Index: icu46/source/i18n/nfrs.cpp |
=================================================================== |
--- icu46/source/i18n/nfrs.cpp (revision 0) |
+++ icu46/source/i18n/nfrs.cpp (revision 0) |
@@ -0,0 +1,946 @@ |
+/* |
+****************************************************************************** |
+* Copyright (C) 1997-2008, International Business Machines |
+* Corporation and others. All Rights Reserved. |
+****************************************************************************** |
+* file name: nfrs.cpp |
+* encoding: US-ASCII |
+* tab size: 8 (not used) |
+* indentation:4 |
+* |
+* Modification history |
+* Date Name Comments |
+* 10/11/2001 Doug Ported from ICU4J |
+*/ |
+ |
+#include "nfrs.h" |
+ |
+#if U_HAVE_RBNF |
+ |
+#include "unicode/uchar.h" |
+#include "nfrule.h" |
+#include "nfrlist.h" |
+ |
+#ifdef RBNF_DEBUG |
+#include "cmemory.h" |
+#endif |
+ |
+#include "util.h" |
+ |
+U_NAMESPACE_BEGIN |
+ |
+#if 0 |
+// euclid's algorithm works with doubles |
+// note, doubles only get us up to one quadrillion or so, which |
+// isn't as much range as we get with longs. We probably still |
+// want either 64-bit math, or BigInteger. |
+ |
+static int64_t |
+util_lcm(int64_t x, int64_t y) |
+{ |
+ x.abs(); |
+ y.abs(); |
+ |
+ if (x == 0 || y == 0) { |
+ return 0; |
+ } else { |
+ do { |
+ if (x < y) { |
+ int64_t t = x; x = y; y = t; |
+ } |
+ x -= y * (x/y); |
+ } while (x != 0); |
+ |
+ return y; |
+ } |
+} |
+ |
+#else |
+/** |
+ * Calculates the least common multiple of x and y. |
+ */ |
+static int64_t |
+util_lcm(int64_t x, int64_t y) |
+{ |
+ // binary gcd algorithm from Knuth, "The Art of Computer Programming," |
+ // vol. 2, 1st ed., pp. 298-299 |
+ int64_t x1 = x; |
+ int64_t y1 = y; |
+ |
+ int p2 = 0; |
+ while ((x1 & 1) == 0 && (y1 & 1) == 0) { |
+ ++p2; |
+ x1 >>= 1; |
+ y1 >>= 1; |
+ } |
+ |
+ int64_t t; |
+ if ((x1 & 1) == 1) { |
+ t = -y1; |
+ } else { |
+ t = x1; |
+ } |
+ |
+ while (t != 0) { |
+ while ((t & 1) == 0) { |
+ t = t >> 1; |
+ } |
+ if (t > 0) { |
+ x1 = t; |
+ } else { |
+ y1 = -t; |
+ } |
+ t = x1 - y1; |
+ } |
+ |
+ int64_t gcd = x1 << p2; |
+ |
+ // x * y == gcd(x, y) * lcm(x, y) |
+ return x / gcd * y; |
+} |
+#endif |
+ |
+static const UChar gPercent = 0x0025; |
+static const UChar gColon = 0x003a; |
+static const UChar gSemicolon = 0x003b; |
+static const UChar gLineFeed = 0x000a; |
+ |
+static const UChar gFourSpaces[] = |
+{ |
+ 0x20, 0x20, 0x20, 0x20, 0 |
+}; /* " " */ |
+static const UChar gPercentPercent[] = |
+{ |
+ 0x25, 0x25, 0 |
+}; /* "%%" */ |
+ |
+NFRuleSet::NFRuleSet(UnicodeString* descriptions, int32_t index, UErrorCode& status) |
+ : name() |
+ , rules(0) |
+ , negativeNumberRule(NULL) |
+ , fIsFractionRuleSet(FALSE) |
+ , fIsPublic(FALSE) |
+ , fRecursionCount(0) |
+{ |
+ for (int i = 0; i < 3; ++i) { |
+ fractionRules[i] = NULL; |
+ } |
+ |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ |
+ UnicodeString& description = descriptions[index]; // !!! make sure index is valid |
+ |
+ if (description.length() == 0) { |
+ // throw new IllegalArgumentException("Empty rule set description"); |
+ status = U_PARSE_ERROR; |
+ return; |
+ } |
+ |
+ // if the description begins with a rule set name (the rule set |
+ // name can be omitted in formatter descriptions that consist |
+ // of only one rule set), copy it out into our "name" member |
+ // and delete it from the description |
