + ch = *start;
|
| + prevch = *(start - 1);
|
| + }
|
| + else {
|
| + /*
|
| + in writable buffer, at this point fcdPosition can not be NULL.
|
| + see contracting tag.
|
| + */
|
| + if (data->fcdPosition == data->string) {
|
| + /* at the start of the string, just dump it into the normalizer */
|
| + insertBufferFront(data, *(data->fcdPosition));
|
| + data->fcdPosition = NULL;
|
| + return *(data->pos - 1);
|
| + }
|
| + start = data->fcdPosition;
|
| + ch = *start;
|
| + prevch = *(start - 1);
|
| + }
|
| + /*
|
| + * if the current character is not fcd.
|
| + * Trailing combining class == 0.
|
| + */
|
| + if (data->fcdPosition > start &&
|
| + (ch >= NFC_ZERO_CC_BLOCK_LIMIT_ || prevch >= NFC_ZERO_CC_BLOCK_LIMIT_))
|
| + {
|
| + /*
|
| + Need a more complete FCD check and possible normalization.
|
| + normalize substring will be appended to buffer
|
| + */
|
| + const UChar *backuppos = data->pos;
|
| + data->pos = start;
|
| + if (collPrevIterFCD(data)) {
|
| + normalizePrevContraction(data, status);
|
| + return *(data->pos - 1);
|
| + }
|
| + data->pos = backuppos;
|
| + data->fcdPosition ++;
|
| + }
|
| +
|
| + if (innormbuf) {
|
| + /*
|
| + no normalization is to be done hence only one character will be
|
| + appended to the buffer.
|
| + */
|
| + insertBufferFront(data, ch);
|
| + data->fcdPosition --;
|
| + }
|
| +
|
| + return ch;
|
| +}
|
| +
|
| +/* This function handles the special CEs like contractions, expansions, surrogates, Thai */
|
| +/* It is called by getNextCE */
|
| +
|
| +/* The following should be even */
|
| +#define UCOL_MAX_DIGITS_FOR_NUMBER 254
|
| +
|
| +uint32_t ucol_prv_getSpecialCE(const UCollator *coll, UChar ch, uint32_t CE, collIterate *source, UErrorCode *status) {
|
| + collIterateState entryState;
|
| + backupState(source, &entryState);
|
| + UChar32 cp = ch;
|
| +
|
| + for (;;) {
|
| + // This loop will repeat only in the case of contractions, and only when a contraction
|
| + // is found and the first CE resulting from that contraction is itself a special
|
| + // (an expansion, for example.) All other special CE types are fully handled the
|
| + // first time through, and the loop exits.
|
| +
|
| + const uint32_t *CEOffset = NULL;
|
| + switch(getCETag(CE)) {
|
| + case NOT_FOUND_TAG:
|
| + /* This one is not found, and we'll let somebody else bother about it... no more games */
|
| + return CE;
|
| + case SPEC_PROC_TAG:
|
| + {
|
| + // Special processing is getting a CE that is preceded by a certain prefix
|
| + // Currently this is only needed for optimizing Japanese length and iteration marks.
|
| + // When we encouter a special processing tag, we go backwards and try to see if
|
| + // we have a match.
|
| + // Contraction tables are used - so the whole process is not unlike contraction.
|
| + // prefix data is stored backwards in the table.
|
| + const UChar *UCharOffset;
|
| + UChar schar, tchar;
|
| + collIterateState prefixState;
|
| + backupState(source, &prefixState);
|
| + loadState(source, &entryState, TRUE);
|
| + goBackOne(source); // We want to look at the point where we entered - actually one
|
| + // before that...
|
| +
|
| + for(;;) {
|
| + // This loop will run once per source string character, for as long as we
|
| + // are matching a potential contraction sequence
|
| +
|
| + // First we position ourselves at the begining of contraction sequence
|
| + const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
|
| + if (collIter_bos(source)) {
|
| + CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
|
| + break;
|
| + }
|
| + schar = getPrevNormalizedChar(source, status);
|
| + goBackOne(source);
|
| +
|
| + while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
|
| + UCharOffset++;
|
| + }
|
| +
|
| + if (schar == tchar) {
|
| + // Found the source string char in the table.
|
| + // Pick up the corresponding CE from the table.
|
| + CE = *(coll->contractionCEs +
|
| + (UCharOffset - coll->contractionIndex));
|
| + }
|
| + else
|
| + {
|
| + // Source string char was not in the table.
|
| + // We have not found the prefix.
|
| + CE = *(coll->contractionCEs +
|
| + (ContractionStart - coll->contractionIndex));
|
| + }
|
| +
|
| + if(!isPrefix(CE)) {
|
| + // The source string char was in the contraction table, and the corresponding
|
| + // CE is not a prefix CE. We found the prefix, break
|
| + // out of loop, this CE will end up being returned. This is the normal
|
| + // way out of prefix handling when the source actually contained
|
| + // the prefix.
|
| + break;
|
| + }
|
| + }
|
| + if(CE != UCOL_NOT_FOUND) { // we found something and we can merilly continue
|
| + loadState(source, &prefixState, TRUE);
|
| + if(source->origFlags & UCOL_USE_ITERATOR) {
|
| + source->flags = source->origFlags;
|
| + }
|
| + } else { // prefix search was a failure, we have to backup all the way to the start
|
| + loadState(source, &entryState, TRUE);
|
| + }
|
| + break;
|
| + }
|
| + case CONTRACTION_TAG:
|
| + {
|
| + /* This should handle contractions */
|
| + collIterateState state;
|
| + backupState(source, &state);
|
| + uint32_t firstCE = *(coll->contractionCEs + ((UChar *)coll->image+getContractOffset(CE) - coll->contractionIndex)); //UCOL_NOT_FOUND;
|
| + const UChar *UCharOffset;
|
| + UChar schar, tchar;
|
| +
|
| + for (;;) {
|
| + /* This loop will run once per source string character, for as long as we */
|
| + /* are matching a potential contraction sequence */
|
| +
|
| + /* First we position ourselves at the begining of contraction sequence */
|
| + const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
|
| +
|
| + if (collIter_eos(source)) {
|
| + // Ran off the end of the source string.
|
| + CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
|
| + // So we'll pick whatever we have at the point...
|
| + if (CE == UCOL_NOT_FOUND) {
|
| + // back up the source over all the chars we scanned going into this contraction.
|
| + CE = firstCE;
|
| + loadState(source, &state, TRUE);
|
| + if(source->origFlags & UCOL_USE_ITERATOR) {
|
| + source->flags = source->origFlags;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +
|
| + uint8_t maxCC = (uint8_t)(*(UCharOffset)&0xFF); /*get the discontiguos stuff */ /* skip the backward offset, see above */
|
| + uint8_t allSame = (uint8_t)(*(UCharOffset++)>>8);
|
| +
|
| + schar = getNextNormalizedChar(source);
|
| + while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
|
| + UCharOffset++;
|
| + }
|
| +
|
| + if (schar == tchar) {
|
| + // Found the source string char in the contraction table.
|
| + // Pick up the corresponding CE from the table.
|
| + CE = *(coll->contractionCEs +
|
| + (UCharOffset - coll->contractionIndex));
|
| + }
|
| + else
|
| + {
|
| + // Source string char was not in contraction table.
|
| + // Unless we have a discontiguous contraction, we have finished
|
| + // with this contraction.
|
| + // in order to do the proper detection, we
|
| + // need to see if we're dealing with a supplementary
|
| + /* We test whether the next two char are surrogate pairs.
|
| + * This test is done if the iterator is not NULL.
|
| + * If there is no surrogate pair, the iterator
|
| + * goes back one if needed. */
|
| + UChar32 miss = schar;
|
| + if (source->iterator) {
|
| + UChar32 surrNextChar; /* the next char in the iteration to test */
|
| + int32_t prevPos; /* holds the previous position before move forward of the source iterator */
|
| + if(U16_IS_LEAD(schar) && source->iterator->hasNext(source->iterator)) {
|
| + prevPos = source->iterator->index;
|
| + surrNextChar = getNextNormalizedChar(source);
|
| + if (U16_IS_TRAIL(surrNextChar)) {
|
| + miss = U16_GET_SUPPLEMENTARY(schar, surrNextChar);
|
| + } else if (prevPos < source->iterator->index){
|
| + goBackOne(source);
|
| + }
|
| + }
|
| + } else if (U16_IS_LEAD(schar)) {
|
| + miss = U16_GET_SUPPLEMENTARY(schar, getNextNormalizedChar(source));
|
| + }
|
| +
|
| + uint8_t sCC;
|
| + if (miss < 0x300 ||
|
| + maxCC == 0 ||
|
| + (sCC = i_getCombiningClass(miss, coll)) == 0 ||
|
| + sCC>maxCC ||
|
| + (allSame != 0 && sCC == maxCC) ||
|
| + collIter_eos(source))
|
| + {
|
| + // Contraction can not be discontiguous.
|
| + goBackOne(source); // back up the source string by one,
|
| + // because the character we just looked at was
|
| + // not part of the contraction. */
|
| + if(U_IS_SUPPLEMENTARY(miss)) {
|
| + goBackOne(source);
|
| + }
|
| + CE = *(coll->contractionCEs +
|
| + (ContractionStart - coll->contractionIndex));
|
| + } else {
|
| + //
|
| + // Contraction is possibly discontiguous.
|
| + // Scan more of source string looking for a match
|
| + //
|
| + UChar tempchar;
|
| + /* find the next character if schar is not a base character
|
| + and we are not yet at the end of the string */
|
| + tempchar = getNextNormalizedChar(source);
|
| + // probably need another supplementary thingie here
|
| + goBackOne(source);
|
| + if (i_getCombiningClass(tempchar, coll) == 0) {
|
| + goBackOne(source);
|
| + if(U_IS_SUPPLEMENTARY(miss)) {
|
| + goBackOne(source);
|
| + }
|
| + /* Spit out the last char of the string, wasn't tasty enough */
|
| + CE = *(coll->contractionCEs +
|
| + (ContractionStart - coll->contractionIndex));
|
| + } else {
|
| + CE = getDiscontiguous(coll, source, ContractionStart);
|
| + }
|
| + }
|
| + } // else after if(schar == tchar)
|
| +
|
| + if(CE == UCOL_NOT_FOUND) {
|
| + /* The Source string did not match the contraction that we were checking. */
|
| + /* Back up the source position to undo the effects of having partially */
|
| + /* scanned through what ultimately proved to not be a contraction. */
|
| + loadState(source, &state, TRUE);
|
| + CE = firstCE;
|
| + break;
|
| + }
|
| +
|
| + if(!isContraction(CE)) {
|
| + // The source string char was in the contraction table, and the corresponding
|
| + // CE is not a contraction CE. We completed the contraction, break
|
| + // out of loop, this CE will end up being returned. This is the normal
|
| + // way out of contraction handling when the source actually contained
|
| + // the contraction.
|
| + break;
|
| + }
|
| +
|
| +
|
| + // The source string char was in the contraction table, and the corresponding
|
| + // CE is IS a contraction CE. We will continue looping to check the source
|
| + // string for the remaining chars in the contraction.
|
| + uint32_t tempCE = *(coll->contractionCEs + (ContractionStart - coll->contractionIndex));
|
| + if(tempCE != UCOL_NOT_FOUND) {
|
| + // We have scanned a a section of source string for which there is a
|
| + // CE from the contraction table. Remember the CE and scan position, so
|
| + // that we can return to this point if further scanning fails to
|
| + // match a longer contraction sequence.
|
| + firstCE = tempCE;
|
| +
|
| + goBackOne(source);
|
| + backupState(source, &state);
|
| + getNextNormalizedChar(source);
|
| +
|
| + // Another way to do this is:
|
| + //collIterateState tempState;
|
| + //backupState(source, &tempState);
|
| + //goBackOne(source);
|
| + //backupState(source, &state);
|
| + //loadState(source, &tempState, TRUE);
|
| +
|
| + // The problem is that for incomplete contractions we have to remember the previous
|
| + // position. Before, the only thing I needed to do was state.pos--;
|
| + // After iterator introduction and especially after introduction of normalizing
|
| + // iterators, it became much more difficult to decrease the saved state.
|
| + // I'm not yet sure which of the two methods above is faster.
|
| + }
|
| + } // for(;;)
|
| + break;
|
| + } // case CONTRACTION_TAG:
|
| + case LONG_PRIMARY_TAG:
|
| + {
|
| + *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
|
| + CE = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
|
| + source->offsetRepeatCount += 1;
|
| + return CE;
|
| + }
|
| + case EXPANSION_TAG:
|
| + {
|
| + /* This should handle expansion. */
|
| + /* NOTE: we can encounter both continuations and expansions in an expansion! */
|
| + /* I have to decide where continuations are going to be dealt with */
|
| + uint32_t size;
|
| + uint32_t i; /* general counter */
|
| +
|
| + CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
|
| + size = getExpansionCount(CE);
|
| + CE = *CEOffset++;
|
| + //source->offsetRepeatCount = -1;
|
| +
|
| + if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
|
| + for(i = 1; i<size; i++) {
|
| + *(source->CEpos++) = *CEOffset++;
|
| + source->offsetRepeatCount += 1;
|
| + }
|
| + } else { /* else, we do */
|
| + while(*CEOffset != 0) {
|
| + *(source->CEpos++) = *CEOffset++;
|
| + source->offsetRepeatCount += 1;
|
| + }
|
| + }
|
| +
|
| + return CE;
|
| + }
|
| + case DIGIT_TAG:
|
| + {
|
| + /*
|
| + We do a check to see if we want to collate digits as numbers; if so we generate
|
| + a custom collation key. Otherwise we pull out the value stored in the expansion table.
|
| + */
|
| + //uint32_t size;
|
| + uint32_t i; /* general counter */
|
| +
|
| + if (source->coll->numericCollation == UCOL_ON){
|
| + collIterateState digitState = {0,0,0,0,0,0,0,0,0};
|
| + UChar32 char32 = 0;
|
| + int32_t digVal = 0;
|
| +
|
| + uint32_t digIndx = 0;
|
| + uint32_t endIndex = 0;
|
| + uint32_t trailingZeroIndex = 0;
|
| +
|
| + uint8_t collateVal = 0;
|
| +
|
| + UBool nonZeroValReached = FALSE;
|
| +
|
| + uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3]; // I just need a temporary place to store my generated CEs.
|
| + /*
|
| + We parse the source string until we hit a char that's NOT a digit.
|
| + Use this u_charDigitValue. This might be slow because we have to
|
| + handle surrogates...
|
| + */
|
| + /*
|
| + if (U16_IS_LEAD(ch)){
|
| + if (!collIter_eos(source)) {
|
| + backupState(source, &digitState);
|
| + UChar trail = getNextNormalizedChar(source);
|
| + if(U16_IS_TRAIL(trail)) {
|
| + char32 = U16_GET_SUPPLEMENTARY(ch, trail);
|
| + } else {
|
| + loadState(source, &digitState, TRUE);
|
| + char32 = ch;
|
| + }
|
| + } else {
|
| + char32 = ch;
|
| + }
|
| + } else {
|
| + char32 = ch;
|
| + }
|
| + digVal = u_charDigitValue(char32);
|
| + */
|
| + digVal = u_charDigitValue(cp); // if we have arrived here, we have
|
| + // already processed possible supplementaries that trigered the digit tag -
|
| + // all supplementaries are marked in the UCA.
|
| + /*
|
| + We pad a zero in front of the first element anyways. This takes
|
| + care of the (probably) most common case where people are sorting things followed
|
| + by a single digit
|
| + */
|
| + digIndx++;
|
| + for(;;){
|
| + // Make sure we have enough space. No longer needed;
|
| + // at this point digIndx now has a max value of UCOL_MAX_DIGITS_FOR_NUMBER
|
| + // (it has been pre-incremented) so we just ensure that numTempBuf is big enough
|
| + // (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 3).
|
| +
|
| + // Skipping over leading zeroes.
|
| + if (digVal != 0) {
|
| + nonZeroValReached = TRUE;
|
| + }
|
| + if (nonZeroValReached) {
|
| + /*
|
| + We parse the digit string into base 100 numbers (this fits into a byte).
|
| + We only add to the buffer in twos, thus if we are parsing an odd character,
|
| + that serves as the 'tens' digit while the if we are parsing an even one, that
|
| + is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
|
| + a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
|
| + overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
|
| + than all the other bytes.
|
| + */
|
| +
|
| + if (digIndx % 2 == 1){
|
| + collateVal += (uint8_t)digVal;
|
| +
|
| + // We don't enter the low-order-digit case unless we've already seen
|
| + // the high order, or for the first digit, which is always non-zero.
|
| + if (collateVal != 0)
|
| + trailingZeroIndex = 0;
|
| +
|
| + numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
|
| + collateVal = 0;
|
| + }
|
| + else{
|
| + // We drop the collation value into the buffer so if we need to do
|
| + // a "front patch" we don't have to check to see if we're hitting the
|
| + // last element.
|
| + collateVal = (uint8_t)(digVal * 10);
|
| +
|
| + // Check for trailing zeroes.
|
| + if (collateVal == 0)
|
| + {
|
| + if (!trailingZeroIndex)
|
| + trailingZeroIndex = (digIndx/2) + 2;
|
| + }
|
| + else
|
| + trailingZeroIndex = 0;
|
| +
|
| + numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
|
| + }
|
| + digIndx++;
|
| + }
|
| +
|
| + // Get next character.
|
| + if (!collIter_eos(source)){
|
| + ch = getNextNormalizedChar(source);
|
| + if (U16_IS_LEAD(ch)){
|
| + if (!collIter_eos(source)) {
|
| + backupState(source, &digitState);
|
| + UChar trail = getNextNormalizedChar(source);
|
| + if(U16_IS_TRAIL(trail)) {
|
| + char32 = U16_GET_SUPPLEMENTARY(ch, trail);
|
| + } else {
|
| + loadState(source, &digitState, TRUE);
|
| + char32 = ch;
|
| + }
|
| + }
|
| + } else {
|
| + char32 = ch;
|
| + }
|
| +
|
| + if ((digVal = u_charDigitValue(char32)) == -1 || digIndx > UCOL_MAX_DIGITS_FOR_NUMBER){
|
| + // Resetting position to point to the next unprocessed char. We
|
| + // overshot it when doing our test/set for numbers.
|
| + if (char32 > 0xFFFF) { // For surrogates.
|
| + loadState(source, &digitState, TRUE);
|
| + //goBackOne(source);
|
| + }
|
| + goBackOne(source);
|
| + break;
|
| + }
|
| + } else {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (nonZeroValReached == FALSE){
|
| + digIndx = 2;
|
| + numTempBuf[2] = 6;
|
| + }
|
| +
|
| + endIndex = trailingZeroIndex ? trailingZeroIndex : ((digIndx/2) + 2) ;
|
| + if (digIndx % 2 != 0){
|
| + /*
|
| + We missed a value. Since digIndx isn't even, stuck too many values into the buffer (this is what
|
| + we get for padding the first byte with a zero). "Front-patch" now by pushing all nybbles forward.
|
| + Doing it this way ensures that at least 50% of the time (statistically speaking) we'll only be doing a
|
| + single pass and optimizes for strings with single digits. I'm just assuming that's the more common case.
|
| + */
|
| +
|
| + for(i = 2; i < endIndex; i++){
|
| + numTempBuf[i] = (((((numTempBuf[i] - 6)/2) % 10) * 10) +
|
| + (((numTempBuf[i+1])-6)/2) / 10) * 2 + 6;
|
| + }
|
| + --digIndx;
|
| + }
|
| +
|
| + // Subtract one off of the last byte.
|
| + numTempBuf[endIndex-1] -= 1;
|
| +
|
| + /*
|
| + We want to skip over the first two slots in the buffer. The first slot
|
| + is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
|
| + sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
|
| + */
|
| + numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
|
| + numTempBuf[1] = (uint8_t)(0x80 + ((digIndx/2) & 0x7F));
|
| +
|
| + // Now transfer the collation key to our collIterate struct.
|
| + // The total size for our collation key is endIndx bumped up to the next largest even value divided by two.
|
| + //size = ((endIndex+1) & ~1)/2;
|
| + CE = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
|
| + (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
|
| + UCOL_BYTE_COMMON; // Tertiary weight.
|
| + i = 2; // Reset the index into the buffer.
|
| + while(i < endIndex)
|
| + {
|
| + uint32_t primWeight = numTempBuf[i++] << 8;
|
| + if ( i < endIndex)
|
| + primWeight |= numTempBuf[i++];
|
| + *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
|
| + }
|
| +
|
| + } else {
|
| + // no numeric mode, we'll just switch to whatever we stashed and continue
|
| + CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
|
| + CE = *CEOffset++;
|
| + break;
|
| + }
|
| + return CE;
|
| + }
|
| + /* various implicits optimization */
|
| + case IMPLICIT_TAG: /* everything that is not defined otherwise */
|
| + /* UCA is filled with these. Tailorings are NOT_FOUND */
|
| + return getImplicit(cp, source);
|
| + case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
|
| + // TODO: remove CJK_IMPLICIT_TAG completely - handled by the getImplicit
|
| + return getImplicit(cp, source);
|
| + case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
|
| + {
|
| + static const uint32_t
|
| + SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
|
| + //const uint32_t LCount = 19;
|
| + static const uint32_t VCount = 21;
|
| + static const uint32_t TCount = 28;
|
| + //const uint32_t NCount = VCount * TCount; // 588
|
| + //const uint32_t SCount = LCount * NCount; // 11172
|
| + uint32_t L = ch - SBase;
|
| +
|
| + // divide into pieces
|
| +
|
| + uint32_t T = L % TCount; // we do it in this order since some compilers can do % and / in one operation
|
| + L /= TCount;
|
| + uint32_t V = L % VCount;
|
| + L /= VCount;
|
| +
|
| + // offset them
|
| +
|
| + L += LBase;
|
| + V += VBase;
|
| + T += TBase;
|
| +
|
| + // return the first CE, but first put the rest into the expansion buffer
|
| + if (!source->coll->image->jamoSpecial) { // FAST PATH
|
| +
|
| + *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V);
|
| + if (T != TBase) {
|
| + *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T);
|
| + }
|
| +
|
| + return UTRIE_GET32_FROM_LEAD(&coll->mapping, L);
|
| +
|
| + } else { // Jamo is Special
|
| + // Since Hanguls pass the FCD check, it is
|
| + // guaranteed that we won't be in
|
| + // the normalization buffer if something like this happens
|
| + // However, if we are using a uchar iterator and normalization
|
| + // is ON, the Hangul that lead us here is going to be in that
|
| + // normalization buffer. Here we want to restore the uchar
|
| + // iterator state and pull out of the normalization buffer
|
| + if(source->iterator != NULL && source->flags & UCOL_ITER_INNORMBUF) {
|
| + source->flags = source->origFlags; // restore the iterator
|
| + source->pos = NULL;
|
| + }
|
| + // Move Jamos into normalization buffer
|
| + UChar *buffer = source->writableBuffer.getBuffer(4);
|
| + int32_t bufferLength;
|
| + buffer[0] = (UChar)L;
|
| + buffer[1] = (UChar)V;
|
| + if (T != TBase) {
|
| + buffer[2] = (UChar)T;
|
| + bufferLength = 3;
|
| + } else {
|
| + bufferLength = 2;
|
| + }
|
| + source->writableBuffer.releaseBuffer(bufferLength);
|
| +
|
| + source->fcdPosition = source->pos; // Indicate where to continue in main input string
|
| + // after exhausting the writableBuffer
|
| + source->pos = source->writableBuffer.getTerminatedBuffer();
|
| + source->origFlags = source->flags;
|
| + source->flags |= UCOL_ITER_INNORMBUF;
|
| + source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
|
| +
|
| + return(UCOL_IGNORABLE);
|
| + }
|
| + }
|
| + case SURROGATE_TAG:
|
| + /* we encountered a leading surrogate. We shall get the CE by using the following code unit */
|
| + /* two things can happen here: next code point can be a trailing surrogate - we will use it */
|
| + /* to retrieve the CE, or it is not a trailing surrogate (or the string is done). In that case */
|
| + /* we treat it like an unassigned code point. */
|
| + {
|
| + UChar trail;
|
| + collIterateState state;
|
| + backupState(source, &state);
|
| + if (collIter_eos(source) || !(U16_IS_TRAIL((trail = getNextNormalizedChar(source))))) {
|
| + // we chould have stepped one char forward and it might have turned that it
|
| + // was not a trail surrogate. In that case, we have to backup.
|
| + loadState(source, &state, TRUE);
|
| + return UCOL_NOT_FOUND;
|
| + } else {
|
| + /* TODO: CE contain the data from the previous CE + the mask. It should at least be unmasked */
|
| + CE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, CE&0xFFFFFF, trail);
|
| + if(CE == UCOL_NOT_FOUND) { // there are tailored surrogates in this block, but not this one.
|
| + // We need to backup
|
| + loadState(source, &state, TRUE);
|
| + return CE;
|
| + }
|
| + // calculate the supplementary code point value, if surrogate was not tailored
|
| + cp = ((((uint32_t)ch)<<10UL)+(trail)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
|
| + }
|
| + }
|
| + break;
|
| + case LEAD_SURROGATE_TAG: /* D800-DBFF*/
|
| + UChar nextChar;
|
| + if( source->flags & UCOL_USE_ITERATOR) {
|
| + if(U_IS_TRAIL(nextChar = (UChar)source->iterator->current(source->iterator))) {
|
| + cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
|
| + source->iterator->next(source->iterator);
|
| + return getImplicit(cp, source);
|
| + }
|
| + } else if((((source->flags & UCOL_ITER_HASLEN) == 0 ) || (source->pos<source->endp)) &&
|
| + U_IS_TRAIL((nextChar=*source->pos))) {
|
| + cp = U16_GET_SUPPLEMENTARY(ch, nextChar);
|
| + source->pos++;
|
| + return getImplicit(cp, source);
|
| + }
|
| + return UCOL_NOT_FOUND;
|
| + case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
|
| + return UCOL_NOT_FOUND; /* broken surrogate sequence */
|
| + case CHARSET_TAG:
|
| + /* not yet implemented */
|
| + /* probably after 1.8 */
|
| + return UCOL_NOT_FOUND;
|
| + default:
|
| + *status = U_INTERNAL_PROGRAM_ERROR;
|
| + CE=0;
|
| + break;
|
| + }
|
| + if (CE <= UCOL_NOT_FOUND) break;
|
| + }
|
| + return CE;
|
| +}
|
| +
|
| +
|
| +/* now uses Mark's getImplicitPrimary code */
|
| +static
|
| +inline uint32_t getPrevImplicit(UChar32 cp, collIterate *collationSource) {
|
| + uint32_t r = uprv_uca_getImplicitPrimary(cp);
|
| +
|
| + *(collationSource->CEpos++) = (r & UCOL_PRIMARYMASK) | 0x00000505;
|
| + collationSource->toReturn = collationSource->CEpos;
|
| +
|
| + // **** doesn't work if using iterator ****
|
| + if (collationSource->flags & UCOL_ITER_INNORMBUF) {
|
| + collationSource->offsetRepeatCount = 1;
|
| + } else {
|
| + int32_t firstOffset = (int32_t)(collationSource->pos - collationSource->string);
|
| +
|
| + UErrorCode errorCode = U_ZERO_ERROR;
|
| + collationSource->appendOffset(firstOffset, errorCode);
|
| + collationSource->appendOffset(firstOffset + 1, errorCode);
|
| +
|
| + collationSource->offsetReturn = collationSource->offsetStore - 1;
|
| + *(collationSource->offsetBuffer) = firstOffset;
|
| + if (collationSource->offsetReturn == collationSource->offsetBuffer) {
|
| + collationSource->offsetStore = collationSource->offsetBuffer;
|
| + }
|
| + }
|
| +
|
| + return ((r & 0x0000FFFF)<<16) | 0x000000C0;
|
| +}
|
| +
|
| +/**
|
| + * This function handles the special CEs like contractions, expansions,
|
| + * surrogates, Thai.
|
| + * It is called by both getPrevCE
|
| + */
|
| +uint32_t ucol_prv_getSpecialPrevCE(const UCollator *coll, UChar ch, uint32_t CE,
|
| + collIterate *source,
|
| + UErrorCode *status)
|
| +{
|
| + const uint32_t *CEOffset = NULL;
|
| + UChar *UCharOffset = NULL;
|
| + UChar schar;
|
| + const UChar *constart = NULL;
|
| + uint32_t size;
|
| + UChar buffer[UCOL_MAX_BUFFER];
|
| + uint32_t *endCEBuffer;
|
| + UChar *strbuffer;
|
| + int32_t noChars = 0;
|
| + int32_t CECount = 0;
|
| +
|
| + for(;;)
|
| + {
|
| + /* the only ces that loops are thai and contractions */
|
| + switch (getCETag(CE))
|
| + {
|
| + case NOT_FOUND_TAG: /* this tag always returns */
|
| + return CE;
|
| +
|
| + case SPEC_PROC_TAG:
|
| + {
|
| + // Special processing is getting a CE that is preceded by a certain prefix
|
| + // Currently this is only needed for optimizing Japanese length and iteration marks.
|
| + // When we encouter a special processing tag, we go backwards and try to see if
|
| + // we have a match.