+ if (description.charAt(0) == gPercent) { |
+ int32_t pos = description.indexOf(gColon); |
+ if (pos == -1) { |
+ // throw new IllegalArgumentException("Rule set name doesn't end in colon"); |
+ status = U_PARSE_ERROR; |
+ } else { |
+ name.setTo(description, 0, pos); |
+ while (pos < description.length() && uprv_isRuleWhiteSpace(description.charAt(++pos))) { |
+ } |
+ description.remove(0, pos); |
+ } |
+ } else { |
+ name.setTo(UNICODE_STRING_SIMPLE("%default")); |
+ } |
+ |
+ if (description.length() == 0) { |
+ // throw new IllegalArgumentException("Empty rule set description"); |
+ status = U_PARSE_ERROR; |
+ } |
+ |
+ fIsPublic = name.indexOf(gPercentPercent) != 0; |
+ |
+ // all of the other members of NFRuleSet are initialized |
+ // by parseRules() |
+} |
+ |
+void |
+NFRuleSet::parseRules(UnicodeString& description, const RuleBasedNumberFormat* owner, UErrorCode& status) |
+{ |
+ // start by creating a Vector whose elements are Strings containing |
+ // the descriptions of the rules (one rule per element). The rules |
+ // are separated by semicolons (there's no escape facility: ALL |
+ // semicolons are rule delimiters) |
+ |
+ if (U_FAILURE(status)) { |
+ return; |
+ } |
+ |
+ // dlf - the original code kept a separate description array for no reason, |
+ // so I got rid of it. The loop was too complex so I simplified it. |
+ |
+ UnicodeString currentDescription; |
+ int32_t oldP = 0; |
+ while (oldP < description.length()) { |
+ int32_t p = description.indexOf(gSemicolon, oldP); |
+ if (p == -1) { |
+ p = description.length(); |
+ } |
+ currentDescription.setTo(description, oldP, p - oldP); |
+ NFRule::makeRules(currentDescription, this, rules.last(), owner, rules, status); |
+ oldP = p + 1; |
+ } |
+ |
+ // for rules that didn't specify a base value, their base values |
+ // were initialized to 0. Make another pass through the list and |
+ // set all those rules' base values. We also remove any special |
+ // rules from the list and put them into their own member variables |
+ int64_t defaultBaseValue = 0; |
+ |
+ // (this isn't a for loop because we might be deleting items from |
+ // the vector-- we want to make sure we only increment i when |
+ // we _didn't_ delete aything from the vector) |
+ uint32_t i = 0; |
+ while (i < rules.size()) { |
+ NFRule* rule = rules[i]; |
+ |
+ switch (rule->getType()) { |
+ // if the rule's base value is 0, fill in a default |
+ // base value (this will be 1 plus the preceding |
+ // rule's base value for regular rule sets, and the |
+ // same as the preceding rule's base value in fraction |
+ // rule sets) |
+ case NFRule::kNoBase: |
+ rule->setBaseValue(defaultBaseValue, status); |
+ if (!isFractionRuleSet()) { |
+ ++defaultBaseValue; |
+ } |
+ ++i; |
+ break; |
+ |
+ // if it's the negative-number rule, copy it into its own |
+ // data member and delete it from the list |
+ case NFRule::kNegativeNumberRule: |
+ negativeNumberRule = rules.remove(i); |
+ break; |
+ |
+ // if it's the improper fraction rule, copy it into the |
+ // correct element of fractionRules |
+ case NFRule::kImproperFractionRule: |
+ fractionRules[0] = rules.remove(i); |
+ break; |
+ |
+ // if it's the proper fraction rule, copy it into the |
+ // correct element of fractionRules |
+ case NFRule::kProperFractionRule: |
+ fractionRules[1] = rules.remove(i); |
+ break; |
+ |
+ // if it's the master rule, copy it into the |
+ // correct element of fractionRules |
+ case NFRule::kMasterRule: |
+ fractionRules[2] = rules.remove(i); |
+ break; |
+ |
+ // if it's a regular rule that already knows its base value, |
+ // check to make sure the rules are in order, and update |
+ // the default base value for the next rule |
+ default: |
+ if (rule->getBaseValue() < defaultBaseValue) { |
+ // throw new IllegalArgumentException("Rules are not in order"); |
+ status = U_PARSE_ERROR; |
+ return; |
+ } |
+ defaultBaseValue = rule->getBaseValue(); |
+ if (!isFractionRuleSet()) { |
+ ++defaultBaseValue; |
+ } |
+ ++i; |
+ break; |
+ } |
+ } |
+} |
+ |
+NFRuleSet::~NFRuleSet() |
+{ |
+ delete negativeNumberRule; |
+ delete fractionRules[0]; |
+ delete fractionRules[1]; |
+ delete fractionRules[2]; |
+} |
+ |
+static UBool |
+util_equalRules(const NFRule* rule1, const NFRule* rule2) |
+{ |
+ if (rule1) { |
+ if (rule2) { |
+ return *rule1 == *rule2; |
+ } |
+ } else if (!rule2) { |
+ return TRUE; |
+ } |
+ return FALSE; |
+} |
+ |
+UBool |
+NFRuleSet::operator==(const NFRuleSet& rhs) const |
+{ |
+ if (rules.size() == rhs.rules.size() && |
+ fIsFractionRuleSet == rhs.fIsFractionRuleSet && |
+ name == rhs.name && |
+ util_equalRules(negativeNumberRule, rhs.negativeNumberRule) && |
+ util_equalRules(fractionRules[0], rhs.fractionRules[0]) && |
+ util_equalRules(fractionRules[1], rhs.fractionRules[1]) && |
+ util_equalRules(fractionRules[2], rhs.fractionRules[2])) { |
+ |
+ for (uint32_t i = 0; i < rules.size(); ++i) { |
+ if (*rules[i] != *rhs.rules[i]) { |
+ return FALSE; |
+ } |
+ } |
+ return TRUE; |
+ } |
+ return FALSE; |
+} |
+ |
+#define RECURSION_LIMIT 50 |
+ |
+void |
+NFRuleSet::format(int64_t number, UnicodeString& toAppendTo, int32_t pos) const |
+{ |
+ NFRule *rule = findNormalRule(number); |
+ if (rule) { // else error, but can't report it |
+ NFRuleSet* ncThis = (NFRuleSet*)this; |
+ if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { |
+ // stop recursion |
+ ncThis->fRecursionCount = 0; |
+ } else { |
+ rule->doFormat(number, toAppendTo, pos); |
+ ncThis->fRecursionCount--; |
+ } |
+ } |
+} |
+ |
+void |
+NFRuleSet::format(double number, UnicodeString& toAppendTo, int32_t pos) const |
+{ |
+ NFRule *rule = findDoubleRule(number); |
+ if (rule) { // else error, but can't report it |
+ NFRuleSet* ncThis = (NFRuleSet*)this; |
+ if (ncThis->fRecursionCount++ >= RECURSION_LIMIT) { |
+ // stop recursion |
+ ncThis->fRecursionCount = 0; |
+ } else { |
+ rule->doFormat(number, toAppendTo, pos); |
+ ncThis->fRecursionCount--; |
+ } |
+ } |
+} |
+ |
+NFRule* |
+NFRuleSet::findDoubleRule(double number) const |
+{ |
+ // if this is a fraction rule set, use findFractionRuleSetRule() |
+ if (isFractionRuleSet()) { |
+ return findFractionRuleSetRule(number); |
+ } |
+ |
+ // if the number is negative, return the negative number rule |
+ // (if there isn't a negative-number rule, we pretend it's a |
+ // positive number) |
+ if (number < 0) { |
+ if (negativeNumberRule) { |
+ return negativeNumberRule; |
+ } else { |
+ number = -number; |
+ } |
+ } |
+ |
+ // if the number isn't an integer, we use one of the fraction rules... |
+ if (number != uprv_floor(number)) { |
+ // if the number is between 0 and 1, return the proper |
+ // fraction rule |
+ if (number < 1 && fractionRules[1]) { |
+ return fractionRules[1]; |
+ } |
+ // otherwise, return the improper fraction rule |
+ else if (fractionRules[0]) { |
+ return fractionRules[0]; |