|
| + // Contraction tables are used - so the whole process is not unlike contraction.
|
| + // prefix data is stored backwards in the table.
|
| + const UChar *UCharOffset;
|
| + UChar schar, tchar;
|
| + collIterateState prefixState;
|
| + backupState(source, &prefixState);
|
| + for(;;) {
|
| + // This loop will run once per source string character, for as long as we
|
| + // are matching a potential contraction sequence
|
| +
|
| + // First we position ourselves at the begining of contraction sequence
|
| + const UChar *ContractionStart = UCharOffset = (UChar *)coll->image+getContractOffset(CE);
|
| +
|
| + if (collIter_bos(source)) {
|
| + CE = *(coll->contractionCEs + (UCharOffset - coll->contractionIndex));
|
| + break;
|
| + }
|
| + schar = getPrevNormalizedChar(source, status);
|
| + goBackOne(source);
|
| +
|
| + while(schar > (tchar = *UCharOffset)) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
|
| + UCharOffset++;
|
| + }
|
| +
|
| + if (schar == tchar) {
|
| + // Found the source string char in the table.
|
| + // Pick up the corresponding CE from the table.
|
| + CE = *(coll->contractionCEs +
|
| + (UCharOffset - coll->contractionIndex));
|
| + }
|
| + else
|
| + {
|
| + // if there is a completely ignorable code point in the middle of
|
| + // a prefix, we need to act as if it's not there
|
| + // assumption: 'real' noncharacters (*fffe, *ffff, fdd0-fdef are set to zero)
|
| + // lone surrogates cannot be set to zero as it would break other processing
|
| + uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar);
|
| + // it's easy for BMP code points
|
| + if(isZeroCE == 0) {
|
| + continue;
|
| + } else if(U16_IS_SURROGATE(schar)) {
|
| + // for supplementary code points, we have to check the next one
|
| + // situations where we are going to ignore
|
| + // 1. beginning of the string: schar is a lone surrogate
|
| + // 2. schar is a lone surrogate
|
| + // 3. schar is a trail surrogate in a valid surrogate sequence
|
| + // that is explicitly set to zero.
|
| + if (!collIter_bos(source)) {
|
| + UChar lead;
|
| + if(!U16_IS_SURROGATE_LEAD(schar) && U16_IS_LEAD(lead = getPrevNormalizedChar(source, status))) {
|
| + isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, lead);
|
| + if(isSpecial(isZeroCE) && getCETag(isZeroCE) == SURROGATE_TAG) {
|
| + uint32_t finalCE = UTRIE_GET32_FROM_OFFSET_TRAIL(&coll->mapping, isZeroCE&0xFFFFFF, schar);
|
| + if(finalCE == 0) {
|
| + // this is a real, assigned completely ignorable code point
|
| + goBackOne(source);
|
| + continue;
|
| + }
|
| + }
|
| + } else {
|
| + // lone surrogate, treat like unassigned
|
| + return UCOL_NOT_FOUND;
|
| + }
|
| + } else {
|
| + // lone surrogate at the beggining, treat like unassigned
|
| + return UCOL_NOT_FOUND;
|
| + }
|
| + }
|
| + // Source string char was not in the table.
|
| + // We have not found the prefix.
|
| + CE = *(coll->contractionCEs +
|
| + (ContractionStart - coll->contractionIndex));
|
| + }
|
| +
|
| + if(!isPrefix(CE)) {
|
| + // The source string char was in the contraction table, and the corresponding
|
| + // CE is not a prefix CE. We found the prefix, break
|
| + // out of loop, this CE will end up being returned. This is the normal
|
| + // way out of prefix handling when the source actually contained
|
| + // the prefix.
|
| + break;
|
| + }
|
| + }
|
| + loadState(source, &prefixState, TRUE);
|
| + break;
|
| + }
|
| +
|
| + case CONTRACTION_TAG: {
|
| + /* to ensure that the backwards and forwards iteration matches, we
|
| + take the current region of most possible match and pass it through
|
| + the forward iteration. this will ensure that the obstinate problem of
|
| + overlapping contractions will not occur.
|
| + */
|
| + schar = peekCodeUnit(source, 0);
|
| + constart = (UChar *)coll->image + getContractOffset(CE);
|
| + if (isAtStartPrevIterate(source)
|
| + /* commented away contraction end checks after adding the checks
|
| + in getPrevCE */) {
|
| + /* start of string or this is not the end of any contraction */
|
| + CE = *(coll->contractionCEs +
|
| + (constart - coll->contractionIndex));
|
| + break;
|
| + }
|
| + strbuffer = buffer;
|
| + UCharOffset = strbuffer + (UCOL_MAX_BUFFER - 1);
|
| + *(UCharOffset --) = 0;
|
| + noChars = 0;
|
| + // have to swap thai characters
|
| + while (ucol_unsafeCP(schar, coll)) {
|
| + *(UCharOffset) = schar;
|
| + noChars++;
|
| + UCharOffset --;
|
| + schar = getPrevNormalizedChar(source, status);
|
| + goBackOne(source);
|
| + // TODO: when we exhaust the contraction buffer,
|
| + // it needs to get reallocated. The problem is
|
| + // that the size depends on the string which is
|
| + // not iterated over. However, since we're travelling
|
| + // backwards, we already had to set the iterator at
|
| + // the end - so we might as well know where we are?
|
| + if (UCharOffset + 1 == buffer) {
|
| + /* we have exhausted the buffer */
|
| + int32_t newsize = 0;
|
| + if(source->pos) { // actually dealing with a position
|
| + newsize = (int32_t)(source->pos - source->string + 1);
|
| + } else { // iterator
|
| + newsize = 4 * UCOL_MAX_BUFFER;
|
| + }
|
| + strbuffer = (UChar *)uprv_malloc(sizeof(UChar) *
|
| + (newsize + UCOL_MAX_BUFFER));
|
| + /* test for NULL */
|
| + if (strbuffer == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return UCOL_NO_MORE_CES;
|
| + }
|
| + UCharOffset = strbuffer + newsize;
|
| + uprv_memcpy(UCharOffset, buffer,
|
| + UCOL_MAX_BUFFER * sizeof(UChar));
|
| + UCharOffset --;
|
| + }
|
| + if ((source->pos && (source->pos == source->string ||
|
| + ((source->flags & UCOL_ITER_INNORMBUF) &&
|
| + *(source->pos - 1) == 0 && source->fcdPosition == NULL)))
|
| + || (source->iterator && !source->iterator->hasPrevious(source->iterator))) {
|
| + break;
|
| + }
|
| + }
|
| + /* adds the initial base character to the string */
|
| + *(UCharOffset) = schar;
|
| + noChars++;
|
| +
|
| + int32_t offsetBias;
|
| +
|
| + // **** doesn't work if using iterator ****
|
| + if (source->flags & UCOL_ITER_INNORMBUF) {
|
| + offsetBias = -1;
|
| + } else {
|
| + offsetBias = (int32_t)(source->pos - source->string);
|
| + }
|
| +
|
| + /* a new collIterate is used to simplify things, since using the current
|
| + collIterate will mean that the forward and backwards iteration will
|
| + share and change the same buffers. we don't want to get into that. */
|
| + collIterate temp;
|
| + int32_t rawOffset;
|
| +
|
| + IInit_collIterate(coll, UCharOffset, noChars, &temp, status);
|
| + if(U_FAILURE(*status)) {
|
| + return UCOL_NULLORDER;
|
| + }
|
| + temp.flags &= ~UCOL_ITER_NORM;
|
| + temp.flags |= source->flags & UCOL_FORCE_HAN_IMPLICIT;
|
| +
|
| + rawOffset = (int32_t)(temp.pos - temp.string); // should always be zero?
|
| + CE = ucol_IGetNextCE(coll, &temp, status);
|
| +
|
| + if (source->extendCEs) {
|
| + endCEBuffer = source->extendCEs + source->extendCEsSize;
|
| + CECount = (int32_t)((source->CEpos - source->extendCEs)/sizeof(uint32_t));
|
| + } else {
|
| + endCEBuffer = source->CEs + UCOL_EXPAND_CE_BUFFER_SIZE;
|
| + CECount = (int32_t)((source->CEpos - source->CEs)/sizeof(uint32_t));
|
| + }
|
| +
|
| + while (CE != UCOL_NO_MORE_CES) {
|
| + *(source->CEpos ++) = CE;
|
| +
|
| + if (offsetBias >= 0) {
|
| + source->appendOffset(rawOffset + offsetBias, *status);
|
| + }
|
| +
|
| + CECount++;
|
| + if (source->CEpos == endCEBuffer) {
|
| + /* ran out of CE space, reallocate to new buffer.
|
| + If reallocation fails, reset pointers and bail out,
|
| + there's no guarantee of the right character position after
|
| + this bail*/
|
| + if (!increaseCEsCapacity(source)) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + break;
|
| + }
|
| +
|
| + endCEBuffer = source->extendCEs + source->extendCEsSize;
|
| + }
|
| +
|
| + if ((temp.flags & UCOL_ITER_INNORMBUF) != 0) {
|
| + rawOffset = (int32_t)(temp.fcdPosition - temp.string);
|
| + } else {
|
| + rawOffset = (int32_t)(temp.pos - temp.string);
|
| + }
|
| +
|
| + CE = ucol_IGetNextCE(coll, &temp, status);
|
| + }
|
| +
|
| + if (strbuffer != buffer) {
|
| + uprv_free(strbuffer);
|
| + }
|
| + if (U_FAILURE(*status)) {
|
| + return (uint32_t)UCOL_NULLORDER;
|
| + }
|
| +
|
| + if (source->offsetRepeatValue != 0) {
|
| + if (CECount > noChars) {
|
| + source->offsetRepeatCount += temp.offsetRepeatCount;
|
| + } else {
|
| + // **** does this really skip the right offsets? ****
|
| + source->offsetReturn -= (noChars - CECount);
|
| + }
|
| + }
|
| +
|
| + if (offsetBias >= 0) {
|
| + source->offsetReturn = source->offsetStore - 1;
|
| + if (source->offsetReturn == source->offsetBuffer) {
|
| + source->offsetStore = source->offsetBuffer;
|
| + }
|
| + }
|
| +
|
| + source->toReturn = source->CEpos - 1;
|
| + if (source->toReturn == source->CEs) {
|
| + source->CEpos = source->CEs;
|
| + }
|
| +
|
| + return *(source->toReturn);
|
| + }
|
| + case LONG_PRIMARY_TAG:
|
| + {
|
| + *(source->CEpos++) = ((CE & 0xFFFF00) << 8) | (UCOL_BYTE_COMMON << 8) | UCOL_BYTE_COMMON;
|
| + *(source->CEpos++) = ((CE & 0xFF)<<24)|UCOL_CONTINUATION_MARKER;
|
| + source->toReturn = source->CEpos - 1;
|
| +
|
| + if (source->flags & UCOL_ITER_INNORMBUF) {
|
| + source->offsetRepeatCount = 1;
|
| + } else {
|
| + int32_t firstOffset = (int32_t)(source->pos - source->string);
|
| +
|
| + source->appendOffset(firstOffset, *status);
|
| + source->appendOffset(firstOffset + 1, *status);
|
| +
|
| + source->offsetReturn = source->offsetStore - 1;
|
| + *(source->offsetBuffer) = firstOffset;
|
| + if (source->offsetReturn == source->offsetBuffer) {
|
| + source->offsetStore = source->offsetBuffer;
|
| + }
|
| + }
|
| +
|
| +
|
| + return *(source->toReturn);
|
| + }
|
| +
|
| + case EXPANSION_TAG: /* this tag always returns */
|
| + {
|
| + /*
|
| + This should handle expansion.
|
| + NOTE: we can encounter both continuations and expansions in an expansion!
|
| + I have to decide where continuations are going to be dealt with
|
| + */
|
| + int32_t firstOffset = (int32_t)(source->pos - source->string);
|
| +
|
| + // **** doesn't work if using iterator ****
|
| + if (source->offsetReturn != NULL) {
|
| + if (! (source->flags & UCOL_ITER_INNORMBUF) && source->offsetReturn == source->offsetBuffer) {
|
| + source->offsetStore = source->offsetBuffer;
|
| + }else {
|
| + firstOffset = -1;
|
| + }
|
| + }
|
| +
|
| + /* find the offset to expansion table */
|
| + CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
|
| + size = getExpansionCount(CE);
|
| + if (size != 0) {
|
| + /*
|
| + if there are less than 16 elements in expansion, we don't terminate
|
| + */
|
| + uint32_t count;
|
| +
|
| + for (count = 0; count < size; count++) {
|
| + *(source->CEpos ++) = *CEOffset++;
|
| +
|
| + if (firstOffset >= 0) {
|
| + source->appendOffset(firstOffset + 1, *status);
|
| + }
|
| + }
|
| + } else {
|
| + /* else, we do */
|
| + while (*CEOffset != 0) {
|
| + *(source->CEpos ++) = *CEOffset ++;
|
| +
|
| + if (firstOffset >= 0) {
|
| + source->appendOffset(firstOffset + 1, *status);
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (firstOffset >= 0) {
|
| + source->offsetReturn = source->offsetStore - 1;
|
| + *(source->offsetBuffer) = firstOffset;
|
| + if (source->offsetReturn == source->offsetBuffer) {
|
| + source->offsetStore = source->offsetBuffer;
|
| + }
|
| + } else {
|
| + source->offsetRepeatCount += size - 1;
|
| + }
|
| +
|
| + source->toReturn = source->CEpos - 1;
|
| + // in case of one element expansion, we
|
| + // want to immediately return CEpos
|
| + if(source->toReturn == source->CEs) {
|
| + source->CEpos = source->CEs;
|
| + }
|
| +
|
| + return *(source->toReturn);
|
| + }
|
| +
|
| + case DIGIT_TAG:
|
| + {
|
| + /*
|
| + We do a check to see if we want to collate digits as numbers; if so we generate
|
| + a custom collation key. Otherwise we pull out the value stored in the expansion table.
|
| + */
|
| + uint32_t i; /* general counter */
|
| +
|
| + if (source->coll->numericCollation == UCOL_ON){
|
| + uint32_t digIndx = 0;
|
| + uint32_t endIndex = 0;
|
| + uint32_t leadingZeroIndex = 0;
|
| + uint32_t trailingZeroCount = 0;
|
| +
|
| + uint8_t collateVal = 0;
|
| +
|
| + UBool nonZeroValReached = FALSE;
|
| +
|
| + uint8_t numTempBuf[UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2]; // I just need a temporary place to store my generated CEs.
|
| + /*
|
| + We parse the source string until we hit a char that's NOT a digit.
|
| + Use this u_charDigitValue. This might be slow because we have to
|
| + handle surrogates...
|
| + */
|
| + /*
|
| + We need to break up the digit string into collection elements of UCOL_MAX_DIGITS_FOR_NUMBER or less,
|
| + with any chunks smaller than that being on the right end of the digit string - i.e. the first collation
|
| + element we process when going backward. To determine how long that chunk might be, we may need to make
|
| + two passes through the loop that collects digits - one to see how long the string is (and how much is
|
| + leading zeros) to determine the length of that right-hand chunk, and a second (if the whole string has
|
| + more than UCOL_MAX_DIGITS_FOR_NUMBER non-leading-zero digits) to actually process that collation
|
| + element chunk after resetting the state to the initialState at the right side of the digit string.
|
| + */
|
| + uint32_t ceLimit = 0;
|
| + UChar initial_ch = ch;
|
| + collIterateState initialState = {0,0,0,0,0,0,0,0,0};
|
| + backupState(source, &initialState);
|
| +
|
| + for(;;) {
|
| + collIterateState state = {0,0,0,0,0,0,0,0,0};
|
| + UChar32 char32 = 0;
|
| + int32_t digVal = 0;
|
| +
|
| + if (U16_IS_TRAIL (ch)) {
|
| + if (!collIter_bos(source)){
|
| + UChar lead = getPrevNormalizedChar(source, status);
|
| + if(U16_IS_LEAD(lead)) {
|
| + char32 = U16_GET_SUPPLEMENTARY(lead,ch);
|
| + goBackOne(source);
|
| + } else {
|
| + char32 = ch;
|
| + }
|
| + } else {
|
| + char32 = ch;
|
| + }
|
| + } else {
|
| + char32 = ch;
|
| + }
|
| + digVal = u_charDigitValue(char32);
|
| +
|
| + for(;;) {
|
| + // Make sure we have enough space. No longer needed;
|
| + // at this point the largest value of digIndx when we need to save data in numTempBuf
|
| + // is UCOL_MAX_DIGITS_FOR_NUMBER-1 (digIndx is post-incremented) so we just ensure
|
| + // that numTempBuf is big enough (UCOL_MAX_DIGITS_FOR_NUMBER/2 + 2).
|
| +
|
| + // Skip over trailing zeroes, and keep a count of them.
|
| + if (digVal != 0)
|
| + nonZeroValReached = TRUE;
|
| +
|
| + if (nonZeroValReached) {
|
| + /*
|
| + We parse the digit string into base 100 numbers (this fits into a byte).
|
| + We only add to the buffer in twos, thus if we are parsing an odd character,
|
| + that serves as the 'tens' digit while the if we are parsing an even one, that
|
| + is the 'ones' digit. We dumped the parsed base 100 value (collateVal) into
|
| + a buffer. We multiply each collateVal by 2 (to give us room) and add 5 (to avoid
|
| + overlapping magic CE byte values). The last byte we subtract 1 to ensure it is less
|
| + than all the other bytes.
|
| +
|
| + Since we're doing in this reverse we want to put the first digit encountered into the
|
| + ones place and the second digit encountered into the tens place.
|
| + */
|
| +
|
| + if ((digIndx + trailingZeroCount) % 2 == 1) {
|
| + // High-order digit case (tens place)
|
| + collateVal += (uint8_t)(digVal * 10);
|
| +
|
| + // We cannot set leadingZeroIndex unless it has been set for the
|
| + // low-order digit. Therefore, all we can do for the high-order
|
| + // digit is turn it off, never on.
|
| + // The only time we will have a high digit without a low is for
|
| + // the very first non-zero digit, so no zero check is necessary.
|
| + if (collateVal != 0)
|
| + leadingZeroIndex = 0;
|
| +
|
| + // The first pass through, digIndx may exceed the limit, but in that case
|
| + // we no longer care about numTempBuf contents since they will be discarded
|
| + if ( digIndx < UCOL_MAX_DIGITS_FOR_NUMBER ) {
|
| + numTempBuf[(digIndx/2) + 2] = collateVal*2 + 6;
|
| + }
|
| + collateVal = 0;
|
| + } else {
|
| + // Low-order digit case (ones place)
|
| + collateVal = (uint8_t)digVal;
|
| +
|
| + // Check for leading zeroes.
|
| + if (collateVal == 0) {
|
| + if (!leadingZeroIndex)
|
| + leadingZeroIndex = (digIndx/2) + 2;
|
| + } else
|
| + leadingZeroIndex = 0;
|
| +
|
| + // No need to write to buffer; the case of a last odd digit
|
| + // is handled below.
|
| + }
|
| + ++digIndx;
|
| + } else
|
| + ++trailingZeroCount;
|
| +
|
| + if (!collIter_bos(source)) {
|
| + ch = getPrevNormalizedChar(source, status);
|
| + //goBackOne(source);
|
| + if (U16_IS_TRAIL(ch)) {
|
| + backupState(source, &state);
|
| + if (!collIter_bos(source)) {
|
| + goBackOne(source);
|
| + UChar lead = getPrevNormalizedChar(source, status);
|
| +
|
| + if(U16_IS_LEAD(lead)) {
|
| + char32 = U16_GET_SUPPLEMENTARY(lead,ch);
|
| + } else {
|
| + loadState(source, &state, FALSE);
|
| + char32 = ch;
|
| + }
|
| + }
|
| + } else
|
| + char32 = ch;
|
| +
|
| + if ((digVal = u_charDigitValue(char32)) == -1 || (ceLimit > 0 && (digIndx + trailingZeroCount) >= ceLimit)) {
|
| + if (char32 > 0xFFFF) {// For surrogates.
|
| + loadState(source, &state, FALSE);
|
| + }
|
| + // Don't need to "reverse" the goBackOne call,
|
| + // as this points to the next position to process..
|
| + //if (char32 > 0xFFFF) // For surrogates.
|
| + //getNextNormalizedChar(source);
|
| + break;
|
| + }
|
| +
|
| + goBackOne(source);
|
| + }else
|
| + break;
|
| + }
|
| +
|
| + if (digIndx + trailingZeroCount <= UCOL_MAX_DIGITS_FOR_NUMBER) {
|
| + // our collation element is not too big, go ahead and finish with it
|
| + break;
|
| + }
|
| + // our digit string is too long for a collation element;
|
| + // set the limit for it, reset the state and begin again
|
| + ceLimit = (digIndx + trailingZeroCount) % UCOL_MAX_DIGITS_FOR_NUMBER;
|
| + if ( ceLimit == 0 ) {
|
| + ceLimit = UCOL_MAX_DIGITS_FOR_NUMBER;
|
| + }
|
| + ch = initial_ch;
|
| + loadState(source, &initialState, FALSE);
|
| + digIndx = endIndex = leadingZeroIndex = trailingZeroCount = 0;
|
| + collateVal = 0;
|
| + nonZeroValReached = FALSE;
|
| + }
|
| +
|
| + if (! nonZeroValReached) {
|
| + digIndx = 2;
|
| + trailingZeroCount = 0;
|
| + numTempBuf[2] = 6;
|
| + }
|
| +
|
| + if ((digIndx + trailingZeroCount) % 2 != 0) {
|
| + numTempBuf[((digIndx)/2) + 2] = collateVal*2 + 6;
|
| + digIndx += 1; // The implicit leading zero
|
| + }
|
| + if (trailingZeroCount % 2 != 0) {
|
| + // We had to consume one trailing zero for the low digit
|
| + // of the least significant byte
|
| + digIndx += 1; // The trailing zero not in the exponent
|
| + trailingZeroCount -= 1;
|
| + }
|
| +
|
| + endIndex = leadingZeroIndex ? leadingZeroIndex : ((digIndx/2) + 2) ;
|
| +
|
| + // Subtract one off of the last byte. Really the first byte here, but it's reversed...
|
| + numTempBuf[2] -= 1;
|
| +
|
| + /*
|
| + We want to skip over the first two slots in the buffer. The first slot
|
| + is reserved for the header byte UCOL_CODAN_PLACEHOLDER. The second slot is for the
|
| + sign/exponent byte: 0x80 + (decimalPos/2) & 7f.
|
| + The exponent must be adjusted by the number of leading zeroes, and the number of
|
| + trailing zeroes.
|
| + */
|
| + numTempBuf[0] = UCOL_CODAN_PLACEHOLDER;
|
| + uint32_t exponent = (digIndx+trailingZeroCount)/2;
|
| + if (leadingZeroIndex)
|
| + exponent -= ((digIndx/2) + 2 - leadingZeroIndex);
|
| + numTempBuf[1] = (uint8_t)(0x80 + (exponent & 0x7F));
|
| +
|
| + // Now transfer the collation key to our collIterate struct.
|
| + // The total size for our collation key is half of endIndex, rounded up.
|
| + int32_t size = (endIndex+1)/2;
|
| + if(!ensureCEsCapacity(source, size)) {
|
| + return UCOL_NULLORDER;
|
| + }
|
| + *(source->CEpos++) = (((numTempBuf[0] << 8) | numTempBuf[1]) << UCOL_PRIMARYORDERSHIFT) | //Primary weight
|
| + (UCOL_BYTE_COMMON << UCOL_SECONDARYORDERSHIFT) | // Secondary weight
|
| + UCOL_BYTE_COMMON; // Tertiary weight.
|
| + i = endIndex - 1; // Reset the index into the buffer.
|
| + while(i >= 2) {
|
| + uint32_t primWeight = numTempBuf[i--] << 8;
|
| + if ( i >= 2)
|
| + primWeight |= numTempBuf[i--];
|
| + *(source->CEpos++) = (primWeight << UCOL_PRIMARYORDERSHIFT) | UCOL_CONTINUATION_MARKER;
|
| + }
|
| +
|
| + source->toReturn = source->CEpos -1;
|
| + return *(source->toReturn);
|
| + } else {
|
| + CEOffset = (uint32_t *)coll->image + getExpansionOffset(CE);
|
| + CE = *(CEOffset++);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + case HANGUL_SYLLABLE_TAG: /* AC00-D7AF*/
|
| + {
|
| + static const uint32_t
|
| + SBase = 0xAC00, LBase = 0x1100, VBase = 0x1161, TBase = 0x11A7;
|
| + //const uint32_t LCount = 19;
|
| + static const uint32_t VCount = 21;
|
| + static const uint32_t TCount = 28;
|
| + //const uint32_t NCount = VCount * TCount; /* 588 */
|
| + //const uint32_t SCount = LCount * NCount; /* 11172 */
|
| +
|
| + uint32_t L = ch - SBase;
|
| + /*
|
| + divide into pieces.
|
| + we do it in this order since some compilers can do % and / in one
|
| + operation
|
| + */
|
| + uint32_t T = L % TCount;
|
| + L /= TCount;
|
| + uint32_t V = L % VCount;
|
| + L /= VCount;
|
| +
|
| + /* offset them */
|
| + L += LBase;
|
| + V += VBase;
|
| + T += TBase;
|
| +
|
| + int32_t firstOffset = (int32_t)(source->pos - source->string);
|
| + source->appendOffset(firstOffset, *status);
|
| +
|
| + /*
|
| + * return the first CE, but first put the rest into the expansion buffer
|
| + */
|
| + if (!source->coll->image->jamoSpecial) {
|
| + *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, L);
|
| + *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, V);
|
| + source->appendOffset(firstOffset + 1, *status);
|
| +
|
| + if (T != TBase) {
|
| + *(source->CEpos++) = UTRIE_GET32_FROM_LEAD(&coll->mapping, T);
|
| + source->appendOffset(firstOffset + 1, *status);
|
| + }
|
| +
|
| + source->toReturn = source->CEpos - 1;
|
| +
|
| + source->offsetReturn = source->offsetStore - 1;
|
| + if (source->offsetReturn == source->offsetBuffer) {
|
| + source->offsetStore = source->offsetBuffer;
|
| + }
|
| +
|
| + return *(source->toReturn);
|
| + } else {
|
| + // Since Hanguls pass the FCD check, it is
|
| + // guaranteed that we won't be in
|
| + // the normalization buffer if something like this happens
|
| + // Move Jamos into normalization buffer
|
| + /*
|
| + Move the Jamos into the
|
| + normalization buffer
|
| + */
|
| + UChar *tempbuffer = source->writableBuffer.getBuffer(5);
|
| + int32_t tempbufferLength;
|
| + tempbuffer[0] = 0;
|
| + tempbuffer[1] = (UChar)L;
|
| + tempbuffer[2] = (UChar)V;
|
| + if (T != TBase) {
|
| + tempbuffer[3] = (UChar)T;
|
| + tempbufferLength = 4;
|
| + } else {
|
| + tempbufferLength = 3;
|
| + }
|
| + source->writableBuffer.releaseBuffer(tempbufferLength);
|
| +
|
| + /*
|
| + Indicate where to continue in main input string after exhausting
|
| + the writableBuffer
|
| + */
|
| + if (source->pos == source->string) {
|
| + source->fcdPosition = NULL;
|
| + } else {
|
| + source->fcdPosition = source->pos-1;
|
| + }
|
| +
|
| + source->pos = source->writableBuffer.getTerminatedBuffer() + tempbufferLength;
|
| + source->origFlags = source->flags;
|
| + source->flags |= UCOL_ITER_INNORMBUF;
|
| + source->flags &= ~(UCOL_ITER_NORM | UCOL_ITER_HASLEN);
|
| +
|
| + return(UCOL_IGNORABLE);
|
| + }
|
| + }
|
| +
|
| + case IMPLICIT_TAG: /* everything that is not defined otherwise */
|
| + return getPrevImplicit(ch, source);
|
| +
|
| + // TODO: Remove CJK implicits as they are handled by the getImplicitPrimary function
|
| + case CJK_IMPLICIT_TAG: /* 0x3400-0x4DB5, 0x4E00-0x9FA5, 0xF900-0xFA2D*/
|
| + return getPrevImplicit(ch, source);
|
| +
|
| + case SURROGATE_TAG: /* This is a surrogate pair */
|
| + /* essentially an engaged lead surrogate. */
|
| + /* if you have encountered it here, it means that a */
|
| + /* broken sequence was encountered and this is an error */
|
| + return UCOL_NOT_FOUND;
|
| +
|
| + case LEAD_SURROGATE_TAG: /* D800-DBFF*/
|
| + return UCOL_NOT_FOUND; /* broken surrogate sequence */
|
| +
|
| + case TRAIL_SURROGATE_TAG: /* DC00-DFFF*/
|
| + {
|
| + UChar32 cp = 0;
|
| + UChar prevChar;
|
| + const UChar *prev;
|
| + if (isAtStartPrevIterate(source)) {
|
| + /* we are at the start of the string, wrong place to be at */
|
| + return UCOL_NOT_FOUND;
|
| + }
|
| + if (source->pos != source->writableBuffer.getBuffer()) {
|
| + prev = source->pos - 1;
|
| + } else {
|
| + prev = source->fcdPosition;
|
| + }
|
| + prevChar = *prev;
|
| +
|
| + /* Handles Han and Supplementary characters here.*/
|
| + if (U16_IS_LEAD(prevChar)) {
|
| + cp = ((((uint32_t)prevChar)<<10UL)+(ch)-(((uint32_t)0xd800<<10UL)+0xdc00-0x10000));
|
| + source->pos = prev;
|
| + } else {
|
| + return UCOL_NOT_FOUND; /* like unassigned */
|
| + }
|
| +
|
| + return getPrevImplicit(cp, source);
|
| + }
|
| +
|
| + /* UCA is filled with these. Tailorings are NOT_FOUND */
|
| + /* not yet implemented */
|
| + case CHARSET_TAG: /* this tag always returns */
|
| + /* probably after 1.8 */
|
| + return UCOL_NOT_FOUND;
|
| +
|
| + default: /* this tag always returns */
|
| + *status = U_INTERNAL_PROGRAM_ERROR;
|
| + CE=0;
|
| + break;
|
| + }
|
| +
|
| + if (CE <= UCOL_NOT_FOUND) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + return CE;
|
| +}
|
| +
|
| +/* This should really be a macro */
|
| +/* However, it is used only when stack buffers are not sufficiently big, and then we're messed up performance wise */
|
| +/* anyway */
|
| +static
|
| +uint8_t *reallocateBuffer(uint8_t **secondaries, uint8_t *secStart, uint8_t *second, uint32_t *secSize, uint32_t newSize, UErrorCode *status) {
|
| +#ifdef UCOL_DEBUG
|
| + fprintf(stderr, ".");
|
| +#endif
|
| + uint8_t *newStart = NULL;
|
| + uint32_t offset = (uint32_t)(*secondaries-secStart);
|
| +
|
| + if(secStart==second) {
|
| + newStart=(uint8_t*)uprv_malloc(newSize);
|
| + if(newStart==NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return NULL;
|
| + }
|
| + uprv_memcpy(newStart, secStart, *secondaries-secStart);
|
| + } else {
|
| + newStart=(uint8_t*)uprv_realloc(secStart, newSize);
|
| + if(newStart==NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + /* Since we're reallocating, return original reference so we don't loose it. */
|
| + return secStart;
|
| + }
|
| + }
|
| + *secondaries=newStart+offset;
|
| + *secSize=newSize;
|
| + return newStart;
|
| +}
|
| +
|
| +
|
| +/* This should really be a macro */
|
| +/* This function is used to reverse parts of a buffer. We need this operation when doing continuation */
|
| +/* secondaries in French */
|
| +/*
|
| +void uprv_ucol_reverse_buffer(uint8_t *start, uint8_t *end) {
|
| + uint8_t temp;
|
| + while(start<end) {
|
| + temp = *start;
|
| + *start++ = *end;
|
| + *end-- = temp;
|
| + }
|
| +}
|
| +*/
|
| +
|
| +#define uprv_ucol_reverse_buffer(TYPE, start, end) { \
|
| + TYPE tempA; \
|
| +while((start)<(end)) { \
|
| + tempA = *(start); \
|
| + *(start)++ = *(end); \
|
| + *(end)-- = tempA; \
|
| +} \
|
| +}
|
| +
|
| +/****************************************************************************/
|
| +/* Following are the sortkey generation functions */
|
| +/* */
|
| +/****************************************************************************/
|
| +
|
| +/**
|
| + * Merge two sort keys.