+ } |
+ } |
+ |
+ // if there's a master rule, use it to format the number |
+ if (fractionRules[2]) { |
+ return fractionRules[2]; |
+ } |
+ |
+ // and if we haven't yet returned a rule, use findNormalRule() |
+ // to find the applicable rule |
+ int64_t r = util64_fromDouble(number + 0.5); |
+ return findNormalRule(r); |
+} |
+ |
+NFRule * |
+NFRuleSet::findNormalRule(int64_t number) const |
+{ |
+ // if this is a fraction rule set, use findFractionRuleSetRule() |
+ // to find the rule (we should only go into this clause if the |
+ // value is 0) |
+ if (fIsFractionRuleSet) { |
+ return findFractionRuleSetRule((double)number); |
+ } |
+ |
+ // if the number is negative, return the negative-number rule |
+ // (if there isn't one, pretend the number is positive) |
+ if (number < 0) { |
+ if (negativeNumberRule) { |
+ return negativeNumberRule; |
+ } else { |
+ number = -number; |
+ } |
+ } |
+ |
+ // we have to repeat the preceding two checks, even though we |
+ // do them in findRule(), because the version of format() that |
+ // takes a long bypasses findRule() and goes straight to this |
+ // function. This function does skip the fraction rules since |
+ // we know the value is an integer (it also skips the master |
+ // rule, since it's considered a fraction rule. Skipping the |
+ // master rule in this function is also how we avoid infinite |
+ // recursion) |
+ |
+ // {dlf} unfortunately this fails if there are no rules except |
+ // special rules. If there are no rules, use the master rule. |
+ |
+ // binary-search the rule list for the applicable rule |
+ // (a rule is used for all values from its base value to |
+ // the next rule's base value) |
+ int32_t hi = rules.size(); |
+ if (hi > 0) { |
+ int32_t lo = 0; |
+ |
+ while (lo < hi) { |
+ int32_t mid = (lo + hi) / 2; |
+ if (rules[mid]->getBaseValue() == number) { |
+ return rules[mid]; |
+ } |
+ else if (rules[mid]->getBaseValue() > number) { |
+ hi = mid; |
+ } |
+ else { |
+ lo = mid + 1; |
+ } |
+ } |
+ if (hi == 0) { // bad rule set, minimum base > 0 |
+ return NULL; // want to throw exception here |
+ } |
+ |
+ NFRule *result = rules[hi - 1]; |
+ |
+ // use shouldRollBack() to see whether we need to invoke the |
+ // rollback rule (see shouldRollBack()'s documentation for |
+ // an explanation of the rollback rule). If we do, roll back |
+ // one rule and return that one instead of the one we'd normally |
+ // return |
+ if (result->shouldRollBack((double)number)) { |
+ if (hi == 1) { // bad rule set, no prior rule to rollback to from this base |
+ return NULL; |
+ } |
+ result = rules[hi - 2]; |
+ } |
+ return result; |
+ } |
+ // else use the master rule |
+ return fractionRules[2]; |
+} |
+ |
+/** |
+ * If this rule is a fraction rule set, this function is used by |
+ * findRule() to select the most appropriate rule for formatting |
+ * the number. Basically, the base value of each rule in the rule |
+ * set is treated as the denominator of a fraction. Whichever |
+ * denominator can produce the fraction closest in value to the |
+ * number passed in is the result. If there's a tie, the earlier |
+ * one in the list wins. (If there are two rules in a row with the |
+ * same base value, the first one is used when the numerator of the |
+ * fraction would be 1, and the second rule is used the rest of the |
+ * time. |
+ * @param number The number being formatted (which will always be |
+ * a number between 0 and 1) |
+ * @return The rule to use to format this number |
+ */ |
+NFRule* |
+NFRuleSet::findFractionRuleSetRule(double number) const |
+{ |
+ // the obvious way to do this (multiply the value being formatted |
+ // by each rule's base value until you get an integral result) |
+ // doesn't work because of rounding error. This method is more |
+ // accurate |
+ |
+ // find the least common multiple of the rules' base values |
+ // and multiply this by the number being formatted. This is |
+ // all the precision we need, and we can do all of the rest |
+ // of the math using integer arithmetic |
+ int64_t leastCommonMultiple = rules[0]->getBaseValue(); |
+ int64_t numerator; |
+ { |
+ for (uint32_t i = 1; i < rules.size(); ++i) { |
+ leastCommonMultiple = util_lcm(leastCommonMultiple, rules[i]->getBaseValue()); |
+ } |
+ numerator = util64_fromDouble(number * (double)leastCommonMultiple + 0.5); |
+ } |
+ // for each rule, do the following... |
+ int64_t tempDifference; |
+ int64_t difference = util64_fromDouble(uprv_maxMantissa()); |
+ int32_t winner = 0; |
+ for (uint32_t i = 0; i < rules.size(); ++i) { |
+ // "numerator" is the numerator of the fraction if the |
+ // denominator is the LCD. The numerator if the rule's |
+ // base value is the denominator is "numerator" times the |
+ // base value divided bythe LCD. Here we check to see if |
+ // that's an integer, and if not, how close it is to being |
+ // an integer. |
+ tempDifference = numerator * rules[i]->getBaseValue() % leastCommonMultiple; |
+ |
+ |
+ // normalize the result of the above calculation: we want |
+ // the numerator's distance from the CLOSEST multiple |
+ // of the LCD |
+ if (leastCommonMultiple - tempDifference < tempDifference) { |
+ tempDifference = leastCommonMultiple - tempDifference; |
+ } |
+ |
+ // if this is as close as we've come, keep track of how close |
+ // that is, and the line number of the rule that did it. If |
+ // we've scored a direct hit, we don't have to look at any more |
+ // rules |
+ if (tempDifference < difference) { |
+ difference = tempDifference; |
+ winner = i; |
+ if (difference == 0) { |
+ break; |
+ } |
+ } |
+ } |
+ |
+ // if we have two successive rules that both have the winning base |
+ // value, then the first one (the one we found above) is used if |
+ // the numerator of the fraction is 1 and the second one is used if |
+ // the numerator of the fraction is anything else (this lets us |
+ // do things like "one third"/"two thirds" without haveing to define |
+ // a whole bunch of extra rule sets) |
+ if ((unsigned)(winner + 1) < rules.size() && |
+ rules[winner + 1]->getBaseValue() == rules[winner]->getBaseValue()) { |
+ double n = ((double)rules[winner]->getBaseValue()) * number; |
+ if (n < 0.5 || n >= 2) { |
+ ++winner; |
+ } |
+ } |
+ |
+ // finally, return the winning rule |
+ return rules[winner]; |
+} |
+ |
+/** |
+ * Parses a string. Matches the string to be parsed against each |
+ * of its rules (with a base value less than upperBound) and returns |
+ * the value produced by the rule that matched the most charcters |
+ * in the source string. |
+ * @param text The string to parse |
+ * @param parsePosition The initial position is ignored and assumed |
+ * to be 0. On exit, this object has been updated to point to the |
+ * first character position this rule set didn't consume. |
+ * @param upperBound Limits the rules that can be allowed to match. |