|
| + * This is useful, for example, to combine sort keys from first and last names
|
| + * to sort such pairs.
|
| + * Merged sort keys consider on each collation level the first part first entirely,
|
| + * then the second one.
|
| + * It is possible to merge multiple sort keys by consecutively merging
|
| + * another one with the intermediate result.
|
| + *
|
| + * The length of the merge result is the sum of the lengths of the input sort keys
|
| + * minus 1.
|
| + *
|
| + * @param src1 the first sort key
|
| + * @param src1Length the length of the first sort key, including the zero byte at the end;
|
| + * can be -1 if the function is to find the length
|
| + * @param src2 the second sort key
|
| + * @param src2Length the length of the second sort key, including the zero byte at the end;
|
| + * can be -1 if the function is to find the length
|
| + * @param dest the buffer where the merged sort key is written,
|
| + * can be NULL if destCapacity==0
|
| + * @param destCapacity the number of bytes in the dest buffer
|
| + * @return the length of the merged sort key, src1Length+src2Length-1;
|
| + * can be larger than destCapacity, or 0 if an error occurs (only for illegal arguments),
|
| + * in which cases the contents of dest is undefined
|
| + *
|
| + * @draft
|
| + */
|
| +U_CAPI int32_t U_EXPORT2
|
| +ucol_mergeSortkeys(const uint8_t *src1, int32_t src1Length,
|
| + const uint8_t *src2, int32_t src2Length,
|
| + uint8_t *dest, int32_t destCapacity) {
|
| + int32_t destLength;
|
| + uint8_t b;
|
| +
|
| + /* check arguments */
|
| + if( src1==NULL || src1Length<-2 || src1Length==0 || (src1Length>0 && src1[src1Length-1]!=0) ||
|
| + src2==NULL || src2Length<-2 || src2Length==0 || (src2Length>0 && src2[src2Length-1]!=0) ||
|
| + destCapacity<0 || (destCapacity>0 && dest==NULL)
|
| + ) {
|
| + /* error, attempt to write a zero byte and return 0 */
|
| + if(dest!=NULL && destCapacity>0) {
|
| + *dest=0;
|
| + }
|
| + return 0;
|
| + }
|
| +
|
| + /* check lengths and capacity */
|
| + if(src1Length<0) {
|
| + src1Length=(int32_t)uprv_strlen((const char *)src1)+1;
|
| + }
|
| + if(src2Length<0) {
|
| + src2Length=(int32_t)uprv_strlen((const char *)src2)+1;
|
| + }
|
| +
|
| + destLength=src1Length+src2Length-1;
|
| + if(destLength>destCapacity) {
|
| + /* the merged sort key does not fit into the destination */
|
| + return destLength;
|
| + }
|
| +
|
| + /* merge the sort keys with the same number of levels */
|
| + while(*src1!=0 && *src2!=0) { /* while both have another level */
|
| + /* copy level from src1 not including 00 or 01 */
|
| + while((b=*src1)>=2) {
|
| + ++src1;
|
| + *dest++=b;
|
| + }
|
| +
|
| + /* add a 02 merge separator */
|
| + *dest++=2;
|
| +
|
| + /* copy level from src2 not including 00 or 01 */
|
| + while((b=*src2)>=2) {
|
| + ++src2;
|
| + *dest++=b;
|
| + }
|
| +
|
| + /* if both sort keys have another level, then add a 01 level separator and continue */
|
| + if(*src1==1 && *src2==1) {
|
| + ++src1;
|
| + ++src2;
|
| + *dest++=1;
|
| + }
|
| + }
|
| +
|
| + /*
|
| + * here, at least one sort key is finished now, but the other one
|
| + * might have some contents left from containing more levels;
|
| + * that contents is just appended to the result
|
| + */
|
| + if(*src1!=0) {
|
| + /* src1 is not finished, therefore *src2==0, and src1 is appended */
|
| + src2=src1;
|
| + }
|
| + /* append src2, "the other, unfinished sort key" */
|
| + uprv_strcpy((char *)dest, (const char *)src2);
|
| +
|
| + /* trust that neither sort key contained illegally embedded zero bytes */
|
| + return destLength;
|
| +}
|
| +
|
| +/* sortkey API */
|
| +U_CAPI int32_t U_EXPORT2
|
| +ucol_getSortKey(const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + uint8_t *result,
|
| + int32_t resultLength)
|
| +{
|
| + UTRACE_ENTRY(UTRACE_UCOL_GET_SORTKEY);
|
| + if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
|
| + UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source string = %vh ", coll, source,
|
| + ((sourceLength==-1 && source!=NULL) ? u_strlen(source) : sourceLength));
|
| + }
|
| +
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + int32_t keySize = 0;
|
| +
|
| + if(source != NULL) {
|
| + // source == NULL is actually an error situation, but we would need to
|
| + // have an error code to return it. Until we introduce a new
|
| + // API, it stays like this
|
| +
|
| + /* this uses the function pointer that is set in updateinternalstate */
|
| + /* currently, there are two funcs: */
|
| + /*ucol_calcSortKey(...);*/
|
| + /*ucol_calcSortKeySimpleTertiary(...);*/
|
| +
|
| + keySize = coll->sortKeyGen(coll, source, sourceLength, &result, resultLength, FALSE, &status);
|
| + //if (U_FAILURE(status) && status != U_BUFFER_OVERFLOW_ERROR && result && resultLength > 0) {
|
| + // That's not good. Something unusual happened.
|
| + // We don't know how much we initialized before we failed.
|
| + // NULL terminate for safety.
|
| + // We have no way say that we have generated a partial sort key.
|
| + //result[0] = 0;
|
| + //keySize = 0;
|
| + //}
|
| + }
|
| + UTRACE_DATA2(UTRACE_VERBOSE, "Sort Key = %vb", result, keySize);
|
| + UTRACE_EXIT_STATUS(status);
|
| + return keySize;
|
| +}
|
| +
|
| +/* this function is called by the C++ API for sortkey generation */
|
| +U_CFUNC int32_t
|
| +ucol_getSortKeyWithAllocation(const UCollator *coll,
|
| + const UChar *source, int32_t sourceLength,
|
| + uint8_t **pResult,
|
| + UErrorCode *pErrorCode) {
|
| + *pResult = 0;
|
| + return coll->sortKeyGen(coll, source, sourceLength, pResult, 0, TRUE, pErrorCode);
|
| +}
|
| +
|
| +#define UCOL_FSEC_BUF_SIZE 256
|
| +
|
| +// Is this primary weight compressible?
|
| +// Returns false for multi-lead-byte scripts (digits, Latin, Han, implicit).
|
| +// TODO: This should use per-lead-byte flags from FractionalUCA.txt.
|
| +static inline UBool
|
| +isCompressible(const UCollator * /*coll*/, uint8_t primary1) {
|
| + return UCOL_BYTE_FIRST_NON_LATIN_PRIMARY <= primary1 && primary1 <= maxRegularPrimary;
|
| +}
|
| +
|
| +/* This function tries to get the size of a sortkey. It will be invoked if the size of resulting buffer is 0 */
|
| +/* or if we run out of space while making a sortkey and want to return ASAP */
|
| +int32_t ucol_getSortKeySize(const UCollator *coll, collIterate *s, int32_t currentSize, UColAttributeValue strength, int32_t len) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
|
| + uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
|
| + uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
|
| + uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
|
| + UBool compareIdent = (strength == UCOL_IDENTICAL);
|
| + UBool doCase = (coll->caseLevel == UCOL_ON);
|
| + UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
|
| + //UBool qShifted = shifted && (compareQuad == 0);
|
| + UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0);
|
| + UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0);
|
| + uint8_t fSecsBuff[UCOL_FSEC_BUF_SIZE];
|
| + uint8_t *fSecs = fSecsBuff;
|
| + uint32_t fSecsLen = 0, fSecsMaxLen = UCOL_FSEC_BUF_SIZE;
|
| + uint8_t *frenchStartPtr = NULL, *frenchEndPtr = NULL;
|
| +
|
| + uint32_t variableTopValue = coll->variableTopValue;
|
| + uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1);
|
| + if(doHiragana) {
|
| + UCOL_COMMON_BOT4++;
|
| + /* allocate one more space for hiragana */
|
| + }
|
| + uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
|
| +
|
| + uint32_t order = UCOL_NO_MORE_CES;
|
| + uint8_t primary1 = 0;
|
| + uint8_t primary2 = 0;
|
| + uint8_t secondary = 0;
|
| + uint8_t tertiary = 0;
|
| + int32_t caseShift = 0;
|
| + uint32_t c2 = 0, c3 = 0, c4 = 0; /* variables for compression */
|
| +
|
| + uint8_t caseSwitch = coll->caseSwitch;
|
| + uint8_t tertiaryMask = coll->tertiaryMask;
|
| + uint8_t tertiaryCommon = coll->tertiaryCommon;
|
| +
|
| + UBool wasShifted = FALSE;
|
| + UBool notIsContinuation = FALSE;
|
| + uint8_t leadPrimary = 0;
|
| +
|
| +
|
| + for(;;) {
|
| + order = ucol_IGetNextCE(coll, s, &status);
|
| + if(order == UCOL_NO_MORE_CES) {
|
| + break;
|
| + }
|
| +
|
| + if(order == 0) {
|
| + continue;
|
| + }
|
| +
|
| + notIsContinuation = !isContinuation(order);
|
| +
|
| +
|
| + if(notIsContinuation) {
|
| + tertiary = (uint8_t)((order & UCOL_BYTE_SIZE_MASK));
|
| + } else {
|
| + tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
|
| + }
|
| + secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary1 = (uint8_t)(order >> 8);
|
| +
|
| + /* no need to permute since the actual code values don't matter
|
| + if (coll->leadBytePermutationTable != NULL && notIsContinuation) {
|
| + primary1 = coll->leadBytePermutationTable[primary1];
|
| + }
|
| + */
|
| +
|
| + if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
|
| + || (!notIsContinuation && wasShifted)))
|
| + || (wasShifted && primary1 == 0)) { /* amendment to the UCA says that primary ignorables */
|
| + /* and other ignorables should be removed if following a shifted code point */
|
| + if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
|
| + /* we should just completely ignore it */
|
| + continue;
|
| + }
|
| + if(compareQuad == 0) {
|
| + if(c4 > 0) {
|
| + currentSize += (c2/UCOL_BOT_COUNT4)+1;
|
| + c4 = 0;
|
| + }
|
| + currentSize++;
|
| + if(primary2 != 0) {
|
| + currentSize++;
|
| + }
|
| + }
|
| + wasShifted = TRUE;
|
| + } else {
|
| + wasShifted = FALSE;
|
| + /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
|
| + /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */
|
| + /* calculate sortkey size */
|
| + if(primary1 != UCOL_IGNORABLE) {
|
| + if(notIsContinuation) {
|
| + if(leadPrimary == primary1) {
|
| + currentSize++;
|
| + } else {
|
| + if(leadPrimary != 0) {
|
| + currentSize++;
|
| + }
|
| + if(primary2 == UCOL_IGNORABLE) {
|
| + /* one byter, not compressed */
|
| + currentSize++;
|
| + leadPrimary = 0;
|
| + } else if(isCompressible(coll, primary1)) {
|
| + /* compress */
|
| + leadPrimary = primary1;
|
| + currentSize+=2;
|
| + } else {
|
| + leadPrimary = 0;
|
| + currentSize+=2;
|
| + }
|
| + }
|
| + } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
|
| + currentSize++;
|
| + if(primary2 != UCOL_IGNORABLE) {
|
| + currentSize++;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(secondary > compareSec) { /* I think that != 0 test should be != IGNORABLE */
|
| + if(!isFrenchSec){
|
| + if (secondary == UCOL_COMMON2 && notIsContinuation) {
|
| + c2++;
|
| + } else {
|
| + if(c2 > 0) {
|
| + if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
|
| + currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+1;
|
| + } else {
|
| + currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+1;
|
| + }
|
| + c2 = 0;
|
| + }
|
| + currentSize++;
|
| + }
|
| + } else {
|
| + fSecs[fSecsLen++] = secondary;
|
| + if(fSecsLen == fSecsMaxLen) {
|
| + uint8_t *fSecsTemp;
|
| + if(fSecs == fSecsBuff) {
|
| + fSecsTemp = (uint8_t *)uprv_malloc(2*fSecsLen);
|
| + } else {
|
| + fSecsTemp = (uint8_t *)uprv_realloc(fSecs, 2*fSecsLen);
|
| + }
|
| + if(fSecsTemp == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return 0;
|
| + }
|
| + fSecs = fSecsTemp;
|
| + fSecsMaxLen *= 2;
|
| + }
|
| + if(notIsContinuation) {
|
| + if (frenchStartPtr != NULL) {
|
| + /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
|
| + uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
|
| + frenchStartPtr = NULL;
|
| + }
|
| + } else {
|
| + if (frenchStartPtr == NULL) {
|
| + frenchStartPtr = fSecs+fSecsLen-2;
|
| + }
|
| + frenchEndPtr = fSecs+fSecsLen-1;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) {
|
| + // do the case level if we need to do it. We don't want to calculate
|
| + // case level for primary ignorables if we have only primary strength and case level
|
| + // otherwise we would break well formedness of CEs
|
| + if (caseShift == 0) {
|
| + currentSize++;
|
| + caseShift = UCOL_CASE_SHIFT_START;
|
| + }
|
| + if((tertiary&0x3F) > 0 && notIsContinuation) {
|
| + caseShift--;
|
| + if((tertiary &0xC0) != 0) {
|
| + if (caseShift == 0) {
|
| + currentSize++;
|
| + caseShift = UCOL_CASE_SHIFT_START;
|
| + }
|
| + caseShift--;
|
| + }
|
| + }
|
| + } else {
|
| + if(notIsContinuation) {
|
| + tertiary ^= caseSwitch;
|
| + }
|
| + }
|
| +
|
| + tertiary &= tertiaryMask;
|
| + if(tertiary > compareTer) { /* I think that != 0 test should be != IGNORABLE */
|
| + if (tertiary == tertiaryCommon && notIsContinuation) {
|
| + c3++;
|
| + } else {
|
| + if(c3 > 0) {
|
| + if((tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL)
|
| + || (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST)) {
|
| + currentSize += (c3/(uint32_t)coll->tertiaryTopCount)+1;
|
| + } else {
|
| + currentSize += (c3/(uint32_t)coll->tertiaryBottomCount)+1;
|
| + }
|
| + c3 = 0;
|
| + }
|
| + currentSize++;
|
| + }
|
| + }
|
| +
|
| + if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
|
| + if(s->flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
|
| + if(c4>0) { // Close this part
|
| + currentSize += (c4/UCOL_BOT_COUNT4)+1;
|
| + c4 = 0;
|
| + }
|
| + currentSize++; // Add the Hiragana
|
| + } else { // This wasn't Hiragana, so we can continue adding stuff
|
| + c4++;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(!isFrenchSec){
|
| + if(c2 > 0) {
|
| + currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
|
| + }
|
| + } else {
|
| + uint32_t i = 0;
|
| + if(frenchStartPtr != NULL) {
|
| + uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
|
| + }
|
| + for(i = 0; i<fSecsLen; i++) {
|
| + secondary = *(fSecs+fSecsLen-i-1);
|
| + /* This is compression code. */
|
| + if (secondary == UCOL_COMMON2) {
|
| + ++c2;
|
| + } else {
|
| + if(c2 > 0) {
|
| + if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
|
| + currentSize += (c2/(uint32_t)UCOL_TOP_COUNT2)+((c2%(uint32_t)UCOL_TOP_COUNT2 != 0)?1:0);
|
| + } else {
|
| + currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
|
| + }
|
| + c2 = 0;
|
| + }
|
| + currentSize++;
|
| + }
|
| + }
|
| + if(c2 > 0) {
|
| + currentSize += (c2/(uint32_t)UCOL_BOT_COUNT2)+((c2%(uint32_t)UCOL_BOT_COUNT2 != 0)?1:0);
|
| + }
|
| + if(fSecs != fSecsBuff) {
|
| + uprv_free(fSecs);
|
| + }
|
| + }
|
| +
|
| + if(c3 > 0) {
|
| + currentSize += (c3/(uint32_t)coll->tertiaryBottomCount) + ((c3%(uint32_t)coll->tertiaryBottomCount != 0)?1:0);
|
| + }
|
| +
|
| + if(c4 > 0 && compareQuad == 0) {
|
| + currentSize += (c4/(uint32_t)UCOL_BOT_COUNT4)+((c4%(uint32_t)UCOL_BOT_COUNT4 != 0)?1:0);
|
| + }
|
| +
|
| + if(compareIdent) {
|
| + currentSize += u_lengthOfIdenticalLevelRun(s->string, len);
|
| + }
|
| + return currentSize;
|
| +}
|
| +
|
| +static
|
| +inline void doCaseShift(uint8_t **cases, uint32_t &caseShift) {
|
| + if (caseShift == 0) {
|
| + *(*cases)++ = UCOL_CASE_BYTE_START;
|
| + caseShift = UCOL_CASE_SHIFT_START;
|
| + }
|
| +}
|
| +
|
| +// Adds a value to the buffer if it's safe to add. Increments the number of added values, so that we
|
| +// know how many values we wanted to add, even if we didn't add them all
|
| +static
|
| +inline void addWithIncrement(uint8_t *&primaries, uint8_t *limit, uint32_t &size, const uint8_t value) {
|
| + size++;
|
| + if(primaries < limit) {
|
| + *(primaries)++ = value;
|
| + }
|
| +}
|
| +
|
| +// Packs the secondary buffer when processing French locale. Adds the terminator.
|
| +static
|
| +inline uint8_t *packFrench(uint8_t *primaries, uint8_t *primEnd, uint8_t *secondaries, uint32_t *secsize, uint8_t *frenchStartPtr, uint8_t *frenchEndPtr) {
|
| + uint8_t secondary;
|
| + int32_t count2 = 0;
|
| + uint32_t i = 0, size = 0;
|
| + // we use i here since the key size already accounts for terminators, so we'll discard the increment
|
| + addWithIncrement(primaries, primEnd, i, UCOL_LEVELTERMINATOR);
|
| + /* If there are any unresolved continuation secondaries, reverse them here so that we can reverse the whole secondary thing */
|
| + if(frenchStartPtr != NULL) {
|
| + uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
|
| + }
|
| + for(i = 0; i<*secsize; i++) {
|
| + secondary = *(secondaries-i-1);
|
| + /* This is compression code. */
|
| + if (secondary == UCOL_COMMON2) {
|
| + ++count2;
|
| + } else {
|
| + if (count2 > 0) {
|
| + if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
|
| + while (count2 > UCOL_TOP_COUNT2) {
|
| + addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2));
|
| + count2 -= (uint32_t)UCOL_TOP_COUNT2;
|
| + }
|
| + addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_TOP2 - (count2-1)));
|
| + } else {
|
| + while (count2 > UCOL_BOT_COUNT2) {
|
| + addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
|
| + count2 -= (uint32_t)UCOL_BOT_COUNT2;
|
| + }
|
| + addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
|
| + }
|
| + count2 = 0;
|
| + }
|
| + addWithIncrement(primaries, primEnd, size, secondary);
|
| + }
|
| + }
|
| + if (count2 > 0) {
|
| + while (count2 > UCOL_BOT_COUNT2) {
|
| + addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2));
|
| + count2 -= (uint32_t)UCOL_BOT_COUNT2;
|
| + }
|
| + addWithIncrement(primaries, primEnd, size, (uint8_t)(UCOL_COMMON_BOT2 + (count2-1)));
|
| + }
|
| + *secsize = size;
|
| + return primaries;
|
| +}
|
| +
|
| +#define DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY 0
|
| +
|
| +/* This is the sortkey work horse function */
|
| +U_CFUNC int32_t U_CALLCONV
|
| +ucol_calcSortKey(const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + uint8_t **result,
|
| + uint32_t resultLength,
|
| + UBool allocateSKBuffer,
|
| + UErrorCode *status)
|
| +{
|
| + //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
|
| +
|
| + uint32_t i = 0; /* general purpose counter */
|
| +
|
| + /* Stack allocated buffers for buffers we use */
|
| + uint8_t prim[UCOL_PRIMARY_MAX_BUFFER], second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER], caseB[UCOL_CASE_MAX_BUFFER], quad[UCOL_QUAD_MAX_BUFFER];
|
| +
|
| + uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert, *cases = caseB, *quads = quad;
|
| +
|
| + if(U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| +
|
| + if(primaries == NULL && allocateSKBuffer == TRUE) {
|
| + primaries = *result = prim;
|
| + resultLength = UCOL_PRIMARY_MAX_BUFFER;
|
| + }
|
| +
|
| + uint32_t secSize = UCOL_SECONDARY_MAX_BUFFER, terSize = UCOL_TERTIARY_MAX_BUFFER,
|
| + caseSize = UCOL_CASE_MAX_BUFFER, quadSize = UCOL_QUAD_MAX_BUFFER;
|
| +
|
| + uint32_t sortKeySize = 1; /* it is always \0 terminated */
|
| +
|
| + UnicodeString normSource;
|
| +
|
| + int32_t len = (sourceLength == -1 ? u_strlen(source) : sourceLength);
|
| +
|
| + UColAttributeValue strength = coll->strength;
|
| +
|
| + uint8_t compareSec = (uint8_t)((strength >= UCOL_SECONDARY)?0:0xFF);
|
| + uint8_t compareTer = (uint8_t)((strength >= UCOL_TERTIARY)?0:0xFF);
|
| + uint8_t compareQuad = (uint8_t)((strength >= UCOL_QUATERNARY)?0:0xFF);
|
| + UBool compareIdent = (strength == UCOL_IDENTICAL);
|
| + UBool doCase = (coll->caseLevel == UCOL_ON);
|
| + UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && (compareSec == 0);
|
| + UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
|
| + //UBool qShifted = shifted && (compareQuad == 0);
|
| + UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && (compareQuad == 0);
|
| +
|
| + uint32_t variableTopValue = coll->variableTopValue;
|
| + // TODO: UCOL_COMMON_BOT4 should be a function of qShifted. If we have no
|
| + // qShifted, we don't need to set UCOL_COMMON_BOT4 so high.
|
| + uint8_t UCOL_COMMON_BOT4 = (uint8_t)((coll->variableTopValue>>8)+1);
|
| + uint8_t UCOL_HIRAGANA_QUAD = 0;
|
| + if(doHiragana) {
|
| + UCOL_HIRAGANA_QUAD=UCOL_COMMON_BOT4++;
|
| + /* allocate one more space for hiragana, value for hiragana */
|
| + }
|
| + uint8_t UCOL_BOT_COUNT4 = (uint8_t)(0xFF - UCOL_COMMON_BOT4);
|
| +
|
| + /* support for special features like caselevel and funky secondaries */
|
| + uint8_t *frenchStartPtr = NULL;
|
| + uint8_t *frenchEndPtr = NULL;
|
| + uint32_t caseShift = 0;
|
| +
|
| + sortKeySize += ((compareSec?0:1) + (compareTer?0:1) + (doCase?1:0) + /*(qShifted?1:0)*/(compareQuad?0:1) + (compareIdent?1:0));
|
| +
|
| + /* If we need to normalize, we'll do it all at once at the beginning! */
|
| + const Normalizer2 *norm2;
|
| + if(compareIdent) {
|
| + norm2 = Normalizer2Factory::getNFDInstance(*status);
|
| + } else if(coll->normalizationMode != UCOL_OFF) {
|
| + norm2 = Normalizer2Factory::getFCDInstance(*status);
|
| + } else {
|
| + norm2 = NULL;
|
| + }
|
| + if(norm2 != NULL) {
|
| + normSource.setTo(FALSE, source, len);
|
| + int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status);
|
| + if(qcYesLength != len) {
|
| + UnicodeString unnormalized = normSource.tempSubString(qcYesLength);
|
| + normSource.truncate(qcYesLength);
|
| + norm2->normalizeSecondAndAppend(normSource, unnormalized, *status);
|
| + source = normSource.getBuffer();
|
| + len = normSource.length();
|
| + }
|
| + }
|
| + collIterate s;
|
| + IInit_collIterate(coll, source, len, &s, status);
|
| + if(U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| + s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized.