+ * Only rules whose base values are strictly less than upperBound |
+ * are considered. |
+ * @return The numerical result of parsing this string. This will |
+ * be the matching rule's base value, composed appropriately with |
+ * the results of matching any of its substitutions. The object |
+ * will be an instance of Long if it's an integral value; otherwise, |
+ * it will be an instance of Double. This function always returns |
+ * a valid object: If nothing matched the input string at all, |
+ * this function returns new Long(0), and the parse position is |
+ * left unchanged. |
+ */ |
+#ifdef RBNF_DEBUG |
+#include <stdio.h> |
+ |
+static void dumpUS(FILE* f, const UnicodeString& us) { |
+ int len = us.length(); |
+ char* buf = (char *)uprv_malloc((len+1)*sizeof(char)); //new char[len+1]; |
+ if (buf != NULL) { |
+ us.extract(0, len, buf); |
+ buf[len] = 0; |
+ fprintf(f, "%s", buf); |
+ uprv_free(buf); //delete[] buf; |
+ } |
+} |
+#endif |
+ |
+UBool |
+NFRuleSet::parse(const UnicodeString& text, ParsePosition& pos, double upperBound, Formattable& result) const |
+{ |
+ // try matching each rule in the rule set against the text being |
+ // parsed. Whichever one matches the most characters is the one |
+ // that determines the value we return. |
+ |
+ result.setLong(0); |
+ |
+ // dump out if there's no text to parse |
+ if (text.length() == 0) { |
+ return 0; |
+ } |
+ |
+ ParsePosition highWaterMark; |
+ ParsePosition workingPos = pos; |
+ |
+#ifdef RBNF_DEBUG |
+ fprintf(stderr, "<nfrs> %x '", this); |
+ dumpUS(stderr, name); |
+ fprintf(stderr, "' text '"); |
+ dumpUS(stderr, text); |
+ fprintf(stderr, "'\n"); |
+ fprintf(stderr, " parse negative: %d\n", this, negativeNumberRule != 0); |
+#endif |
+ |
+ // start by trying the negative number rule (if there is one) |
+ if (negativeNumberRule) { |
+ Formattable tempResult; |
+#ifdef RBNF_DEBUG |
+ fprintf(stderr, " <nfrs before negative> %x ub: %g\n", negativeNumberRule, upperBound); |
+#endif |
+ UBool success = negativeNumberRule->doParse(text, workingPos, 0, upperBound, tempResult); |
+#ifdef RBNF_DEBUG |
+ fprintf(stderr, " <nfrs after negative> success: %d wpi: %d\n", success, workingPos.getIndex()); |
+#endif |
+ if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
+ result = tempResult; |
+ highWaterMark = workingPos; |
+ } |
+ workingPos = pos; |
+ } |
+#ifdef RBNF_DEBUG |
+ fprintf(stderr, "<nfrs> continue fractional with text '"); |
+ dumpUS(stderr, text); |
+ fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
+#endif |
+ // then try each of the fraction rules |
+ { |
+ for (int i = 0; i < 3; i++) { |
+ if (fractionRules[i]) { |
+ Formattable tempResult; |
+ UBool success = fractionRules[i]->doParse(text, workingPos, 0, upperBound, tempResult); |
+ if (success && (workingPos.getIndex() > highWaterMark.getIndex())) { |
+ result = tempResult; |
+ highWaterMark = workingPos; |
+ } |
+ workingPos = pos; |
+ } |
+ } |
+ } |
+#ifdef RBNF_DEBUG |
+ fprintf(stderr, "<nfrs> continue other with text '"); |
+ dumpUS(stderr, text); |
+ fprintf(stderr, "' hwm: %d\n", highWaterMark.getIndex()); |
+#endif |
+ |
+ // finally, go through the regular rules one at a time. We start |
+ // at the end of the list because we want to try matching the most |
+ // sigificant rule first (this helps ensure that we parse |
+ // "five thousand three hundred six" as |
+ // "(five thousand) (three hundred) (six)" rather than |
+ // "((five thousand three) hundred) (six)"). Skip rules whose |
+ // base values are higher than the upper bound (again, this helps |
+ // limit ambiguity by making sure the rules that match a rule's |
+ // are less significant than the rule containing the substitutions)/ |
+ { |
+ int64_t ub = util64_fromDouble(upperBound); |
+#ifdef RBNF_DEBUG |
+ { |
+ char ubstr[64]; |
+ util64_toa(ub, ubstr, 64); |
+ char ubstrhex[64]; |
+ util64_toa(ub, ubstrhex, 64, 16); |
+ fprintf(stderr, "ub: %g, i64: %s (%s)\n", upperBound, ubstr, ubstrhex); |
+ } |
+#endif |
+ for (int32_t i = rules.size(); --i >= 0 && highWaterMark.getIndex() < text.length();) { |
+ if ((!fIsFractionRuleSet) && (rules[i]->getBaseValue() >= ub)) { |
+ continue; |
+ } |
+ Formattable tempResult; |
+ UBool success = rules[i]->doParse(text, workingPos, fIsFractionRuleSet, upperBound, tempResult); |
+ if (success && workingPos.getIndex() > highWaterMark.getIndex()) { |
+ result = tempResult; |
+ highWaterMark = workingPos; |
+ } |
+ workingPos = pos; |
+ } |
+ } |
+#ifdef RBNF_DEBUG |
+ fprintf(stderr, "<nfrs> exit\n"); |
+#endif |
+ // finally, update the parse postion we were passed to point to the |
+ // first character we didn't use, and return the result that |
+ // corresponds to that string of characters |
+ pos = highWaterMark; |
+ |
+ return 1; |
+} |
+ |
+void |
+NFRuleSet::appendRules(UnicodeString& result) const |
+{ |
+ // the rule set name goes first... |
+ result.append(name); |
+ result.append(gColon); |
+ result.append(gLineFeed); |
+ |
+ // followed by the regular rules... |
+ for (uint32_t i = 0; i < rules.size(); i++) { |
+ result.append(gFourSpaces); |
+ rules[i]->_appendRuleText(result); |
+ result.append(gLineFeed); |
+ } |
+ |
+ // followed by the special rules (if they exist) |
+ if (negativeNumberRule) { |
+ result.append(gFourSpaces); |
+ negativeNumberRule->_appendRuleText(result); |
+ result.append(gLineFeed); |
+ } |
+ |
+ { |
+ for (uint32_t i = 0; i < 3; ++i) { |
+ if (fractionRules[i]) { |
+ result.append(gFourSpaces); |
+ fractionRules[i]->_appendRuleText(result); |
+ result.append(gLineFeed); |
+ } |
+ } |
+ } |
+} |
+ |
+// utility functions |
+ |
+int64_t util64_fromDouble(double d) { |
+ int64_t result = 0; |
+ if (!uprv_isNaN(d)) { |
+ double mant = uprv_maxMantissa(); |
+ if (d < -mant) { |
+ d = -mant; |
+ } else if (d > mant) { |
+ d = mant; |
+ } |
+ UBool neg = d < 0; |
+ if (neg) { |
+ d = -d; |
+ } |
+ result = (int64_t)uprv_floor(d); |
+ if (neg) { |
+ result = -result; |
+ } |
+ } |
+ return result; |
+} |
+ |
+int64_t util64_pow(int32_t r, uint32_t e) { |
+ if (r == 0) { |
+ return 0; |
+ } else if (e == 0) { |
+ return 1; |
+ } else { |
+ int64_t n = r; |
+ while (--e > 0) { |
+ n *= r; |
+ } |
+ return n; |
+ } |
+} |
+ |
+static const uint8_t asciiDigits[] = { |
+ 0x30u, 0x31u, 0x32u, 0x33u, 0x34u, 0x35u, 0x36u, 0x37u, |
+ 0x38u, 0x39u, 0x61u, 0x62u, 0x63u, 0x64u, 0x65u, 0x66u, |
+ 0x67u, 0x68u, 0x69u, 0x6au, 0x6bu, 0x6cu, 0x6du, 0x6eu, |
+ 0x6fu, 0x70u, 0x71u, 0x72u, 0x73u, 0x74u, 0x75u, 0x76u, |
+ 0x77u, 0x78u, 0x79u, 0x7au, |
+}; |
+ |
+static const UChar kUMinus = (UChar)0x002d; |
+ |
+#ifdef RBNF_DEBUG |
+static const char kMinus = '-'; |
+ |
+static const uint8_t digitInfo[] = { |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0, 0, 0, 0, 0, 0, 0, 0, |
+ 0x80u, 0x81u, 0x82u, 0x83u, 0x84u, 0x85u, 0x86u, 0x87u, |