|
| +
|
| + if(resultLength == 0 || primaries == NULL) {
|
| + return ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
|
| + }
|
| + uint8_t *primarySafeEnd = primaries + resultLength - 1;
|
| + if(strength > UCOL_PRIMARY) {
|
| + primarySafeEnd--;
|
| + }
|
| +
|
| + uint32_t minBufferSize = UCOL_MAX_BUFFER;
|
| +
|
| + uint8_t *primStart = primaries;
|
| + uint8_t *secStart = secondaries;
|
| + uint8_t *terStart = tertiaries;
|
| + uint8_t *caseStart = cases;
|
| + uint8_t *quadStart = quads;
|
| +
|
| + uint32_t order = 0;
|
| +
|
| + uint8_t primary1 = 0;
|
| + uint8_t primary2 = 0;
|
| + uint8_t secondary = 0;
|
| + uint8_t tertiary = 0;
|
| + uint8_t caseSwitch = coll->caseSwitch;
|
| + uint8_t tertiaryMask = coll->tertiaryMask;
|
| + int8_t tertiaryAddition = coll->tertiaryAddition;
|
| + uint8_t tertiaryTop = coll->tertiaryTop;
|
| + uint8_t tertiaryBottom = coll->tertiaryBottom;
|
| + uint8_t tertiaryCommon = coll->tertiaryCommon;
|
| + uint8_t caseBits = 0;
|
| +
|
| + UBool finished = FALSE;
|
| + UBool wasShifted = FALSE;
|
| + UBool notIsContinuation = FALSE;
|
| +
|
| + uint32_t prevBuffSize = 0;
|
| +
|
| + uint32_t count2 = 0, count3 = 0, count4 = 0;
|
| + uint8_t leadPrimary = 0;
|
| +
|
| + for(;;) {
|
| + for(i=prevBuffSize; i<minBufferSize; ++i) {
|
| +
|
| + order = ucol_IGetNextCE(coll, &s, status);
|
| + if(order == UCOL_NO_MORE_CES) {
|
| + finished = TRUE;
|
| + break;
|
| + }
|
| +
|
| + if(order == 0) {
|
| + continue;
|
| + }
|
| +
|
| + notIsContinuation = !isContinuation(order);
|
| +
|
| + if(notIsContinuation) {
|
| + tertiary = (uint8_t)(order & UCOL_BYTE_SIZE_MASK);
|
| + } else {
|
| + tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
|
| + }
|
| +
|
| + secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary1 = (uint8_t)(order >> 8);
|
| +
|
| + uint8_t originalPrimary1 = primary1;
|
| + if(notIsContinuation && coll->leadBytePermutationTable != NULL) {
|
| + primary1 = coll->leadBytePermutationTable[primary1];
|
| + }
|
| +
|
| + if((shifted && ((notIsContinuation && order <= variableTopValue && primary1 > 0)
|
| + || (!notIsContinuation && wasShifted)))
|
| + || (wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */
|
| + {
|
| + /* and other ignorables should be removed if following a shifted code point */
|
| + if(primary1 == 0) { /* if we were shifted and we got an ignorable code point */
|
| + /* we should just completely ignore it */
|
| + continue;
|
| + }
|
| + if(compareQuad == 0) {
|
| + if(count4 > 0) {
|
| + while (count4 > UCOL_BOT_COUNT4) {
|
| + *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
|
| + count4 -= UCOL_BOT_COUNT4;
|
| + }
|
| + *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
|
| + count4 = 0;
|
| + }
|
| + /* We are dealing with a variable and we're treating them as shifted */
|
| + /* This is a shifted ignorable */
|
| + if(primary1 != 0) { /* we need to check this since we could be in continuation */
|
| + *quads++ = primary1;
|
| + }
|
| + if(primary2 != 0) {
|
| + *quads++ = primary2;
|
| + }
|
| + }
|
| + wasShifted = TRUE;
|
| + } else {
|
| + wasShifted = FALSE;
|
| + /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
|
| + /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */
|
| + /* regular and simple sortkey calc */
|
| + if(primary1 != UCOL_IGNORABLE) {
|
| + if(notIsContinuation) {
|
| + if(leadPrimary == primary1) {
|
| + *primaries++ = primary2;
|
| + } else {
|
| + if(leadPrimary != 0) {
|
| + *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
|
| + }
|
| + if(primary2 == UCOL_IGNORABLE) {
|
| + /* one byter, not compressed */
|
| + *primaries++ = primary1;
|
| + leadPrimary = 0;
|
| + } else if(isCompressible(coll, originalPrimary1)) {
|
| + /* compress */
|
| + *primaries++ = leadPrimary = primary1;
|
| + if(primaries <= primarySafeEnd) {
|
| + *primaries++ = primary2;
|
| + }
|
| + } else {
|
| + leadPrimary = 0;
|
| + *primaries++ = primary1;
|
| + if(primaries <= primarySafeEnd) {
|
| + *primaries++ = primary2;
|
| + }
|
| + }
|
| + }
|
| + } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
|
| + *primaries++ = primary1;
|
| + if((primary2 != UCOL_IGNORABLE) && (primaries <= primarySafeEnd)) {
|
| + *primaries++ = primary2; /* second part */
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(secondary > compareSec) {
|
| + if(!isFrenchSec) {
|
| + /* This is compression code. */
|
| + if (secondary == UCOL_COMMON2 && notIsContinuation) {
|
| + ++count2;
|
| + } else {
|
| + if (count2 > 0) {
|
| + if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
|
| + while (count2 > UCOL_TOP_COUNT2) {
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
|
| + count2 -= (uint32_t)UCOL_TOP_COUNT2;
|
| + }
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
|
| + } else {
|
| + while (count2 > UCOL_BOT_COUNT2) {
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
|
| + count2 -= (uint32_t)UCOL_BOT_COUNT2;
|
| + }
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
|
| + }
|
| + count2 = 0;
|
| + }
|
| + *secondaries++ = secondary;
|
| + }
|
| + } else {
|
| + *secondaries++ = secondary;
|
| + /* Do the special handling for French secondaries */
|
| + /* We need to get continuation elements and do intermediate restore */
|
| + /* abc1c2c3de with french secondaries need to be edc1c2c3ba NOT edc3c2c1ba */
|
| + if(notIsContinuation) {
|
| + if (frenchStartPtr != NULL) {
|
| + /* reverse secondaries from frenchStartPtr up to frenchEndPtr */
|
| + uprv_ucol_reverse_buffer(uint8_t, frenchStartPtr, frenchEndPtr);
|
| + frenchStartPtr = NULL;
|
| + }
|
| + } else {
|
| + if (frenchStartPtr == NULL) {
|
| + frenchStartPtr = secondaries - 2;
|
| + }
|
| + frenchEndPtr = secondaries-1;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(doCase && (primary1 > 0 || strength >= UCOL_SECONDARY)) {
|
| + // do the case level if we need to do it. We don't want to calculate
|
| + // case level for primary ignorables if we have only primary strength and case level
|
| + // otherwise we would break well formedness of CEs
|
| + doCaseShift(&cases, caseShift);
|
| + if(notIsContinuation) {
|
| + caseBits = (uint8_t)(tertiary & 0xC0);
|
| +
|
| + if(tertiary != 0) {
|
| + if(coll->caseFirst == UCOL_UPPER_FIRST) {
|
| + if((caseBits & 0xC0) == 0) {
|
| + *(cases-1) |= 1 << (--caseShift);
|
| + } else {
|
| + *(cases-1) |= 0 << (--caseShift);
|
| + /* second bit */
|
| + doCaseShift(&cases, caseShift);
|
| + *(cases-1) |= ((caseBits>>6)&1) << (--caseShift);
|
| + }
|
| + } else {
|
| + if((caseBits & 0xC0) == 0) {
|
| + *(cases-1) |= 0 << (--caseShift);
|
| + } else {
|
| + *(cases-1) |= 1 << (--caseShift);
|
| + /* second bit */
|
| + doCaseShift(&cases, caseShift);
|
| + *(cases-1) |= ((caseBits>>7)&1) << (--caseShift);
|
| + }
|
| + }
|
| + }
|
| +
|
| + }
|
| + } else {
|
| + if(notIsContinuation) {
|
| + tertiary ^= caseSwitch;
|
| + }
|
| + }
|
| +
|
| + tertiary &= tertiaryMask;
|
| + if(tertiary > compareTer) {
|
| + /* This is compression code. */
|
| + /* sequence size check is included in the if clause */
|
| + if (tertiary == tertiaryCommon && notIsContinuation) {
|
| + ++count3;
|
| + } else {
|
| + if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
|
| + tertiary += tertiaryAddition;
|
| + } else if(tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
|
| + tertiary -= tertiaryAddition;
|
| + }
|
| + if (count3 > 0) {
|
| + if ((tertiary > tertiaryCommon)) {
|
| + while (count3 > coll->tertiaryTopCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
|
| + count3 -= (uint32_t)coll->tertiaryTopCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
|
| + } else {
|
| + while (count3 > coll->tertiaryBottomCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
|
| + count3 -= (uint32_t)coll->tertiaryBottomCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
|
| + }
|
| + count3 = 0;
|
| + }
|
| + *tertiaries++ = tertiary;
|
| + }
|
| + }
|
| +
|
| + if(/*qShifted*/(compareQuad==0) && notIsContinuation) {
|
| + if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
|
| + if(count4>0) { // Close this part
|
| + while (count4 > UCOL_BOT_COUNT4) {
|
| + *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
|
| + count4 -= UCOL_BOT_COUNT4;
|
| + }
|
| + *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
|
| + count4 = 0;
|
| + }
|
| + *quads++ = UCOL_HIRAGANA_QUAD; // Add the Hiragana
|
| + } else { // This wasn't Hiragana, so we can continue adding stuff
|
| + count4++;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
|
| + if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
|
| + IInit_collIterate(coll, (UChar *)source, len, &s, status);
|
| + if(U_FAILURE(*status)) {
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + finished = TRUE;
|
| + break;
|
| + }
|
| + s.flags &= ~UCOL_ITER_NORM;
|
| + sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, strength, len);
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + finished = TRUE;
|
| + break;
|
| + } else { /* It's much nicer if we can actually reallocate */
|
| + int32_t sks = sortKeySize+(int32_t)((primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart)+(cases-caseStart)+(quads-quadStart));
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + primarySafeEnd = primStart + resultLength - 1;
|
| + if(strength > UCOL_PRIMARY) {
|
| + primarySafeEnd--;
|
| + }
|
| + } else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + finished = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + if(finished) {
|
| + break;
|
| + } else {
|
| + prevBuffSize = minBufferSize;
|
| +
|
| + uint32_t frenchStartOffset = 0, frenchEndOffset = 0;
|
| + if (frenchStartPtr != NULL) {
|
| + frenchStartOffset = (uint32_t)(frenchStartPtr - secStart);
|
| + frenchEndOffset = (uint32_t)(frenchEndPtr - secStart);
|
| + }
|
| + secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
|
| + terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
|
| + caseStart = reallocateBuffer(&cases, caseStart, caseB, &caseSize, 2*caseSize, status);
|
| + quadStart = reallocateBuffer(&quads, quadStart, quad, &quadSize, 2*quadSize, status);
|
| + if(U_FAILURE(*status)) {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + break;
|
| + }
|
| + if (frenchStartPtr != NULL) {
|
| + frenchStartPtr = secStart + frenchStartOffset;
|
| + frenchEndPtr = secStart + frenchEndOffset;
|
| + }
|
| + minBufferSize *= 2;
|
| + }
|
| + }
|
| +
|
| + /* Here, we are generally done with processing */
|
| + /* bailing out would not be too productive */
|
| +
|
| + if(U_SUCCESS(*status)) {
|
| + sortKeySize += (uint32_t)(primaries - primStart);
|
| + /* we have done all the CE's, now let's put them together to form a key */
|
| + if(compareSec == 0) {
|
| + if (count2 > 0) {
|
| + while (count2 > UCOL_BOT_COUNT2) {
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
|
| + count2 -= (uint32_t)UCOL_BOT_COUNT2;
|
| + }
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
|
| + }
|
| + uint32_t secsize = (uint32_t)(secondaries-secStart);
|
| + if(!isFrenchSec) { // Regular situation, we know the length of secondaries
|
| + sortKeySize += secsize;
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, secStart, secsize);
|
| + primaries += secsize;
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, secStart, secsize);
|
| + primaries += secsize;
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| + } else { // French secondary is on. We will need to pack French. packFrench will add the level terminator
|
| + uint8_t *newPrim = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
|
| + sortKeySize += secsize;
|
| + if(sortKeySize <= resultLength) { // if we managed to pack fine
|
| + primaries = newPrim; // update the primary pointer
|
| + } else { // overflow, need to reallocate and redo
|
| + if(allocateSKBuffer == TRUE) { /* need to save our butts if we cannot reallocate */
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + primaries = packFrench(primaries, primStart+resultLength, secondaries, &secsize, frenchStartPtr, frenchEndPtr);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(doCase) {
|
| + uint32_t casesize = (uint32_t)(cases - caseStart);
|
| + sortKeySize += casesize;
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, caseStart, casesize);
|
| + primaries += casesize;
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) {
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, caseStart, casesize);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(compareTer == 0) {
|
| + if (count3 > 0) {
|
| + if (coll->tertiaryCommon != UCOL_COMMON_BOT3) {
|
| + while (count3 >= coll->tertiaryTopCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
|
| + count3 -= (uint32_t)coll->tertiaryTopCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - count3);
|
| + } else {
|
| + while (count3 > coll->tertiaryBottomCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
|
| + count3 -= (uint32_t)coll->tertiaryBottomCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
|
| + }
|
| + }
|
| + uint32_t tersize = (uint32_t)(tertiaries - terStart);
|
| + sortKeySize += tersize;
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, terStart, tersize);
|
| + primaries += tersize;
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) {
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, terStart, tersize);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| +
|
| + if(compareQuad == 0/*qShifted == TRUE*/) {
|
| + if(count4 > 0) {
|
| + while (count4 > UCOL_BOT_COUNT4) {
|
| + *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + UCOL_BOT_COUNT4);
|
| + count4 -= UCOL_BOT_COUNT4;
|
| + }
|
| + *quads++ = (uint8_t)(UCOL_COMMON_BOT4 + (count4-1));
|
| + }
|
| + uint32_t quadsize = (uint32_t)(quads - quadStart);
|
| + sortKeySize += quadsize;
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, quadStart, quadsize);
|
| + primaries += quadsize;
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) {
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, quadStart, quadsize);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(compareIdent) {
|
| + sortKeySize += u_lengthOfIdenticalLevelRun(s.string, len);
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + primaries += u_writeIdenticalLevelRun(s.string, len, primaries);
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) {
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + u_writeIdenticalLevelRun(s.string, len, primaries);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + *(primaries++) = '\0';
|
| + }
|
| +
|
| + if(allocateSKBuffer == TRUE) {
|
| + *result = (uint8_t*)uprv_malloc(sortKeySize);
|
| + /* test for NULL */
|
| + if (*result == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + goto cleanup;
|
| + }
|
| + uprv_memcpy(*result, primStart, sortKeySize);
|
| + if(primStart != prim) {
|
| + uprv_free(primStart);
|
| + }
|
| + }
|
| +
|
| +cleanup:
|
| + if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
|
| + /* NULL terminate for safety */
|
| + **result = 0;
|
| + }
|
| + if(terStart != tert) {
|
| + uprv_free(terStart);
|
| + uprv_free(secStart);
|
| + uprv_free(caseStart);
|
| + uprv_free(quadStart);
|
| + }
|
| +
|
| + /* To avoid memory leak, free the offset buffer if necessary. */
|
| + ucol_freeOffsetBuffer(&s);
|
| +
|
| + return sortKeySize;
|
| +}
|
| +
|
| +
|
| +U_CFUNC int32_t U_CALLCONV
|
| +ucol_calcSortKeySimpleTertiary(const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + uint8_t **result,
|
| + uint32_t resultLength,
|
| + UBool allocateSKBuffer,
|
| + UErrorCode *status)
|
| +{
|
| + U_ALIGN_CODE(16);
|
| +
|
| + //const UCAConstants *UCAconsts = (UCAConstants *)((uint8_t *)coll->UCA->image + coll->image->UCAConsts);
|
| + uint32_t i = 0; /* general purpose counter */
|
| +
|
| + /* Stack allocated buffers for buffers we use */
|
| + uint8_t prim[UCOL_PRIMARY_MAX_BUFFER], second[UCOL_SECONDARY_MAX_BUFFER], tert[UCOL_TERTIARY_MAX_BUFFER];
|
| +
|
| + uint8_t *primaries = *result, *secondaries = second, *tertiaries = tert;
|
| +
|
| + if(U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| +
|
| + if(primaries == NULL && allocateSKBuffer == TRUE) {
|
| + primaries = *result = prim;
|
| + resultLength = UCOL_PRIMARY_MAX_BUFFER;
|
| + }
|
| +
|
| + uint32_t secSize = UCOL_SECONDARY_MAX_BUFFER, terSize = UCOL_TERTIARY_MAX_BUFFER;
|
| +
|
| + uint32_t sortKeySize = 3; /* it is always \0 terminated plus separators for secondary and tertiary */
|
| +
|
| + UnicodeString normSource;
|
| +
|
| + int32_t len = sourceLength;
|
| +
|
| + /* If we need to normalize, we'll do it all at once at the beginning! */
|
| + if(coll->normalizationMode != UCOL_OFF) {
|
| + normSource.setTo(len < 0, source, len);
|
| + const Normalizer2 *norm2 = Normalizer2Factory::getFCDInstance(*status);
|
| + int32_t qcYesLength = norm2->spanQuickCheckYes(normSource, *status);
|
| + if(qcYesLength != normSource.length()) {
|
| + UnicodeString unnormalized = normSource.tempSubString(qcYesLength);
|
| + normSource.truncate(qcYesLength);
|
| + norm2->normalizeSecondAndAppend(normSource, unnormalized, *status);
|
| + source = normSource.getBuffer();
|
| + len = normSource.length();
|
| + }
|
| + }
|
| + collIterate s;
|
| + IInit_collIterate(coll, (UChar *)source, len, &s, status);
|
| + if(U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| + s.flags &= ~UCOL_ITER_NORM; // source passed the FCD test or else was normalized.
|
| +
|
| + if(resultLength == 0 || primaries == NULL) {
|
| + return ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
|
| + }
|
| +
|
| + uint8_t *primarySafeEnd = primaries + resultLength - 2;
|
| +
|
| + uint32_t minBufferSize = UCOL_MAX_BUFFER;
|
| +
|
| + uint8_t *primStart = primaries;
|
| + uint8_t *secStart = secondaries;
|
| + uint8_t *terStart = tertiaries;
|
| +
|
| + uint32_t order = 0;
|
| +
|
| + uint8_t primary1 = 0;
|
| + uint8_t primary2 = 0;
|
| + uint8_t secondary = 0;
|
| + uint8_t tertiary = 0;
|
| + uint8_t caseSwitch = coll->caseSwitch;
|
| + uint8_t tertiaryMask = coll->tertiaryMask;
|
| + int8_t tertiaryAddition = coll->tertiaryAddition;
|
| + uint8_t tertiaryTop = coll->tertiaryTop;
|
| + uint8_t tertiaryBottom = coll->tertiaryBottom;
|
| + uint8_t tertiaryCommon = coll->tertiaryCommon;
|
| +
|
| + uint32_t prevBuffSize = 0;
|
| +
|
| + UBool finished = FALSE;
|
| + UBool notIsContinuation = FALSE;
|
| +
|
| + uint32_t count2 = 0, count3 = 0;
|
| + uint8_t leadPrimary = 0;
|
| +
|
| + for(;;) {
|
| + for(i=prevBuffSize; i<minBufferSize; ++i) {
|
| +
|
| + order = ucol_IGetNextCE(coll, &s, status);
|
| +
|
| + if(order == 0) {
|
| + continue;
|
| + }
|
| +
|
| + if(order == UCOL_NO_MORE_CES) {
|
| + finished = TRUE;
|
| + break;
|
| + }
|
| +
|
| + notIsContinuation = !isContinuation(order);
|
| +
|
| + if(notIsContinuation) {
|
| + tertiary = (uint8_t)((order & tertiaryMask));
|
| + } else {
|
| + tertiary = (uint8_t)((order & UCOL_REMOVE_CONTINUATION));
|
| + }
|
| +
|
| + secondary = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary2 = (uint8_t)((order >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary1 = (uint8_t)(order >> 8);
|
| +
|
| + uint8_t originalPrimary1 = primary1;
|
| + if (coll->leadBytePermutationTable != NULL && notIsContinuation) {
|
| + primary1 = coll->leadBytePermutationTable[primary1];
|
| + }
|
| +
|
| + /* Note: This code assumes that the table is well built i.e. not having 0 bytes where they are not supposed to be. */
|
| + /* Usually, we'll have non-zero primary1 & primary2, except in cases of a-z and friends, when primary2 will */
|
| + /* be zero with non zero primary1. primary3 is different than 0 only for long primaries - see above. */
|
| + /* regular and simple sortkey calc */
|
| + if(primary1 != UCOL_IGNORABLE) {
|
| + if(notIsContinuation) {
|
| + if(leadPrimary == primary1) {
|
| + *primaries++ = primary2;
|
| + } else {
|
| + if(leadPrimary != 0) {
|
| + *primaries++ = (uint8_t)((primary1 > leadPrimary) ? UCOL_BYTE_UNSHIFTED_MAX : UCOL_BYTE_UNSHIFTED_MIN);
|
| + }
|
| + if(primary2 == UCOL_IGNORABLE) {
|
| + /* one byter, not compressed */
|
| + *primaries++ = primary1;
|
| + leadPrimary = 0;
|
| + } else if(isCompressible(coll, originalPrimary1)) {
|
| + /* compress */
|
| + *primaries++ = leadPrimary = primary1;
|
| + *primaries++ = primary2;
|
| + } else {
|
| + leadPrimary = 0;
|
| + *primaries++ = primary1;
|
| + *primaries++ = primary2;
|
| + }
|
| + }
|
| + } else { /* we are in continuation, so we're gonna add primary to the key don't care about compression */
|
| + *primaries++ = primary1;
|
| + if(primary2 != UCOL_IGNORABLE) {
|
| + *primaries++ = primary2; /* second part */
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(secondary > 0) { /* I think that != 0 test should be != IGNORABLE */
|
| + /* This is compression code. */
|
| + if (secondary == UCOL_COMMON2 && notIsContinuation) {
|
| + ++count2;
|
| + } else {
|
| + if (count2 > 0) {
|
| + if (secondary > UCOL_COMMON2) { // not necessary for 4th level.
|
| + while (count2 > UCOL_TOP_COUNT2) {
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - UCOL_TOP_COUNT2);
|
| + count2 -= (uint32_t)UCOL_TOP_COUNT2;
|
| + }
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_TOP2 - (count2-1));
|
| + } else {
|
| + while (count2 > UCOL_BOT_COUNT2) {
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
|
| + count2 -= (uint32_t)UCOL_BOT_COUNT2;
|
| + }
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
|
| + }
|
| + count2 = 0;
|
| + }
|
| + *secondaries++ = secondary;
|
| + }
|
| + }
|
| +
|
| + if(notIsContinuation) {
|
| + tertiary ^= caseSwitch;
|
| + }
|
| +
|
| + if(tertiary > 0) {
|
| + /* This is compression code. */
|
| + /* sequence size check is included in the if clause */
|
| + if (tertiary == tertiaryCommon && notIsContinuation) {
|
| + ++count3;
|
| + } else {
|
| + if(tertiary > tertiaryCommon && tertiaryCommon == UCOL_COMMON3_NORMAL) {
|
| + tertiary += tertiaryAddition;
|
| + } else if (tertiary <= tertiaryCommon && tertiaryCommon == UCOL_COMMON3_UPPERFIRST) {
|
| + tertiary -= tertiaryAddition;
|
| + }
|
| + if (count3 > 0) {
|
| + if ((tertiary > tertiaryCommon)) {
|
| + while (count3 > coll->tertiaryTopCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
|
| + count3 -= (uint32_t)coll->tertiaryTopCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - (count3-1));
|
| + } else {
|
| + while (count3 > coll->tertiaryBottomCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
|
| + count3 -= (uint32_t)coll->tertiaryBottomCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
|
| + }
|
| + count3 = 0;
|
| + }
|
| + *tertiaries++ = tertiary;
|
| + }
|
| + }
|
| +
|
| + if(primaries > primarySafeEnd) { /* We have stepped over the primary buffer */
|
| + if(allocateSKBuffer == FALSE) { /* need to save our butts if we cannot reallocate */
|
| + IInit_collIterate(coll, (UChar *)source, len, &s, status);
|
| + if(U_FAILURE(*status)) {
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + finished = TRUE;
|
| + break;
|
| + }
|
| + s.flags &= ~UCOL_ITER_NORM;
|
| + sortKeySize = ucol_getSortKeySize(coll, &s, sortKeySize, coll->strength, len);
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + finished = TRUE;
|
| + break;
|
| + } else { /* It's much nicer if we can actually reallocate */
|
| + int32_t sks = sortKeySize+(int32_t)((primaries - primStart)+(secondaries - secStart)+(tertiaries - terStart));
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sks, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + primarySafeEnd = primStart + resultLength - 2;
|
| + } else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + finished = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + if(finished) {
|
| + break;
|
| + } else {
|
| + prevBuffSize = minBufferSize;
|
| + secStart = reallocateBuffer(&secondaries, secStart, second, &secSize, 2*secSize, status);
|
| + terStart = reallocateBuffer(&tertiaries, terStart, tert, &terSize, 2*terSize, status);
|
| + minBufferSize *= 2;
|
| + if(U_FAILURE(*status)) { // if we cannot reallocate buffers, we can at least give the sortkey size
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if(U_SUCCESS(*status)) {
|
| + sortKeySize += (uint32_t)(primaries - primStart);
|
| + /* we have done all the CE's, now let's put them together to form a key */
|
| + if (count2 > 0) {
|
| + while (count2 > UCOL_BOT_COUNT2) {
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + UCOL_BOT_COUNT2);
|
| + count2 -= (uint32_t)UCOL_BOT_COUNT2;
|
| + }
|
| + *secondaries++ = (uint8_t)(UCOL_COMMON_BOT2 + (count2-1));
|
| + }
|
| + uint32_t secsize = (uint32_t)(secondaries-secStart);
|
| + sortKeySize += secsize;
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, secStart, secsize);
|
| + primaries += secsize;
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) {
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + *result = primStart;
|
| + uprv_memcpy(primaries, secStart, secsize);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| +
|
| + if (count3 > 0) {
|
| + if (coll->tertiaryCommon != UCOL_COMMON3_NORMAL) {
|
| + while (count3 >= coll->tertiaryTopCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - coll->tertiaryTopCount);
|
| + count3 -= (uint32_t)coll->tertiaryTopCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryTop - count3);
|
| + } else {
|
| + while (count3 > coll->tertiaryBottomCount) {
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + coll->tertiaryBottomCount);
|
| + count3 -= (uint32_t)coll->tertiaryBottomCount;
|
| + }
|
| + *tertiaries++ = (uint8_t)(tertiaryBottom + (count3-1));
|
| + }
|
| + }
|
| + uint32_t tersize = (uint32_t)(tertiaries - terStart);
|
| + sortKeySize += tersize;
|
| + if(sortKeySize <= resultLength) {
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, terStart, tersize);
|
| + primaries += tersize;
|
| + } else {
|
| + if(allocateSKBuffer == TRUE) {
|
| + primStart = reallocateBuffer(&primaries, *result, prim, &resultLength, 2*sortKeySize, status);
|
| + if(U_SUCCESS(*status)) {
|
| + *result = primStart;
|
| + *(primaries++) = UCOL_LEVELTERMINATOR;
|
| + uprv_memcpy(primaries, terStart, tersize);
|
| + }
|
| + else {
|
| + /* We ran out of memory!? We can't recover. */
|
| + sortKeySize = DEFAULT_ERROR_SIZE_FOR_CALCSORTKEY;
|
| + goto cleanup;
|
| + }
|
| + } else {
|
| + *status = U_BUFFER_OVERFLOW_ERROR;
|
| + }
|
| + }
|
| +
|
| + *(primaries++) = '\0';
|
| + }
|
| +
|
| + if(allocateSKBuffer == TRUE) {
|
| + *result = (uint8_t*)uprv_malloc(sortKeySize);
|
| + /* test for NULL */
|
| + if (*result == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + goto cleanup;
|
| + }
|
| + uprv_memcpy(*result, primStart, sortKeySize);
|
| + if(primStart != prim) {
|
| + uprv_free(primStart);
|
| + }
|
| + }
|
| +
|
| +cleanup:
|
| + if (allocateSKBuffer == FALSE && resultLength > 0 && U_FAILURE(*status) && *status != U_BUFFER_OVERFLOW_ERROR) {
|
| + /* NULL terminate for safety */
|
| + **result = 0;
|
| + }
|
| + if(terStart != tert) {
|
| + uprv_free(terStart);
|
| + uprv_free(secStart);
|
| + }
|
| +
|
| + /* To avoid memory leak, free the offset buffer if necessary. */
|
| + ucol_freeOffsetBuffer(&s);
|
| +
|
| + return sortKeySize;
|
| +}
|
| +
|
| +static inline
|
| +UBool isShiftedCE(uint32_t CE, uint32_t LVT, UBool *wasShifted) {
|
| + UBool notIsContinuation = !isContinuation(CE);
|
| + uint8_t primary1 = (uint8_t)((CE >> 24) & 0xFF);
|
| + if((LVT && ((notIsContinuation && (CE & 0xFFFF0000)<= LVT && primary1 > 0)
|
| + || (!notIsContinuation && *wasShifted)))
|
| + || (*wasShifted && primary1 == 0)) /* amendment to the UCA says that primary ignorables */
|
| + {
|
| + // The stuff below should probably be in the sortkey code... maybe not...
|
| + if(primary1 != 0) { /* if we were shifted and we got an ignorable code point */
|
| + /* we should just completely ignore it */
|
| + *wasShifted = TRUE;
|
| + //continue;
|
| + }
|
| + //*wasShifted = TRUE;
|
| + return TRUE;
|
| + } else {
|
| + *wasShifted = FALSE;
|
| + return FALSE;
|
| + }
|
| +}
|
| +static inline
|
| +void terminatePSKLevel(int32_t level, int32_t maxLevel, int32_t &i, uint8_t *dest) {
|
| + if(level < maxLevel) {
|
| + dest[i++] = UCOL_LEVELTERMINATOR;
|
| + } else {
|
| + dest[i++] = 0;
|
| + }
|
| +}
|
| +
|
| +/** enumeration of level identifiers for partial sort key generation */
|
| +enum {
|
| + UCOL_PSK_PRIMARY = 0,
|
| + UCOL_PSK_SECONDARY = 1,
|
| + UCOL_PSK_CASE = 2,
|
| + UCOL_PSK_TERTIARY = 3,
|
| + UCOL_PSK_QUATERNARY = 4,
|
| + UCOL_PSK_QUIN = 5, /** This is an extra level, not used - but we have three bits to blow */
|
| + UCOL_PSK_IDENTICAL = 6,
|
| + UCOL_PSK_NULL = 7, /** level for the end of sort key. Will just produce zeros */
|
| + UCOL_PSK_LIMIT
|
| +};
|
| +
|
| +/** collation state enum. *_SHIFT value is how much to shift right
|
| + * to get the state piece to the right. *_MASK value should be
|
| + * ANDed with the shifted state. This data is stored in state[1]
|
| + * field.
|
| + */
|
| +enum {
|
| + UCOL_PSK_LEVEL_SHIFT = 0, /** level identificator. stores an enum value from above */
|
| + UCOL_PSK_LEVEL_MASK = 7, /** three bits */
|
| + UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT = 3, /** number of bytes of primary or quaternary already written */
|
| + UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK = 1,
|
| + /** can be only 0 or 1, since we get up to two bytes from primary or quaternary
|
| + * This field is also used to denote that the French secondary level is finished
|
| + */
|
| + UCOL_PSK_WAS_SHIFTED_SHIFT = 4,/** was the last value shifted */
|
| + UCOL_PSK_WAS_SHIFTED_MASK = 1, /** can be 0 or 1 (Boolean) */
|
| + UCOL_PSK_USED_FRENCH_SHIFT = 5,/** how many French bytes have we already written */
|
| + UCOL_PSK_USED_FRENCH_MASK = 3, /** up to 4 bytes. See comment just below */
|
| + /** When we do French we need to reverse secondary values. However, continuations
|
| + * need to stay the same. So if you had abc1c2c3de, you need to have edc1c2c3ba
|
| + */
|
| + UCOL_PSK_BOCSU_BYTES_SHIFT = 7,
|
| + UCOL_PSK_BOCSU_BYTES_MASK = 3,
|
| + UCOL_PSK_CONSUMED_CES_SHIFT = 9,
|
| + UCOL_PSK_CONSUMED_CES_MASK = 0x7FFFF
|
| +};
|
| +
|
| +// macro calculating the number of expansion CEs available
|
| +#define uprv_numAvailableExpCEs(s) (s).CEpos - (s).toReturn
|
| +
|
| +
|
| +/** main sortkey part procedure. On the first call,
|
| + * you should pass in a collator, an iterator, empty state
|
| + * state[0] == state[1] == 0, a buffer to hold results
|
| + * number of bytes you need and an error code pointer.
|
| + * Make sure your buffer is big enough to hold the wanted
|
| + * number of sortkey bytes. I don't check.
|
| + * The only meaningful status you can get back is
|
| + * U_BUFFER_OVERFLOW_ERROR, which basically means that you
|
| + * have been dealt a raw deal and that you probably won't
|
| + * be able to use partial sortkey generation for this
|
| + * particular combination of string and collator. This
|
| + * is highly unlikely, but you should still check the error code.
|
| + * Any other status means that you're not in a sane situation
|
| + * anymore. After the first call, preserve state values and
|
| + * use them on subsequent calls to obtain more bytes of a sortkey.
|
| + * Use until the number of bytes written is smaller than the requested
|
| + * number of bytes. Generated sortkey is not compatible with the
|
| + * one generated by ucol_getSortKey, as we don't do any compression.
|
| + * However, levels are still terminated by a 1 (one) and the sortkey
|
| + * is terminated by a 0 (zero). Identical level is the same as in the
|
| + * regular sortkey - internal bocu-1 implementation is used.
|
| + * For curious, although you cannot do much about this, here is
|
| + * the structure of state words.
|
| + * state[0] - iterator state. Depends on the iterator implementation,
|
| + * but allows the iterator to continue where it stopped in
|
| + * the last iteration.
|
| + * state[1] - collation processing state. Here is the distribution
|
| + * of the bits:
|
| + * 0, 1, 2 - level of the sortkey - primary, secondary, case, tertiary
|
| + * quaternary, quin (we don't use this one), identical and
|
| + * null (producing only zeroes - first one to terminate the
|
| + * sortkey and subsequent to fill the buffer).
|
| + * 3 - byte count. Number of bytes written on the primary level.
|
| + * 4 - was shifted. Whether the previous iteration finished in the
|
| + * shifted state.
|
| + * 5, 6 - French continuation bytes written. See the comment in the enum
|
| + * 7,8 - Bocsu bytes used. Number of bytes from a bocu sequence on
|
| + * the identical level.
|
| + * 9..31 - CEs consumed. Number of getCE or next32 operations performed
|
| + * since thes last successful update of the iterator state.
|
| + */
|
| +U_CAPI int32_t U_EXPORT2
|
| +ucol_nextSortKeyPart(const UCollator *coll,
|
| + UCharIterator *iter,
|
| + uint32_t state[2],
|
| + uint8_t *dest, int32_t count,
|
| + UErrorCode *status)
|
| +{
|
| + /* error checking */
|
| + if(status==NULL || U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| + UTRACE_ENTRY(UTRACE_UCOL_NEXTSORTKEYPART);
|
| + if( coll==NULL || iter==NULL ||
|
| + state==NULL ||
|
| + count<0 || (count>0 && dest==NULL)
|
| + ) {
|
| + *status=U_ILLEGAL_ARGUMENT_ERROR;
|
| + UTRACE_EXIT_STATUS(status);
|
| + return 0;
|
| + }
|
| +
|
| + UTRACE_DATA6(UTRACE_VERBOSE, "coll=%p, iter=%p, state=%d %d, dest=%p, count=%d",
|
| + coll, iter, state[0], state[1], dest, count);
|
| +
|
| + if(count==0) {
|
| + /* nothing to do */
|
| + UTRACE_EXIT_VALUE(0);
|
| + return 0;
|
| + }
|
| + /** Setting up situation according to the state we got from the previous iteration */
|
| + // The state of the iterator from the previous invocation
|
| + uint32_t iterState = state[0];
|
| + // Has the last iteration ended in the shifted state
|
| + UBool wasShifted = ((state[1] >> UCOL_PSK_WAS_SHIFTED_SHIFT) & UCOL_PSK_WAS_SHIFTED_MASK)?TRUE:FALSE;
|
| + // What is the current level of the sortkey?
|
| + int32_t level= (state[1] >> UCOL_PSK_LEVEL_SHIFT) & UCOL_PSK_LEVEL_MASK;
|
| + // Have we written only one byte from a two byte primary in the previous iteration?
|
| + // Also on secondary level - have we finished with the French secondary?
|
| + int32_t byteCountOrFrenchDone = (state[1] >> UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK;
|
| + // number of bytes in the continuation buffer for French
|
| + int32_t usedFrench = (state[1] >> UCOL_PSK_USED_FRENCH_SHIFT) & UCOL_PSK_USED_FRENCH_MASK;
|
| + // Number of bytes already written from a bocsu sequence. Since
|
| + // the longes bocsu sequence is 4 long, this can be up to 3.
|
| + int32_t bocsuBytesUsed = (state[1] >> UCOL_PSK_BOCSU_BYTES_SHIFT) & UCOL_PSK_BOCSU_BYTES_MASK;
|
| + // Number of elements that need to be consumed in this iteration because
|
| + // the iterator returned UITER_NO_STATE at the end of the last iteration,
|
| + // so we had to save the last valid state.
|
| + int32_t cces = (state[1] >> UCOL_PSK_CONSUMED_CES_SHIFT) & UCOL_PSK_CONSUMED_CES_MASK;
|
| +
|
| + /** values that depend on the collator attributes */
|
| + // strength of the collator.
|
| + int32_t strength = ucol_getAttribute(coll, UCOL_STRENGTH, status);
|
| + // maximal level of the partial sortkey. Need to take whether case level is done
|
| + int32_t maxLevel = 0;
|
| + if(strength < UCOL_TERTIARY) {
|
| + if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
|
| + maxLevel = UCOL_PSK_CASE;
|
| + } else {
|
| + maxLevel = strength;
|
| + }
|
| + } else {
|
| + if(strength == UCOL_TERTIARY) {
|
| + maxLevel = UCOL_PSK_TERTIARY;
|
| + } else if(strength == UCOL_QUATERNARY) {
|
| + maxLevel = UCOL_PSK_QUATERNARY;
|
| + } else { // identical
|
| + maxLevel = UCOL_IDENTICAL;
|
| + }
|
| + }
|
| + // value for the quaternary level if Hiragana is encountered. Used for JIS X 4061 collation
|
| + uint8_t UCOL_HIRAGANA_QUAD =
|
| + (ucol_getAttribute(coll, UCOL_HIRAGANA_QUATERNARY_MODE, status) == UCOL_ON)?0xFE:0xFF;
|
| + // Boundary value that decides whether a CE is shifted or not
|
| + uint32_t LVT = (coll->alternateHandling == UCOL_SHIFTED)?(coll->variableTopValue<<16):0;
|
| + // Are we doing French collation?
|
| + UBool doingFrench = (ucol_getAttribute(coll, UCOL_FRENCH_COLLATION, status) == UCOL_ON);
|
| +
|
| + /** initializing the collation state */
|
| + UBool notIsContinuation = FALSE;
|
| + uint32_t CE = UCOL_NO_MORE_CES;
|
| +
|
| + collIterate s;
|
| + IInit_collIterate(coll, NULL, -1, &s, status);
|
| + if(U_FAILURE(*status)) {
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| + s.iterator = iter;
|
| + s.flags |= UCOL_USE_ITERATOR;
|
| + // This variable tells us whether we have produced some other levels in this iteration
|
| + // before we moved to the identical level. In that case, we need to switch the
|
| + // type of the iterator.
|
| + UBool doingIdenticalFromStart = FALSE;
|
| + // Normalizing iterator
|
| + // The division for the array length may truncate the array size to
|
| + // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
|
| + // for all platforms anyway.
|
| + UAlignedMemory stackNormIter[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
|
| + UNormIterator *normIter = NULL;
|
| + // If the normalization is turned on for the collator and we are below identical level
|
| + // we will use a FCD normalizing iterator
|
| + if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON && level < UCOL_PSK_IDENTICAL) {
|
| + normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
|
| + s.iterator = unorm_setIter(normIter, iter, UNORM_FCD, status);
|
| + s.flags &= ~UCOL_ITER_NORM;
|
| + if(U_FAILURE(*status)) {
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| + } else if(level == UCOL_PSK_IDENTICAL) {
|
| + // for identical level, we need a NFD iterator. We need to instantiate it here, since we
|
| + // will be updating the state - and this cannot be done on an ordinary iterator.
|
| + normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
|
| + s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
|
| + s.flags &= ~UCOL_ITER_NORM;
|
| + if(U_FAILURE(*status)) {
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| + doingIdenticalFromStart = TRUE;
|
| + }
|
| +
|
| + // This is the tentative new state of the iterator. The problem
|
| + // is that the iterator might return an undefined state, in
|
| + // which case we should save the last valid state and increase
|
| + // the iterator skip value.
|
| + uint32_t newState = 0;
|
| +
|
| + // First, we set the iterator to the last valid position
|
| + // from the last iteration. This was saved in state[0].
|
| + if(iterState == 0) {
|
| + /* initial state */
|
| + if(level == UCOL_PSK_SECONDARY && doingFrench && !byteCountOrFrenchDone) {
|
| + s.iterator->move(s.iterator, 0, UITER_LIMIT);
|
| + } else {
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + }
|
| + } else {
|
| + /* reset to previous state */
|
| + s.iterator->setState(s.iterator, iterState, status);
|
| + if(U_FAILURE(*status)) {
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| + }
|
| +
|
| +
|
| +
|
| + // This variable tells us whether we can attempt to update the state
|
| + // of iterator. Situations where we don't want to update iterator state
|
| + // are the existence of expansion CEs that are not yet processed, and
|
| + // finishing the case level without enough space in the buffer to insert
|
| + // a level terminator.
|
| + UBool canUpdateState = TRUE;
|
| +
|
| + // Consume all the CEs that were consumed at the end of the previous
|
| + // iteration without updating the iterator state. On identical level,
|
| + // consume the code points.
|
| + int32_t counter = cces;
|
| + if(level < UCOL_PSK_IDENTICAL) {
|
| + while(counter-->0) {
|
| + // If we're doing French and we are on the secondary level,
|
| + // we go backwards.
|
| + if(level == UCOL_PSK_SECONDARY && doingFrench) {
|
| + CE = ucol_IGetPrevCE(coll, &s, status);
|
| + } else {
|
| + CE = ucol_IGetNextCE(coll, &s, status);
|
| + }
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + /* should not happen */
|
| + *status=U_INTERNAL_PROGRAM_ERROR;
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + }
|
| + }
|
| + } else {
|
| + while(counter-->0) {
|
| + uiter_next32(s.iterator);
|
| + }
|
| + }
|
| +
|
| + // French secondary needs to know whether the iterator state of zero came from previous level OR
|
| + // from a new invocation...
|
| + UBool wasDoingPrimary = FALSE;
|
| + // destination buffer byte counter. When this guy
|
| + // gets to count, we're done with the iteration
|
| + int32_t i = 0;
|
| + // used to count the zero bytes written after we
|
| + // have finished with the sort key
|
| + int32_t j = 0;
|
| +
|
| +
|
| + // Hm.... I think we're ready to plunge in. Basic story is as following:
|
| + // we have a fall through case based on level. This is used for initial
|
| + // positioning on iteration start. Every level processor contains a
|
| + // for(;;) which will be broken when we exhaust all the CEs. Other
|
| + // way to exit is a goto saveState, which happens when we have filled
|
| + // out our buffer.
|
| + switch(level) {
|
| + case UCOL_PSK_PRIMARY:
|
| + wasDoingPrimary = TRUE;
|
| + for(;;) {
|
| + if(i==count) {
|
| + goto saveState;
|
| + }
|
| + // We should save the state only if we
|
| + // are sure that we are done with the
|
| + // previous iterator state
|
| + if(canUpdateState && byteCountOrFrenchDone == 0) {
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| + }
|
| + CE = ucol_IGetNextCE(coll, &s, status);
|
| + cces++;
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + // Add the level separator
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + byteCountOrFrenchDone=0;
|
| + // Restart the iteration an move to the
|
| + // second level
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + cces = 0;
|
| + level = UCOL_PSK_SECONDARY;
|
| + break;
|
| + }
|
| + if(!isContinuation(CE)){
|
| + if(coll->leadBytePermutationTable != NULL){
|
| + CE = (coll->leadBytePermutationTable[CE>>24] << 24) | (CE & 0x00FFFFFF);
|
| + }
|
| + }
|
| + if(!isShiftedCE(CE, LVT, &wasShifted)) {
|
| + CE >>= UCOL_PRIMARYORDERSHIFT; /* get primary */
|
| + if(CE != 0) {
|
| + if(byteCountOrFrenchDone == 0) {
|
| + // get the second byte of primary
|
| + dest[i++]=(uint8_t)(CE >> 8);
|
| + } else {
|
| + byteCountOrFrenchDone = 0;
|
| + }
|
| + if((CE &=0xff)!=0) {
|
| + if(i==count) {
|
| + /* overflow */
|
| + byteCountOrFrenchDone = 1;
|
| + cces--;
|
| + goto saveState;
|
| + }
|
| + dest[i++]=(uint8_t)CE;
|
| + }
|
| + }
|
| + }
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + } else {
|
| + canUpdateState = TRUE;
|
| + }
|
| + }
|
| + /* fall through to next level */
|
| + case UCOL_PSK_SECONDARY:
|
| + if(strength >= UCOL_SECONDARY) {
|
| + if(!doingFrench) {
|
| + for(;;) {
|
| + if(i == count) {
|
| + goto saveState;
|
| + }
|
| + // We should save the state only if we
|
| + // are sure that we are done with the
|
| + // previous iterator state
|
| + if(canUpdateState) {
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| + }
|
| + CE = ucol_IGetNextCE(coll, &s, status);
|
| + cces++;
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + // Add the level separator
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + byteCountOrFrenchDone = 0;
|
| + // Restart the iteration an move to the
|
| + // second level
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + cces = 0;
|
| + level = UCOL_PSK_CASE;
|
| + break;
|
| + }
|
| + if(!isShiftedCE(CE, LVT, &wasShifted)) {
|
| + CE >>= 8; /* get secondary */
|
| + if(CE != 0) {
|
| + dest[i++]=(uint8_t)CE;
|
| + }
|
| + }
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + } else {
|
| + canUpdateState = TRUE;
|
| + }
|
| + }
|
| + } else { // French secondary processing
|
| + uint8_t frenchBuff[UCOL_MAX_BUFFER];
|
| + int32_t frenchIndex = 0;
|
| + // Here we are going backwards.
|
| + // If the iterator is at the beggining, it should be
|
| + // moved to end.
|
| + if(wasDoingPrimary) {
|
| + s.iterator->move(s.iterator, 0, UITER_LIMIT);
|
| + cces = 0;
|
| + }
|
| + for(;;) {
|
| + if(i == count) {
|
| + goto saveState;
|
| + }
|
| + if(canUpdateState) {
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| + }
|
| + CE = ucol_IGetPrevCE(coll, &s, status);
|
| + cces++;
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + // Add the level separator
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + byteCountOrFrenchDone = 0;
|
| + // Restart the iteration an move to the next level
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + level = UCOL_PSK_CASE;
|
| + break;
|
| + }
|
| + if(isContinuation(CE)) { // if it's a continuation, we want to save it and
|
| + // reverse when we get a first non-continuation CE.
|
| + CE >>= 8;
|
| + frenchBuff[frenchIndex++] = (uint8_t)CE;
|
| + } else if(!isShiftedCE(CE, LVT, &wasShifted)) {
|
| + CE >>= 8; /* get secondary */
|
| + if(!frenchIndex) {
|
| + if(CE != 0) {
|
| + dest[i++]=(uint8_t)CE;
|
| + }
|
| + } else {
|
| + frenchBuff[frenchIndex++] = (uint8_t)CE;
|
| + frenchIndex -= usedFrench;
|
| + usedFrench = 0;
|
| + while(i < count && frenchIndex) {
|
| + dest[i++] = frenchBuff[--frenchIndex];
|
| + usedFrench++;
|
| + }
|
| + }
|
| + }
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + } else {
|
| + canUpdateState = TRUE;
|
| + }
|
| + }
|
| + }
|
| + } else {
|
| + level = UCOL_PSK_CASE;
|
| + }
|
| + /* fall through to next level */
|
| + case UCOL_PSK_CASE:
|
| + if(ucol_getAttribute(coll, UCOL_CASE_LEVEL, status) == UCOL_ON) {
|
| + uint32_t caseShift = UCOL_CASE_SHIFT_START;
|
| + uint8_t caseByte = UCOL_CASE_BYTE_START;
|
| + uint8_t caseBits = 0;
|
| +
|
| + for(;;) {
|
| + U_ASSERT(caseShift <= UCOL_CASE_SHIFT_START);
|
| + if(i == count) {
|
| + goto saveState;
|
| + }
|
| + // We should save the state only if we
|
| + // are sure that we are done with the
|
| + // previous iterator state
|
| + if(canUpdateState) {
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| + }
|
| + CE = ucol_IGetNextCE(coll, &s, status);
|
| + cces++;
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + // On the case level we might have an unfinished
|
| + // case byte. Add one if it's started.
|
| + if(caseShift != UCOL_CASE_SHIFT_START) {
|
| + dest[i++] = caseByte;
|
| + }
|
| + cces = 0;
|
| + // We have finished processing CEs on this level.
|
| + // However, we don't know if we have enough space
|
| + // to add a case level terminator.
|
| + if(i < count) {
|
| + // Add the level separator
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + // Restart the iteration and move to the
|
| + // next level
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + level = UCOL_PSK_TERTIARY;
|
| + } else {
|
| + canUpdateState = FALSE;
|
| + }
|
| + break;
|
| + }
|
| +
|
| + if(!isShiftedCE(CE, LVT, &wasShifted)) {
|
| + if(!isContinuation(CE) && ((CE & UCOL_PRIMARYMASK) != 0 || strength > UCOL_PRIMARY)) {
|
| + // do the case level if we need to do it. We don't want to calculate
|
| + // case level for primary ignorables if we have only primary strength and case level
|
| + // otherwise we would break well formedness of CEs
|
| + CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
|
| + caseBits = (uint8_t)(CE & 0xC0);
|
| + // this copies the case level logic from the
|
| + // sort key generation code
|
| + if(CE != 0) {
|
| + if (caseShift == 0) {
|
| + dest[i++] = caseByte;
|
| + caseShift = UCOL_CASE_SHIFT_START;
|
| + caseByte = UCOL_CASE_BYTE_START;
|
| + }
|
| + if(coll->caseFirst == UCOL_UPPER_FIRST) {
|
| + if((caseBits & 0xC0) == 0) {
|
| + caseByte |= 1 << (--caseShift);
|
| + } else {
|
| + caseByte |= 0 << (--caseShift);
|
| + /* second bit */
|
| + if(caseShift == 0) {
|
| + dest[i++] = caseByte;
|
| + caseShift = UCOL_CASE_SHIFT_START;
|
| + caseByte = UCOL_CASE_BYTE_START;
|
| + }
|
| + caseByte |= ((caseBits>>6)&1) << (--caseShift);
|
| + }
|
| + } else {
|
| + if((caseBits & 0xC0) == 0) {
|
| + caseByte |= 0 << (--caseShift);
|
| + } else {
|
| + caseByte |= 1 << (--caseShift);
|
| + /* second bit */
|
| + if(caseShift == 0) {
|
| + dest[i++] = caseByte;
|
| + caseShift = UCOL_CASE_SHIFT_START;
|
| + caseByte = UCOL_CASE_BYTE_START;
|
| + }
|
| + caseByte |= ((caseBits>>7)&1) << (--caseShift);
|
| + }
|
| + }
|
| + }
|
| +
|
| + }
|
| + }
|
| + // Not sure this is correct for the case level - revisit
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + } else {
|
| + canUpdateState = TRUE;
|
| + }
|
| + }
|
| + } else {
|
| + level = UCOL_PSK_TERTIARY;
|
| + }
|
| + /* fall through to next level */
|
| + case UCOL_PSK_TERTIARY:
|
| + if(strength >= UCOL_TERTIARY) {
|
| + for(;;) {
|
| + if(i == count) {
|
| + goto saveState;
|
| + }
|
| + // We should save the state only if we
|
| + // are sure that we are done with the
|
| + // previous iterator state
|
| + if(canUpdateState) {
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| + }
|
| + CE = ucol_IGetNextCE(coll, &s, status);
|
| + cces++;
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + // Add the level separator
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + byteCountOrFrenchDone = 0;
|
| + // Restart the iteration an move to the
|
| + // second level
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + cces = 0;
|
| + level = UCOL_PSK_QUATERNARY;
|
| + break;
|
| + }
|
| + if(!isShiftedCE(CE, LVT, &wasShifted)) {
|
| + notIsContinuation = !isContinuation(CE);
|
| +
|
| + if(notIsContinuation) {
|
| + CE = (uint8_t)(CE & UCOL_BYTE_SIZE_MASK);
|
| + CE ^= coll->caseSwitch;
|
| + CE &= coll->tertiaryMask;
|
| + } else {
|
| + CE = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
|
| + }
|
| +
|
| + if(CE != 0) {
|
| + dest[i++]=(uint8_t)CE;
|
| + }
|
| + }
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + } else {
|
| + canUpdateState = TRUE;
|
| + }
|
| + }
|
| + } else {
|
| + // if we're not doing tertiary
|
| + // skip to the end
|
| + level = UCOL_PSK_NULL;
|
| + }
|
| + /* fall through to next level */
|
| + case UCOL_PSK_QUATERNARY:
|
| + if(strength >= UCOL_QUATERNARY) {
|
| + for(;;) {
|
| + if(i == count) {
|
| + goto saveState;
|
| + }
|
| + // We should save the state only if we
|
| + // are sure that we are done with the
|
| + // previous iterator state
|
| + if(canUpdateState) {
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| + }
|
| + CE = ucol_IGetNextCE(coll, &s, status);
|
| + cces++;
|
| + if(CE==UCOL_NO_MORE_CES) {
|
| + // Add the level separator
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + //dest[i++] = UCOL_LEVELTERMINATOR;
|
| + byteCountOrFrenchDone = 0;
|
| + // Restart the iteration an move to the
|
| + // second level
|
| + s.iterator->move(s.iterator, 0, UITER_START);
|
| + cces = 0;
|
| + level = UCOL_PSK_QUIN;
|
| + break;
|
| + }
|
| + if(CE==0)
|
| + continue;
|
| + if(isShiftedCE(CE, LVT, &wasShifted)) {
|
| + CE >>= 16; /* get primary */
|
| + if(CE != 0) {
|
| + if(byteCountOrFrenchDone == 0) {
|
| + dest[i++]=(uint8_t)(CE >> 8);
|
| + } else {
|
| + byteCountOrFrenchDone = 0;
|
| + }
|
| + if((CE &=0xff)!=0) {
|
| + if(i==count) {
|
| + /* overflow */
|
| + byteCountOrFrenchDone = 1;
|
| + goto saveState;
|
| + }
|
| + dest[i++]=(uint8_t)CE;
|
| + }
|
| + }
|
| + } else {
|
| + notIsContinuation = !isContinuation(CE);
|
| + if(notIsContinuation) {
|
| + if(s.flags & UCOL_WAS_HIRAGANA) { // This was Hiragana and we need to note it
|
| + dest[i++] = UCOL_HIRAGANA_QUAD;
|
| + } else {
|
| + dest[i++] = 0xFF;
|
| + }
|
| + }
|
| + }
|
| + if(uprv_numAvailableExpCEs(s)) {
|
| + canUpdateState = FALSE;
|
| + } else {
|
| + canUpdateState = TRUE;
|
| + }
|
| + }
|
| + } else {
|
| + // if we're not doing quaternary
|
| + // skip to the end
|
| + level = UCOL_PSK_NULL;
|
| + }
|
| + /* fall through to next level */
|
| + case UCOL_PSK_QUIN:
|
| + level = UCOL_PSK_IDENTICAL;
|
| + /* fall through to next level */
|
| + case UCOL_PSK_IDENTICAL:
|
| + if(strength >= UCOL_IDENTICAL) {
|
| + UChar32 first, second;
|
| + int32_t bocsuBytesWritten = 0;
|
| + // We always need to do identical on
|
| + // the NFD form of the string.
|
| + if(normIter == NULL) {
|
| + // we arrived from the level below and
|
| + // normalization was not turned on.
|
| + // therefore, we need to make a fresh NFD iterator
|
| + normIter = unorm_openIter(stackNormIter, sizeof(stackNormIter), status);
|
| + s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
|
| + } else if(!doingIdenticalFromStart) {
|
| + // there is an iterator, but we did some other levels.
|
| + // therefore, we have a FCD iterator - need to make
|
| + // a NFD one.
|
| + // normIter being at the beginning does not guarantee
|
| + // that the underlying iterator is at the beginning
|
| + iter->move(iter, 0, UITER_START);
|
| + s.iterator = unorm_setIter(normIter, iter, UNORM_NFD, status);
|
| + }
|
| + // At this point we have a NFD iterator that is positioned
|
| + // in the right place
|
| + if(U_FAILURE(*status)) {
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| + first = uiter_previous32(s.iterator);
|
| + // maybe we're at the start of the string
|
| + if(first == U_SENTINEL) {
|
| + first = 0;
|
| + } else {
|
| + uiter_next32(s.iterator);
|
| + }
|
| +
|
| + j = 0;
|
| + for(;;) {
|
| + if(i == count) {
|
| + if(j+1 < bocsuBytesWritten) {
|
| + bocsuBytesUsed = j+1;
|
| + }
|
| + goto saveState;
|
| + }
|
| +
|
| + // On identical level, we will always save
|
| + // the state if we reach this point, since
|
| + // we don't depend on getNextCE for content
|
| + // all the content is in our buffer and we
|
| + // already either stored the full buffer OR
|
| + // otherwise we won't arrive here.
|
| + newState = s.iterator->getState(s.iterator);
|
| + if(newState != UITER_NO_STATE) {
|
| + iterState = newState;
|
| + cces = 0;
|
| + }
|
| +
|
| + uint8_t buff[4];
|
| + second = uiter_next32(s.iterator);
|
| + cces++;
|
| +
|
| + // end condition for identical level
|
| + if(second == U_SENTINEL) {
|
| + terminatePSKLevel(level, maxLevel, i, dest);
|
| + level = UCOL_PSK_NULL;
|
| + break;
|
| + }
|
| + bocsuBytesWritten = u_writeIdenticalLevelRunTwoChars(first, second, buff);
|
| + first = second;
|
| +
|
| + j = 0;
|
| + if(bocsuBytesUsed != 0) {
|
| + while(bocsuBytesUsed-->0) {
|
| + j++;
|
| + }
|
| + }
|
| +
|
| + while(i < count && j < bocsuBytesWritten) {
|
| + dest[i++] = buff[j++];
|
| + }
|
| + }
|
| +
|
| + } else {
|
| + level = UCOL_PSK_NULL;
|
| + }
|
| + /* fall through to next level */
|
| + case UCOL_PSK_NULL:
|
| + j = i;
|
| + while(j<count) {
|
| + dest[j++]=0;
|
| + }
|
| + break;
|
| + default:
|
| + *status = U_INTERNAL_PROGRAM_ERROR;
|
| + UTRACE_EXIT_STATUS(*status);
|
| + return 0;
|
| + }
|
| +
|
| +saveState:
|
| + // Now we need to return stuff. First we want to see whether we have
|
| + // done everything for the current state of iterator.
|
| + if(byteCountOrFrenchDone
|
| + || canUpdateState == FALSE
|
| + || (newState = s.iterator->getState(s.iterator)) == UITER_NO_STATE)
|
| + {
|
| + // Any of above mean that the previous transaction
|
| + // wasn't finished and that we should store the
|
| + // previous iterator state.
|
| + state[0] = iterState;
|
| + } else {
|
| + // The transaction is complete. We will continue in the next iteration.
|
| + state[0] = s.iterator->getState(s.iterator);
|
| + cces = 0;
|
| + }
|
| + // Store the number of bocsu bytes written.
|
| + if((bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) != bocsuBytesUsed) {
|
| + *status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + }
|
| + state[1] = (bocsuBytesUsed & UCOL_PSK_BOCSU_BYTES_MASK) << UCOL_PSK_BOCSU_BYTES_SHIFT;
|
| +
|
| + // Next we put in the level of comparison
|
| + state[1] |= ((level & UCOL_PSK_LEVEL_MASK) << UCOL_PSK_LEVEL_SHIFT);
|
| +
|
| + // If we are doing French, we need to store whether we have just finished the French level
|
| + if(level == UCOL_PSK_SECONDARY && doingFrench) {
|
| + state[1] |= (((state[0] == 0) & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
|
| + } else {
|
| + state[1] |= ((byteCountOrFrenchDone & UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_MASK) << UCOL_PSK_BYTE_COUNT_OR_FRENCH_DONE_SHIFT);
|
| + }
|
| +
|
| + // Was the latest CE shifted
|
| + if(wasShifted) {
|
| + state[1] |= 1 << UCOL_PSK_WAS_SHIFTED_SHIFT;
|
| + }
|
| + // Check for cces overflow
|
| + if((cces & UCOL_PSK_CONSUMED_CES_MASK) != cces) {
|
| + *status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + }
|
| + // Store cces
|
| + state[1] |= ((cces & UCOL_PSK_CONSUMED_CES_MASK) << UCOL_PSK_CONSUMED_CES_SHIFT);
|
| +
|
| + // Check for French overflow
|
| + if((usedFrench & UCOL_PSK_USED_FRENCH_MASK) != usedFrench) {
|
| + *status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + }
|
| + // Store number of bytes written in the French secondary continuation sequence
|
| + state[1] |= ((usedFrench & UCOL_PSK_USED_FRENCH_MASK) << UCOL_PSK_USED_FRENCH_SHIFT);
|
| +
|
| +
|
| + // If we have used normalizing iterator, get rid of it
|
| + if(normIter != NULL) {
|
| + unorm_closeIter(normIter);
|
| + }
|
| +
|
| + /* To avoid memory leak, free the offset buffer if necessary. */
|
| + ucol_freeOffsetBuffer(&s);
|
| +
|
| + // Return number of meaningful sortkey bytes.
|
| + UTRACE_DATA4(UTRACE_VERBOSE, "dest = %vb, state=%d %d",
|
| + dest,i, state[0], state[1]);
|
| + UTRACE_EXIT_VALUE(i);
|
| + return i;
|
| +}
|
| +
|
| +/**
|
| + * Produce a bound for a given sortkey and a number of levels.
|
| + */
|
| +U_CAPI int32_t U_EXPORT2
|
| +ucol_getBound(const uint8_t *source,
|
| + int32_t sourceLength,
|
| + UColBoundMode boundType,
|
| + uint32_t noOfLevels,
|
| + uint8_t *result,
|
| + int32_t resultLength,
|
| + UErrorCode *status)
|
| +{
|
| + // consistency checks
|
| + if(status == NULL || U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| + if(source == NULL) {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return 0;
|
| + }
|
| +
|
| + int32_t sourceIndex = 0;
|
| + // Scan the string until we skip enough of the key OR reach the end of the key
|
| + do {
|
| + sourceIndex++;
|
| + if(source[sourceIndex] == UCOL_LEVELTERMINATOR) {
|
| + noOfLevels--;
|
| + }
|
| + } while (noOfLevels > 0
|
| + && (source[sourceIndex] != 0 || sourceIndex < sourceLength));
|
| +
|
| + if((source[sourceIndex] == 0 || sourceIndex == sourceLength)
|
| + && noOfLevels > 0) {
|
| + *status = U_SORT_KEY_TOO_SHORT_WARNING;
|
| + }
|
| +
|
| +
|
| + // READ ME: this code assumes that the values for boundType
|
| + // enum will not changes. They are set so that the enum value
|
| + // corresponds to the number of extra bytes each bound type
|
| + // needs.
|
| + if(result != NULL && resultLength >= sourceIndex+boundType) {
|
| + uprv_memcpy(result, source, sourceIndex);
|
| + switch(boundType) {
|
| + // Lower bound just gets terminated. No extra bytes
|
| + case UCOL_BOUND_LOWER: // = 0
|
| + break;
|
| + // Upper bound needs one extra byte
|
| + case UCOL_BOUND_UPPER: // = 1
|
| + result[sourceIndex++] = 2;
|
| + break;
|
| + // Upper long bound needs two extra bytes
|
| + case UCOL_BOUND_UPPER_LONG: // = 2
|
| + result[sourceIndex++] = 0xFF;
|
| + result[sourceIndex++] = 0xFF;
|
| + break;
|
| + default:
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return 0;
|
| + }
|
| + result[sourceIndex++] = 0;
|
| +
|
| + return sourceIndex;
|
| + } else {
|
| + return sourceIndex+boundType+1;
|
| + }
|
| +}
|
| +
|
| +/****************************************************************************/
|
| +/* Following are the functions that deal with the properties of a collator */
|
| +/* there are new APIs and some compatibility APIs */
|
| +/****************************************************************************/
|
| +
|
| +static inline void
|
| +ucol_addLatinOneEntry(UCollator *coll, UChar ch, uint32_t CE,
|
| + int32_t *primShift, int32_t *secShift, int32_t *terShift)
|
| +{
|
| + uint8_t primary1 = 0, primary2 = 0, secondary = 0, tertiary = 0;
|
| + UBool reverseSecondary = FALSE;
|
| + UBool continuation = isContinuation(CE);
|
| + if(!continuation) {
|
| + tertiary = (uint8_t)((CE & coll->tertiaryMask));
|
| + tertiary ^= coll->caseSwitch;
|
| + reverseSecondary = TRUE;
|
| + } else {
|
| + tertiary = (uint8_t)((CE & UCOL_REMOVE_CONTINUATION));
|
| + tertiary &= UCOL_REMOVE_CASE;
|
| + reverseSecondary = FALSE;
|
| + }
|
| +
|
| + secondary = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary2 = (uint8_t)((CE >>= 8) & UCOL_BYTE_SIZE_MASK);
|
| + primary1 = (uint8_t)(CE >> 8);
|
| +
|
| + if(primary1 != 0) {
|
| + if (coll->leadBytePermutationTable != NULL && !continuation) {
|
| + primary1 = coll->leadBytePermutationTable[primary1];
|
| + }
|
| +
|
| + coll->latinOneCEs[ch] |= (primary1 << *primShift);
|
| + *primShift -= 8;
|
| + }
|
| + if(primary2 != 0) {
|
| + if(*primShift < 0) {
|
| + coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
|
| + return;
|
| + }
|
| + coll->latinOneCEs[ch] |= (primary2 << *primShift);
|
| + *primShift -= 8;
|
| + }
|
| + if(secondary != 0) {
|
| + if(reverseSecondary && coll->frenchCollation == UCOL_ON) { // reverse secondary
|
| + coll->latinOneCEs[coll->latinOneTableLen+ch] >>= 8; // make space for secondary
|
| + coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << 24);
|
| + } else { // normal case
|
| + coll->latinOneCEs[coll->latinOneTableLen+ch] |= (secondary << *secShift);
|
| + }
|
| + *secShift -= 8;
|
| + }
|
| + if(tertiary != 0) {
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+ch] |= (tertiary << *terShift);
|
| + *terShift -= 8;
|
| + }
|
| +}
|
| +
|
| +static inline UBool
|
| +ucol_resizeLatinOneTable(UCollator *coll, int32_t size, UErrorCode *status) {
|
| + uint32_t *newTable = (uint32_t *)uprv_malloc(size*sizeof(uint32_t)*3);
|
| + if(newTable == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + coll->latinOneFailed = TRUE;
|
| + return FALSE;
|
| + }
|
| + int32_t sizeToCopy = ((size<coll->latinOneTableLen)?size:coll->latinOneTableLen)*sizeof(uint32_t);
|
| + uprv_memset(newTable, 0, size*sizeof(uint32_t)*3);
|
| + uprv_memcpy(newTable, coll->latinOneCEs, sizeToCopy);
|
| + uprv_memcpy(newTable+size, coll->latinOneCEs+coll->latinOneTableLen, sizeToCopy);
|
| + uprv_memcpy(newTable+2*size, coll->latinOneCEs+2*coll->latinOneTableLen, sizeToCopy);
|
| + coll->latinOneTableLen = size;
|
| + uprv_free(coll->latinOneCEs);
|
| + coll->latinOneCEs = newTable;
|
| + return TRUE;
|
| +}
|
| +
|
| +static UBool
|
| +ucol_setUpLatinOne(UCollator *coll, UErrorCode *status) {
|
| + UBool result = TRUE;
|
| + if(coll->latinOneCEs == NULL) {
|
| + coll->latinOneCEs = (uint32_t *)uprv_malloc(sizeof(uint32_t)*UCOL_LATINONETABLELEN*3);
|
| + if(coll->latinOneCEs == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + return FALSE;
|
| + }
|
| + coll->latinOneTableLen = UCOL_LATINONETABLELEN;
|
| + }
|
| + UChar ch = 0;
|
| + UCollationElements *it = ucol_openElements(coll, &ch, 1, status);
|
| + // Check for null pointer
|
| + if (U_FAILURE(*status)) {
|
| + return FALSE;
|
| + }
|
| + uprv_memset(coll->latinOneCEs, 0, sizeof(uint32_t)*coll->latinOneTableLen*3);
|
| +
|
| + int32_t primShift = 24, secShift = 24, terShift = 24;
|
| + uint32_t CE = 0;
|
| + int32_t contractionOffset = UCOL_ENDOFLATINONERANGE+1;
|
| +
|
| + // TODO: make safe if you get more than you wanted...
|
| + for(ch = 0; ch <= UCOL_ENDOFLATINONERANGE; ch++) {
|
| + primShift = 24; secShift = 24; terShift = 24;
|
| + if(ch < 0x100) {
|
| + CE = coll->latinOneMapping[ch];
|
| + } else {
|
| + CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, ch);
|
| + if(CE == UCOL_NOT_FOUND && coll->UCA) {
|
| + CE = UTRIE_GET32_FROM_LEAD(&coll->UCA->mapping, ch);
|
| + }
|
| + }
|
| + if(CE < UCOL_NOT_FOUND) {
|
| + ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
|
| + } else {
|
| + switch (getCETag(CE)) {
|
| + case EXPANSION_TAG:
|
| + case DIGIT_TAG:
|
| + ucol_setText(it, &ch, 1, status);
|
| + while((int32_t)(CE = ucol_next(it, status)) != UCOL_NULLORDER) {
|
| + if(primShift < 0 || secShift < 0 || terShift < 0) {
|
| + coll->latinOneCEs[ch] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+ch] = UCOL_BAIL_OUT_CE;
|
| + break;
|
| + }
|
| + ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
|
| + }
|
| + break;
|
| + case CONTRACTION_TAG:
|
| + // here is the trick
|
| + // F2 is contraction. We do something very similar to contractions
|
| + // but have two indices, one in the real contraction table and the
|
| + // other to where we stuffed things. This hopes that we don't have
|
| + // many contractions (this should work for latin-1 tables).
|
| + {
|
| + if((CE & 0x00FFF000) != 0) {
|
| + *status = U_UNSUPPORTED_ERROR;
|
| + goto cleanup_after_failure;
|
| + }
|
| +
|
| + const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE);
|
| +
|
| + CE |= (contractionOffset & 0xFFF) << 12; // insert the offset in latin-1 table
|
| +
|
| + coll->latinOneCEs[ch] = CE;
|
| + coll->latinOneCEs[coll->latinOneTableLen+ch] = CE;
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+ch] = CE;
|
| +
|
| + // We're going to jump into contraction table, pick the elements
|
| + // and use them
|
| + do {
|
| + CE = *(coll->contractionCEs +
|
| + (UCharOffset - coll->contractionIndex));
|
| + if(CE > UCOL_NOT_FOUND && getCETag(CE) == EXPANSION_TAG) {
|
| + uint32_t size;
|
| + uint32_t i; /* general counter */
|
| + uint32_t *CEOffset = (uint32_t *)coll->image+getExpansionOffset(CE); /* find the offset to expansion table */
|
| + size = getExpansionCount(CE);
|
| + //CE = *CEOffset++;
|
| + if(size != 0) { /* if there are less than 16 elements in expansion, we don't terminate */
|
| + for(i = 0; i<size; i++) {
|
| + if(primShift < 0 || secShift < 0 || terShift < 0) {
|
| + coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + break;
|
| + }
|
| + ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
|
| + }
|
| + } else { /* else, we do */
|
| + while(*CEOffset != 0) {
|
| + if(primShift < 0 || secShift < 0 || terShift < 0) {
|
| + coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + break;
|
| + }
|
| + ucol_addLatinOneEntry(coll, (UChar)contractionOffset, *CEOffset++, &primShift, &secShift, &terShift);
|
| + }
|
| + }
|
| + contractionOffset++;
|
| + } else if(CE < UCOL_NOT_FOUND) {
|
| + ucol_addLatinOneEntry(coll, (UChar)contractionOffset++, CE, &primShift, &secShift, &terShift);
|
| + } else {
|
| + coll->latinOneCEs[(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + coll->latinOneCEs[2*coll->latinOneTableLen+(UChar)contractionOffset] = UCOL_BAIL_OUT_CE;
|
| + contractionOffset++;
|
| + }
|
| + UCharOffset++;
|
| + primShift = 24; secShift = 24; terShift = 24;
|
| + if(contractionOffset == coll->latinOneTableLen) { // we need to reallocate
|
| + if(!ucol_resizeLatinOneTable(coll, 2*coll->latinOneTableLen, status)) {
|
| + goto cleanup_after_failure;
|
| + }
|
| + }
|
| + } while(*UCharOffset != 0xFFFF);
|
| + }
|
| + break;;
|
| + case SPEC_PROC_TAG:
|
| + {
|
| + // 0xB7 is a precontext character defined in UCA5.1, a special
|
| + // handle is implemeted in order to save LatinOne table for
|
| + // most locales.
|
| + if (ch==0xb7) {
|
| + ucol_addLatinOneEntry(coll, ch, CE, &primShift, &secShift, &terShift);
|
| + }
|
| + else {
|
| + goto cleanup_after_failure;
|
| + }
|
| + }
|
| + break;
|
| + default:
|
| + goto cleanup_after_failure;
|
| + }
|
| + }
|
| + }
|
| + // compact table
|
| + if(contractionOffset < coll->latinOneTableLen) {
|
| + if(!ucol_resizeLatinOneTable(coll, contractionOffset, status)) {
|
| + goto cleanup_after_failure;
|
| + }
|
| + }
|
| + ucol_closeElements(it);
|
| + return result;
|
| +
|
| +cleanup_after_failure:
|
| + // status should already be set before arriving here.
|
| + coll->latinOneFailed = TRUE;
|
| + ucol_closeElements(it);
|
| + return FALSE;
|
| +}
|
| +
|
| +void ucol_updateInternalState(UCollator *coll, UErrorCode *status) {
|
| + if(U_SUCCESS(*status)) {
|
| + if(coll->caseFirst == UCOL_UPPER_FIRST) {
|
| + coll->caseSwitch = UCOL_CASE_SWITCH;
|
| + } else {
|
| + coll->caseSwitch = UCOL_NO_CASE_SWITCH;
|
| + }
|
| +
|
| + if(coll->caseLevel == UCOL_ON || coll->caseFirst == UCOL_OFF) {
|
| + coll->tertiaryMask = UCOL_REMOVE_CASE;
|
| + coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
|
| + coll->tertiaryAddition = (int8_t)UCOL_FLAG_BIT_MASK_CASE_SW_OFF; /* Should be 0x80 */
|
| + coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_OFF;
|
| + coll->tertiaryBottom = UCOL_COMMON_BOT3;
|
| + } else {
|
| + coll->tertiaryMask = UCOL_KEEP_CASE;
|
| + coll->tertiaryAddition = UCOL_FLAG_BIT_MASK_CASE_SW_ON;
|
| + if(coll->caseFirst == UCOL_UPPER_FIRST) {
|
| + coll->tertiaryCommon = UCOL_COMMON3_UPPERFIRST;
|
| + coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_UPPER;
|
| + coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_UPPER;
|
| + } else {
|
| + coll->tertiaryCommon = UCOL_COMMON3_NORMAL;
|
| + coll->tertiaryTop = UCOL_COMMON_TOP3_CASE_SW_LOWER;
|
| + coll->tertiaryBottom = UCOL_COMMON_BOTTOM3_CASE_SW_LOWER;
|
| + }
|
| + }
|
| +
|
| + /* Set the compression values */
|
| + uint8_t tertiaryTotal = (uint8_t)(coll->tertiaryTop - UCOL_COMMON_BOT3-1);
|
| + coll->tertiaryTopCount = (uint8_t)(UCOL_PROPORTION3*tertiaryTotal); /* we multilply double with int, but need only int */
|
| + coll->tertiaryBottomCount = (uint8_t)(tertiaryTotal - coll->tertiaryTopCount);
|
| +
|
| + if(coll->caseLevel == UCOL_OFF && coll->strength == UCOL_TERTIARY
|
| + && coll->frenchCollation == UCOL_OFF && coll->alternateHandling == UCOL_NON_IGNORABLE)
|
| + {
|
| + coll->sortKeyGen = ucol_calcSortKeySimpleTertiary;
|
| + } else {
|
| + coll->sortKeyGen = ucol_calcSortKey;
|
| + }
|
| + if(coll->caseLevel == UCOL_OFF && coll->strength <= UCOL_TERTIARY && coll->numericCollation == UCOL_OFF
|
| + && coll->alternateHandling == UCOL_NON_IGNORABLE && !coll->latinOneFailed)
|
| + {
|
| + if(coll->latinOneCEs == NULL || coll->latinOneRegenTable) {
|
| + if(ucol_setUpLatinOne(coll, status)) { // if we succeed in building latin1 table, we'll use it
|
| + //fprintf(stderr, "F");
|
| + coll->latinOneUse = TRUE;
|
| + } else {
|
| + coll->latinOneUse = FALSE;
|
| + }
|
| + if(*status == U_UNSUPPORTED_ERROR) {
|
| + *status = U_ZERO_ERROR;
|
| + }
|
| + } else { // latin1Table exists and it doesn't need to be regenerated, just use it
|
| + coll->latinOneUse = TRUE;
|
| + }
|
| + } else {
|
| + coll->latinOneUse = FALSE;
|
| + }
|
| + }
|
| +}
|
| +
|
| +U_CAPI uint32_t U_EXPORT2
|
| +ucol_setVariableTop(UCollator *coll, const UChar *varTop, int32_t len, UErrorCode *status) {
|
| + if(U_FAILURE(*status) || coll == NULL) {
|
| + return 0;
|
| + }
|
| + if(len == -1) {
|
| + len = u_strlen(varTop);
|
| + }
|
| + if(len == 0) {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return 0;
|
| + }
|
| +
|
| + collIterate s;
|
| + IInit_collIterate(coll, varTop, len, &s, status);
|
| + if(U_FAILURE(*status)) {
|
| + return 0;
|
| + }
|
| +
|
| + uint32_t CE = ucol_IGetNextCE(coll, &s, status);
|
| +
|
| + /* here we check if we have consumed all characters */
|
| + /* you can put in either one character or a contraction */
|
| + /* you shouldn't put more... */
|
| + if(s.pos != s.endp || CE == UCOL_NO_MORE_CES) {
|
| + *status = U_CE_NOT_FOUND_ERROR;
|
| + return 0;
|
| + }
|
| +
|
| + uint32_t nextCE = ucol_IGetNextCE(coll, &s, status);
|
| +
|
| + if(isContinuation(nextCE) && (nextCE & UCOL_PRIMARYMASK) != 0) {
|
| + *status = U_PRIMARY_TOO_LONG_ERROR;
|
| + return 0;
|
| + }
|
| + if(coll->variableTopValue != (CE & UCOL_PRIMARYMASK)>>16) {
|
| + coll->variableTopValueisDefault = FALSE;
|
| + coll->variableTopValue = (CE & UCOL_PRIMARYMASK)>>16;
|
| + }
|
| +
|
| + /* To avoid memory leak, free the offset buffer if necessary. */
|
| + ucol_freeOffsetBuffer(&s);
|
| +
|
| + return CE & UCOL_PRIMARYMASK;
|
| +}
|
| +
|
| +U_CAPI uint32_t U_EXPORT2 ucol_getVariableTop(const UCollator *coll, UErrorCode *status) {
|
| + if(U_FAILURE(*status) || coll == NULL) {
|
| + return 0;
|
| + }
|
| + return coll->variableTopValue<<16;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +ucol_restoreVariableTop(UCollator *coll, const uint32_t varTop, UErrorCode *status) {
|
| + if(U_FAILURE(*status) || coll == NULL) {
|
| + return;
|
| + }
|
| +
|
| + if(coll->variableTopValue != (varTop & UCOL_PRIMARYMASK)>>16) {
|
| + coll->variableTopValueisDefault = FALSE;
|
| + coll->variableTopValue = (varTop & UCOL_PRIMARYMASK)>>16;
|
| + }
|
| +}
|
| +/* Attribute setter API */
|
| +U_CAPI void U_EXPORT2
|
| +ucol_setAttribute(UCollator *coll, UColAttribute attr, UColAttributeValue value, UErrorCode *status) {
|
| + if(U_FAILURE(*status) || coll == NULL) {
|
| + return;
|
| + }
|
| + UColAttributeValue oldFrench = coll->frenchCollation;
|
| + UColAttributeValue oldCaseFirst = coll->caseFirst;
|
| + switch(attr) {
|
| + case UCOL_NUMERIC_COLLATION: /* sort substrings of digits as numbers */
|
| + if(value == UCOL_ON) {
|
| + coll->numericCollation = UCOL_ON;
|
| + coll->numericCollationisDefault = FALSE;
|
| + } else if (value == UCOL_OFF) {
|
| + coll->numericCollation = UCOL_OFF;
|
| + coll->numericCollationisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->numericCollationisDefault = TRUE;
|
| + coll->numericCollation = (UColAttributeValue)coll->options->numericCollation;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + }
|
| + break;
|
| + case UCOL_HIRAGANA_QUATERNARY_MODE: /* special quaternary values for Hiragana */
|
| + if(value == UCOL_ON) {
|
| + coll->hiraganaQ = UCOL_ON;
|
| + coll->hiraganaQisDefault = FALSE;
|
| + } else if (value == UCOL_OFF) {
|
| + coll->hiraganaQ = UCOL_OFF;
|
| + coll->hiraganaQisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->hiraganaQisDefault = TRUE;
|
| + coll->hiraganaQ = (UColAttributeValue)coll->options->hiraganaQ;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + }
|
| + break;
|
| + case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
|
| + if(value == UCOL_ON) {
|
| + coll->frenchCollation = UCOL_ON;
|
| + coll->frenchCollationisDefault = FALSE;
|
| + } else if (value == UCOL_OFF) {
|
| + coll->frenchCollation = UCOL_OFF;
|
| + coll->frenchCollationisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->frenchCollationisDefault = TRUE;
|
| + coll->frenchCollation = (UColAttributeValue)coll->options->frenchCollation;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR ;
|
| + }
|
| + break;
|
| + case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
|
| + if(value == UCOL_SHIFTED) {
|
| + coll->alternateHandling = UCOL_SHIFTED;
|
| + coll->alternateHandlingisDefault = FALSE;
|
| + } else if (value == UCOL_NON_IGNORABLE) {
|
| + coll->alternateHandling = UCOL_NON_IGNORABLE;
|
| + coll->alternateHandlingisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->alternateHandlingisDefault = TRUE;
|
| + coll->alternateHandling = (UColAttributeValue)coll->options->alternateHandling ;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR ;
|
| + }
|
| + break;
|
| + case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
|
| + if(value == UCOL_LOWER_FIRST) {
|
| + coll->caseFirst = UCOL_LOWER_FIRST;
|
| + coll->caseFirstisDefault = FALSE;
|
| + } else if (value == UCOL_UPPER_FIRST) {
|
| + coll->caseFirst = UCOL_UPPER_FIRST;
|
| + coll->caseFirstisDefault = FALSE;
|
| + } else if (value == UCOL_OFF) {
|
| + coll->caseFirst = UCOL_OFF;
|
| + coll->caseFirstisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->caseFirst = (UColAttributeValue)coll->options->caseFirst;
|
| + coll->caseFirstisDefault = TRUE;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR ;
|
| + }
|
| + break;
|
| + case UCOL_CASE_LEVEL: /* do we have an extra case level */
|
| + if(value == UCOL_ON) {
|
| + coll->caseLevel = UCOL_ON;
|
| + coll->caseLevelisDefault = FALSE;
|
| + } else if (value == UCOL_OFF) {
|
| + coll->caseLevel = UCOL_OFF;
|
| + coll->caseLevelisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->caseLevel = (UColAttributeValue)coll->options->caseLevel;
|
| + coll->caseLevelisDefault = TRUE;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR ;
|
| + }
|
| + break;
|
| + case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
|
| + if(value == UCOL_ON) {
|
| + coll->normalizationMode = UCOL_ON;
|
| + coll->normalizationModeisDefault = FALSE;
|
| + initializeFCD(status);
|
| + } else if (value == UCOL_OFF) {
|
| + coll->normalizationMode = UCOL_OFF;
|
| + coll->normalizationModeisDefault = FALSE;
|
| + } else if (value == UCOL_DEFAULT) {
|
| + coll->normalizationModeisDefault = TRUE;
|
| + coll->normalizationMode = (UColAttributeValue)coll->options->normalizationMode;
|
| + if(coll->normalizationMode == UCOL_ON) {
|
| + initializeFCD(status);
|
| + }
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR ;
|
| + }
|
| + break;
|
| + case UCOL_STRENGTH: /* attribute for strength */
|
| + if (value == UCOL_DEFAULT) {
|
| + coll->strengthisDefault = TRUE;
|
| + coll->strength = (UColAttributeValue)coll->options->strength;
|
| + } else if (value <= UCOL_IDENTICAL) {
|
| + coll->strengthisDefault = FALSE;
|
| + coll->strength = value;
|
| + } else {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR ;
|
| + }
|
| + break;
|
| + case UCOL_ATTRIBUTE_COUNT:
|
| + default:
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + break;
|
| + }
|
| + if(oldFrench != coll->frenchCollation || oldCaseFirst != coll->caseFirst) {
|
| + coll->latinOneRegenTable = TRUE;
|
| + } else {
|
| + coll->latinOneRegenTable = FALSE;
|
| + }
|
| + ucol_updateInternalState(coll, status);
|
| +}
|
| +
|
| +U_CAPI UColAttributeValue U_EXPORT2
|
| +ucol_getAttribute(const UCollator *coll, UColAttribute attr, UErrorCode *status) {
|
| + if(U_FAILURE(*status) || coll == NULL) {
|
| + return UCOL_DEFAULT;
|
| + }
|
| + switch(attr) {
|
| + case UCOL_NUMERIC_COLLATION:
|
| + return coll->numericCollation;
|
| + case UCOL_HIRAGANA_QUATERNARY_MODE:
|
| + return coll->hiraganaQ;
|
| + case UCOL_FRENCH_COLLATION: /* attribute for direction of secondary weights*/
|
| + return coll->frenchCollation;
|
| + case UCOL_ALTERNATE_HANDLING: /* attribute for handling variable elements*/
|
| + return coll->alternateHandling;
|
| + case UCOL_CASE_FIRST: /* who goes first, lower case or uppercase */
|
| + return coll->caseFirst;
|
| + case UCOL_CASE_LEVEL: /* do we have an extra case level */
|
| + return coll->caseLevel;
|
| + case UCOL_NORMALIZATION_MODE: /* attribute for normalization */
|
| + return coll->normalizationMode;
|
| + case UCOL_STRENGTH: /* attribute for strength */
|
| + return coll->strength;
|
| + case UCOL_ATTRIBUTE_COUNT:
|
| + default:
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + break;
|
| + }
|
| + return UCOL_DEFAULT;
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +ucol_setStrength( UCollator *coll,
|
| + UCollationStrength strength)
|
| +{
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + ucol_setAttribute(coll, UCOL_STRENGTH, strength, &status);
|
| +}
|
| +
|
| +U_CAPI UCollationStrength U_EXPORT2
|
| +ucol_getStrength(const UCollator *coll)
|
| +{
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + return ucol_getAttribute(coll, UCOL_STRENGTH, &status);
|
| +}
|
| +
|
| +U_INTERNAL int32_t U_EXPORT2
|
| +ucol_getReorderCodes(const UCollator *coll,
|
| + int32_t *dest,
|
| + int32_t destCapacity,
|
| + UErrorCode *pErrorCode) {
|
| + if (U_FAILURE(*pErrorCode)) {
|
| + return 0;
|
| + }
|
| +
|
| + if (destCapacity < 0 || (destCapacity > 0 && dest == NULL)) {
|
| + *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return 0;
|
| + }
|
| +
|
| + if (coll->reorderCodesLength > destCapacity) {
|
| + *pErrorCode = U_BUFFER_OVERFLOW_ERROR;
|
| + return coll->reorderCodesLength;
|
| + }
|
| + for (int32_t i = 0; i < coll->reorderCodesLength; i++) {
|
| + dest[i] = coll->reorderCodes[i];
|
| + }
|
| + return coll->reorderCodesLength;
|
| +}
|
| +
|
| +U_INTERNAL void U_EXPORT2
|
| +ucol_setReorderCodes(UCollator *coll,
|
| + const int32_t *reorderCodes,
|
| + int32_t reorderCodesLength,
|
| + UErrorCode *pErrorCode) {
|
| + if (U_FAILURE(*pErrorCode)) {
|
| + return;
|
| + }
|
| +
|
| + if (reorderCodesLength < 0 || (reorderCodesLength > 0 && reorderCodes == NULL)) {
|
| + *pErrorCode = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| +
|
| + uprv_free(coll->reorderCodes);
|
| + coll->reorderCodes = NULL;
|
| + coll->reorderCodesLength = 0;
|
| + if (reorderCodesLength == 0) {
|
| + uprv_free(coll->leadBytePermutationTable);
|
| + coll->leadBytePermutationTable = NULL;
|
| + return;
|
| + }
|
| + coll->reorderCodes = (int32_t*) uprv_malloc(reorderCodesLength * sizeof(int32_t));
|
| + if (coll->reorderCodes == NULL) {
|
| + *pErrorCode = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| + for (int32_t i = 0; i < reorderCodesLength; i++) {
|
| + coll->reorderCodes[i] = reorderCodes[i];
|
| + }
|
| + coll->reorderCodesLength = reorderCodesLength;
|
| + ucol_buildPermutationTable(coll, pErrorCode);
|
| + if (U_FAILURE(*pErrorCode)) {
|
| + uprv_free(coll->reorderCodes);
|
| + coll->reorderCodes = NULL;
|
| + coll->reorderCodesLength = 0;
|
| + }
|
| +}
|
| +
|
| +
|
| +/****************************************************************************/
|
| +/* Following are misc functions */
|
| +/* there are new APIs and some compatibility APIs */
|
| +/****************************************************************************/
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +ucol_getVersion(const UCollator* coll,
|
| + UVersionInfo versionInfo)
|
| +{
|
| + /* RunTime version */
|
| + uint8_t rtVersion = UCOL_RUNTIME_VERSION;
|
| + /* Builder version*/
|
| + uint8_t bdVersion = coll->image->version[0];
|
| +
|
| + /* Charset Version. Need to get the version from cnv files
|
| + * makeconv should populate cnv files with version and
|
| + * an api has to be provided in ucnv.h to obtain this version
|
| + */
|
| + uint8_t csVersion = 0;
|
| +
|
| + /* combine the version info */
|
| + uint16_t cmbVersion = (uint16_t)((rtVersion<<11) | (bdVersion<<6) | (csVersion));
|
| +
|
| + /* Tailoring rules */
|
| + versionInfo[0] = (uint8_t)(cmbVersion>>8);
|
| + versionInfo[1] = (uint8_t)cmbVersion;
|
| + versionInfo[2] = coll->image->version[1];
|
| + if(coll->UCA) {
|
| + /* Include the minor number when getting the UCA version. (major & 1f) << 3 | (minor & 7) */
|
| + versionInfo[3] = (coll->UCA->image->UCAVersion[0] & 0x1f) << 3 | (coll->UCA->image->UCAVersion[1] & 0x07);
|
| + } else {
|
| + versionInfo[3] = 0;
|
| + }
|
| +}
|
| +
|
| +
|
| +/* This internal API checks whether a character is tailored or not */
|
| +U_CAPI UBool U_EXPORT2
|
| +ucol_isTailored(const UCollator *coll, const UChar u, UErrorCode *status) {
|
| + if(U_FAILURE(*status) || coll == NULL || coll == coll->UCA) {
|
| + return FALSE;
|
| + }
|
| +
|
| + uint32_t CE = UCOL_NOT_FOUND;
|
| + const UChar *ContractionStart = NULL;
|
| + if(u < 0x100) { /* latin-1 */
|
| + CE = coll->latinOneMapping[u];
|
| + if(coll->UCA && CE == coll->UCA->latinOneMapping[u]) {
|
| + return FALSE;
|
| + }
|
| + } else { /* regular */
|
| + CE = UTRIE_GET32_FROM_LEAD(&coll->mapping, u);
|
| + }
|
| +
|
| + if(isContraction(CE)) {
|
| + ContractionStart = (UChar *)coll->image+getContractOffset(CE);
|
| + CE = *(coll->contractionCEs + (ContractionStart- coll->contractionIndex));
|
| + }
|
| +
|
| + return (UBool)(CE != UCOL_NOT_FOUND);
|
| +}
|
| +
|
| +
|
| +/****************************************************************************/
|
| +/* Following are the string compare functions */
|
| +/* */
|
| +/****************************************************************************/
|
| +
|
| +
|
| +/* ucol_checkIdent internal function. Does byte level string compare. */
|
| +/* Used by strcoll if strength == identical and strings */
|
| +/* are otherwise equal. */
|
| +/* */
|
| +/* Comparison must be done on NFD normalized strings. */
|
| +/* FCD is not good enough. */
|
| +
|
| +static
|
| +UCollationResult ucol_checkIdent(collIterate *sColl, collIterate *tColl, UBool normalize, UErrorCode *status)
|
| +{
|
| + // When we arrive here, we can have normal strings or UCharIterators. Currently they are both
|
| + // of same type, but that doesn't really mean that it will stay that way.
|
| + int32_t comparison;
|
| +
|
| + if (sColl->flags & UCOL_USE_ITERATOR) {
|
| + // The division for the array length may truncate the array size to
|
| + // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
|
| + // for all platforms anyway.
|
| + UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
|
| + UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
|
| + UNormIterator *sNIt = NULL, *tNIt = NULL;
|
| + sNIt = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
|
| + tNIt = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
|
| + sColl->iterator->move(sColl->iterator, 0, UITER_START);
|
| + tColl->iterator->move(tColl->iterator, 0, UITER_START);
|
| + UCharIterator *sIt = unorm_setIter(sNIt, sColl->iterator, UNORM_NFD, status);
|
| + UCharIterator *tIt = unorm_setIter(tNIt, tColl->iterator, UNORM_NFD, status);
|
| + comparison = u_strCompareIter(sIt, tIt, TRUE);
|
| + unorm_closeIter(sNIt);
|
| + unorm_closeIter(tNIt);
|
| + } else {
|
| + int32_t sLen = (sColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(sColl->endp - sColl->string) : -1;
|
| + const UChar *sBuf = sColl->string;
|
| + int32_t tLen = (tColl->flags & UCOL_ITER_HASLEN) ? (int32_t)(tColl->endp - tColl->string) : -1;
|
| + const UChar *tBuf = tColl->string;
|
| +
|
| + if (normalize) {
|
| + *status = U_ZERO_ERROR;
|
| + // Note: We could use Normalizer::compare() or similar, but for short strings
|
| + // which may not be in FCD it might be faster to just NFD them.
|
| + // Note: spanQuickCheckYes() + normalizeSecondAndAppend() rather than
|
| + // NFD'ing immediately might be faster for long strings,
|
| + // but string comparison is usually done on relatively short strings.
|
| + sColl->nfd->normalize(UnicodeString((sColl->flags & UCOL_ITER_HASLEN) == 0, sBuf, sLen),
|
| + sColl->writableBuffer,
|
| + *status);
|
| + tColl->nfd->normalize(UnicodeString((tColl->flags & UCOL_ITER_HASLEN) == 0, tBuf, tLen),
|
| + tColl->writableBuffer,
|
| + *status);
|
| + if(U_FAILURE(*status)) {
|
| + return UCOL_LESS;
|
| + }
|
| + comparison = sColl->writableBuffer.compareCodePointOrder(tColl->writableBuffer);
|
| + } else {
|
| + comparison = u_strCompare(sBuf, sLen, tBuf, tLen, TRUE);
|
| + }
|
| + }
|
| +
|
| + if (comparison < 0) {
|
| + return UCOL_LESS;
|
| + } else if (comparison == 0) {
|
| + return UCOL_EQUAL;
|
| + } else /* comparison > 0 */ {
|
| + return UCOL_GREATER;
|
| + }
|
| +}
|
| +
|
| +/* CEBuf - A struct and some inline functions to handle the saving */
|
| +/* of CEs in a buffer within ucol_strcoll */
|
| +
|
| +#define UCOL_CEBUF_SIZE 512
|
| +typedef struct ucol_CEBuf {
|
| + uint32_t *buf;
|
| + uint32_t *endp;
|
| + uint32_t *pos;
|
| + uint32_t localArray[UCOL_CEBUF_SIZE];
|
| +} ucol_CEBuf;
|
| +
|
| +
|
| +static
|
| +inline void UCOL_INIT_CEBUF(ucol_CEBuf *b) {
|
| + (b)->buf = (b)->pos = (b)->localArray;
|
| + (b)->endp = (b)->buf + UCOL_CEBUF_SIZE;
|
| +}
|
| +
|
| +static
|
| +void ucol_CEBuf_Expand(ucol_CEBuf *b, collIterate *ci, UErrorCode *status) {
|
| + uint32_t oldSize;
|
| + uint32_t newSize;
|
| + uint32_t *newBuf;
|
| +
|
| + ci->flags |= UCOL_ITER_ALLOCATED;
|
| + oldSize = (uint32_t)(b->pos - b->buf);
|
| + newSize = oldSize * 2;
|
| + newBuf = (uint32_t *)uprv_malloc(newSize * sizeof(uint32_t));
|
| + if(newBuf == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + }
|
| + else {
|
| + uprv_memcpy(newBuf, b->buf, oldSize * sizeof(uint32_t));
|
| + if (b->buf != b->localArray) {
|
| + uprv_free(b->buf);
|
| + }
|
| + b->buf = newBuf;
|
| + b->endp = b->buf + newSize;
|
| + b->pos = b->buf + oldSize;
|
| + }
|
| +}
|
| +
|
| +static
|
| +inline void UCOL_CEBUF_PUT(ucol_CEBuf *b, uint32_t ce, collIterate *ci, UErrorCode *status) {
|
| + if (b->pos == b->endp) {
|
| + ucol_CEBuf_Expand(b, ci, status);
|
| + }
|
| + if (U_SUCCESS(*status)) {
|
| + *(b)->pos++ = ce;
|
| + }
|
| +}
|
| +
|
| +/* This is a trick string compare function that goes in and uses sortkeys to compare */
|
| +/* It is used when compare gets in trouble and needs to bail out */
|
| +static UCollationResult ucol_compareUsingSortKeys(collIterate *sColl,
|
| + collIterate *tColl,
|
| + UErrorCode *status)
|
| +{
|
| + uint8_t sourceKey[UCOL_MAX_BUFFER], targetKey[UCOL_MAX_BUFFER];
|
| + uint8_t *sourceKeyP = sourceKey;
|
| + uint8_t *targetKeyP = targetKey;
|
| + int32_t sourceKeyLen = UCOL_MAX_BUFFER, targetKeyLen = UCOL_MAX_BUFFER;
|
| + const UCollator *coll = sColl->coll;
|
| + const UChar *source = NULL;
|
| + const UChar *target = NULL;
|
| + int32_t result = UCOL_EQUAL;
|
| + UnicodeString sourceString, targetString;
|
| + int32_t sourceLength;
|
| + int32_t targetLength;
|
| +
|
| + if(sColl->flags & UCOL_USE_ITERATOR) {
|
| + sColl->iterator->move(sColl->iterator, 0, UITER_START);
|
| + tColl->iterator->move(tColl->iterator, 0, UITER_START);
|
| + UChar32 c;
|
| + while((c=sColl->iterator->next(sColl->iterator))>=0) {
|
| + sourceString.append((UChar)c);
|
| + }
|
| + while((c=tColl->iterator->next(tColl->iterator))>=0) {
|
| + targetString.append((UChar)c);
|
| + }
|
| + source = sourceString.getBuffer();
|
| + sourceLength = sourceString.length();
|
| + target = targetString.getBuffer();
|
| + targetLength = targetString.length();
|
| + } else { // no iterators
|
| + sourceLength = (sColl->flags&UCOL_ITER_HASLEN)?(int32_t)(sColl->endp-sColl->string):-1;
|
| + targetLength = (tColl->flags&UCOL_ITER_HASLEN)?(int32_t)(tColl->endp-tColl->string):-1;
|
| + source = sColl->string;
|
| + target = tColl->string;
|
| + }
|
| +
|
| +
|
| +
|
| + sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
|
| + if(sourceKeyLen > UCOL_MAX_BUFFER) {
|
| + sourceKeyP = (uint8_t*)uprv_malloc(sourceKeyLen*sizeof(uint8_t));
|
| + if(sourceKeyP == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + goto cleanup_and_do_compare;
|
| + }
|
| + sourceKeyLen = ucol_getSortKey(coll, source, sourceLength, sourceKeyP, sourceKeyLen);
|
| + }
|
| +
|
| + targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
|
| + if(targetKeyLen > UCOL_MAX_BUFFER) {
|
| + targetKeyP = (uint8_t*)uprv_malloc(targetKeyLen*sizeof(uint8_t));
|
| + if(targetKeyP == NULL) {
|
| + *status = U_MEMORY_ALLOCATION_ERROR;
|
| + goto cleanup_and_do_compare;
|
| + }
|
| + targetKeyLen = ucol_getSortKey(coll, target, targetLength, targetKeyP, targetKeyLen);
|
| + }
|
| +
|
| + result = uprv_strcmp((const char*)sourceKeyP, (const char*)targetKeyP);
|
| +
|
| +cleanup_and_do_compare:
|
| + if(sourceKeyP != NULL && sourceKeyP != sourceKey) {
|
| + uprv_free(sourceKeyP);
|
| + }
|
| +
|
| + if(targetKeyP != NULL && targetKeyP != targetKey) {
|
| + uprv_free(targetKeyP);
|
| + }
|
| +
|
| + if(result<0) {
|
| + return UCOL_LESS;
|
| + } else if(result>0) {
|
| + return UCOL_GREATER;
|
| + } else {
|
| + return UCOL_EQUAL;
|
| + }
|
| +}
|
| +
|
| +
|
| +static UCollationResult
|
| +ucol_strcollRegular(collIterate *sColl, collIterate *tColl, UErrorCode *status)
|
| +{
|
| + U_ALIGN_CODE(16);
|
| +
|
| + const UCollator *coll = sColl->coll;
|
| +
|
| +
|
| + // setting up the collator parameters
|
| + UColAttributeValue strength = coll->strength;
|
| + UBool initialCheckSecTer = (strength >= UCOL_SECONDARY);
|
| +
|
| + UBool checkSecTer = initialCheckSecTer;
|
| + UBool checkTertiary = (strength >= UCOL_TERTIARY);
|
| + UBool checkQuad = (strength >= UCOL_QUATERNARY);
|
| + UBool checkIdent = (strength == UCOL_IDENTICAL);
|
| + UBool checkCase = (coll->caseLevel == UCOL_ON);
|
| + UBool isFrenchSec = (coll->frenchCollation == UCOL_ON) && checkSecTer;
|
| + UBool shifted = (coll->alternateHandling == UCOL_SHIFTED);
|
| + UBool qShifted = shifted && checkQuad;
|
| + UBool doHiragana = (coll->hiraganaQ == UCOL_ON) && checkQuad;
|
| +
|
| + if(doHiragana && shifted) {
|
| + return (ucol_compareUsingSortKeys(sColl, tColl, status));
|
| + }
|
| + uint8_t caseSwitch = coll->caseSwitch;
|
| + uint8_t tertiaryMask = coll->tertiaryMask;
|
| +
|
| + // This is the lowest primary value that will not be ignored if shifted
|
| + uint32_t LVT = (shifted)?(coll->variableTopValue<<16):0;
|
| +
|
| + UCollationResult result = UCOL_EQUAL;
|
| + UCollationResult hirResult = UCOL_EQUAL;
|
| +
|
| + // Preparing the CE buffers. They will be filled during the primary phase
|
| + ucol_CEBuf sCEs;
|
| + ucol_CEBuf tCEs;
|
| + UCOL_INIT_CEBUF(&sCEs);
|
| + UCOL_INIT_CEBUF(&tCEs);
|
| +
|
| + uint32_t secS = 0, secT = 0;
|
| + uint32_t sOrder=0, tOrder=0;
|
| +
|
| + // Non shifted primary processing is quite simple
|
| + if(!shifted) {
|
| + for(;;) {
|
| +
|
| + // We fetch CEs until we hit a non ignorable primary or end.
|
| + do {
|
| + // We get the next CE
|
| + sOrder = ucol_IGetNextCE(coll, sColl, status);
|
| + // Stuff it in the buffer
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + // And keep just the primary part.
|
| + sOrder &= UCOL_PRIMARYMASK;
|
| + } while(sOrder == 0);
|
| +
|
| + // see the comments on the above block
|
| + do {
|
| + tOrder = ucol_IGetNextCE(coll, tColl, status);
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + tOrder &= UCOL_PRIMARYMASK;
|
| + } while(tOrder == 0);
|
| +
|
| + // if both primaries are the same
|
| + if(sOrder == tOrder) {
|
| + // and there are no more CEs, we advance to the next level
|
| + if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
|
| + break;
|
| + }
|
| + if(doHiragana && hirResult == UCOL_EQUAL) {
|
| + if((sColl->flags & UCOL_WAS_HIRAGANA) != (tColl->flags & UCOL_WAS_HIRAGANA)) {
|
| + hirResult = ((sColl->flags & UCOL_WAS_HIRAGANA) > (tColl->flags & UCOL_WAS_HIRAGANA))
|
| + ? UCOL_LESS:UCOL_GREATER;
|
| + }
|
| + }
|
| + } else {
|
| + // only need to check one for continuation
|
| + // if one is then the other must be or the preceding CE would be a prefix of the other
|
| + if (coll->leadBytePermutationTable != NULL && !isContinuation(sOrder)) {
|
| + sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF);
|
| + tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF);
|
| + }
|
| + // if two primaries are different, we are done
|
| + result = (sOrder < tOrder) ? UCOL_LESS: UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| + } // no primary difference... do the rest from the buffers
|
| + } else { // shifted - do a slightly more complicated processing :)
|
| + for(;;) {
|
| + UBool sInShifted = FALSE;
|
| + UBool tInShifted = FALSE;
|
| + // This version of code can be refactored. However, it seems easier to understand this way.
|
| + // Source loop. Sam as the target loop.
|
| + for(;;) {
|
| + sOrder = ucol_IGetNextCE(coll, sColl, status);
|
| + if(sOrder == UCOL_NO_MORE_CES) {
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + break;
|
| + } else if(sOrder == 0 || (sInShifted && (sOrder & UCOL_PRIMARYMASK) == 0)) {
|
| + /* UCA amendment - ignore ignorables that follow shifted code points */
|
| + continue;
|
| + } else if(isContinuation(sOrder)) {
|
| + if((sOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
|
| + if(sInShifted) {
|
| + sOrder = (sOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + continue;
|
| + } else {
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + break;
|
| + }
|
| + } else { /* Just lower level values */
|
| + if(sInShifted) {
|
| + continue;
|
| + } else {
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + continue;
|
| + }
|
| + }
|
| + } else { /* regular */
|
| + if(coll->leadBytePermutationTable != NULL){
|
| + sOrder = (coll->leadBytePermutationTable[sOrder>>24] << 24) | (sOrder & 0x00FFFFFF);
|
| + }
|
| + if((sOrder & UCOL_PRIMARYMASK) > LVT) {
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + break;
|
| + } else {
|
| + if((sOrder & UCOL_PRIMARYMASK) > 0) {
|
| + sInShifted = TRUE;
|
| + sOrder &= UCOL_PRIMARYMASK;
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + continue;
|
| + } else {
|
| + UCOL_CEBUF_PUT(&sCEs, sOrder, sColl, status);
|
| + sInShifted = FALSE;
|
| + continue;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + sOrder &= UCOL_PRIMARYMASK;
|
| + sInShifted = FALSE;
|
| +
|
| + for(;;) {
|
| + tOrder = ucol_IGetNextCE(coll, tColl, status);
|
| + if(tOrder == UCOL_NO_MORE_CES) {
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + break;
|
| + } else if(tOrder == 0 || (tInShifted && (tOrder & UCOL_PRIMARYMASK) == 0)) {
|
| + /* UCA amendment - ignore ignorables that follow shifted code points */
|
| + continue;
|
| + } else if(isContinuation(tOrder)) {
|
| + if((tOrder & UCOL_PRIMARYMASK) > 0) { /* There is primary value */
|
| + if(tInShifted) {
|
| + tOrder = (tOrder & UCOL_PRIMARYMASK) | 0xC0; /* preserve interesting continuation */
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + continue;
|
| + } else {
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + break;
|
| + }
|
| + } else { /* Just lower level values */
|
| + if(tInShifted) {
|
| + continue;
|
| + } else {
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + continue;
|
| + }
|
| + }
|
| + } else { /* regular */
|
| + if(coll->leadBytePermutationTable != NULL){
|
| + tOrder = (coll->leadBytePermutationTable[tOrder>>24] << 24) | (tOrder & 0x00FFFFFF);
|
| + }
|
| + if((tOrder & UCOL_PRIMARYMASK) > LVT) {
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + break;
|
| + } else {
|
| + if((tOrder & UCOL_PRIMARYMASK) > 0) {
|
| + tInShifted = TRUE;
|
| + tOrder &= UCOL_PRIMARYMASK;
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + continue;
|
| + } else {
|
| + UCOL_CEBUF_PUT(&tCEs, tOrder, tColl, status);
|
| + tInShifted = FALSE;
|
| + continue;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + tOrder &= UCOL_PRIMARYMASK;
|
| + tInShifted = FALSE;
|
| +
|
| + if(sOrder == tOrder) {
|
| + /*
|
| + if(doHiragana && hirResult == UCOL_EQUAL) {
|
| + if((sColl.flags & UCOL_WAS_HIRAGANA) != (tColl.flags & UCOL_WAS_HIRAGANA)) {
|
| + hirResult = ((sColl.flags & UCOL_WAS_HIRAGANA) > (tColl.flags & UCOL_WAS_HIRAGANA))
|
| + ? UCOL_LESS:UCOL_GREATER;
|
| + }
|
| + }
|
| + */
|
| + if(sOrder == UCOL_NO_MORE_CES_PRIMARY) {
|
| + break;
|
| + } else {
|
| + sOrder = 0;
|
| + tOrder = 0;
|
| + continue;
|
| + }
|
| + } else {
|
| + result = (sOrder < tOrder) ? UCOL_LESS : UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| + } /* no primary difference... do the rest from the buffers */
|
| + }
|
| +
|
| + /* now, we're gonna reexamine collected CEs */
|
| + uint32_t *sCE;
|
| + uint32_t *tCE;
|
| +
|
| + /* This is the secondary level of comparison */
|
| + if(checkSecTer) {
|
| + if(!isFrenchSec) { /* normal */
|
| + sCE = sCEs.buf;
|
| + tCE = tCEs.buf;
|
| + for(;;) {
|
| + while (secS == 0) {
|
| + secS = *(sCE++) & UCOL_SECONDARYMASK;
|
| + }
|
| +
|
| + while(secT == 0) {
|
| + secT = *(tCE++) & UCOL_SECONDARYMASK;
|
| + }
|
| +
|
| + if(secS == secT) {
|
| + if(secS == UCOL_NO_MORE_CES_SECONDARY) {
|
| + break;
|
| + } else {
|
| + secS = 0; secT = 0;
|
| + continue;
|
| + }
|
| + } else {
|
| + result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| + }
|
| + } else { /* do the French */
|
| + uint32_t *sCESave = NULL;
|
| + uint32_t *tCESave = NULL;
|
| + sCE = sCEs.pos-2; /* this could also be sCEs-- if needs to be optimized */
|
| + tCE = tCEs.pos-2;
|
| + for(;;) {
|
| + while (secS == 0 && sCE >= sCEs.buf) {
|
| + if(sCESave == NULL) {
|
| + secS = *(sCE--);
|
| + if(isContinuation(secS)) {
|
| + while(isContinuation(secS = *(sCE--)))
|
| + ;
|
| + /* after this, secS has the start of continuation, and sCEs points before that */
|
| + sCESave = sCE; /* we save it, so that we know where to come back AND that we need to go forward */
|
| + sCE+=2; /* need to point to the first continuation CP */
|
| + /* However, now you can just continue doing stuff */
|
| + }
|
| + } else {
|
| + secS = *(sCE++);
|
| + if(!isContinuation(secS)) { /* This means we have finished with this cont */
|
| + sCE = sCESave; /* reset the pointer to before continuation */
|
| + sCESave = NULL;
|
| + secS = 0; /* Fetch a fresh CE before the continuation sequence. */
|
| + continue;
|
| + }
|
| + }
|
| + secS &= UCOL_SECONDARYMASK; /* remove the continuation bit */
|
| + }
|
| +
|
| + while(secT == 0 && tCE >= tCEs.buf) {
|
| + if(tCESave == NULL) {
|
| + secT = *(tCE--);
|
| + if(isContinuation(secT)) {
|
| + while(isContinuation(secT = *(tCE--)))
|
| + ;
|
| + /* after this, secS has the start of continuation, and sCEs points before that */
|
| + tCESave = tCE; /* we save it, so that we know where to come back AND that we need to go forward */
|
| + tCE+=2; /* need to point to the first continuation CP */
|
| + /* However, now you can just continue doing stuff */
|
| + }
|
| + } else {
|
| + secT = *(tCE++);
|
| + if(!isContinuation(secT)) { /* This means we have finished with this cont */
|
| + tCE = tCESave; /* reset the pointer to before continuation */
|
| + tCESave = NULL;
|
| + secT = 0; /* Fetch a fresh CE before the continuation sequence. */
|
| + continue;
|
| + }
|
| + }
|
| + secT &= UCOL_SECONDARYMASK; /* remove the continuation bit */
|
| + }
|
| +
|
| + if(secS == secT) {
|
| + if(secS == UCOL_NO_MORE_CES_SECONDARY || (sCE < sCEs.buf && tCE < tCEs.buf)) {
|
| + break;
|
| + } else {
|
| + secS = 0; secT = 0;
|
| + continue;
|
| + }
|
| + } else {
|
| + result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* doing the case bit */
|
| + if(checkCase) {
|
| + sCE = sCEs.buf;
|
| + tCE = tCEs.buf;
|
| + for(;;) {
|
| + while((secS & UCOL_REMOVE_CASE) == 0) {
|
| + if(!isContinuation(*sCE++)) {
|
| + secS =*(sCE-1);
|
| + if(((secS & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) {
|
| + // primary ignorables should not be considered on the case level when the strength is primary
|
| + // otherwise, the CEs stop being well-formed
|
| + secS &= UCOL_TERT_CASE_MASK;
|
| + secS ^= caseSwitch;
|
| + } else {
|
| + secS = 0;
|
| + }
|
| + } else {
|
| + secS = 0;
|
| + }
|
| + }
|
| +
|
| + while((secT & UCOL_REMOVE_CASE) == 0) {
|
| + if(!isContinuation(*tCE++)) {
|
| + secT = *(tCE-1);
|
| + if(((secT & UCOL_PRIMARYMASK) != 0) || strength > UCOL_PRIMARY) {
|
| + // primary ignorables should not be considered on the case level when the strength is primary
|
| + // otherwise, the CEs stop being well-formed
|
| + secT &= UCOL_TERT_CASE_MASK;
|
| + secT ^= caseSwitch;
|
| + } else {
|
| + secT = 0;
|
| + }
|
| + } else {
|
| + secT = 0;
|
| + }
|
| + }
|
| +
|
| + if((secS & UCOL_CASE_BIT_MASK) < (secT & UCOL_CASE_BIT_MASK)) {
|
| + result = UCOL_LESS;
|
| + goto commonReturn;
|
| + } else if((secS & UCOL_CASE_BIT_MASK) > (secT & UCOL_CASE_BIT_MASK)) {
|
| + result = UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| +
|
| + if((secS & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY || (secT & UCOL_REMOVE_CASE) == UCOL_NO_MORE_CES_TERTIARY ) {
|
| + break;
|
| + } else {
|
| + secS = 0;
|
| + secT = 0;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Tertiary level */
|
| + if(checkTertiary) {
|
| + secS = 0;
|
| + secT = 0;
|
| + sCE = sCEs.buf;
|
| + tCE = tCEs.buf;
|
| + for(;;) {
|
| + while((secS & UCOL_REMOVE_CASE) == 0) {
|
| + secS = *(sCE++) & tertiaryMask;
|
| + if(!isContinuation(secS)) {
|
| + secS ^= caseSwitch;
|
| + } else {
|
| + secS &= UCOL_REMOVE_CASE;
|
| + }
|
| + }
|
| +
|
| + while((secT & UCOL_REMOVE_CASE) == 0) {
|
| + secT = *(tCE++) & tertiaryMask;
|
| + if(!isContinuation(secT)) {
|
| + secT ^= caseSwitch;
|
| + } else {
|
| + secT &= UCOL_REMOVE_CASE;
|
| + }
|
| + }
|
| +
|
| + if(secS == secT) {
|
| + if((secS & UCOL_REMOVE_CASE) == 1) {
|
| + break;
|
| + } else {
|
| + secS = 0; secT = 0;
|
| + continue;
|
| + }
|
| + } else {
|
| + result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| + }
|
| + }
|
| +
|
| +
|
| + if(qShifted /*checkQuad*/) {
|
| + UBool sInShifted = TRUE;
|
| + UBool tInShifted = TRUE;
|
| + secS = 0;
|
| + secT = 0;
|
| + sCE = sCEs.buf;
|
| + tCE = tCEs.buf;
|
| + for(;;) {
|
| + while((secS == 0 && secS != UCOL_NO_MORE_CES) || (isContinuation(secS) && !sInShifted)) {
|
| + secS = *(sCE++);
|
| + if(isContinuation(secS)) {
|
| + if(!sInShifted) {
|
| + continue;
|
| + }
|
| + } else if(secS > LVT || (secS & UCOL_PRIMARYMASK) == 0) { /* non continuation */
|
| + secS = UCOL_PRIMARYMASK;
|
| + sInShifted = FALSE;
|
| + } else {
|
| + sInShifted = TRUE;
|
| + }
|
| + }
|
| + secS &= UCOL_PRIMARYMASK;
|
| +
|
| +
|
| + while((secT == 0 && secT != UCOL_NO_MORE_CES) || (isContinuation(secT) && !tInShifted)) {
|
| + secT = *(tCE++);
|
| + if(isContinuation(secT)) {
|
| + if(!tInShifted) {
|
| + continue;
|
| + }
|
| + } else if(secT > LVT || (secT & UCOL_PRIMARYMASK) == 0) {
|
| + secT = UCOL_PRIMARYMASK;
|
| + tInShifted = FALSE;
|
| + } else {
|
| + tInShifted = TRUE;
|
| + }
|
| + }
|
| + secT &= UCOL_PRIMARYMASK;
|
| +
|
| + if(secS == secT) {
|
| + if(secS == UCOL_NO_MORE_CES_PRIMARY) {
|
| + break;
|
| + } else {
|
| + secS = 0; secT = 0;
|
| + continue;
|
| + }
|
| + } else {
|
| + result = (secS < secT) ? UCOL_LESS : UCOL_GREATER;
|
| + goto commonReturn;
|
| + }
|
| + }
|
| + } else if(doHiragana && hirResult != UCOL_EQUAL) {
|
| + // If we're fine on quaternaries, we might be different
|
| + // on Hiragana. This, however, might fail us in shifted.
|
| + result = hirResult;
|
| + goto commonReturn;
|
| + }
|
| +
|
| + /* For IDENTICAL comparisons, we use a bitwise character comparison */
|
| + /* as a tiebreaker if all else is equal. */
|
| + /* Getting here should be quite rare - strings are not identical - */
|
| + /* that is checked first, but compared == through all other checks. */
|
| + if(checkIdent)
|
| + {
|
| + //result = ucol_checkIdent(&sColl, &tColl, coll->normalizationMode == UCOL_ON);
|
| + result = ucol_checkIdent(sColl, tColl, TRUE, status);
|
| + }
|
| +
|
| +commonReturn:
|
| + if ((sColl->flags | tColl->flags) & UCOL_ITER_ALLOCATED) {
|
| + if (sCEs.buf != sCEs.localArray ) {
|
| + uprv_free(sCEs.buf);
|
| + }
|
| + if (tCEs.buf != tCEs.localArray ) {
|
| + uprv_free(tCEs.buf);
|
| + }
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +static UCollationResult
|
| +ucol_strcollRegular(const UCollator *coll,
|
| + const UChar *source, int32_t sourceLength,
|
| + const UChar *target, int32_t targetLength,
|
| + UErrorCode *status) {
|
| + collIterate sColl, tColl;
|
| + // Preparing the context objects for iterating over strings
|
| + IInit_collIterate(coll, source, sourceLength, &sColl, status);
|
| + IInit_collIterate(coll, target, targetLength, &tColl, status);
|
| + if(U_FAILURE(*status)) {
|
| + return UCOL_LESS;
|
| + }
|
| + return ucol_strcollRegular(&sColl, &tColl, status);
|
| +}
|
| +
|
| +static inline uint32_t
|
| +ucol_getLatinOneContraction(const UCollator *coll, int32_t strength,
|
| + uint32_t CE, const UChar *s, int32_t *index, int32_t len)
|
| +{
|
| + const UChar *UCharOffset = (UChar *)coll->image+getContractOffset(CE&0xFFF);
|
| + int32_t latinOneOffset = (CE & 0x00FFF000) >> 12;
|
| + int32_t offset = 1;
|
| + UChar schar = 0, tchar = 0;
|
| +
|
| + for(;;) {
|
| + if(len == -1) {
|
| + if(s[*index] == 0) { // end of string
|
| + return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
|
| + } else {
|
| + schar = s[*index];
|
| + }
|
| + } else {
|
| + if(*index == len) {
|
| + return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
|
| + } else {
|
| + schar = s[*index];
|
| + }
|
| + }
|
| +
|
| + while(schar > (tchar = *(UCharOffset+offset))) { /* since the contraction codepoints should be ordered, we skip all that are smaller */
|
| + offset++;
|
| + }
|
| +
|
| + if (schar == tchar) {
|
| + (*index)++;
|
| + return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset+offset]);
|
| + }
|
| + else
|
| + {
|
| + if(schar & 0xFF00 /*> UCOL_ENDOFLATIN1RANGE*/) {
|
| + return UCOL_BAIL_OUT_CE;
|
| + }
|
| + // skip completely ignorables
|
| + uint32_t isZeroCE = UTRIE_GET32_FROM_LEAD(&coll->mapping, schar);
|
| + if(isZeroCE == 0) { // we have to ignore completely ignorables
|
| + (*index)++;
|
| + continue;
|
| + }
|
| +
|
| + return(coll->latinOneCEs[strength*coll->latinOneTableLen+latinOneOffset]);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/**
|
| + * This is a fast strcoll, geared towards text in Latin-1.
|
| + * It supports contractions of size two, French secondaries
|
| + * and case switching. You can use it with strengths primary
|
| + * to tertiary. It does not support shifted and case level.
|
| + * It relies on the table build by setupLatin1Table. If it
|
| + * doesn't understand something, it will go to the regular
|
| + * strcoll.
|
| + */
|
| +static UCollationResult
|
| +ucol_strcollUseLatin1( const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sLen,
|
| + const UChar *target,
|
| + int32_t tLen,
|
| + UErrorCode *status)
|
| +{
|
| + U_ALIGN_CODE(16);
|
| + int32_t strength = coll->strength;
|
| +
|
| + int32_t sIndex = 0, tIndex = 0;
|
| + UChar sChar = 0, tChar = 0;
|
| + uint32_t sOrder=0, tOrder=0;
|
| +
|
| + UBool endOfSource = FALSE;
|
| +
|
| + uint32_t *elements = coll->latinOneCEs;
|
| +
|
| + UBool haveContractions = FALSE; // if we have contractions in our string
|
| + // we cannot do French secondary
|
| +
|
| + // Do the primary level
|
| + for(;;) {
|
| + while(sOrder==0) { // this loop skips primary ignorables
|
| + // sOrder=getNextlatinOneCE(source);
|
| + if(sLen==-1) { // handling zero terminated strings
|
| + sChar=source[sIndex++];
|
| + if(sChar==0) {
|
| + endOfSource = TRUE;
|
| + break;
|
| + }
|
| + } else { // handling strings with known length
|
| + if(sIndex==sLen) {
|
| + endOfSource = TRUE;
|
| + break;
|
| + }
|
| + sChar=source[sIndex++];
|
| + }
|
| + if(sChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
|
| + //fprintf(stderr, "R");
|
| + return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
|
| + }
|
| + sOrder = elements[sChar];
|
| + if(sOrder >= UCOL_NOT_FOUND) { // if we got a special
|
| + // specials can basically be either contractions or bail-out signs. If we get anything
|
| + // else, we'll bail out anywasy
|
| + if(getCETag(sOrder) == CONTRACTION_TAG) {
|
| + sOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, sOrder, source, &sIndex, sLen);
|
| + haveContractions = TRUE; // if there are contractions, we cannot do French secondary
|
| + // However, if there are contractions in the table, but we always use just one char,
|
| + // we might be able to do French. This should be checked out.
|
| + }
|
| + if(sOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
|
| + //fprintf(stderr, "S");
|
| + return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
|
| + }
|
| + }
|
| + }
|
| +
|
| + while(tOrder==0) { // this loop skips primary ignorables
|
| + // tOrder=getNextlatinOneCE(target);
|
| + if(tLen==-1) { // handling zero terminated strings
|
| + tChar=target[tIndex++];
|
| + if(tChar==0) {
|
| + if(endOfSource) { // this is different than source loop,
|
| + // as we already know that source loop is done here,
|
| + // so we can either finish the primary loop if both
|
| + // strings are done or anounce the result if only
|
| + // target is done. Same below.
|
| + goto endOfPrimLoop;
|
| + } else {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + } else { // handling strings with known length
|
| + if(tIndex==tLen) {
|
| + if(endOfSource) {
|
| + goto endOfPrimLoop;
|
| + } else {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + tChar=target[tIndex++];
|
| + }
|
| + if(tChar&0xFF00) { // if we encounter non-latin-1, we bail out (sChar > 0xFF, but this is faster on win32)
|
| + //fprintf(stderr, "R");
|
| + return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
|
| + }
|
| + tOrder = elements[tChar];
|
| + if(tOrder >= UCOL_NOT_FOUND) {
|
| + // Handling specials, see the comments for source
|
| + if(getCETag(tOrder) == CONTRACTION_TAG) {
|
| + tOrder = ucol_getLatinOneContraction(coll, UCOL_PRIMARY, tOrder, target, &tIndex, tLen);
|
| + haveContractions = TRUE;
|
| + }
|
| + if(tOrder >= UCOL_NOT_FOUND /*== UCOL_BAIL_OUT_CE*/) {
|
| + //fprintf(stderr, "S");
|
| + return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
|
| + }
|
| + }
|
| + }
|
| + if(endOfSource) { // source is finished, but target is not, say the result.
|
| + return UCOL_LESS;
|
| + }
|
| +
|
| + if(sOrder == tOrder) { // if we have same CEs, we continue the loop
|
| + sOrder = 0; tOrder = 0;
|
| + continue;
|
| + } else {
|
| + // compare current top bytes
|
| + if(((sOrder^tOrder)&0xFF000000)!=0) {
|
| + // top bytes differ, return difference
|
| + if(sOrder < tOrder) {
|
| + return UCOL_LESS;
|
| + } else if(sOrder > tOrder) {
|
| + return UCOL_GREATER;
|
| + }
|
| + // instead of return (int32_t)(sOrder>>24)-(int32_t)(tOrder>>24);
|
| + // since we must return enum value
|
| + }
|
| +
|
| + // top bytes match, continue with following bytes
|
| + sOrder<<=8;
|
| + tOrder<<=8;
|
| + }
|
| + }
|
| +
|
| +endOfPrimLoop:
|
| + // after primary loop, we definitely know the sizes of strings,
|
| + // so we set it and use simpler loop for secondaries and tertiaries
|
| + sLen = sIndex; tLen = tIndex;
|
| + if(strength >= UCOL_SECONDARY) {
|
| + // adjust the table beggining
|
| + elements += coll->latinOneTableLen;
|
| + endOfSource = FALSE;
|
| +
|
| + if(coll->frenchCollation == UCOL_OFF) { // non French
|
| + // This loop is a simplified copy of primary loop
|
| + // at this point we know that whole strings are latin-1, so we don't
|
| + // check for that. We also know that we only have contractions as
|
| + // specials.
|
| + sIndex = 0; tIndex = 0;
|
| + for(;;) {
|
| + while(sOrder==0) {
|
| + if(sIndex==sLen) {
|
| + endOfSource = TRUE;
|
| + break;
|
| + }
|
| + sChar=source[sIndex++];
|
| + sOrder = elements[sChar];
|
| + if(sOrder > UCOL_NOT_FOUND) {
|
| + sOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, sOrder, source, &sIndex, sLen);
|
| + }
|
| + }
|
| +
|
| + while(tOrder==0) {
|
| + if(tIndex==tLen) {
|
| + if(endOfSource) {
|
| + goto endOfSecLoop;
|
| + } else {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + tChar=target[tIndex++];
|
| + tOrder = elements[tChar];
|
| + if(tOrder > UCOL_NOT_FOUND) {
|
| + tOrder = ucol_getLatinOneContraction(coll, UCOL_SECONDARY, tOrder, target, &tIndex, tLen);
|
| + }
|
| + }
|
| + if(endOfSource) {
|
| + return UCOL_LESS;
|
| + }
|
| +
|
| + if(sOrder == tOrder) {
|
| + sOrder = 0; tOrder = 0;
|
| + continue;
|
| + } else {
|
| + // see primary loop for comments on this
|
| + if(((sOrder^tOrder)&0xFF000000)!=0) {
|
| + if(sOrder < tOrder) {
|
| + return UCOL_LESS;
|
| + } else if(sOrder > tOrder) {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + sOrder<<=8;
|
| + tOrder<<=8;
|
| + }
|
| + }
|
| + } else { // French
|
| + if(haveContractions) { // if we have contractions, we have to bail out
|
| + // since we don't really know how to handle them here
|
| + return ucol_strcollRegular(coll, source, sLen, target, tLen, status);
|
| + }
|
| + // For French, we go backwards
|
| + sIndex = sLen; tIndex = tLen;
|
| + for(;;) {
|
| + while(sOrder==0) {
|
| + if(sIndex==0) {
|
| + endOfSource = TRUE;
|
| + break;
|
| + }
|
| + sChar=source[--sIndex];
|
| + sOrder = elements[sChar];
|
| + // don't even look for contractions
|
| + }
|
| +
|
| + while(tOrder==0) {
|
| + if(tIndex==0) {
|
| + if(endOfSource) {
|
| + goto endOfSecLoop;
|
| + } else {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + tChar=target[--tIndex];
|
| + tOrder = elements[tChar];
|
| + // don't even look for contractions
|
| + }
|
| + if(endOfSource) {
|
| + return UCOL_LESS;
|
| + }
|
| +
|
| + if(sOrder == tOrder) {
|
| + sOrder = 0; tOrder = 0;
|
| + continue;
|
| + } else {
|
| + // see the primary loop for comments
|
| + if(((sOrder^tOrder)&0xFF000000)!=0) {
|
| + if(sOrder < tOrder) {
|
| + return UCOL_LESS;
|
| + } else if(sOrder > tOrder) {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + sOrder<<=8;
|
| + tOrder<<=8;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| +endOfSecLoop:
|
| + if(strength >= UCOL_TERTIARY) {
|
| + // tertiary loop is the same as secondary (except no French)
|
| + elements += coll->latinOneTableLen;
|
| + sIndex = 0; tIndex = 0;
|
| + endOfSource = FALSE;
|
| + for(;;) {
|
| + while(sOrder==0) {
|
| + if(sIndex==sLen) {
|
| + endOfSource = TRUE;
|
| + break;
|
| + }
|
| + sChar=source[sIndex++];
|
| + sOrder = elements[sChar];
|
| + if(sOrder > UCOL_NOT_FOUND) {
|
| + sOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, sOrder, source, &sIndex, sLen);
|
| + }
|
| + }
|
| + while(tOrder==0) {
|
| + if(tIndex==tLen) {
|
| + if(endOfSource) {
|
| + return UCOL_EQUAL; // if both strings are at the end, they are equal
|
| + } else {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + tChar=target[tIndex++];
|
| + tOrder = elements[tChar];
|
| + if(tOrder > UCOL_NOT_FOUND) {
|
| + tOrder = ucol_getLatinOneContraction(coll, UCOL_TERTIARY, tOrder, target, &tIndex, tLen);
|
| + }
|
| + }
|
| + if(endOfSource) {
|
| + return UCOL_LESS;
|
| + }
|
| + if(sOrder == tOrder) {
|
| + sOrder = 0; tOrder = 0;
|
| + continue;
|
| + } else {
|
| + if(((sOrder^tOrder)&0xff000000)!=0) {
|
| + if(sOrder < tOrder) {
|
| + return UCOL_LESS;
|
| + } else if(sOrder > tOrder) {
|
| + return UCOL_GREATER;
|
| + }
|
| + }
|
| + sOrder<<=8;
|
| + tOrder<<=8;
|
| + }
|
| + }
|
| + }
|
| + return UCOL_EQUAL;
|
| +}
|
| +
|
| +
|
| +U_CAPI UCollationResult U_EXPORT2
|
| +ucol_strcollIter( const UCollator *coll,
|
| + UCharIterator *sIter,
|
| + UCharIterator *tIter,
|
| + UErrorCode *status)
|
| +{
|
| + if(!status || U_FAILURE(*status)) {
|
| + return UCOL_EQUAL;
|
| + }
|
| +
|
| + UTRACE_ENTRY(UTRACE_UCOL_STRCOLLITER);
|
| + UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, sIter=%p, tIter=%p", coll, sIter, tIter);
|
| +
|
| + if (sIter == tIter) {
|
| + UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
|
| + return UCOL_EQUAL;
|
| + }
|
| + if(sIter == NULL || tIter == NULL || coll == NULL) {
|
| + *status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
|
| + return UCOL_EQUAL;
|
| + }
|
| +
|
| + UCollationResult result = UCOL_EQUAL;
|
| +
|
| + // Preparing the context objects for iterating over strings
|
| + collIterate sColl, tColl;
|
| + IInit_collIterate(coll, NULL, -1, &sColl, status);
|
| + IInit_collIterate(coll, NULL, -1, &tColl, status);
|
| + if(U_FAILURE(*status)) {
|
| + UTRACE_EXIT_VALUE_STATUS(UCOL_EQUAL, *status)
|
| + return UCOL_EQUAL;
|
| + }
|
| + // The division for the array length may truncate the array size to
|
| + // a little less than UNORM_ITER_SIZE, but that size is dimensioned too high
|
| + // for all platforms anyway.
|
| + UAlignedMemory stackNormIter1[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
|
| + UAlignedMemory stackNormIter2[UNORM_ITER_SIZE/sizeof(UAlignedMemory)];
|
| + UNormIterator *sNormIter = NULL, *tNormIter = NULL;
|
| +
|
| + sColl.iterator = sIter;
|
| + sColl.flags |= UCOL_USE_ITERATOR;
|
| + tColl.flags |= UCOL_USE_ITERATOR;
|
| + tColl.iterator = tIter;
|
| +
|
| + if(ucol_getAttribute(coll, UCOL_NORMALIZATION_MODE, status) == UCOL_ON) {
|
| + sNormIter = unorm_openIter(stackNormIter1, sizeof(stackNormIter1), status);
|
| + sColl.iterator = unorm_setIter(sNormIter, sIter, UNORM_FCD, status);
|
| + sColl.flags &= ~UCOL_ITER_NORM;
|
| +
|
| + tNormIter = unorm_openIter(stackNormIter2, sizeof(stackNormIter2), status);
|
| + tColl.iterator = unorm_setIter(tNormIter, tIter, UNORM_FCD, status);
|
| + tColl.flags &= ~UCOL_ITER_NORM;
|
| + }
|
| +
|
| + UChar32 sChar = U_SENTINEL, tChar = U_SENTINEL;
|
| +
|
| + while((sChar = sColl.iterator->next(sColl.iterator)) ==
|
| + (tChar = tColl.iterator->next(tColl.iterator))) {
|
| + if(sChar == U_SENTINEL) {
|
| + result = UCOL_EQUAL;
|
| + goto end_compare;
|
| + }
|
| + }
|
| +
|
| + if(sChar == U_SENTINEL) {
|
| + tChar = tColl.iterator->previous(tColl.iterator);
|
| + }
|
| +
|
| + if(tChar == U_SENTINEL) {
|
| + sChar = sColl.iterator->previous(sColl.iterator);
|
| + }
|
| +
|
| + sChar = sColl.iterator->previous(sColl.iterator);
|
| + tChar = tColl.iterator->previous(tColl.iterator);
|
| +
|
| + if (ucol_unsafeCP((UChar)sChar, coll) || ucol_unsafeCP((UChar)tChar, coll))
|
| + {
|
| + // We are stopped in the middle of a contraction.
|
| + // Scan backwards through the == part of the string looking for the start of the contraction.
|
| + // It doesn't matter which string we scan, since they are the same in this region.
|
| + do
|
| + {
|
| + sChar = sColl.iterator->previous(sColl.iterator);
|
| + tChar = tColl.iterator->previous(tColl.iterator);
|
| + }
|
| + while (sChar != U_SENTINEL && ucol_unsafeCP((UChar)sChar, coll));
|
| + }
|
| +
|
| +
|
| + if(U_SUCCESS(*status)) {
|
| + result = ucol_strcollRegular(&sColl, &tColl, status);
|
| + }
|
| +
|
| +end_compare:
|
| + if(sNormIter || tNormIter) {
|
| + unorm_closeIter(sNormIter);
|
| + unorm_closeIter(tNormIter);
|
| + }
|
| +
|
| + UTRACE_EXIT_VALUE_STATUS(result, *status)
|
| + return result;
|
| +}
|
| +
|
| +
|
| +/* */
|
| +/* ucol_strcoll Main public API string comparison function */
|
| +/* */
|
| +U_CAPI UCollationResult U_EXPORT2
|
| +ucol_strcoll( const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + const UChar *target,
|
| + int32_t targetLength)
|
| +{
|
| + U_ALIGN_CODE(16);
|
| +
|
| + UTRACE_ENTRY(UTRACE_UCOL_STRCOLL);
|
| + if (UTRACE_LEVEL(UTRACE_VERBOSE)) {
|
| + UTRACE_DATA3(UTRACE_VERBOSE, "coll=%p, source=%p, target=%p", coll, source, target);
|
| + UTRACE_DATA2(UTRACE_VERBOSE, "source string = %vh ", source, sourceLength);
|
| + UTRACE_DATA2(UTRACE_VERBOSE, "target string = %vh ", target, targetLength);
|
| + }
|
| +
|
| + if(source == NULL || target == NULL) {
|
| + // do not crash, but return. Should have
|
| + // status argument to return error.
|
| + UTRACE_EXIT_VALUE(UCOL_EQUAL);
|
| + return UCOL_EQUAL;
|
| + }
|
| +
|
| + /* Quick check if source and target are same strings. */
|
| + /* They should either both be NULL terminated or the explicit length should be set on both. */
|
| + if (source==target && sourceLength==targetLength) {
|
| + UTRACE_EXIT_VALUE(UCOL_EQUAL);
|
| + return UCOL_EQUAL;
|
| + }
|
| +
|
| + /* Scan the strings. Find: */
|
| + /* The length of any leading portion that is equal */
|
| + /* Whether they are exactly equal. (in which case we just return) */
|
| + const UChar *pSrc = source;
|
| + const UChar *pTarg = target;
|
| + int32_t equalLength;
|
| +
|
| + if (sourceLength == -1 && targetLength == -1) {
|
| + // Both strings are null terminated.
|
| + // Scan through any leading equal portion.
|
| + while (*pSrc == *pTarg && *pSrc != 0) {
|
| + pSrc++;
|
| + pTarg++;
|
| + }
|
| + if (*pSrc == 0 && *pTarg == 0) {
|
| + UTRACE_EXIT_VALUE(UCOL_EQUAL);
|
| + return UCOL_EQUAL;
|
| + }
|
| + equalLength = (int32_t)(pSrc - source);
|
| + }
|
| + else
|
| + {
|
| + // One or both strings has an explicit length.
|
| + const UChar *pSrcEnd = source + sourceLength;
|
| + const UChar *pTargEnd = target + targetLength;
|
| +
|
| + // Scan while the strings are bitwise ==, or until one is exhausted.
|
| + for (;;) {
|
| + if (pSrc == pSrcEnd || pTarg == pTargEnd) {
|
| + break;
|
| + }
|
| + if ((*pSrc == 0 && sourceLength == -1) || (*pTarg == 0 && targetLength == -1)) {
|
| + break;
|
| + }
|
| + if (*pSrc != *pTarg) {
|
| + break;
|
| + }
|
| + pSrc++;
|
| + pTarg++;
|
| + }
|
| + equalLength = (int32_t)(pSrc - source);
|
| +
|
| + // If we made it all the way through both strings, we are done. They are ==
|
| + if ((pSrc ==pSrcEnd || (pSrcEnd <pSrc && *pSrc==0)) && /* At end of src string, however it was specified. */
|
| + (pTarg==pTargEnd || (pTargEnd<pTarg && *pTarg==0))) /* and also at end of dest string */
|
| + {
|
| + UTRACE_EXIT_VALUE(UCOL_EQUAL);
|
| + return UCOL_EQUAL;
|
| + }
|
| + }
|
| + if (equalLength > 0) {
|
| + /* There is an identical portion at the beginning of the two strings. */
|
| + /* If the identical portion ends within a contraction or a comibining */
|
| + /* character sequence, back up to the start of that sequence. */
|
| +
|
| + // These values should already be set by the code above.
|
| + //pSrc = source + equalLength; /* point to the first differing chars */
|
| + //pTarg = target + equalLength;
|
| + if ((pSrc != source+sourceLength && ucol_unsafeCP(*pSrc, coll)) ||
|
| + (pTarg != target+targetLength && ucol_unsafeCP(*pTarg, coll)))
|
| + {
|
| + // We are stopped in the middle of a contraction.
|
| + // Scan backwards through the == part of the string looking for the start of the contraction.
|
| + // It doesn't matter which string we scan, since they are the same in this region.
|
| + do
|
| + {
|
| + equalLength--;
|
| + pSrc--;
|
| + }
|
| + while (equalLength>0 && ucol_unsafeCP(*pSrc, coll));
|
| + }
|
| +
|
| + source += equalLength;
|
| + target += equalLength;
|
| + if (sourceLength > 0) {
|
| + sourceLength -= equalLength;
|
| + }
|
| + if (targetLength > 0) {
|
| + targetLength -= equalLength;
|
| + }
|
| + }
|
| +
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + UCollationResult returnVal;
|
| + if(!coll->latinOneUse || (sourceLength > 0 && *source&0xff00) || (targetLength > 0 && *target&0xff00)) {
|
| + returnVal = ucol_strcollRegular(coll, source, sourceLength, target, targetLength, &status);
|
| + } else {
|
| + returnVal = ucol_strcollUseLatin1(coll, source, sourceLength, target, targetLength, &status);
|
| + }
|
| + UTRACE_EXIT_VALUE(returnVal);
|
| + return returnVal;
|
| +}
|
| +
|
| +/* convenience function for comparing strings */
|
| +U_CAPI UBool U_EXPORT2
|
| +ucol_greater( const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + const UChar *target,
|
| + int32_t targetLength)
|
| +{
|
| + return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
|
| + == UCOL_GREATER);
|
| +}
|
| +
|
| +/* convenience function for comparing strings */
|
| +U_CAPI UBool U_EXPORT2
|
| +ucol_greaterOrEqual( const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + const UChar *target,
|
| + int32_t targetLength)
|
| +{
|
| + return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
|
| + != UCOL_LESS);
|
| +}
|
| +
|
| +/* convenience function for comparing strings */
|
| +U_CAPI UBool U_EXPORT2
|
| +ucol_equal( const UCollator *coll,
|
| + const UChar *source,
|
| + int32_t sourceLength,
|
| + const UChar *target,
|
| + int32_t targetLength)
|
| +{
|
| + return (ucol_strcoll(coll, source, sourceLength, target, targetLength)
|
| + == UCOL_EQUAL);
|
| +}
|
| +
|
| +U_CAPI void U_EXPORT2
|
| +ucol_getUCAVersion(const UCollator* coll, UVersionInfo info) {
|
| + if(coll && coll->UCA) {
|
| + uprv_memcpy(info, coll->UCA->image->UCAVersion, sizeof(UVersionInfo));
|
| + }
|
| +}
|
| +
|
| +#endif /* #if !UCONFIG_NO_COLLATION */
|
|
|
| Property changes on: icu46/source/i18n/ucol.cpp
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|