+ 0x88u, 0x89u, 0, 0, 0, 0, 0, 0, |
+ 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
+ 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
+ 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
+ 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
+ 0, 0x8au, 0x8bu, 0x8cu, 0x8du, 0x8eu, 0x8fu, 0x90u, |
+ 0x91u, 0x92u, 0x93u, 0x94u, 0x95u, 0x96u, 0x97u, 0x98u, |
+ 0x99u, 0x9au, 0x9bu, 0x9cu, 0x9du, 0x9eu, 0x9fu, 0xa0u, |
+ 0xa1u, 0xa2u, 0xa3u, 0, 0, 0, 0, 0, |
+}; |
+ |
+int64_t util64_atoi(const char* str, uint32_t radix) |
+{ |
+ if (radix > 36) { |
+ radix = 36; |
+ } else if (radix < 2) { |
+ radix = 2; |
+ } |
+ int64_t lradix = radix; |
+ |
+ int neg = 0; |
+ if (*str == kMinus) { |
+ ++str; |
+ neg = 1; |
+ } |
+ int64_t result = 0; |
+ uint8_t b; |
+ while ((b = digitInfo[*str++]) && ((b &= 0x7f) < radix)) { |
+ result *= lradix; |
+ result += (int32_t)b; |
+ } |
+ if (neg) { |
+ result = -result; |
+ } |
+ return result; |
+} |
+ |
+int64_t util64_utoi(const UChar* str, uint32_t radix) |
+{ |
+ if (radix > 36) { |
+ radix = 36; |
+ } else if (radix < 2) { |
+ radix = 2; |
+ } |
+ int64_t lradix = radix; |
+ |
+ int neg = 0; |
+ if (*str == kUMinus) { |
+ ++str; |
+ neg = 1; |
+ } |
+ int64_t result = 0; |
+ UChar c; |
+ uint8_t b; |
+ while (((c = *str++) < 0x0080) && (b = digitInfo[c]) && ((b &= 0x7f) < radix)) { |
+ result *= lradix; |
+ result += (int32_t)b; |
+ } |
+ if (neg) { |
+ result = -result; |
+ } |
+ return result; |
+} |
+ |
+uint32_t util64_toa(int64_t w, char* buf, uint32_t len, uint32_t radix, UBool raw) |
+{ |
+ if (radix > 36) { |
+ radix = 36; |
+ } else if (radix < 2) { |
+ radix = 2; |
+ } |
+ int64_t base = radix; |
+ |
+ char* p = buf; |
+ if (len && (w < 0) && (radix == 10) && !raw) { |
+ w = -w; |
+ *p++ = kMinus; |
+ --len; |
+ } else if (len && (w == 0)) { |
+ *p++ = (char)raw ? 0 : asciiDigits[0]; |
+ --len; |
+ } |
+ |
+ while (len && w != 0) { |
+ int64_t n = w / base; |
+ int64_t m = n * base; |
+ int32_t d = (int32_t)(w-m); |
+ *p++ = raw ? (char)d : asciiDigits[d]; |
+ w = n; |
+ --len; |
+ } |
+ if (len) { |
+ *p = 0; // null terminate if room for caller convenience |
+ } |
+ |
+ len = p - buf; |
+ if (*buf == kMinus) { |
+ ++buf; |
+ } |
+ while (--p > buf) { |
+ char c = *p; |
+ *p = *buf; |
+ *buf = c; |
+ ++buf; |
+ } |
+ |
+ return len; |
+} |
+#endif |
+ |
+uint32_t util64_tou(int64_t w, UChar* buf, uint32_t len, uint32_t radix, UBool raw) |
+{ |
+ if (radix > 36) { |
+ radix = 36; |
+ } else if (radix < 2) { |
+ radix = 2; |
+ } |
+ int64_t base = radix; |
+ |
+ UChar* p = buf; |
+ if (len && (w < 0) && (radix == 10) && !raw) { |
+ w = -w; |
+ *p++ = kUMinus; |
+ --len; |
+ } else if (len && (w == 0)) { |
+ *p++ = (UChar)raw ? 0 : asciiDigits[0]; |
+ --len; |
+ } |
+ |
+ while (len && (w != 0)) { |
+ int64_t n = w / base; |
+ int64_t m = n * base; |
+ int32_t d = (int32_t)(w-m); |
+ *p++ = (UChar)(raw ? d : asciiDigits[d]); |
+ w = n; |
+ --len; |
+ } |
+ if (len) { |
+ *p = 0; // null terminate if room for caller convenience |
+ } |
+ |
+ len = (uint32_t)(p - buf); |
+ if (*buf == kUMinus) { |
+ ++buf; |
+ } |
+ while (--p > buf) { |
+ UChar c = *p; |
+ *p = *buf; |
+ *buf = c; |
+ ++buf; |
+ } |
+ |
+ return len; |
+} |
+ |
+ |
+U_NAMESPACE_END |
+ |
+/* U_HAVE_RBNF */ |
+#endif |
+ |
Property changes on: icu46/source/i18n/nfrs.cpp |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |