| Index: icu46/source/i18n/rematch.cpp
|
| ===================================================================
|
| --- icu46/source/i18n/rematch.cpp (revision 0)
|
| +++ icu46/source/i18n/rematch.cpp (revision 0)
|
| @@ -0,0 +1,6073 @@
|
| +/*
|
| +**************************************************************************
|
| +* Copyright (C) 2002-2010 International Business Machines Corporation *
|
| +* and others. All rights reserved. *
|
| +**************************************************************************
|
| +*/
|
| +//
|
| +// file: rematch.cpp
|
| +//
|
| +// Contains the implementation of class RegexMatcher,
|
| +// which is one of the main API classes for the ICU regular expression package.
|
| +//
|
| +
|
| +#include "unicode/utypes.h"
|
| +#if !UCONFIG_NO_REGULAR_EXPRESSIONS
|
| +
|
| +#include "unicode/regex.h"
|
| +#include "unicode/uniset.h"
|
| +#include "unicode/uchar.h"
|
| +#include "unicode/ustring.h"
|
| +#include "unicode/rbbi.h"
|
| +#include "uassert.h"
|
| +#include "cmemory.h"
|
| +#include "uvector.h"
|
| +#include "uvectr32.h"
|
| +#include "uvectr64.h"
|
| +#include "regeximp.h"
|
| +#include "regexst.h"
|
| +#include "regextxt.h"
|
| +#include "ucase.h"
|
| +
|
| +// #include <malloc.h> // Needed for heapcheck testing
|
| +
|
| +
|
| +// Find progress callback
|
| +// ----------------------
|
| +// Macro to inline test & call to ReportFindProgress(). Eliminates unnecessary function call.
|
| +//
|
| +#define REGEXFINDPROGRESS_INTERRUPT(pos, status) \
|
| + (fFindProgressCallbackFn != NULL) && (ReportFindProgress(pos, status) == FALSE)
|
| +
|
| +
|
| +// Smart Backtracking
|
| +// ------------------
|
| +// When a failure would go back to a LOOP_C instruction,
|
| +// strings, characters, and setrefs scan backwards for a valid start
|
| +// character themselves, pop the stack, and save state, emulating the
|
| +// LOOP_C's effect but assured that the next character of input is a
|
| +// possible matching character.
|
| +//
|
| +// Good idea in theory; unfortunately it only helps out a few specific
|
| +// cases and slows the engine down a little in the rest.
|
| +
|
| +//#define REGEX_SMART_BACKTRACKING 1
|
| +
|
| +U_NAMESPACE_BEGIN
|
| +
|
| +// Default limit for the size of the back track stack, to avoid system
|
| +// failures causedby heap exhaustion. Units are in 32 bit words, not bytes.
|
| +// This value puts ICU's limits higher than most other regexp implementations,
|
| +// which use recursion rather than the heap, and take more storage per
|
| +// backtrack point.
|
| +//
|
| +static const int32_t DEFAULT_BACKTRACK_STACK_CAPACITY = 8000000;
|
| +
|
| +// Time limit counter constant.
|
| +// Time limits for expression evaluation are in terms of quanta of work by
|
| +// the engine, each of which is 10,000 state saves.
|
| +// This constant determines that state saves per tick number.
|
| +static const int32_t TIMER_INITIAL_VALUE = 10000;
|
| +
|
| +//-----------------------------------------------------------------------------
|
| +//
|
| +// Constructor and Destructor
|
| +//
|
| +//-----------------------------------------------------------------------------
|
| +RegexMatcher::RegexMatcher(const RegexPattern *pat) {
|
| + fDeferredStatus = U_ZERO_ERROR;
|
| + init(fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return;
|
| + }
|
| + if (pat==NULL) {
|
| + fDeferredStatus = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| + fPattern = pat;
|
| + init2(RegexStaticSets::gStaticSets->fEmptyText, fDeferredStatus);
|
| +}
|
| +
|
| +
|
| +
|
| +RegexMatcher::RegexMatcher(const UnicodeString ®exp, const UnicodeString &input,
|
| + uint32_t flags, UErrorCode &status) {
|
| + init(status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + UParseError pe;
|
| + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
| + fPattern = fPatternOwned;
|
| +
|
| + UText inputText = UTEXT_INITIALIZER;
|
| + utext_openConstUnicodeString(&inputText, &input, &status);
|
| + init2(&inputText, status);
|
| + utext_close(&inputText);
|
| +
|
| + fInputUniStrMaybeMutable = TRUE;
|
| +}
|
| +
|
| +
|
| +RegexMatcher::RegexMatcher(UText *regexp, UText *input,
|
| + uint32_t flags, UErrorCode &status) {
|
| + init(status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + UParseError pe;
|
| + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| +
|
| + fPattern = fPatternOwned;
|
| + init2(input, status);
|
| +}
|
| +
|
| +
|
| +RegexMatcher::RegexMatcher(const UnicodeString ®exp,
|
| + uint32_t flags, UErrorCode &status) {
|
| + init(status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + UParseError pe;
|
| + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + fPattern = fPatternOwned;
|
| + init2(RegexStaticSets::gStaticSets->fEmptyText, status);
|
| +}
|
| +
|
| +RegexMatcher::RegexMatcher(UText *regexp,
|
| + uint32_t flags, UErrorCode &status) {
|
| + init(status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + UParseError pe;
|
| + fPatternOwned = RegexPattern::compile(regexp, flags, pe, status);
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| +
|
| + fPattern = fPatternOwned;
|
| + init2(RegexStaticSets::gStaticSets->fEmptyText, status);
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +RegexMatcher::~RegexMatcher() {
|
| + delete fStack;
|
| + if (fData != fSmallData) {
|
| + uprv_free(fData);
|
| + fData = NULL;
|
| + }
|
| + if (fPatternOwned) {
|
| + delete fPatternOwned;
|
| + fPatternOwned = NULL;
|
| + fPattern = NULL;
|
| + }
|
| +
|
| + if (fInput) {
|
| + delete fInput;
|
| + }
|
| + if (fInputText) {
|
| + utext_close(fInputText);
|
| + }
|
| + if (fAltInputText) {
|
| + utext_close(fAltInputText);
|
| + }
|
| +
|
| + #if UCONFIG_NO_BREAK_ITERATION==0
|
| + delete fWordBreakItr;
|
| + #endif
|
| +}
|
| +
|
| +//
|
| +// init() common initialization for use by all constructors.
|
| +// Initialize all fields, get the object into a consistent state.
|
| +// This must be done even when the initial status shows an error,
|
| +// so that the object is initialized sufficiently well for the destructor
|
| +// to run safely.
|
| +//
|
| +void RegexMatcher::init(UErrorCode &status) {
|
| + fPattern = NULL;
|
| + fPatternOwned = NULL;
|
| + fFrameSize = 0;
|
| + fRegionStart = 0;
|
| + fRegionLimit = 0;
|
| + fAnchorStart = 0;
|
| + fAnchorLimit = 0;
|
| + fLookStart = 0;
|
| + fLookLimit = 0;
|
| + fActiveStart = 0;
|
| + fActiveLimit = 0;
|
| + fTransparentBounds = FALSE;
|
| + fAnchoringBounds = TRUE;
|
| + fMatch = FALSE;
|
| + fMatchStart = 0;
|
| + fMatchEnd = 0;
|
| + fLastMatchEnd = -1;
|
| + fAppendPosition = 0;
|
| + fHitEnd = FALSE;
|
| + fRequireEnd = FALSE;
|
| + fStack = NULL;
|
| + fFrame = NULL;
|
| + fTimeLimit = 0;
|
| + fTime = 0;
|
| + fTickCounter = 0;
|
| + fStackLimit = DEFAULT_BACKTRACK_STACK_CAPACITY;
|
| + fCallbackFn = NULL;
|
| + fCallbackContext = NULL;
|
| + fFindProgressCallbackFn = NULL;
|
| + fFindProgressCallbackContext = NULL;
|
| + fTraceDebug = FALSE;
|
| + fDeferredStatus = status;
|
| + fData = fSmallData;
|
| + fWordBreakItr = NULL;
|
| +
|
| + fStack = new UVector64(status);
|
| + fInputText = NULL;
|
| + fAltInputText = NULL;
|
| + fInput = NULL;
|
| + fInputLength = 0;
|
| + fInputUniStrMaybeMutable = FALSE;
|
| +
|
| + if (U_FAILURE(status)) {
|
| + fDeferredStatus = status;
|
| + }
|
| +}
|
| +
|
| +//
|
| +// init2() Common initialization for use by RegexMatcher constructors, part 2.
|
| +// This handles the common setup to be done after the Pattern is available.
|
| +//
|
| +void RegexMatcher::init2(UText *input, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + fDeferredStatus = status;
|
| + return;
|
| + }
|
| +
|
| + if (fPattern->fDataSize > (int32_t)(sizeof(fSmallData)/sizeof(fSmallData[0]))) {
|
| + fData = (int64_t *)uprv_malloc(fPattern->fDataSize * sizeof(int64_t));
|
| + if (fData == NULL) {
|
| + status = fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| + }
|
| +
|
| + reset(input);
|
| + setStackLimit(DEFAULT_BACKTRACK_STACK_CAPACITY, status);
|
| + if (U_FAILURE(status)) {
|
| + fDeferredStatus = status;
|
| + return;
|
| + }
|
| +}
|
| +
|
| +
|
| +static const UChar BACKSLASH = 0x5c;
|
| +static const UChar DOLLARSIGN = 0x24;
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// appendReplacement
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +RegexMatcher &RegexMatcher::appendReplacement(UnicodeString &dest,
|
| + const UnicodeString &replacement,
|
| + UErrorCode &status) {
|
| + UText replacementText = UTEXT_INITIALIZER;
|
| +
|
| + utext_openConstUnicodeString(&replacementText, &replacement, &status);
|
| + if (U_SUCCESS(status)) {
|
| + UText resultText = UTEXT_INITIALIZER;
|
| + utext_openUnicodeString(&resultText, &dest, &status);
|
| +
|
| + if (U_SUCCESS(status)) {
|
| + appendReplacement(&resultText, &replacementText, status);
|
| + utext_close(&resultText);
|
| + }
|
| + utext_close(&replacementText);
|
| + }
|
| +
|
| + return *this;
|
| +}
|
| +
|
| +//
|
| +// appendReplacement, UText mode
|
| +//
|
| +RegexMatcher &RegexMatcher::appendReplacement(UText *dest,
|
| + UText *replacement,
|
| + UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return *this;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return *this;
|
| + }
|
| + if (fMatch == FALSE) {
|
| + status = U_REGEX_INVALID_STATE;
|
| + return *this;
|
| + }
|
| +
|
| + // Copy input string from the end of previous match to start of current match
|
| + int64_t destLen = utext_nativeLength(dest);
|
| + if (fMatchStart > fAppendPosition) {
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + destLen += utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
|
| + (int32_t)(fMatchStart-fAppendPosition), &status);
|
| + } else {
|
| + int32_t len16;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + len16 = (int32_t)(fMatchStart-fAppendPosition);
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + len16 = utext_extract(fInputText, fAppendPosition, fMatchStart, NULL, 0, &lengthStatus);
|
| + }
|
| + UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
|
| + if (inputChars == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return *this;
|
| + }
|
| + utext_extract(fInputText, fAppendPosition, fMatchStart, inputChars, len16+1, &status);
|
| + destLen += utext_replace(dest, destLen, destLen, inputChars, len16, &status);
|
| + uprv_free(inputChars);
|
| + }
|
| + }
|
| + fAppendPosition = fMatchEnd;
|
| +
|
| +
|
| + // scan the replacement text, looking for substitutions ($n) and \escapes.
|
| + // TODO: optimize this loop by efficiently scanning for '$' or '\',
|
| + // move entire ranges not containing substitutions.
|
| + UTEXT_SETNATIVEINDEX(replacement, 0);
|
| + UChar32 c = UTEXT_NEXT32(replacement);
|
| + while (c != U_SENTINEL) {
|
| + if (c == BACKSLASH) {
|
| + // Backslash Escape. Copy the following char out without further checks.
|
| + // Note: Surrogate pairs don't need any special handling
|
| + // The second half wont be a '$' or a '\', and
|
| + // will move to the dest normally on the next
|
| + // loop iteration.
|
| + c = UTEXT_CURRENT32(replacement);
|
| + if (c == U_SENTINEL) {
|
| + break;
|
| + }
|
| +
|
| + if (c==0x55/*U*/ || c==0x75/*u*/) {
|
| + // We have a \udddd or \Udddddddd escape sequence.
|
| + int32_t offset = 0;
|
| + struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(replacement);
|
| + UChar32 escapedChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
|
| + if (escapedChar != (UChar32)0xFFFFFFFF) {
|
| + if (U_IS_BMP(escapedChar)) {
|
| + UChar c16 = (UChar)escapedChar;
|
| + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
| + } else {
|
| + UChar surrogate[2];
|
| + surrogate[0] = U16_LEAD(escapedChar);
|
| + surrogate[1] = U16_TRAIL(escapedChar);
|
| + if (U_SUCCESS(status)) {
|
| + destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
|
| + }
|
| + }
|
| + // TODO: Report errors for mal-formed \u escapes?
|
| + // As this is, the original sequence is output, which may be OK.
|
| + if (context.lastOffset == offset) {
|
| + UTEXT_PREVIOUS32(replacement);
|
| + } else if (context.lastOffset != offset-1) {
|
| + utext_moveIndex32(replacement, offset - context.lastOffset - 1);
|
| + }
|
| + }
|
| + } else {
|
| + UTEXT_NEXT32(replacement);
|
| + // Plain backslash escape. Just put out the escaped character.
|
| + if (U_IS_BMP(c)) {
|
| + UChar c16 = (UChar)c;
|
| + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
| + } else {
|
| + UChar surrogate[2];
|
| + surrogate[0] = U16_LEAD(c);
|
| + surrogate[1] = U16_TRAIL(c);
|
| + if (U_SUCCESS(status)) {
|
| + destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
|
| + }
|
| + }
|
| + }
|
| + } else if (c != DOLLARSIGN) {
|
| + // Normal char, not a $. Copy it out without further checks.
|
| + if (U_IS_BMP(c)) {
|
| + UChar c16 = (UChar)c;
|
| + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
| + } else {
|
| + UChar surrogate[2];
|
| + surrogate[0] = U16_LEAD(c);
|
| + surrogate[1] = U16_TRAIL(c);
|
| + if (U_SUCCESS(status)) {
|
| + destLen += utext_replace(dest, destLen, destLen, surrogate, 2, &status);
|
| + }
|
| + }
|
| + } else {
|
| + // We've got a $. Pick up a capture group number if one follows.
|
| + // Consume at most the number of digits necessary for the largest capture
|
| + // number that is valid for this pattern.
|
| +
|
| + int32_t numDigits = 0;
|
| + int32_t groupNum = 0;
|
| + UChar32 digitC;
|
| + for (;;) {
|
| + digitC = UTEXT_CURRENT32(replacement);
|
| + if (digitC == U_SENTINEL) {
|
| + break;
|
| + }
|
| + if (u_isdigit(digitC) == FALSE) {
|
| + break;
|
| + }
|
| + UTEXT_NEXT32(replacement);
|
| + groupNum=groupNum*10 + u_charDigitValue(digitC);
|
| + numDigits++;
|
| + if (numDigits >= fPattern->fMaxCaptureDigits) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| +
|
| + if (numDigits == 0) {
|
| + // The $ didn't introduce a group number at all.
|
| + // Treat it as just part of the substitution text.
|
| + UChar c16 = DOLLARSIGN;
|
| + destLen += utext_replace(dest, destLen, destLen, &c16, 1, &status);
|
| + } else {
|
| + // Finally, append the capture group data to the destination.
|
| + destLen += appendGroup(groupNum, dest, status);
|
| + if (U_FAILURE(status)) {
|
| + // Can fail if group number is out of range.
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (U_FAILURE(status)) {
|
| + break;
|
| + } else {
|
| + c = UTEXT_NEXT32(replacement);
|
| + }
|
| + }
|
| +
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// appendTail Intended to be used in conjunction with appendReplacement()
|
| +// To the destination string, append everything following
|
| +// the last match position from the input string.
|
| +//
|
| +// Note: Match ranges do not affect appendTail or appendReplacement
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UnicodeString &RegexMatcher::appendTail(UnicodeString &dest) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + UText resultText = UTEXT_INITIALIZER;
|
| + utext_openUnicodeString(&resultText, &dest, &status);
|
| +
|
| + if (U_SUCCESS(status)) {
|
| + appendTail(&resultText, status);
|
| + utext_close(&resultText);
|
| + }
|
| +
|
| + return dest;
|
| +}
|
| +
|
| +//
|
| +// appendTail, UText mode
|
| +//
|
| +UText *RegexMatcher::appendTail(UText *dest, UErrorCode &status) {
|
| + UBool bailOut = FALSE;
|
| + if (U_FAILURE(status)) {
|
| + bailOut = TRUE;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + bailOut = TRUE;
|
| + }
|
| +
|
| + if (bailOut) {
|
| + // dest must not be NULL
|
| + if (dest) {
|
| + utext_replace(dest, utext_nativeLength(dest), utext_nativeLength(dest), NULL, 0, &status);
|
| + return dest;
|
| + }
|
| + }
|
| +
|
| + if (fInputLength > fAppendPosition) {
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + int64_t destLen = utext_nativeLength(dest);
|
| + utext_replace(dest, destLen, destLen, fInputText->chunkContents+fAppendPosition,
|
| + (int32_t)(fInputLength-fAppendPosition), &status);
|
| + } else {
|
| + int32_t len16;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + len16 = (int32_t)(fInputLength-fAppendPosition);
|
| + } else {
|
| + len16 = utext_extract(fInputText, fAppendPosition, fInputLength, NULL, 0, &status);
|
| + status = U_ZERO_ERROR; // buffer overflow
|
| + }
|
| +
|
| + UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16));
|
| + if (inputChars == NULL) {
|
| + fDeferredStatus = U_MEMORY_ALLOCATION_ERROR;
|
| + } else {
|
| + utext_extract(fInputText, fAppendPosition, fInputLength, inputChars, len16, &status); // unterminated
|
| + int64_t destLen = utext_nativeLength(dest);
|
| + utext_replace(dest, destLen, destLen, inputChars, len16, &status);
|
| + uprv_free(inputChars);
|
| + }
|
| + }
|
| + }
|
| + return dest;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// end
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::end(UErrorCode &err) const {
|
| + return end(0, err);
|
| +}
|
| +
|
| +int64_t RegexMatcher::end64(UErrorCode &err) const {
|
| + return end64(0, err);
|
| +}
|
| +
|
| +int64_t RegexMatcher::end64(int32_t group, UErrorCode &err) const {
|
| + if (U_FAILURE(err)) {
|
| + return -1;
|
| + }
|
| + if (fMatch == FALSE) {
|
| + err = U_REGEX_INVALID_STATE;
|
| + return -1;
|
| + }
|
| + if (group < 0 || group > fPattern->fGroupMap->size()) {
|
| + err = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return -1;
|
| + }
|
| + int64_t e = -1;
|
| + if (group == 0) {
|
| + e = fMatchEnd;
|
| + } else {
|
| + // Get the position within the stack frame of the variables for
|
| + // this capture group.
|
| + int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
|
| + U_ASSERT(groupOffset < fPattern->fFrameSize);
|
| + U_ASSERT(groupOffset >= 0);
|
| + e = fFrame->fExtra[groupOffset + 1];
|
| + }
|
| +
|
| + return e;
|
| +}
|
| +
|
| +int32_t RegexMatcher::end(int32_t group, UErrorCode &err) const {
|
| + return (int32_t)end64(group, err);
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// find()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::find() {
|
| + // Start at the position of the last match end. (Will be zero if the
|
| + // matcher has been reset.)
|
| + //
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| +
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + return findUsingChunk();
|
| + }
|
| +
|
| + int64_t startPos = fMatchEnd;
|
| + if (startPos==0) {
|
| + startPos = fActiveStart;
|
| + }
|
| +
|
| + if (fMatch) {
|
| + // Save the position of any previous successful match.
|
| + fLastMatchEnd = fMatchEnd;
|
| +
|
| + if (fMatchStart == fMatchEnd) {
|
| + // Previous match had zero length. Move start position up one position
|
| + // to avoid sending find() into a loop on zero-length matches.
|
| + if (startPos >= fActiveLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + UTEXT_NEXT32(fInputText);
|
| + startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + } else {
|
| + if (fLastMatchEnd >= 0) {
|
| + // A previous find() failed to match. Don't try again.
|
| + // (without this test, a pattern with a zero-length match
|
| + // could match again at the end of an input string.)
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + }
|
| +
|
| +
|
| + // Compute the position in the input string beyond which a match can not begin, because
|
| + // the minimum length match would extend past the end of the input.
|
| + // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
|
| + // Be aware of possible overflows if making changes here.
|
| + int64_t testStartLimit;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + testStartLimit = fActiveLimit - fPattern->fMinMatchLen;
|
| + if (startPos > testStartLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + } else {
|
| + // For now, let the matcher discover that it can't match on its own
|
| + // We don't know how long the match len is in native characters
|
| + testStartLimit = fActiveLimit;
|
| + }
|
| +
|
| + UChar32 c;
|
| + U_ASSERT(startPos >= 0);
|
| +
|
| + switch (fPattern->fStartType) {
|
| + case START_NO_INFO:
|
| + // No optimization was found.
|
| + // Try a match at each input position.
|
| + for (;;) {
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + if (startPos >= testStartLimit) {
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + UTEXT_NEXT32(fInputText);
|
| + startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + // Note that it's perfectly OK for a pattern to have a zero-length
|
| + // match at the end of a string, so we must make sure that the loop
|
| + // runs with startPos == testStartLimit the last time through.
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + U_ASSERT(FALSE);
|
| +
|
| + case START_START:
|
| + // Matches are only possible at the start of the input string
|
| + // (pattern begins with ^ or \A)
|
| + if (startPos > fActiveStart) {
|
| + fMatch = FALSE;
|
| + return FALSE;
|
| + }
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + return fMatch;
|
| +
|
| +
|
| + case START_SET:
|
| + {
|
| + // Match may start on any char from a pre-computed set.
|
| + U_ASSERT(fPattern->fMinMatchLen > 0);
|
| + int64_t pos;
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + for (;;) {
|
| + c = UTEXT_NEXT32(fInputText);
|
| + pos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + // c will be -1 (U_SENTINEL) at end of text, in which case we
|
| + // skip this next block (so we don't have a negative array index)
|
| + // and handle end of text in the following block.
|
| + if (c >= 0 && ((c<256 && fPattern->fInitialChars8->contains(c)) ||
|
| + (c>=256 && fPattern->fInitialChars->contains(c)))) {
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, pos);
|
| + }
|
| + if (startPos >= testStartLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + startPos = pos;
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + }
|
| + U_ASSERT(FALSE);
|
| +
|
| + case START_STRING:
|
| + case START_CHAR:
|
| + {
|
| + // Match starts on exactly one char.
|
| + U_ASSERT(fPattern->fMinMatchLen > 0);
|
| + UChar32 theChar = fPattern->fInitialChar;
|
| + int64_t pos;
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + for (;;) {
|
| + c = UTEXT_NEXT32(fInputText);
|
| + pos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (c == theChar) {
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, pos);
|
| + }
|
| + if (startPos >= testStartLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + startPos = pos;
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + }
|
| + U_ASSERT(FALSE);
|
| +
|
| + case START_LINE:
|
| + {
|
| + UChar32 c;
|
| + if (startPos == fAnchorStart) {
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + c = UTEXT_NEXT32(fInputText);
|
| + startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + } else {
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + }
|
| +
|
| + if (fPattern->fFlags & UREGEX_UNIX_LINES) {
|
| + for (;;) {
|
| + if (c == 0x0a) {
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + }
|
| + if (startPos >= testStartLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + c = UTEXT_NEXT32(fInputText);
|
| + startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + // Note that it's perfectly OK for a pattern to have a zero-length
|
| + // match at the end of a string, so we must make sure that the loop
|
| + // runs with startPos == testStartLimit the last time through.
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + } else {
|
| + for (;;) {
|
| + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
|
| + if (c == 0x0d && startPos < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
|
| + UTEXT_NEXT32(fInputText);
|
| + startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + MatchAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + UTEXT_SETNATIVEINDEX(fInputText, startPos);
|
| + }
|
| + if (startPos >= testStartLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + c = UTEXT_NEXT32(fInputText);
|
| + startPos = UTEXT_GETNATIVEINDEX(fInputText);
|
| + // Note that it's perfectly OK for a pattern to have a zero-length
|
| + // match at the end of a string, so we must make sure that the loop
|
| + // runs with startPos == testStartLimit the last time through.
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + }
|
| + }
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + U_ASSERT(FALSE);
|
| + return FALSE;
|
| +}
|
| +
|
| +
|
| +
|
| +UBool RegexMatcher::find(int64_t start, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return FALSE;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return FALSE;
|
| + }
|
| + this->reset(); // Note: Reset() is specified by Java Matcher documentation.
|
| + // This will reset the region to be the full input length.
|
| + if (start < 0) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return FALSE;
|
| + }
|
| +
|
| + int64_t nativeStart = start;
|
| + if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return FALSE;
|
| + }
|
| + fMatchEnd = nativeStart;
|
| + return find();
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// findUsingChunk() -- like find(), but with the advance knowledge that the
|
| +// entire string is available in the UText's chunk buffer.
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::findUsingChunk() {
|
| + // Start at the position of the last match end. (Will be zero if the
|
| + // matcher has been reset.
|
| + //
|
| +
|
| + int32_t startPos = (int32_t)fMatchEnd;
|
| + if (startPos==0) {
|
| + startPos = (int32_t)fActiveStart;
|
| + }
|
| +
|
| + const UChar *inputBuf = fInputText->chunkContents;
|
| +
|
| + if (fMatch) {
|
| + // Save the position of any previous successful match.
|
| + fLastMatchEnd = fMatchEnd;
|
| +
|
| + if (fMatchStart == fMatchEnd) {
|
| + // Previous match had zero length. Move start position up one position
|
| + // to avoid sending find() into a loop on zero-length matches.
|
| + if (startPos >= fActiveLimit) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + U16_FWD_1(inputBuf, startPos, fInputLength);
|
| + }
|
| + } else {
|
| + if (fLastMatchEnd >= 0) {
|
| + // A previous find() failed to match. Don't try again.
|
| + // (without this test, a pattern with a zero-length match
|
| + // could match again at the end of an input string.)
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + }
|
| +
|
| +
|
| + // Compute the position in the input string beyond which a match can not begin, because
|
| + // the minimum length match would extend past the end of the input.
|
| + // Note: some patterns that cannot match anything will have fMinMatchLength==Max Int.
|
| + // Be aware of possible overflows if making changes here.
|
| + int32_t testLen = (int32_t)(fActiveLimit - fPattern->fMinMatchLen);
|
| + if (startPos > testLen) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| +
|
| + UChar32 c;
|
| + U_ASSERT(startPos >= 0);
|
| +
|
| + switch (fPattern->fStartType) {
|
| + case START_NO_INFO:
|
| + // No optimization was found.
|
| + // Try a match at each input position.
|
| + for (;;) {
|
| + MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + if (startPos >= testLen) {
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
| + // Note that it's perfectly OK for a pattern to have a zero-length
|
| + // match at the end of a string, so we must make sure that the loop
|
| + // runs with startPos == testLen the last time through.
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + U_ASSERT(FALSE);
|
| +
|
| + case START_START:
|
| + // Matches are only possible at the start of the input string
|
| + // (pattern begins with ^ or \A)
|
| + if (startPos > fActiveStart) {
|
| + fMatch = FALSE;
|
| + return FALSE;
|
| + }
|
| + MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + return fMatch;
|
| +
|
| +
|
| + case START_SET:
|
| + {
|
| + // Match may start on any char from a pre-computed set.
|
| + U_ASSERT(fPattern->fMinMatchLen > 0);
|
| + for (;;) {
|
| + int32_t pos = startPos;
|
| + U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
|
| + if ((c<256 && fPattern->fInitialChars8->contains(c)) ||
|
| + (c>=256 && fPattern->fInitialChars->contains(c))) {
|
| + MatchChunkAt(pos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + }
|
| + if (pos >= testLen) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + }
|
| + U_ASSERT(FALSE);
|
| +
|
| + case START_STRING:
|
| + case START_CHAR:
|
| + {
|
| + // Match starts on exactly one char.
|
| + U_ASSERT(fPattern->fMinMatchLen > 0);
|
| + UChar32 theChar = fPattern->fInitialChar;
|
| + for (;;) {
|
| + int32_t pos = startPos;
|
| + U16_NEXT(inputBuf, startPos, fActiveLimit, c); // like c = inputBuf[startPos++];
|
| + if (c == theChar) {
|
| + MatchChunkAt(pos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + }
|
| + if (pos >= testLen) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + }
|
| + U_ASSERT(FALSE);
|
| +
|
| + case START_LINE:
|
| + {
|
| + UChar32 c;
|
| + if (startPos == fAnchorStart) {
|
| + MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
| + }
|
| +
|
| + if (fPattern->fFlags & UREGEX_UNIX_LINES) {
|
| + for (;;) {
|
| + c = inputBuf[startPos-1];
|
| + if (c == 0x0a) {
|
| + MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + }
|
| + if (startPos >= testLen) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
| + // Note that it's perfectly OK for a pattern to have a zero-length
|
| + // match at the end of a string, so we must make sure that the loop
|
| + // runs with startPos == testLen the last time through.
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + } else {
|
| + for (;;) {
|
| + c = inputBuf[startPos-1];
|
| + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029 )) {
|
| + if (c == 0x0d && startPos < fActiveLimit && inputBuf[startPos] == 0x0a) {
|
| + startPos++;
|
| + }
|
| + MatchChunkAt(startPos, FALSE, fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + if (fMatch) {
|
| + return TRUE;
|
| + }
|
| + }
|
| + if (startPos >= testLen) {
|
| + fMatch = FALSE;
|
| + fHitEnd = TRUE;
|
| + return FALSE;
|
| + }
|
| + U16_FWD_1(inputBuf, startPos, fActiveLimit);
|
| + // Note that it's perfectly OK for a pattern to have a zero-length
|
| + // match at the end of a string, so we must make sure that the loop
|
| + // runs with startPos == testLen the last time through.
|
| + if (REGEXFINDPROGRESS_INTERRUPT(startPos, fDeferredStatus))
|
| + return FALSE;
|
| + }
|
| + }
|
| + }
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + U_ASSERT(FALSE);
|
| + return FALSE;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// group()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UnicodeString RegexMatcher::group(UErrorCode &status) const {
|
| + return group(0, status);
|
| +}
|
| +
|
| +// Return immutable shallow clone
|
| +UText *RegexMatcher::group(UText *dest, int64_t &group_len, UErrorCode &status) const {
|
| + return group(0, dest, group_len, status);
|
| +}
|
| +
|
| +// Return immutable shallow clone
|
| +UText *RegexMatcher::group(int32_t groupNum, UText *dest, int64_t &group_len, UErrorCode &status) const {
|
| + group_len = 0;
|
| + UBool bailOut = FALSE;
|
| + if (U_FAILURE(status)) {
|
| + return dest;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + bailOut = TRUE;
|
| + }
|
| + if (fMatch == FALSE) {
|
| + status = U_REGEX_INVALID_STATE;
|
| + bailOut = TRUE;
|
| + }
|
| + if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + bailOut = TRUE;
|
| + }
|
| +
|
| + if (bailOut) {
|
| + return (dest) ? dest : utext_openUChars(NULL, NULL, 0, &status);
|
| + }
|
| +
|
| + int64_t s, e;
|
| + if (groupNum == 0) {
|
| + s = fMatchStart;
|
| + e = fMatchEnd;
|
| + } else {
|
| + int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
|
| + U_ASSERT(groupOffset < fPattern->fFrameSize);
|
| + U_ASSERT(groupOffset >= 0);
|
| + s = fFrame->fExtra[groupOffset];
|
| + e = fFrame->fExtra[groupOffset+1];
|
| + }
|
| +
|
| + if (s < 0) {
|
| + // A capture group wasn't part of the match
|
| + return utext_clone(dest, fInputText, FALSE, TRUE, &status);
|
| + }
|
| + U_ASSERT(s <= e);
|
| + group_len = e - s;
|
| +
|
| + dest = utext_clone(dest, fInputText, FALSE, TRUE, &status);
|
| + if (dest)
|
| + UTEXT_SETNATIVEINDEX(dest, s);
|
| + return dest;
|
| +}
|
| +
|
| +UnicodeString RegexMatcher::group(int32_t groupNum, UErrorCode &status) const {
|
| + UnicodeString result;
|
| + if (U_FAILURE(status)) {
|
| + return result;
|
| + }
|
| + UText resultText = UTEXT_INITIALIZER;
|
| + utext_openUnicodeString(&resultText, &result, &status);
|
| + group(groupNum, &resultText, status);
|
| + utext_close(&resultText);
|
| + return result;
|
| +}
|
| +
|
| +
|
| +// Return deep (mutable) clone
|
| +// Technology Preview (as an API), but note that the UnicodeString API is implemented
|
| +// using this function.
|
| +UText *RegexMatcher::group(int32_t groupNum, UText *dest, UErrorCode &status) const {
|
| + UBool bailOut = FALSE;
|
| + if (U_FAILURE(status)) {
|
| + return dest;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + bailOut = TRUE;
|
| + }
|
| +
|
| + if (fMatch == FALSE) {
|
| + status = U_REGEX_INVALID_STATE;
|
| + bailOut = TRUE;
|
| + }
|
| + if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + bailOut = TRUE;
|
| + }
|
| +
|
| + if (bailOut) {
|
| + if (dest) {
|
| + utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
|
| + return dest;
|
| + } else {
|
| + return utext_openUChars(NULL, NULL, 0, &status);
|
| + }
|
| + }
|
| +
|
| + int64_t s, e;
|
| + if (groupNum == 0) {
|
| + s = fMatchStart;
|
| + e = fMatchEnd;
|
| + } else {
|
| + int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
|
| + U_ASSERT(groupOffset < fPattern->fFrameSize);
|
| + U_ASSERT(groupOffset >= 0);
|
| + s = fFrame->fExtra[groupOffset];
|
| + e = fFrame->fExtra[groupOffset+1];
|
| + }
|
| +
|
| + if (s < 0) {
|
| + // A capture group wasn't part of the match
|
| + if (dest) {
|
| + utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
|
| + return dest;
|
| + } else {
|
| + return utext_openUChars(NULL, NULL, 0, &status);
|
| + }
|
| + }
|
| + U_ASSERT(s <= e);
|
| +
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + U_ASSERT(e <= fInputLength);
|
| + if (dest) {
|
| + utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents+s, (int32_t)(e-s), &status);
|
| + } else {
|
| + UText groupText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&groupText, fInputText->chunkContents+s, e-s, &status);
|
| + dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
|
| + utext_close(&groupText);
|
| + }
|
| + } else {
|
| + int32_t len16;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + len16 = (int32_t)(e-s);
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
|
| + }
|
| + UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
|
| + if (groupChars == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return dest;
|
| + }
|
| + utext_extract(fInputText, s, e, groupChars, len16+1, &status);
|
| +
|
| + if (dest) {
|
| + utext_replace(dest, 0, utext_nativeLength(dest), groupChars, len16, &status);
|
| + } else {
|
| + UText groupText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&groupText, groupChars, len16, &status);
|
| + dest = utext_clone(NULL, &groupText, TRUE, FALSE, &status);
|
| + utext_close(&groupText);
|
| + }
|
| +
|
| + uprv_free(groupChars);
|
| + }
|
| + return dest;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// appendGroup() -- currently internal only, appends a group to a UText rather
|
| +// than replacing its contents
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +
|
| +int64_t RegexMatcher::appendGroup(int32_t groupNum, UText *dest, UErrorCode &status) const {
|
| + if (U_FAILURE(status)) {
|
| + return 0;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return 0;
|
| + }
|
| + int64_t destLen = utext_nativeLength(dest);
|
| +
|
| + if (fMatch == FALSE) {
|
| + status = U_REGEX_INVALID_STATE;
|
| + return utext_replace(dest, destLen, destLen, NULL, 0, &status);
|
| + }
|
| + if (groupNum < 0 || groupNum > fPattern->fGroupMap->size()) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return utext_replace(dest, destLen, destLen, NULL, 0, &status);
|
| + }
|
| +
|
| + int64_t s, e;
|
| + if (groupNum == 0) {
|
| + s = fMatchStart;
|
| + e = fMatchEnd;
|
| + } else {
|
| + int32_t groupOffset = fPattern->fGroupMap->elementAti(groupNum-1);
|
| + U_ASSERT(groupOffset < fPattern->fFrameSize);
|
| + U_ASSERT(groupOffset >= 0);
|
| + s = fFrame->fExtra[groupOffset];
|
| + e = fFrame->fExtra[groupOffset+1];
|
| + }
|
| +
|
| + if (s < 0) {
|
| + // A capture group wasn't part of the match
|
| + return utext_replace(dest, destLen, destLen, NULL, 0, &status);
|
| + }
|
| + U_ASSERT(s <= e);
|
| +
|
| + int64_t deltaLen;
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + U_ASSERT(e <= fInputLength);
|
| + deltaLen = utext_replace(dest, destLen, destLen, fInputText->chunkContents+s, (int32_t)(e-s), &status);
|
| + } else {
|
| + int32_t len16;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + len16 = (int32_t)(e-s);
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + len16 = utext_extract(fInputText, s, e, NULL, 0, &lengthStatus);
|
| + }
|
| + UChar *groupChars = (UChar *)uprv_malloc(sizeof(UChar)*(len16+1));
|
| + if (groupChars == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return 0;
|
| + }
|
| + utext_extract(fInputText, s, e, groupChars, len16+1, &status);
|
| +
|
| + deltaLen = utext_replace(dest, destLen, destLen, groupChars, len16, &status);
|
| + uprv_free(groupChars);
|
| + }
|
| + return deltaLen;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// groupCount()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::groupCount() const {
|
| + return fPattern->fGroupMap->size();
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// hasAnchoringBounds()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::hasAnchoringBounds() const {
|
| + return fAnchoringBounds;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// hasTransparentBounds()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::hasTransparentBounds() const {
|
| + return fTransparentBounds;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// hitEnd()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::hitEnd() const {
|
| + return fHitEnd;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// input()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +const UnicodeString &RegexMatcher::input() const {
|
| + if (!fInput) {
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + int32_t len16;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + len16 = (int32_t)fInputLength;
|
| + } else {
|
| + len16 = utext_extract(fInputText, 0, fInputLength, NULL, 0, &status);
|
| + status = U_ZERO_ERROR; // overflow, length status
|
| + }
|
| + UnicodeString *result = new UnicodeString(len16, 0, 0);
|
| +
|
| + UChar *inputChars = result->getBuffer(len16);
|
| + utext_extract(fInputText, 0, fInputLength, inputChars, len16, &status); // unterminated warning
|
| + result->releaseBuffer(len16);
|
| +
|
| + (*(const UnicodeString **)&fInput) = result; // pointer assignment, rather than operator=
|
| + }
|
| +
|
| + return *fInput;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// inputText()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UText *RegexMatcher::inputText() const {
|
| + return fInputText;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// getInput() -- like inputText(), but makes a clone or copies into another UText
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UText *RegexMatcher::getInput (UText *dest, UErrorCode &status) const {
|
| + UBool bailOut = FALSE;
|
| + if (U_FAILURE(status)) {
|
| + return dest;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + bailOut = TRUE;
|
| + }
|
| +
|
| + if (bailOut) {
|
| + if (dest) {
|
| + utext_replace(dest, 0, utext_nativeLength(dest), NULL, 0, &status);
|
| + return dest;
|
| + } else {
|
| + return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
|
| + }
|
| + }
|
| +
|
| + if (dest) {
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + utext_replace(dest, 0, utext_nativeLength(dest), fInputText->chunkContents, (int32_t)fInputLength, &status);
|
| + } else {
|
| + int32_t input16Len;
|
| + if (UTEXT_USES_U16(fInputText)) {
|
| + input16Len = (int32_t)fInputLength;
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + input16Len = utext_extract(fInputText, 0, fInputLength, NULL, 0, &lengthStatus); // buffer overflow error
|
| + }
|
| + UChar *inputChars = (UChar *)uprv_malloc(sizeof(UChar)*(input16Len));
|
| + if (inputChars == NULL) {
|
| + return dest;
|
| + }
|
| +
|
| + status = U_ZERO_ERROR;
|
| + utext_extract(fInputText, 0, fInputLength, inputChars, input16Len, &status); // not terminated warning
|
| + status = U_ZERO_ERROR;
|
| + utext_replace(dest, 0, utext_nativeLength(dest), inputChars, input16Len, &status);
|
| +
|
| + uprv_free(inputChars);
|
| + }
|
| + return dest;
|
| + } else {
|
| + return utext_clone(NULL, fInputText, FALSE, TRUE, &status);
|
| + }
|
| +}
|
| +
|
| +
|
| +static UBool compat_SyncMutableUTextContents(UText *ut);
|
| +static UBool compat_SyncMutableUTextContents(UText *ut) {
|
| + UBool retVal = FALSE;
|
| +
|
| + // In the following test, we're really only interested in whether the UText should switch
|
| + // between heap and stack allocation. If length hasn't changed, we won't, so the chunkContents
|
| + // will still point to the correct data.
|
| + if (utext_nativeLength(ut) != ut->nativeIndexingLimit) {
|
| + UnicodeString *us=(UnicodeString *)ut->context;
|
| +
|
| + // Update to the latest length.
|
| + // For example, (utext_nativeLength(ut) != ut->nativeIndexingLimit).
|
| + int32_t newLength = us->length();
|
| +
|
| + // Update the chunk description.
|
| + // The buffer may have switched between stack- and heap-based.
|
| + ut->chunkContents = us->getBuffer();
|
| + ut->chunkLength = newLength;
|
| + ut->chunkNativeLimit = newLength;
|
| + ut->nativeIndexingLimit = newLength;
|
| + retVal = TRUE;
|
| + }
|
| +
|
| + return retVal;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// lookingAt()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::lookingAt(UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return FALSE;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return FALSE;
|
| + }
|
| +
|
| + if (fInputUniStrMaybeMutable) {
|
| + if (compat_SyncMutableUTextContents(fInputText)) {
|
| + fInputLength = utext_nativeLength(fInputText);
|
| + reset();
|
| + }
|
| + }
|
| + else {
|
| + resetPreserveRegion();
|
| + }
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + MatchChunkAt((int32_t)fActiveStart, FALSE, status);
|
| + } else {
|
| + MatchAt(fActiveStart, FALSE, status);
|
| + }
|
| + return fMatch;
|
| +}
|
| +
|
| +
|
| +UBool RegexMatcher::lookingAt(int64_t start, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return FALSE;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return FALSE;
|
| + }
|
| + reset();
|
| +
|
| + if (start < 0) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return FALSE;
|
| + }
|
| +
|
| + if (fInputUniStrMaybeMutable) {
|
| + if (compat_SyncMutableUTextContents(fInputText)) {
|
| + fInputLength = utext_nativeLength(fInputText);
|
| + reset();
|
| + }
|
| + }
|
| +
|
| + int64_t nativeStart;
|
| + nativeStart = start;
|
| + if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return FALSE;
|
| + }
|
| +
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + MatchChunkAt((int32_t)nativeStart, FALSE, status);
|
| + } else {
|
| + MatchAt(nativeStart, FALSE, status);
|
| + }
|
| + return fMatch;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// matches()
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::matches(UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return FALSE;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return FALSE;
|
| + }
|
| +
|
| + if (fInputUniStrMaybeMutable) {
|
| + if (compat_SyncMutableUTextContents(fInputText)) {
|
| + fInputLength = utext_nativeLength(fInputText);
|
| + reset();
|
| + }
|
| + }
|
| + else {
|
| + resetPreserveRegion();
|
| + }
|
| +
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + MatchChunkAt((int32_t)fActiveStart, TRUE, status);
|
| + } else {
|
| + MatchAt(fActiveStart, TRUE, status);
|
| + }
|
| + return fMatch;
|
| +}
|
| +
|
| +
|
| +UBool RegexMatcher::matches(int64_t start, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return FALSE;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return FALSE;
|
| + }
|
| + reset();
|
| +
|
| + if (start < 0) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return FALSE;
|
| + }
|
| +
|
| + if (fInputUniStrMaybeMutable) {
|
| + if (compat_SyncMutableUTextContents(fInputText)) {
|
| + fInputLength = utext_nativeLength(fInputText);
|
| + reset();
|
| + }
|
| + }
|
| +
|
| + int64_t nativeStart;
|
| + nativeStart = start;
|
| + if (nativeStart < fActiveStart || nativeStart > fActiveLimit) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return FALSE;
|
| + }
|
| +
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fInputText, fInputLength)) {
|
| + MatchChunkAt((int32_t)nativeStart, TRUE, status);
|
| + } else {
|
| + MatchAt(nativeStart, TRUE, status);
|
| + }
|
| + return fMatch;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// pattern
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +const RegexPattern &RegexMatcher::pattern() const {
|
| + return *fPattern;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// region
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +RegexMatcher &RegexMatcher::region(int64_t regionStart, int64_t regionLimit, int64_t startIndex, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return *this;
|
| + }
|
| +
|
| + if (regionStart>regionLimit || regionStart<0 || regionLimit<0) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + }
|
| +
|
| + int64_t nativeStart = regionStart;
|
| + int64_t nativeLimit = regionLimit;
|
| + if (nativeStart > fInputLength || nativeLimit > fInputLength) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + }
|
| +
|
| + if (startIndex == -1)
|
| + this->reset();
|
| + else
|
| + resetPreserveRegion();
|
| +
|
| + fRegionStart = nativeStart;
|
| + fRegionLimit = nativeLimit;
|
| + fActiveStart = nativeStart;
|
| + fActiveLimit = nativeLimit;
|
| +
|
| + if (startIndex != -1) {
|
| + if (startIndex < fActiveStart || startIndex > fActiveLimit) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + }
|
| + fMatchEnd = startIndex;
|
| + }
|
| +
|
| + if (!fTransparentBounds) {
|
| + fLookStart = nativeStart;
|
| + fLookLimit = nativeLimit;
|
| + }
|
| + if (fAnchoringBounds) {
|
| + fAnchorStart = nativeStart;
|
| + fAnchorLimit = nativeLimit;
|
| + }
|
| + return *this;
|
| +}
|
| +
|
| +RegexMatcher &RegexMatcher::region(int64_t start, int64_t limit, UErrorCode &status) {
|
| + return region(start, limit, -1, status);
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// regionEnd
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::regionEnd() const {
|
| + return (int32_t)fRegionLimit;
|
| +}
|
| +
|
| +int64_t RegexMatcher::regionEnd64() const {
|
| + return fRegionLimit;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// regionStart
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::regionStart() const {
|
| + return (int32_t)fRegionStart;
|
| +}
|
| +
|
| +int64_t RegexMatcher::regionStart64() const {
|
| + return fRegionStart;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// replaceAll
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UnicodeString RegexMatcher::replaceAll(const UnicodeString &replacement, UErrorCode &status) {
|
| + UText replacementText = UTEXT_INITIALIZER;
|
| + UText resultText = UTEXT_INITIALIZER;
|
| + UnicodeString resultString;
|
| + if (U_FAILURE(status)) {
|
| + return resultString;
|
| + }
|
| +
|
| + utext_openConstUnicodeString(&replacementText, &replacement, &status);
|
| + utext_openUnicodeString(&resultText, &resultString, &status);
|
| +
|
| + replaceAll(&replacementText, &resultText, status);
|
| +
|
| + utext_close(&resultText);
|
| + utext_close(&replacementText);
|
| +
|
| + return resultString;
|
| +}
|
| +
|
| +
|
| +//
|
| +// replaceAll, UText mode
|
| +//
|
| +UText *RegexMatcher::replaceAll(UText *replacement, UText *dest, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return dest;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return dest;
|
| + }
|
| +
|
| + if (dest == NULL) {
|
| + UnicodeString emptyString;
|
| + UText empty = UTEXT_INITIALIZER;
|
| +
|
| + utext_openUnicodeString(&empty, &emptyString, &status);
|
| + dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
|
| + utext_close(&empty);
|
| + }
|
| +
|
| + if (U_SUCCESS(status)) {
|
| + reset();
|
| + while (find()) {
|
| + appendReplacement(dest, replacement, status);
|
| + if (U_FAILURE(status)) {
|
| + break;
|
| + }
|
| + }
|
| + appendTail(dest, status);
|
| + }
|
| +
|
| + return dest;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// replaceFirst
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UnicodeString RegexMatcher::replaceFirst(const UnicodeString &replacement, UErrorCode &status) {
|
| + UText replacementText = UTEXT_INITIALIZER;
|
| + UText resultText = UTEXT_INITIALIZER;
|
| + UnicodeString resultString;
|
| +
|
| + utext_openConstUnicodeString(&replacementText, &replacement, &status);
|
| + utext_openUnicodeString(&resultText, &resultString, &status);
|
| +
|
| + replaceFirst(&replacementText, &resultText, status);
|
| +
|
| + utext_close(&resultText);
|
| + utext_close(&replacementText);
|
| +
|
| + return resultString;
|
| +}
|
| +
|
| +//
|
| +// replaceFirst, UText mode
|
| +//
|
| +UText *RegexMatcher::replaceFirst(UText *replacement, UText *dest, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return dest;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return dest;
|
| + }
|
| +
|
| + reset();
|
| + if (!find()) {
|
| + return getInput(dest, status);
|
| + }
|
| +
|
| + if (dest == NULL) {
|
| + UnicodeString emptyString;
|
| + UText empty = UTEXT_INITIALIZER;
|
| +
|
| + utext_openUnicodeString(&empty, &emptyString, &status);
|
| + dest = utext_clone(NULL, &empty, TRUE, FALSE, &status);
|
| + utext_close(&empty);
|
| + }
|
| +
|
| + appendReplacement(dest, replacement, status);
|
| + appendTail(dest, status);
|
| +
|
| + return dest;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// requireEnd
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::requireEnd() const {
|
| + return fRequireEnd;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// reset
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +RegexMatcher &RegexMatcher::reset() {
|
| + fRegionStart = 0;
|
| + fRegionLimit = fInputLength;
|
| + fActiveStart = 0;
|
| + fActiveLimit = fInputLength;
|
| + fAnchorStart = 0;
|
| + fAnchorLimit = fInputLength;
|
| + fLookStart = 0;
|
| + fLookLimit = fInputLength;
|
| + resetPreserveRegion();
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +
|
| +void RegexMatcher::resetPreserveRegion() {
|
| + fMatchStart = 0;
|
| + fMatchEnd = 0;
|
| + fLastMatchEnd = -1;
|
| + fAppendPosition = 0;
|
| + fMatch = FALSE;
|
| + fHitEnd = FALSE;
|
| + fRequireEnd = FALSE;
|
| + fTime = 0;
|
| + fTickCounter = TIMER_INITIAL_VALUE;
|
| + //resetStack(); // more expensive than it looks...
|
| +}
|
| +
|
| +
|
| +RegexMatcher &RegexMatcher::reset(const UnicodeString &input) {
|
| + fInputText = utext_openConstUnicodeString(fInputText, &input, &fDeferredStatus);
|
| + if (fPattern->fNeedsAltInput) {
|
| + fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
|
| + }
|
| + fInputLength = utext_nativeLength(fInputText);
|
| +
|
| + reset();
|
| + delete fInput;
|
| + fInput = NULL;
|
| +
|
| + // Do the following for any UnicodeString.
|
| + // This is for compatibility for those clients who modify the input string "live" during regex operations.
|
| + fInputUniStrMaybeMutable = TRUE;
|
| +
|
| + if (fWordBreakItr != NULL) {
|
| +#if UCONFIG_NO_BREAK_ITERATION==0
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + fWordBreakItr->setText(fInputText, status);
|
| +#endif
|
| + }
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +RegexMatcher &RegexMatcher::reset(UText *input) {
|
| + if (fInputText != input) {
|
| + fInputText = utext_clone(fInputText, input, FALSE, TRUE, &fDeferredStatus);
|
| + if (fPattern->fNeedsAltInput) fAltInputText = utext_clone(fAltInputText, fInputText, FALSE, TRUE, &fDeferredStatus);
|
| + fInputLength = utext_nativeLength(fInputText);
|
| +
|
| + delete fInput;
|
| + fInput = NULL;
|
| +
|
| + if (fWordBreakItr != NULL) {
|
| +#if UCONFIG_NO_BREAK_ITERATION==0
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + fWordBreakItr->setText(input, status);
|
| +#endif
|
| + }
|
| + }
|
| + reset();
|
| + fInputUniStrMaybeMutable = FALSE;
|
| +
|
| + return *this;
|
| +}
|
| +
|
| +/*RegexMatcher &RegexMatcher::reset(const UChar *) {
|
| + fDeferredStatus = U_INTERNAL_PROGRAM_ERROR;
|
| + return *this;
|
| +}*/
|
| +
|
| +RegexMatcher &RegexMatcher::reset(int64_t position, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return *this;
|
| + }
|
| + reset(); // Reset also resets the region to be the entire string.
|
| +
|
| + if (position < 0 || position > fActiveLimit) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return *this;
|
| + }
|
| + fMatchEnd = position;
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// setTrace
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::setTrace(UBool state) {
|
| + fTraceDebug = state;
|
| +}
|
| +
|
| +
|
| +
|
| +//---------------------------------------------------------------------
|
| +//
|
| +// split
|
| +//
|
| +//---------------------------------------------------------------------
|
| +int32_t RegexMatcher::split(const UnicodeString &input,
|
| + UnicodeString dest[],
|
| + int32_t destCapacity,
|
| + UErrorCode &status)
|
| +{
|
| + UText inputText = UTEXT_INITIALIZER;
|
| + utext_openConstUnicodeString(&inputText, &input, &status);
|
| + if (U_FAILURE(status)) {
|
| + return 0;
|
| + }
|
| +
|
| + UText **destText = (UText **)uprv_malloc(sizeof(UText*)*destCapacity);
|
| + if (destText == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + return 0;
|
| + }
|
| + int32_t i;
|
| + for (i = 0; i < destCapacity; i++) {
|
| + destText[i] = utext_openUnicodeString(NULL, &dest[i], &status);
|
| + }
|
| +
|
| + int32_t fieldCount = split(&inputText, destText, destCapacity, status);
|
| +
|
| + for (i = 0; i < destCapacity; i++) {
|
| + utext_close(destText[i]);
|
| + }
|
| +
|
| + uprv_free(destText);
|
| + utext_close(&inputText);
|
| + return fieldCount;
|
| +}
|
| +
|
| +//
|
| +// split, UText mode
|
| +//
|
| +int32_t RegexMatcher::split(UText *input,
|
| + UText *dest[],
|
| + int32_t destCapacity,
|
| + UErrorCode &status)
|
| +{
|
| + //
|
| + // Check arguements for validity
|
| + //
|
| + if (U_FAILURE(status)) {
|
| + return 0;
|
| + };
|
| +
|
| + if (destCapacity < 1) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return 0;
|
| + }
|
| +
|
| + //
|
| + // Reset for the input text
|
| + //
|
| + reset(input);
|
| + int64_t nextOutputStringStart = 0;
|
| + if (fActiveLimit == 0) {
|
| + return 0;
|
| + }
|
| +
|
| + //
|
| + // Loop through the input text, searching for the delimiter pattern
|
| + //
|
| + int32_t i;
|
| + int32_t numCaptureGroups = fPattern->fGroupMap->size();
|
| + for (i=0; ; i++) {
|
| + if (i>=destCapacity-1) {
|
| + // There is one or zero output string left.
|
| + // Fill the last output string with whatever is left from the input, then exit the loop.
|
| + // ( i will be == destCapacity if we filled the output array while processing
|
| + // capture groups of the delimiter expression, in which case we will discard the
|
| + // last capture group saved in favor of the unprocessed remainder of the
|
| + // input string.)
|
| + i = destCapacity-1;
|
| + if (fActiveLimit > nextOutputStringStart) {
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
|
| + if (dest[i]) {
|
| + utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
|
| + input->chunkContents+nextOutputStringStart,
|
| + (int32_t)(fActiveLimit-nextOutputStringStart), &status);
|
| + } else {
|
| + UText remainingText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
|
| + fActiveLimit-nextOutputStringStart, &status);
|
| + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
| + utext_close(&remainingText);
|
| + }
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + int32_t remaining16Length =
|
| + utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
|
| + UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
|
| + if (remainingChars == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + break;
|
| + }
|
| +
|
| + utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
|
| + if (dest[i]) {
|
| + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
|
| + } else {
|
| + UText remainingText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
|
| + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
| + utext_close(&remainingText);
|
| + }
|
| +
|
| + uprv_free(remainingChars);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + if (find()) {
|
| + // We found another delimiter. Move everything from where we started looking
|
| + // up until the start of the delimiter into the next output string.
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
|
| + if (dest[i]) {
|
| + utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
|
| + input->chunkContents+nextOutputStringStart,
|
| + (int32_t)(fMatchStart-nextOutputStringStart), &status);
|
| + } else {
|
| + UText remainingText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
|
| + fMatchStart-nextOutputStringStart, &status);
|
| + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
| + utext_close(&remainingText);
|
| + }
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fMatchStart, NULL, 0, &lengthStatus);
|
| + UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
|
| + if (remainingChars == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + break;
|
| + }
|
| + utext_extract(input, nextOutputStringStart, fMatchStart, remainingChars, remaining16Length+1, &status);
|
| + if (dest[i]) {
|
| + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
|
| + } else {
|
| + UText remainingText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
|
| + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
| + utext_close(&remainingText);
|
| + }
|
| +
|
| + uprv_free(remainingChars);
|
| + }
|
| + nextOutputStringStart = fMatchEnd;
|
| +
|
| + // If the delimiter pattern has capturing parentheses, the captured
|
| + // text goes out into the next n destination strings.
|
| + int32_t groupNum;
|
| + UBool lastGroupWasNullUText = FALSE;
|
| + for (groupNum=1; groupNum<=numCaptureGroups; groupNum++) {
|
| + if (i==destCapacity-1) {
|
| + break;
|
| + }
|
| + i++;
|
| + lastGroupWasNullUText = (dest[i] == NULL ? TRUE : FALSE);
|
| + dest[i] = group(groupNum, dest[i], status);
|
| + }
|
| +
|
| + if (nextOutputStringStart == fActiveLimit) {
|
| + // The delimiter was at the end of the string. We're done.
|
| + break;
|
| + } else if (i == destCapacity-1) {
|
| + // We're out of capture groups, and the rest of the string is more important
|
| + if (lastGroupWasNullUText) {
|
| + utext_close(dest[i]);
|
| + dest[i] = NULL;
|
| + }
|
| + }
|
| +
|
| + }
|
| + else
|
| + {
|
| + // We ran off the end of the input while looking for the next delimiter.
|
| + // All the remaining text goes into the current output string.
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(input, fInputLength)) {
|
| + if (dest[i]) {
|
| + utext_replace(dest[i], 0, utext_nativeLength(dest[i]),
|
| + input->chunkContents+nextOutputStringStart,
|
| + (int32_t)(fActiveLimit-nextOutputStringStart), &status);
|
| + } else {
|
| + UText remainingText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&remainingText, input->chunkContents+nextOutputStringStart,
|
| + fActiveLimit-nextOutputStringStart, &status);
|
| + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
| + utext_close(&remainingText);
|
| + }
|
| + } else {
|
| + UErrorCode lengthStatus = U_ZERO_ERROR;
|
| + int32_t remaining16Length = utext_extract(input, nextOutputStringStart, fActiveLimit, NULL, 0, &lengthStatus);
|
| + UChar *remainingChars = (UChar *)uprv_malloc(sizeof(UChar)*(remaining16Length+1));
|
| + if (remainingChars == NULL) {
|
| + status = U_MEMORY_ALLOCATION_ERROR;
|
| + break;
|
| + }
|
| +
|
| + utext_extract(input, nextOutputStringStart, fActiveLimit, remainingChars, remaining16Length+1, &status);
|
| + if (dest[i]) {
|
| + utext_replace(dest[i], 0, utext_nativeLength(dest[i]), remainingChars, remaining16Length, &status);
|
| + } else {
|
| + UText remainingText = UTEXT_INITIALIZER;
|
| + utext_openUChars(&remainingText, remainingChars, remaining16Length, &status);
|
| + dest[i] = utext_clone(NULL, &remainingText, TRUE, FALSE, &status);
|
| + utext_close(&remainingText);
|
| + }
|
| +
|
| + uprv_free(remainingChars);
|
| + }
|
| + break;
|
| + }
|
| + if (U_FAILURE(status)) {
|
| + break;
|
| + }
|
| + } // end of for loop
|
| + return i+1;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// start
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::start(UErrorCode &status) const {
|
| + return start(0, status);
|
| +}
|
| +
|
| +int64_t RegexMatcher::start64(UErrorCode &status) const {
|
| + return start64(0, status);
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// start(int32_t group, UErrorCode &status)
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +
|
| +int64_t RegexMatcher::start64(int32_t group, UErrorCode &status) const {
|
| + if (U_FAILURE(status)) {
|
| + return -1;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return -1;
|
| + }
|
| + if (fMatch == FALSE) {
|
| + status = U_REGEX_INVALID_STATE;
|
| + return -1;
|
| + }
|
| + if (group < 0 || group > fPattern->fGroupMap->size()) {
|
| + status = U_INDEX_OUTOFBOUNDS_ERROR;
|
| + return -1;
|
| + }
|
| + int64_t s;
|
| + if (group == 0) {
|
| + s = fMatchStart;
|
| + } else {
|
| + int32_t groupOffset = fPattern->fGroupMap->elementAti(group-1);
|
| + U_ASSERT(groupOffset < fPattern->fFrameSize);
|
| + U_ASSERT(groupOffset >= 0);
|
| + s = fFrame->fExtra[groupOffset];
|
| + }
|
| +
|
| + return s;
|
| +}
|
| +
|
| +
|
| +int32_t RegexMatcher::start(int32_t group, UErrorCode &status) const {
|
| + return (int32_t)start64(group, status);
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// useAnchoringBounds
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +RegexMatcher &RegexMatcher::useAnchoringBounds(UBool b) {
|
| + fAnchoringBounds = b;
|
| + fAnchorStart = (fAnchoringBounds ? fRegionStart : 0);
|
| + fAnchorLimit = (fAnchoringBounds ? fRegionLimit : fInputLength);
|
| + return *this;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// useTransparentBounds
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +RegexMatcher &RegexMatcher::useTransparentBounds(UBool b) {
|
| + fTransparentBounds = b;
|
| + fLookStart = (fTransparentBounds ? 0 : fRegionStart);
|
| + fLookLimit = (fTransparentBounds ? fInputLength : fRegionLimit);
|
| + return *this;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// setTimeLimit
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::setTimeLimit(int32_t limit, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return;
|
| + }
|
| + if (limit < 0) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| + fTimeLimit = limit;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// getTimeLimit
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::getTimeLimit() const {
|
| + return fTimeLimit;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// setStackLimit
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::setStackLimit(int32_t limit, UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + status = fDeferredStatus;
|
| + return;
|
| + }
|
| + if (limit < 0) {
|
| + status = U_ILLEGAL_ARGUMENT_ERROR;
|
| + return;
|
| + }
|
| +
|
| + // Reset the matcher. This is needed here in case there is a current match
|
| + // whose final stack frame (containing the match results, pointed to by fFrame)
|
| + // would be lost by resizing to a smaller stack size.
|
| + reset();
|
| +
|
| + if (limit == 0) {
|
| + // Unlimited stack expansion
|
| + fStack->setMaxCapacity(0);
|
| + } else {
|
| + // Change the units of the limit from bytes to ints, and bump the size up
|
| + // to be big enough to hold at least one stack frame for the pattern,
|
| + // if it isn't there already.
|
| + int32_t adjustedLimit = limit / sizeof(int32_t);
|
| + if (adjustedLimit < fPattern->fFrameSize) {
|
| + adjustedLimit = fPattern->fFrameSize;
|
| + }
|
| + fStack->setMaxCapacity(adjustedLimit);
|
| + }
|
| + fStackLimit = limit;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// getStackLimit
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +int32_t RegexMatcher::getStackLimit() const {
|
| + return fStackLimit;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// setMatchCallback
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::setMatchCallback(URegexMatchCallback *callback,
|
| + const void *context,
|
| + UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + fCallbackFn = callback;
|
| + fCallbackContext = context;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// getMatchCallback
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::getMatchCallback(URegexMatchCallback *&callback,
|
| + const void *&context,
|
| + UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + callback = fCallbackFn;
|
| + context = fCallbackContext;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// setMatchCallback
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::setFindProgressCallback(URegexFindProgressCallback *callback,
|
| + const void *context,
|
| + UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + fFindProgressCallbackFn = callback;
|
| + fFindProgressCallbackContext = context;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// getMatchCallback
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::getFindProgressCallback(URegexFindProgressCallback *&callback,
|
| + const void *&context,
|
| + UErrorCode &status) {
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| + callback = fFindProgressCallbackFn;
|
| + context = fFindProgressCallbackContext;
|
| +}
|
| +
|
| +
|
| +//================================================================================
|
| +//
|
| +// Code following this point in this file is the internal
|
| +// Match Engine Implementation.
|
| +//
|
| +//================================================================================
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// resetStack
|
| +// Discard any previous contents of the state save stack, and initialize a
|
| +// new stack frame to all -1. The -1s are needed for capture group limits,
|
| +// where they indicate that a group has not yet matched anything.
|
| +//--------------------------------------------------------------------------------
|
| +REStackFrame *RegexMatcher::resetStack() {
|
| + // Discard any previous contents of the state save stack, and initialize a
|
| + // new stack frame with all -1 data. The -1s are needed for capture group limits,
|
| + // where they indicate that a group has not yet matched anything.
|
| + fStack->removeAllElements();
|
| +
|
| + REStackFrame *iFrame = (REStackFrame *)fStack->reserveBlock(fPattern->fFrameSize, fDeferredStatus);
|
| + int32_t i;
|
| + for (i=0; i<fPattern->fFrameSize-RESTACKFRAME_HDRCOUNT; i++) {
|
| + iFrame->fExtra[i] = -1;
|
| + }
|
| + return iFrame;
|
| +}
|
| +
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// isWordBoundary
|
| +// in perl, "xab..cd..", \b is true at positions 0,3,5,7
|
| +// For us,
|
| +// If the current char is a combining mark,
|
| +// \b is FALSE.
|
| +// Else Scan backwards to the first non-combining char.
|
| +// We are at a boundary if the this char and the original chars are
|
| +// opposite in membership in \w set
|
| +//
|
| +// parameters: pos - the current position in the input buffer
|
| +//
|
| +// TODO: double-check edge cases at region boundaries.
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::isWordBoundary(int64_t pos) {
|
| + UBool isBoundary = FALSE;
|
| + UBool cIsWord = FALSE;
|
| +
|
| + if (pos >= fLookLimit) {
|
| + fHitEnd = TRUE;
|
| + } else {
|
| + // Determine whether char c at current position is a member of the word set of chars.
|
| + // If we're off the end of the string, behave as though we're not at a word char.
|
| + UTEXT_SETNATIVEINDEX(fInputText, pos);
|
| + UChar32 c = UTEXT_CURRENT32(fInputText);
|
| + if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
|
| + // Current char is a combining one. Not a boundary.
|
| + return FALSE;
|
| + }
|
| + cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
|
| + }
|
| +
|
| + // Back up until we come to a non-combining char, determine whether
|
| + // that char is a word char.
|
| + UBool prevCIsWord = FALSE;
|
| + for (;;) {
|
| + if (UTEXT_GETNATIVEINDEX(fInputText) <= fLookStart) {
|
| + break;
|
| + }
|
| + UChar32 prevChar = UTEXT_PREVIOUS32(fInputText);
|
| + if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
|
| + || u_charType(prevChar) == U_FORMAT_CHAR)) {
|
| + prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
|
| + break;
|
| + }
|
| + }
|
| + isBoundary = cIsWord ^ prevCIsWord;
|
| + return isBoundary;
|
| +}
|
| +
|
| +UBool RegexMatcher::isChunkWordBoundary(int32_t pos) {
|
| + UBool isBoundary = FALSE;
|
| + UBool cIsWord = FALSE;
|
| +
|
| + const UChar *inputBuf = fInputText->chunkContents;
|
| +
|
| + if (pos >= fLookLimit) {
|
| + fHitEnd = TRUE;
|
| + } else {
|
| + // Determine whether char c at current position is a member of the word set of chars.
|
| + // If we're off the end of the string, behave as though we're not at a word char.
|
| + UChar32 c;
|
| + U16_GET(inputBuf, fLookStart, pos, fLookLimit, c);
|
| + if (u_hasBinaryProperty(c, UCHAR_GRAPHEME_EXTEND) || u_charType(c) == U_FORMAT_CHAR) {
|
| + // Current char is a combining one. Not a boundary.
|
| + return FALSE;
|
| + }
|
| + cIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(c);
|
| + }
|
| +
|
| + // Back up until we come to a non-combining char, determine whether
|
| + // that char is a word char.
|
| + UBool prevCIsWord = FALSE;
|
| + for (;;) {
|
| + if (pos <= fLookStart) {
|
| + break;
|
| + }
|
| + UChar32 prevChar;
|
| + U16_PREV(inputBuf, fLookStart, pos, prevChar);
|
| + if (!(u_hasBinaryProperty(prevChar, UCHAR_GRAPHEME_EXTEND)
|
| + || u_charType(prevChar) == U_FORMAT_CHAR)) {
|
| + prevCIsWord = fPattern->fStaticSets[URX_ISWORD_SET]->contains(prevChar);
|
| + break;
|
| + }
|
| + }
|
| + isBoundary = cIsWord ^ prevCIsWord;
|
| + return isBoundary;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// isUWordBoundary
|
| +//
|
| +// Test for a word boundary using RBBI word break.
|
| +//
|
| +// parameters: pos - the current position in the input buffer
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::isUWordBoundary(int64_t pos) {
|
| + UBool returnVal = FALSE;
|
| +#if UCONFIG_NO_BREAK_ITERATION==0
|
| +
|
| + // If we haven't yet created a break iterator for this matcher, do it now.
|
| + if (fWordBreakItr == NULL) {
|
| + fWordBreakItr =
|
| + (RuleBasedBreakIterator *)BreakIterator::createWordInstance(Locale::getEnglish(), fDeferredStatus);
|
| + if (U_FAILURE(fDeferredStatus)) {
|
| + return FALSE;
|
| + }
|
| + fWordBreakItr->setText(fInputText, fDeferredStatus);
|
| + }
|
| +
|
| + if (pos >= fLookLimit) {
|
| + fHitEnd = TRUE;
|
| + returnVal = TRUE; // With Unicode word rules, only positions within the interior of "real"
|
| + // words are not boundaries. All non-word chars stand by themselves,
|
| + // with word boundaries on both sides.
|
| + } else {
|
| + if (!UTEXT_USES_U16(fInputText)) {
|
| + // !!!: Would like a better way to do this!
|
| + UErrorCode status = U_ZERO_ERROR;
|
| + pos = utext_extract(fInputText, 0, pos, NULL, 0, &status);
|
| + }
|
| + returnVal = fWordBreakItr->isBoundary((int32_t)pos);
|
| + }
|
| +#endif
|
| + return returnVal;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// IncrementTime This function is called once each TIMER_INITIAL_VALUE state
|
| +// saves. Increment the "time" counter, and call the
|
| +// user callback function if there is one installed.
|
| +//
|
| +// If the match operation needs to be aborted, either for a time-out
|
| +// or because the user callback asked for it, just set an error status.
|
| +// The engine will pick that up and stop in its outer loop.
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::IncrementTime(UErrorCode &status) {
|
| + fTickCounter = TIMER_INITIAL_VALUE;
|
| + fTime++;
|
| + if (fCallbackFn != NULL) {
|
| + if ((*fCallbackFn)(fCallbackContext, fTime) == FALSE) {
|
| + status = U_REGEX_STOPPED_BY_CALLER;
|
| + return;
|
| + }
|
| + }
|
| + if (fTimeLimit > 0 && fTime >= fTimeLimit) {
|
| + status = U_REGEX_TIME_OUT;
|
| + }
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// ReportFindProgress This function is called once for each advance in the target
|
| +// string from the find() function, and calls the user progress callback
|
| +// function if there is one installed.
|
| +//
|
| +// NOTE:
|
| +//
|
| +// If the match operation needs to be aborted because the user
|
| +// callback asked for it, just set an error status.
|
| +// The engine will pick that up and stop in its outer loop.
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +UBool RegexMatcher::ReportFindProgress(int64_t matchIndex, UErrorCode &status) {
|
| + if (fFindProgressCallbackFn != NULL) {
|
| + if ((*fFindProgressCallbackFn)(fFindProgressCallbackContext, matchIndex) == FALSE) {
|
| + status = U_ZERO_ERROR /*U_REGEX_STOPPED_BY_CALLER*/;
|
| + return FALSE;
|
| + }
|
| + }
|
| + return TRUE;
|
| +}
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// StateSave
|
| +// Make a new stack frame, initialized as a copy of the current stack frame.
|
| +// Set the pattern index in the original stack frame from the operand value
|
| +// in the opcode. Execution of the engine continues with the state in
|
| +// the newly created stack frame
|
| +//
|
| +// Note that reserveBlock() may grow the stack, resulting in the
|
| +// whole thing being relocated in memory.
|
| +//
|
| +// Parameters:
|
| +// fp The top frame pointer when called. At return, a new
|
| +// fame will be present
|
| +// savePatIdx An index into the compiled pattern. Goes into the original
|
| +// (not new) frame. If execution ever back-tracks out of the
|
| +// new frame, this will be where we continue from in the pattern.
|
| +// Return
|
| +// The new frame pointer.
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +inline REStackFrame *RegexMatcher::StateSave(REStackFrame *fp, int64_t savePatIdx, UErrorCode &status) {
|
| + // push storage for a new frame.
|
| + int64_t *newFP = fStack->reserveBlock(fFrameSize, status);
|
| + if (newFP == NULL) {
|
| + // Failure on attempted stack expansion.
|
| + // Stack function set some other error code, change it to a more
|
| + // specific one for regular expressions.
|
| + status = U_REGEX_STACK_OVERFLOW;
|
| + // We need to return a writable stack frame, so just return the
|
| + // previous frame. The match operation will stop quickly
|
| + // because of the error status, after which the frame will never
|
| + // be looked at again.
|
| + return fp;
|
| + }
|
| + fp = (REStackFrame *)(newFP - fFrameSize); // in case of realloc of stack.
|
| +
|
| + // New stack frame = copy of old top frame.
|
| + int64_t *source = (int64_t *)fp;
|
| + int64_t *dest = newFP;
|
| + for (;;) {
|
| + *dest++ = *source++;
|
| + if (source == newFP) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + fTickCounter--;
|
| + if (fTickCounter <= 0) {
|
| + IncrementTime(status); // Re-initializes fTickCounter
|
| + }
|
| + fp->fPatIdx = savePatIdx;
|
| + return (REStackFrame *)newFP;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// MatchAt This is the actual matching engine.
|
| +//
|
| +// startIdx: begin matching a this index.
|
| +// toEnd: if true, match must extend to end of the input region
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::MatchAt(int64_t startIdx, UBool toEnd, UErrorCode &status) {
|
| + UBool isMatch = FALSE; // True if the we have a match.
|
| +
|
| + int64_t backSearchIndex = U_INT64_MAX; // used after greedy single-character matches for searching backwards
|
| +
|
| + int32_t op; // Operation from the compiled pattern, split into
|
| + int32_t opType; // the opcode
|
| + int32_t opValue; // and the operand value.
|
| +
|
| + #ifdef REGEX_RUN_DEBUG
|
| + if (fTraceDebug)
|
| + {
|
| + printf("MatchAt(startIdx=%ld)\n", startIdx);
|
| + printf("Original Pattern: ");
|
| + UChar32 c = utext_next32From(fPattern->fPattern, 0);
|
| + while (c != U_SENTINEL) {
|
| + if (c<32 || c>256) {
|
| + c = '.';
|
| + }
|
| + REGEX_DUMP_DEBUG_PRINTF(("%c", c));
|
| +
|
| + c = UTEXT_NEXT32(fPattern->fPattern);
|
| + }
|
| + printf("\n");
|
| + printf("Input String: ");
|
| + c = utext_next32From(fInputText, 0);
|
| + while (c != U_SENTINEL) {
|
| + if (c<32 || c>256) {
|
| + c = '.';
|
| + }
|
| + printf("%c", c);
|
| +
|
| + c = UTEXT_NEXT32(fInputText);
|
| + }
|
| + printf("\n");
|
| + printf("\n");
|
| + }
|
| + #endif
|
| +
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| +
|
| + // Cache frequently referenced items from the compiled pattern
|
| + //
|
| + int64_t *pat = fPattern->fCompiledPat->getBuffer();
|
| +
|
| + const UChar *litText = fPattern->fLiteralText.getBuffer();
|
| + UVector *sets = fPattern->fSets;
|
| +
|
| + fFrameSize = fPattern->fFrameSize;
|
| + REStackFrame *fp = resetStack();
|
| +
|
| + fp->fPatIdx = 0;
|
| + fp->fInputIdx = startIdx;
|
| +
|
| + // Zero out the pattern's static data
|
| + int32_t i;
|
| + for (i = 0; i<fPattern->fDataSize; i++) {
|
| + fData[i] = 0;
|
| + }
|
| +
|
| + //
|
| + // Main loop for interpreting the compiled pattern.
|
| + // One iteration of the loop per pattern operation performed.
|
| + //
|
| + for (;;) {
|
| +#if 0
|
| + if (_heapchk() != _HEAPOK) {
|
| + fprintf(stderr, "Heap Trouble\n");
|
| + }
|
| +#endif
|
| +
|
| + op = (int32_t)pat[fp->fPatIdx];
|
| + opType = URX_TYPE(op);
|
| + opValue = URX_VAL(op);
|
| + #ifdef REGEX_RUN_DEBUG
|
| + if (fTraceDebug) {
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + printf("inputIdx=%d inputChar=%x sp=%3d activeLimit=%d ", fp->fInputIdx,
|
| + UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
|
| + fPattern->dumpOp(fp->fPatIdx);
|
| + }
|
| + #endif
|
| + fp->fPatIdx++;
|
| +
|
| + switch (opType) {
|
| +
|
| +
|
| + case URX_NOP:
|
| + break;
|
| +
|
| +
|
| + case URX_BACKTRACK:
|
| + // Force a backtrack. In some circumstances, the pattern compiler
|
| + // will notice that the pattern can't possibly match anything, and will
|
| + // emit one of these at that point.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| +
|
| + case URX_ONECHAR:
|
| + if (fp->fInputIdx < fActiveLimit) {
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (c == opValue) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + break;
|
| + }
|
| + } else {
|
| + fHitEnd = TRUE;
|
| + }
|
| +
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + UBool success = FALSE;
|
| + UChar32 c = UTEXT_PREVIOUS32(fInputText);
|
| + while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex) {
|
| + if (c == opValue) {
|
| + success = TRUE;
|
| + break;
|
| + } else if (c == U_SENTINEL) {
|
| + break;
|
| + }
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + }
|
| + if (success) {
|
| + fHitEnd = FALSE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| +
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| +
|
| + case URX_STRING:
|
| + {
|
| + // Test input against a literal string.
|
| + // Strings require two slots in the compiled pattern, one for the
|
| + // offset to the string text, and one for the length.
|
| + int32_t stringStartIdx = opValue;
|
| + int32_t stringLen;
|
| +
|
| + op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
|
| + fp->fPatIdx++;
|
| + opType = URX_TYPE(op);
|
| + stringLen = URX_VAL(op);
|
| + U_ASSERT(opType == URX_STRING_LEN);
|
| + U_ASSERT(stringLen >= 2);
|
| +
|
| + const UChar *patternChars = litText+stringStartIdx;
|
| + const UChar *patternEnd = patternChars+stringLen;
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c;
|
| + UBool success = TRUE;
|
| +
|
| + while (patternChars < patternEnd && success) {
|
| + c = UTEXT_NEXT32(fInputText);
|
| +
|
| + if (c != U_SENTINEL && UTEXT_GETNATIVEINDEX(fInputText) <= fActiveLimit) {
|
| + if (U_IS_BMP(c)) {
|
| + success = (*patternChars == c);
|
| + patternChars += 1;
|
| + } else if (patternChars+1 < patternEnd) {
|
| + success = (*patternChars == U16_LEAD(c) && *(patternChars+1) == U16_TRAIL(c));
|
| + patternChars += 2;
|
| + }
|
| + } else {
|
| + success = FALSE;
|
| + fHitEnd = TRUE; // TODO: See ticket 6074
|
| + }
|
| + }
|
| +
|
| + if (success) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + } else {
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size()) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Reset to last start point
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + patternChars = litText+stringStartIdx;
|
| +
|
| + // Search backwards for a possible start
|
| + do {
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + if (c == U_SENTINEL) {
|
| + break;
|
| + } else if ((U_IS_BMP(c) && *patternChars == c) ||
|
| + (*patternChars == U16_LEAD(c) && *(patternChars+1) == U16_TRAIL(c))) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex);
|
| +
|
| + // And try again
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_STATE_SAVE:
|
| + fp = StateSave(fp, opValue, status);
|
| + break;
|
| +
|
| +
|
| + case URX_END:
|
| + // The match loop will exit via this path on a successful match,
|
| + // when we reach the end of the pattern.
|
| + if (toEnd && fp->fInputIdx != fActiveLimit) {
|
| + // The pattern matched, but not to the end of input. Try some more.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| + isMatch = TRUE;
|
| + goto breakFromLoop;
|
| +
|
| + // Start and End Capture stack frame variables are laid out out like this:
|
| + // fp->fExtra[opValue] - The start of a completed capture group
|
| + // opValue+1 - The end of a completed capture group
|
| + // opValue+2 - the start of a capture group whose end
|
| + // has not yet been reached (and might not ever be).
|
| + case URX_START_CAPTURE:
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
| + fp->fExtra[opValue+2] = fp->fInputIdx;
|
| + break;
|
| +
|
| +
|
| + case URX_END_CAPTURE:
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
| + U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
|
| + fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
|
| + fp->fExtra[opValue+1] = fp->fInputIdx; // End position
|
| + U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR: // $, test for End of line
|
| + // or for position before new line at end of input
|
| + {
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // We really are at the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + // If we are positioned just before a new-line that is located at the
|
| + // end of input, succeed.
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
|
| + if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
|
| + // If not in the middle of a CR/LF sequence
|
| + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && (UTEXT_PREVIOUS32(fInputText), UTEXT_PREVIOUS32(fInputText))==0x0d)) {
|
| + // At new-line at end of input. Success
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| +
|
| + break;
|
| + }
|
| + }
|
| + } else {
|
| + UChar32 nextC = UTEXT_NEXT32(fInputText);
|
| + if (c == 0x0d && nextC == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) >= fAnchorLimit) {
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break; // At CR/LF at end of input. Success
|
| + }
|
| + }
|
| +
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // Off the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + } else {
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + // Either at the last character of input, or off the end.
|
| + if (c == 0x0a && UTEXT_GETNATIVEINDEX(fInputText) == fAnchorLimit) {
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Not at end of input. Back-track out.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR_M: // $, test for End of line in multi-line mode
|
| + {
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // We really are at the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| + // If we are positioned just before a new-line, succeed.
|
| + // It makes no difference where the new-line is within the input.
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c = UTEXT_CURRENT32(fInputText);
|
| + if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
|
| + // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
|
| + // In multi-line mode, hitting a new-line just before the end of input does not
|
| + // set the hitEnd or requireEnd flags
|
| + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && UTEXT_PREVIOUS32(fInputText)==0x0d)) {
|
| + break;
|
| + }
|
| + }
|
| + // not at a new line. Fail.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
|
| + {
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // We really are at the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE; // Java set requireEnd in this case, even though
|
| + break; // adding a new-line would not lose the match.
|
| + }
|
| + // If we are not positioned just before a new-line, the test fails; backtrack out.
|
| + // It makes no difference where the new-line is within the input.
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + if (UTEXT_CURRENT32(fInputText) != 0x0a) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CARET: // ^, test for start of line
|
| + if (fp->fInputIdx != fAnchorStart) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CARET_M: // ^, test for start of line in mulit-line mode
|
| + {
|
| + if (fp->fInputIdx == fAnchorStart) {
|
| + // We are at the start input. Success.
|
| + break;
|
| + }
|
| + // Check whether character just before the current pos is a new-line
|
| + // unless we are at the end of input
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c = UTEXT_PREVIOUS32(fInputText);
|
| + if ((fp->fInputIdx < fAnchorLimit) &&
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
| + // It's a new-line. ^ is true. Success.
|
| + // TODO: what should be done with positions between a CR and LF?
|
| + break;
|
| + }
|
| + // Not at the start of a line. Fail.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
|
| + {
|
| + U_ASSERT(fp->fInputIdx >= fAnchorStart);
|
| + if (fp->fInputIdx <= fAnchorStart) {
|
| + // We are at the start input. Success.
|
| + break;
|
| + }
|
| + // Check whether character just before the current pos is a new-line
|
| + U_ASSERT(fp->fInputIdx <= fAnchorLimit);
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c = UTEXT_PREVIOUS32(fInputText);
|
| + if (c != 0x0a) {
|
| + // Not at the start of a line. Back-track out.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_BACKSLASH_B: // Test for word boundaries
|
| + {
|
| + UBool success = isWordBoundary(fp->fInputIdx);
|
| + success ^= (opValue != 0); // flip sense for \B
|
| + if (!success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
|
| + {
|
| + UBool success = isUWordBoundary(fp->fInputIdx);
|
| + success ^= (opValue != 0); // flip sense for \B
|
| + if (!success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_D: // Test for decimal digit
|
| + {
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
|
| + UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
|
| + success ^= (opValue != 0); // flip sense for \D
|
| + if (success) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + } else {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_G: // Test for position at end of previous match
|
| + if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_X:
|
| + // Match a Grapheme, as defined by Unicode TR 29.
|
| + // Differs slightly from Perl, which consumes combining marks independently
|
| + // of context.
|
| + {
|
| +
|
| + // Fail if at end of input
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + // Examine (and consume) the current char.
|
| + // Dispatch into a little state machine, based on the char.
|
| + UChar32 c;
|
| + c = UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + UnicodeSet **sets = fPattern->fStaticSets;
|
| + if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
|
| + if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
|
| + if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
| + if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
| + if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
| + goto GC_Extend;
|
| +
|
| +
|
| +
|
| +GC_L:
|
| + if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
| + c = UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
| + if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
| + if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
| + UTEXT_PREVIOUS32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + goto GC_Extend;
|
| +
|
| +GC_V:
|
| + if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
| + c = UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
| + UTEXT_PREVIOUS32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + goto GC_Extend;
|
| +
|
| +GC_T:
|
| + if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
| + c = UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
| + UTEXT_PREVIOUS32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + goto GC_Extend;
|
| +
|
| +GC_Extend:
|
| + // Combining characters are consumed here
|
| + for (;;) {
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + break;
|
| + }
|
| + c = UTEXT_CURRENT32(fInputText);
|
| + if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
|
| + break;
|
| + }
|
| + UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + goto GC_Done;
|
| +
|
| +GC_Control:
|
| + // Most control chars stand alone (don't combine with combining chars),
|
| + // except for that CR/LF sequence is a single grapheme cluster.
|
| + if (c == 0x0d && fp->fInputIdx < fActiveLimit && UTEXT_CURRENT32(fInputText) == 0x0a) {
|
| + c = UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| +
|
| +GC_Done:
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + }
|
| + break;
|
| + }
|
| +
|
| +
|
| +
|
| +
|
| + case URX_BACKSLASH_Z: // Test for end of Input
|
| + if (fp->fInputIdx < fAnchorLimit) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + } else {
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| + case URX_STATIC_SETREF:
|
| + {
|
| + // Test input character against one of the predefined sets
|
| + // (Word Characters, for example)
|
| + // The high bit of the op value is a flag for the match polarity.
|
| + // 0: success if input char is in set.
|
| + // 1: success if input char is not in set.
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
|
| + opValue &= ~URX_NEG_SET;
|
| + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + success = !success;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c)) {
|
| + success = !success;
|
| + }
|
| + }
|
| + if (success) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + } else {
|
| + // the character wasn't in the set.
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Try to find it, backwards
|
| + UTEXT_PREVIOUS32(fInputText); // skip the first character we tried
|
| + success = ((opValue & URX_NEG_SET) == URX_NEG_SET); // reset
|
| + do {
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + if (c == U_SENTINEL) {
|
| + break;
|
| + } else if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + success = !success;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c)) {
|
| + success = !success;
|
| + }
|
| + }
|
| + } while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex && !success);
|
| +
|
| + if (success && c != U_SENTINEL) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_STAT_SETREF_N:
|
| + {
|
| + // Test input character for NOT being a member of one of
|
| + // the predefined sets (Word Characters, for example)
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c) == FALSE) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + break;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c) == FALSE) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + break;
|
| + }
|
| + }
|
| + // the character wasn't in the set.
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Try to find it, backwards
|
| + UTEXT_PREVIOUS32(fInputText); // skip the first character we tried
|
| + UBool success = FALSE;
|
| + do {
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + if (c == U_SENTINEL) {
|
| + break;
|
| + } else if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c) == FALSE) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c) == FALSE) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + } while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex);
|
| +
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_SETREF:
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + } else {
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + // There is input left. Pick up one char and test it for set membership.
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + U_ASSERT(opValue > 0 && opValue < sets->size());
|
| + if (c<256) {
|
| + Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + break;
|
| + }
|
| + } else {
|
| + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
| + if (s->contains(c)) {
|
| + // The character is in the set. A Match.
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // the character wasn't in the set.
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Try to find it, backwards
|
| + UTEXT_PREVIOUS32(fInputText); // skip the first character we tried
|
| + UBool success = FALSE;
|
| + do {
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + if (c == U_SENTINEL) {
|
| + break;
|
| + } else if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } else {
|
| + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
| + if (s->contains(c)) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + } while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex);
|
| +
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOTANY:
|
| + {
|
| + // . matches anything, but stops at end-of-line.
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + // At end of input. Match failed. Backtrack out.
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + // There is input left. Advance over one char, unless we've hit end-of-line
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
| + // End of line in normal mode. . does not match.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOTANY_ALL:
|
| + {
|
| + // ., in dot-matches-all (including new lines) mode
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + // At end of input. Match failed. Backtrack out.
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + // There is input left. Advance over one char, except if we are
|
| + // at a cr/lf, advance over both of them.
|
| + UChar32 c;
|
| + c = UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (c==0x0d && fp->fInputIdx < fActiveLimit) {
|
| + // In the case of a CR/LF, we need to advance over both.
|
| + UChar32 nextc = UTEXT_CURRENT32(fInputText);
|
| + if (nextc == 0x0a) {
|
| + UTEXT_NEXT32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOTANY_UNIX:
|
| + {
|
| + // '.' operator, matches all, but stops at end-of-line.
|
| + // UNIX_LINES mode, so 0x0a is the only recognized line ending.
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + // At end of input. Match failed. Backtrack out.
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + // There is input left. Advance over one char, unless we've hit end-of-line
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (c == 0x0a) {
|
| + // End of line in normal mode. '.' does not match the \n
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + } else {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_JMP:
|
| + fp->fPatIdx = opValue;
|
| + break;
|
| +
|
| + case URX_FAIL:
|
| + isMatch = FALSE;
|
| + goto breakFromLoop;
|
| +
|
| + case URX_JMP_SAV:
|
| + U_ASSERT(opValue < fPattern->fCompiledPat->size());
|
| + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
| + fp->fPatIdx = opValue; // Then JMP.
|
| + break;
|
| +
|
| + case URX_JMP_SAV_X:
|
| + // This opcode is used with (x)+, when x can match a zero length string.
|
| + // Same as JMP_SAV, except conditional on the match having made forward progress.
|
| + // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
|
| + // data address of the input position at the start of the loop.
|
| + {
|
| + U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
|
| + int32_t stoOp = (int32_t)pat[opValue-1];
|
| + U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
|
| + int32_t frameLoc = URX_VAL(stoOp);
|
| + U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
|
| + int64_t prevInputIdx = fp->fExtra[frameLoc];
|
| + U_ASSERT(prevInputIdx <= fp->fInputIdx);
|
| + if (prevInputIdx < fp->fInputIdx) {
|
| + // The match did make progress. Repeat the loop.
|
| + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
| + fp->fPatIdx = opValue;
|
| + fp->fExtra[frameLoc] = fp->fInputIdx;
|
| + }
|
| + // If the input position did not advance, we do nothing here,
|
| + // execution will fall out of the loop.
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_INIT:
|
| + {
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
| + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
| +
|
| + // Pick up the three extra operands that CTR_INIT has, and
|
| + // skip the pattern location counter past
|
| + int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
| + fp->fPatIdx += 3;
|
| + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
| + int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
| + int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
| + U_ASSERT(minCount>=0);
|
| + U_ASSERT(maxCount>=minCount || maxCount==-1);
|
| + U_ASSERT(loopLoc>fp->fPatIdx);
|
| +
|
| + if (minCount == 0) {
|
| + fp = StateSave(fp, loopLoc+1, status);
|
| + }
|
| + if (maxCount == 0) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_LOOP:
|
| + {
|
| + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
| + int32_t initOp = (int32_t)pat[opValue];
|
| + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
|
| + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
| + int32_t minCount = (int32_t)pat[opValue+2];
|
| + int32_t maxCount = (int32_t)pat[opValue+3];
|
| + // Increment the counter. Note: we DIDN'T worry about counter
|
| + // overflow, since the data comes from UnicodeStrings, which
|
| + // stores its length in an int32_t. Do we have to think about
|
| + // this now that we're using UText? Probably not, since the length
|
| + // in UChar32s is still an int32_t.
|
| + (*pCounter)++;
|
| + U_ASSERT(*pCounter > 0);
|
| + if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
| + U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
| + break;
|
| + }
|
| + if (*pCounter >= minCount) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx = opValue + 4; // Loop back.
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_INIT_NG:
|
| + {
|
| + // Initialize a non-greedy loop
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
| + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
| +
|
| + // Pick up the three extra operands that CTR_INIT has, and
|
| + // skip the pattern location counter past
|
| + int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
| + fp->fPatIdx += 3;
|
| + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
| + int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
| + int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
| + U_ASSERT(minCount>=0);
|
| + U_ASSERT(maxCount>=minCount || maxCount==-1);
|
| + U_ASSERT(loopLoc>fp->fPatIdx);
|
| +
|
| + if (minCount == 0) {
|
| + if (maxCount != 0) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_LOOP_NG:
|
| + {
|
| + // Non-greedy {min, max} loops
|
| + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
| + int32_t initOp = (int32_t)pat[opValue];
|
| + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
|
| + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
| + int32_t minCount = (int32_t)pat[opValue+2];
|
| + int32_t maxCount = (int32_t)pat[opValue+3];
|
| + // Increment the counter. Note: we DIDN'T worry about counter
|
| + // overflow, since the data comes from UnicodeStrings, which
|
| + // stores its length in an int32_t. Do we have to think about
|
| + // this now that we're using UText? Probably not, since the length
|
| + // in UChar32s is still an int32_t.
|
| + (*pCounter)++;
|
| + U_ASSERT(*pCounter > 0);
|
| +
|
| + if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
| + // The loop has matched the maximum permitted number of times.
|
| + // Break out of here with no action. Matching will
|
| + // continue with the following pattern.
|
| + U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
| + break;
|
| + }
|
| +
|
| + if (*pCounter < minCount) {
|
| + // We haven't met the minimum number of matches yet.
|
| + // Loop back for another one.
|
| + fp->fPatIdx = opValue + 4; // Loop back.
|
| + } else {
|
| + // We do have the minimum number of matches.
|
| + // Fall into the following pattern, but first do
|
| + // a state save to the top of the loop, so that a failure
|
| + // in the following pattern will try another iteration of the loop.
|
| + fp = StateSave(fp, opValue + 4, status);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_STO_SP:
|
| + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
| + fData[opValue] = fStack->size();
|
| + break;
|
| +
|
| + case URX_LD_SP:
|
| + {
|
| + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
| + int32_t newStackSize = (int32_t)fData[opValue];
|
| + U_ASSERT(newStackSize <= fStack->size());
|
| + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
| + if (newFP == (int64_t *)fp) {
|
| + break;
|
| + }
|
| + int32_t i;
|
| + for (i=0; i<fFrameSize; i++) {
|
| + newFP[i] = ((int64_t *)fp)[i];
|
| + }
|
| + fp = (REStackFrame *)newFP;
|
| + fStack->setSize(newStackSize);
|
| + }
|
| + break;
|
| +
|
| + case URX_BACKREF:
|
| + case URX_BACKREF_I:
|
| + {
|
| + U_ASSERT(opValue < fFrameSize);
|
| + int64_t groupStartIdx = fp->fExtra[opValue];
|
| + int64_t groupEndIdx = fp->fExtra[opValue+1];
|
| + U_ASSERT(groupStartIdx <= groupEndIdx);
|
| + if (groupStartIdx < 0) {
|
| + // This capture group has not participated in the match thus far,
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
| + }
|
| +
|
| + if (groupEndIdx == groupStartIdx) {
|
| + // The capture group match was of an empty string.
|
| + // Verified by testing: Perl matches succeed in this case, so
|
| + // we do too.
|
| + break;
|
| + }
|
| +
|
| + UTEXT_SETNATIVEINDEX(fAltInputText, groupStartIdx);
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + UBool haveMatch = (opType == URX_BACKREF ?
|
| + (0 == utext_compareNativeLimit(fAltInputText, groupEndIdx, fInputText, -1)) :
|
| + (0 == utext_caseCompareNativeLimit(fAltInputText, groupEndIdx, fInputText, -1, U_FOLD_CASE_DEFAULT, &status)));
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| +
|
| + if (fp->fInputIdx > fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
| + } else if (!haveMatch) {
|
| + if (fp->fInputIdx == fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + }
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_STO_INP_LOC:
|
| + {
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize);
|
| + fp->fExtra[opValue] = fp->fInputIdx;
|
| + }
|
| + break;
|
| +
|
| + case URX_JMPX:
|
| + {
|
| + int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
| + fp->fPatIdx += 1;
|
| + int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
|
| + U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
|
| + int64_t savedInputIdx = fp->fExtra[dataLoc];
|
| + U_ASSERT(savedInputIdx <= fp->fInputIdx);
|
| + if (savedInputIdx < fp->fInputIdx) {
|
| + fp->fPatIdx = opValue; // JMP
|
| + } else {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_LA_START:
|
| + {
|
| + // Entering a lookahead block.
|
| + // Save Stack Ptr, Input Pos.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + fData[opValue] = fStack->size();
|
| + fData[opValue+1] = fp->fInputIdx;
|
| + fActiveStart = fLookStart; // Set the match region change for
|
| + fActiveLimit = fLookLimit; // transparent bounds.
|
| + }
|
| + break;
|
| +
|
| + case URX_LA_END:
|
| + {
|
| + // Leaving a look-ahead block.
|
| + // restore Stack Ptr, Input Pos to positions they had on entry to block.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int32_t stackSize = fStack->size();
|
| + int32_t newStackSize =(int32_t)fData[opValue];
|
| + U_ASSERT(stackSize >= newStackSize);
|
| + if (stackSize > newStackSize) {
|
| + // Copy the current top frame back to the new (cut back) top frame.
|
| + // This makes the capture groups from within the look-ahead
|
| + // expression available.
|
| + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
| + int32_t i;
|
| + for (i=0; i<fFrameSize; i++) {
|
| + newFP[i] = ((int64_t *)fp)[i];
|
| + }
|
| + fp = (REStackFrame *)newFP;
|
| + fStack->setSize(newStackSize);
|
| + }
|
| + fp->fInputIdx = fData[opValue+1];
|
| +
|
| + // Restore the active region bounds in the input string; they may have
|
| + // been changed because of transparent bounds on a Region.
|
| + fActiveStart = fRegionStart;
|
| + fActiveLimit = fRegionLimit;
|
| + }
|
| + break;
|
| +
|
| + case URX_ONECHAR_I:
|
| + if (fp->fInputIdx < fActiveLimit) {
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| +
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + break;
|
| + }
|
| + } else {
|
| + fHitEnd = TRUE;
|
| + }
|
| +
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + UBool success = FALSE;
|
| + UChar32 c = UTEXT_PREVIOUS32(fInputText);
|
| + while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex) {
|
| + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
|
| + success = TRUE;
|
| + break;
|
| + } else if (c == U_SENTINEL) {
|
| + break;
|
| + }
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + }
|
| + if (success) {
|
| + fHitEnd = FALSE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| +
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| + case URX_STRING_I:
|
| + {
|
| + // Test input against a literal string.
|
| + // Strings require two slots in the compiled pattern, one for the
|
| + // offset to the string text, and one for the length.
|
| + const UCaseProps *csp = ucase_getSingleton();
|
| + {
|
| + int32_t stringStartIdx, stringLen;
|
| + stringStartIdx = opValue;
|
| +
|
| + op = (int32_t)pat[fp->fPatIdx];
|
| + fp->fPatIdx++;
|
| + opType = URX_TYPE(op);
|
| + opValue = URX_VAL(op);
|
| + U_ASSERT(opType == URX_STRING_LEN);
|
| + stringLen = opValue;
|
| +
|
| + const UChar *patternChars = litText+stringStartIdx;
|
| + const UChar *patternEnd = patternChars+stringLen;
|
| +
|
| + const UChar *foldChars = NULL;
|
| + int32_t foldOffset, foldLength;
|
| + UChar32 c;
|
| +
|
| + foldOffset = foldLength = 0;
|
| + UBool success = TRUE;
|
| +
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + while (patternChars < patternEnd && success) {
|
| + if(foldOffset < foldLength) {
|
| + U16_NEXT_UNSAFE(foldChars, foldOffset, c);
|
| + } else {
|
| + c = UTEXT_NEXT32(fInputText);
|
| + if (c != U_SENTINEL) {
|
| + foldLength = ucase_toFullFolding(csp, c, &foldChars, U_FOLD_CASE_DEFAULT);
|
| + if(foldLength >= 0) {
|
| + if(foldLength <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle chars that fold to 0-length strings
|
| + foldOffset = 0;
|
| + U16_NEXT_UNSAFE(foldChars, foldOffset, c);
|
| + } else {
|
| + c = foldLength;
|
| + foldLength = foldOffset; // to avoid reading chars from the folding buffer
|
| + }
|
| + }
|
| + }
|
| +
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| +
|
| + success = FALSE;
|
| + if (c != U_SENTINEL && (fp->fInputIdx <= fActiveLimit)) {
|
| + if (U_IS_BMP(c)) {
|
| + success = (*patternChars == c);
|
| + patternChars += 1;
|
| + } else if (patternChars+1 < patternEnd) {
|
| + success = (*patternChars == U16_LEAD(c) && *(patternChars+1) == U16_TRAIL(c));
|
| + patternChars += 2;
|
| + }
|
| + } else {
|
| + fHitEnd = TRUE; // TODO: See ticket 6074
|
| + }
|
| + }
|
| +
|
| + if (!success) {
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size()) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Reset to last start point
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + patternChars = litText+stringStartIdx;
|
| +
|
| + // Search backwards for a possible start
|
| + do {
|
| + c = UTEXT_PREVIOUS32(fInputText);
|
| + if (c == U_SENTINEL) {
|
| + break;
|
| + } else {
|
| + foldLength = ucase_toFullFolding(csp, c, &foldChars, U_FOLD_CASE_DEFAULT);
|
| + if(foldLength >= 0) {
|
| + if(foldLength <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle chars that fold to 0-length strings
|
| + foldOffset = 0;
|
| + U16_NEXT_UNSAFE(foldChars, foldOffset, c);
|
| + } else {
|
| + c = foldLength;
|
| + foldLength = foldOffset; // to avoid reading chars from the folding buffer
|
| + }
|
| + }
|
| +
|
| + if ((U_IS_BMP(c) && *patternChars == c) ||
|
| + (*patternChars == U16_LEAD(c) && *(patternChars+1) == U16_TRAIL(c))) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + } while (UTEXT_GETNATIVEINDEX(fInputText) >= backSearchIndex);
|
| +
|
| + // And try again
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_LB_START:
|
| + {
|
| + // Entering a look-behind block.
|
| + // Save Stack Ptr, Input Pos.
|
| + // TODO: implement transparent bounds. Ticket #6067
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + fData[opValue] = fStack->size();
|
| + fData[opValue+1] = fp->fInputIdx;
|
| + // Init the variable containing the start index for attempted matches.
|
| + fData[opValue+2] = -1;
|
| + // Save input string length, then reset to pin any matches to end at
|
| + // the current position.
|
| + fData[opValue+3] = fActiveLimit;
|
| + fActiveLimit = fp->fInputIdx;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LB_CONT:
|
| + {
|
| + // Positive Look-Behind, at top of loop checking for matches of LB expression
|
| + // at all possible input starting positions.
|
| +
|
| + // Fetch the min and max possible match lengths. They are the operands
|
| + // of this op in the pattern.
|
| + int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
| + int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
| + U_ASSERT(minML <= maxML);
|
| + U_ASSERT(minML >= 0);
|
| +
|
| + // Fetch (from data) the last input index where a match was attempted.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int64_t *lbStartIdx = &fData[opValue+2];
|
| + if (*lbStartIdx < 0) {
|
| + // First time through loop.
|
| + *lbStartIdx = fp->fInputIdx - minML;
|
| + } else {
|
| + // 2nd through nth time through the loop.
|
| + // Back up start position for match by one.
|
| + if (*lbStartIdx == 0) {
|
| + (*lbStartIdx)--;
|
| + } else {
|
| + UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
|
| + UTEXT_PREVIOUS32(fInputText);
|
| + *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + }
|
| +
|
| + if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
| + // We have tried all potential match starting points without
|
| + // getting a match. Backtrack out, and out of the
|
| + // Look Behind altogether.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + int64_t restoreInputLen = fData[opValue+3];
|
| + U_ASSERT(restoreInputLen >= fActiveLimit);
|
| + U_ASSERT(restoreInputLen <= fInputLength);
|
| + fActiveLimit = restoreInputLen;
|
| + break;
|
| + }
|
| +
|
| + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
| + // (successful match will fall off the end of the loop.)
|
| + fp = StateSave(fp, fp->fPatIdx-3, status);
|
| + fp->fInputIdx = *lbStartIdx;
|
| + }
|
| + break;
|
| +
|
| + case URX_LB_END:
|
| + // End of a look-behind block, after a successful match.
|
| + {
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + if (fp->fInputIdx != fActiveLimit) {
|
| + // The look-behind expression matched, but the match did not
|
| + // extend all the way to the point that we are looking behind from.
|
| + // FAIL out of here, which will take us back to the LB_CONT, which
|
| + // will retry the match starting at another position or fail
|
| + // the look-behind altogether, whichever is appropriate.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // Look-behind match is good. Restore the orignal input string length,
|
| + // which had been truncated to pin the end of the lookbehind match to the
|
| + // position being looked-behind.
|
| + int64_t originalInputLen = fData[opValue+3];
|
| + U_ASSERT(originalInputLen >= fActiveLimit);
|
| + U_ASSERT(originalInputLen <= fInputLength);
|
| + fActiveLimit = originalInputLen;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LBN_CONT:
|
| + {
|
| + // Negative Look-Behind, at top of loop checking for matches of LB expression
|
| + // at all possible input starting positions.
|
| +
|
| + // Fetch the extra parameters of this op.
|
| + int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
| + int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
| + int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
|
| + continueLoc = URX_VAL(continueLoc);
|
| + U_ASSERT(minML <= maxML);
|
| + U_ASSERT(minML >= 0);
|
| + U_ASSERT(continueLoc > fp->fPatIdx);
|
| +
|
| + // Fetch (from data) the last input index where a match was attempted.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int64_t *lbStartIdx = &fData[opValue+2];
|
| + if (*lbStartIdx < 0) {
|
| + // First time through loop.
|
| + *lbStartIdx = fp->fInputIdx - minML;
|
| + } else {
|
| + // 2nd through nth time through the loop.
|
| + // Back up start position for match by one.
|
| + if (*lbStartIdx == 0) {
|
| + (*lbStartIdx)--;
|
| + } else {
|
| + UTEXT_SETNATIVEINDEX(fInputText, *lbStartIdx);
|
| + UTEXT_PREVIOUS32(fInputText);
|
| + *lbStartIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + }
|
| +
|
| + if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
| + // We have tried all potential match starting points without
|
| + // getting a match, which means that the negative lookbehind as
|
| + // a whole has succeeded. Jump forward to the continue location
|
| + int64_t restoreInputLen = fData[opValue+3];
|
| + U_ASSERT(restoreInputLen >= fActiveLimit);
|
| + U_ASSERT(restoreInputLen <= fInputLength);
|
| + fActiveLimit = restoreInputLen;
|
| + fp->fPatIdx = continueLoc;
|
| + break;
|
| + }
|
| +
|
| + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
| + // (successful match will cause a FAIL out of the loop altogether.)
|
| + fp = StateSave(fp, fp->fPatIdx-4, status);
|
| + fp->fInputIdx = *lbStartIdx;
|
| + }
|
| + break;
|
| +
|
| + case URX_LBN_END:
|
| + // End of a negative look-behind block, after a successful match.
|
| + {
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + if (fp->fInputIdx != fActiveLimit) {
|
| + // The look-behind expression matched, but the match did not
|
| + // extend all the way to the point that we are looking behind from.
|
| + // FAIL out of here, which will take us back to the LB_CONT, which
|
| + // will retry the match starting at another position or succeed
|
| + // the look-behind altogether, whichever is appropriate.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // Look-behind expression matched, which means look-behind test as
|
| + // a whole Fails
|
| +
|
| + // Restore the orignal input string length, which had been truncated
|
| + // inorder to pin the end of the lookbehind match
|
| + // to the position being looked-behind.
|
| + int64_t originalInputLen = fData[opValue+3];
|
| + U_ASSERT(originalInputLen >= fActiveLimit);
|
| + U_ASSERT(originalInputLen <= fInputLength);
|
| + fActiveLimit = originalInputLen;
|
| +
|
| + // Restore original stack position, discarding any state saved
|
| + // by the successful pattern match.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int32_t newStackSize = (int32_t)fData[opValue];
|
| + U_ASSERT(fStack->size() > newStackSize);
|
| + fStack->setSize(newStackSize);
|
| +
|
| + // FAIL, which will take control back to someplace
|
| + // prior to entering the look-behind test.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LOOP_SR_I:
|
| + // Loop Initialization for the optimized implementation of
|
| + // [some character set]*
|
| + // This op scans through all matching input.
|
| + // The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
| + {
|
| + U_ASSERT(opValue > 0 && opValue < sets->size());
|
| + Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
| + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
| +
|
| + // Loop through input, until either the input is exhausted or
|
| + // we reach a character that is not a member of the set.
|
| + int64_t ix = fp->fInputIdx;
|
| + UTEXT_SETNATIVEINDEX(fInputText, ix);
|
| + for (;;) {
|
| + if (ix >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + break;
|
| + }
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if (c<256) {
|
| + if (s8->contains(c) == FALSE) {
|
| + break;
|
| + }
|
| + } else {
|
| + if (s->contains(c) == FALSE) {
|
| + break;
|
| + }
|
| + }
|
| + ix = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| +
|
| + // If there were no matching characters, skip over the loop altogether.
|
| + // The loop doesn't run at all, a * op always succeeds.
|
| + if (ix == fp->fInputIdx) {
|
| + fp->fPatIdx++; // skip the URX_LOOP_C op.
|
| + break;
|
| + }
|
| +
|
| + // Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
| + // must follow. It's operand is the stack location
|
| + // that holds the starting input index for the match of this [set]*
|
| + int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
| + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
| + int32_t stackLoc = URX_VAL(loopcOp);
|
| + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
| + fp->fExtra[stackLoc] = fp->fInputIdx;
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + backSearchIndex = fp->fInputIdx;
|
| + #endif
|
| + fp->fInputIdx = ix;
|
| +
|
| + // Save State to the URX_LOOP_C op that follows this one,
|
| + // so that match failures in the following code will return to there.
|
| + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + fp->fPatIdx++;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LOOP_DOT_I:
|
| + // Loop Initialization for the optimized implementation of .*
|
| + // This op scans through all remaining input.
|
| + // The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
| + {
|
| + // Loop through input until the input is exhausted (we reach an end-of-line)
|
| + // In DOTALL mode, we can just go straight to the end of the input.
|
| + int64_t ix;
|
| + if ((opValue & 1) == 1) {
|
| + // Dot-matches-All mode. Jump straight to the end of the string.
|
| + ix = fActiveLimit;
|
| + fHitEnd = TRUE;
|
| + } else {
|
| + // NOT DOT ALL mode. Line endings do not match '.'
|
| + // Scan forward until a line ending or end of input.
|
| + ix = fp->fInputIdx;
|
| + UTEXT_SETNATIVEINDEX(fInputText, ix);
|
| + for (;;) {
|
| + if (ix >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + break;
|
| + }
|
| + UChar32 c = UTEXT_NEXT32(fInputText);
|
| + if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
|
| + if ((c == 0x0a) || // 0x0a is newline in both modes.
|
| + (((opValue & 2) == 0) && // IF not UNIX_LINES mode
|
| + (c<=0x0d && c>=0x0a)) || c==0x85 ||c==0x2028 || c==0x2029) {
|
| + // char is a line ending. Exit the scanning loop.
|
| + break;
|
| + }
|
| + }
|
| + ix = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + }
|
| +
|
| + // If there were no matching characters, skip over the loop altogether.
|
| + // The loop doesn't run at all, a * op always succeeds.
|
| + if (ix == fp->fInputIdx) {
|
| + fp->fPatIdx++; // skip the URX_LOOP_C op.
|
| + break;
|
| + }
|
| +
|
| + // Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
| + // must follow. It's operand is the stack location
|
| + // that holds the starting input index for the match of this .*
|
| + int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
| + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
| + int32_t stackLoc = URX_VAL(loopcOp);
|
| + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
| + fp->fExtra[stackLoc] = fp->fInputIdx;
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + backSearchIndex = fp->fInputIdx;
|
| + #endif
|
| + fp->fInputIdx = ix;
|
| +
|
| + // Save State to the URX_LOOP_C op that follows this one,
|
| + // so that match failures in the following code will return to there.
|
| + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + fp->fPatIdx++;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LOOP_C:
|
| + {
|
| + U_ASSERT(opValue>=0 && opValue<fFrameSize);
|
| + backSearchIndex = fp->fExtra[opValue];
|
| + U_ASSERT(backSearchIndex <= fp->fInputIdx);
|
| + if (backSearchIndex == fp->fInputIdx) {
|
| + // We've backed up the input idx to the point that the loop started.
|
| + // The loop is done. Leave here without saving state.
|
| + // Subsequent failures won't come back here.
|
| + break;
|
| + }
|
| + // Set up for the next iteration of the loop, with input index
|
| + // backed up by one from the last time through,
|
| + // and a state save to this instruction in case the following code fails again.
|
| + // (We're going backwards because this loop emulates stack unwinding, not
|
| + // the initial scan forward.)
|
| + U_ASSERT(fp->fInputIdx > 0);
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + UChar32 prevC = UTEXT_PREVIOUS32(fInputText);
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| +
|
| + UChar32 twoPrevC = UTEXT_PREVIOUS32(fInputText);
|
| + if (prevC == 0x0a &&
|
| + fp->fInputIdx > backSearchIndex &&
|
| + twoPrevC == 0x0d) {
|
| + int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
|
| + if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
|
| + // .*, stepping back over CRLF pair.
|
| + fp->fInputIdx = UTEXT_GETNATIVEINDEX(fInputText);
|
| + }
|
| + }
|
| +
|
| +
|
| + fp = StateSave(fp, fp->fPatIdx-1, status);
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| + default:
|
| + // Trouble. The compiled pattern contains an entry with an
|
| + // unrecognized type tag.
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + if (U_FAILURE(status)) {
|
| + isMatch = FALSE;
|
| + break;
|
| + }
|
| + }
|
| +
|
| +breakFromLoop:
|
| + fMatch = isMatch;
|
| + if (isMatch) {
|
| + fLastMatchEnd = fMatchEnd;
|
| + fMatchStart = startIdx;
|
| + fMatchEnd = fp->fInputIdx;
|
| + if (fTraceDebug) {
|
| + REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
|
| + }
|
| + }
|
| + else
|
| + {
|
| + if (fTraceDebug) {
|
| + REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
|
| + }
|
| + }
|
| +
|
| + fFrame = fp; // The active stack frame when the engine stopped.
|
| + // Contains the capture group results that we need to
|
| + // access later.
|
| + return;
|
| +}
|
| +
|
| +
|
| +//--------------------------------------------------------------------------------
|
| +//
|
| +// MatchChunkAt This is the actual matching engine. Like MatchAt, but with the
|
| +// assumption that the entire string is available in the UText's
|
| +// chunk buffer. For now, that means we can use int32_t indexes,
|
| +// except for anything that needs to be saved (like group starts
|
| +// and ends).
|
| +//
|
| +// startIdx: begin matching a this index.
|
| +// toEnd: if true, match must extend to end of the input region
|
| +//
|
| +//--------------------------------------------------------------------------------
|
| +void RegexMatcher::MatchChunkAt(int32_t startIdx, UBool toEnd, UErrorCode &status) {
|
| + UBool isMatch = FALSE; // True if the we have a match.
|
| +
|
| + int32_t backSearchIndex = INT32_MAX; // used after greedy single-character matches for searching backwards
|
| +
|
| + int32_t op; // Operation from the compiled pattern, split into
|
| + int32_t opType; // the opcode
|
| + int32_t opValue; // and the operand value.
|
| +
|
| +#ifdef REGEX_RUN_DEBUG
|
| + if (fTraceDebug)
|
| + {
|
| + printf("MatchAt(startIdx=%ld)\n", startIdx);
|
| + printf("Original Pattern: ");
|
| + UChar32 c = utext_next32From(fPattern->fPattern, 0);
|
| + while (c != U_SENTINEL) {
|
| + if (c<32 || c>256) {
|
| + c = '.';
|
| + }
|
| + REGEX_DUMP_DEBUG_PRINTF(("%c", c));
|
| +
|
| + c = UTEXT_NEXT32(fPattern->fPattern);
|
| + }
|
| + printf("\n");
|
| + printf("Input String: ");
|
| + c = utext_next32From(fInputText, 0);
|
| + while (c != U_SENTINEL) {
|
| + if (c<32 || c>256) {
|
| + c = '.';
|
| + }
|
| + printf("%c", c);
|
| +
|
| + c = UTEXT_NEXT32(fInputText);
|
| + }
|
| + printf("\n");
|
| + printf("\n");
|
| + }
|
| +#endif
|
| +
|
| + if (U_FAILURE(status)) {
|
| + return;
|
| + }
|
| +
|
| + // Cache frequently referenced items from the compiled pattern
|
| + //
|
| + int64_t *pat = fPattern->fCompiledPat->getBuffer();
|
| +
|
| + const UChar *litText = fPattern->fLiteralText.getBuffer();
|
| + UVector *sets = fPattern->fSets;
|
| +
|
| + const UChar *inputBuf = fInputText->chunkContents;
|
| +
|
| + fFrameSize = fPattern->fFrameSize;
|
| + REStackFrame *fp = resetStack();
|
| +
|
| + fp->fPatIdx = 0;
|
| + fp->fInputIdx = startIdx;
|
| +
|
| + // Zero out the pattern's static data
|
| + int32_t i;
|
| + for (i = 0; i<fPattern->fDataSize; i++) {
|
| + fData[i] = 0;
|
| + }
|
| +
|
| + //
|
| + // Main loop for interpreting the compiled pattern.
|
| + // One iteration of the loop per pattern operation performed.
|
| + //
|
| + for (;;) {
|
| +#if 0
|
| + if (_heapchk() != _HEAPOK) {
|
| + fprintf(stderr, "Heap Trouble\n");
|
| + }
|
| +#endif
|
| +
|
| + op = (int32_t)pat[fp->fPatIdx];
|
| + opType = URX_TYPE(op);
|
| + opValue = URX_VAL(op);
|
| +#ifdef REGEX_RUN_DEBUG
|
| + if (fTraceDebug) {
|
| + UTEXT_SETNATIVEINDEX(fInputText, fp->fInputIdx);
|
| + printf("inputIdx=%d inputChar=%x sp=%3d activeLimit=%d ", fp->fInputIdx,
|
| + UTEXT_CURRENT32(fInputText), (int64_t *)fp-fStack->getBuffer(), fActiveLimit);
|
| + fPattern->dumpOp(fp->fPatIdx);
|
| + }
|
| +#endif
|
| + fp->fPatIdx++;
|
| +
|
| + switch (opType) {
|
| +
|
| +
|
| + case URX_NOP:
|
| + break;
|
| +
|
| +
|
| + case URX_BACKTRACK:
|
| + // Force a backtrack. In some circumstances, the pattern compiler
|
| + // will notice that the pattern can't possibly match anything, and will
|
| + // emit one of these at that point.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| +
|
| + case URX_ONECHAR:
|
| + if (fp->fInputIdx < fActiveLimit) {
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (c == opValue) {
|
| + break;
|
| + }
|
| + } else {
|
| + fHitEnd = TRUE;
|
| + }
|
| +
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + int64_t reverseIndex = fp->fInputIdx;
|
| + UChar32 c;
|
| + do {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + if (c == opValue) {
|
| + break;
|
| + }
|
| + } while (reverseIndex > backSearchIndex);
|
| + if (c == opValue) {
|
| + fHitEnd = FALSE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| +
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| +
|
| + case URX_STRING:
|
| + {
|
| + // Test input against a literal string.
|
| + // Strings require two slots in the compiled pattern, one for the
|
| + // offset to the string text, and one for the length.
|
| + int32_t stringStartIdx = opValue;
|
| + int32_t stringLen;
|
| +
|
| + op = (int32_t)pat[fp->fPatIdx]; // Fetch the second operand
|
| + fp->fPatIdx++;
|
| + opType = URX_TYPE(op);
|
| + stringLen = URX_VAL(op);
|
| + U_ASSERT(opType == URX_STRING_LEN);
|
| + U_ASSERT(stringLen >= 2);
|
| +
|
| + if (fp->fInputIdx + stringLen > fActiveLimit) {
|
| + // No match. String is longer than the remaining input text.
|
| + fHitEnd = TRUE; // TODO: See ticket 6074
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + const UChar * pInp = inputBuf + fp->fInputIdx;
|
| + const UChar * pPat = litText+stringStartIdx;
|
| + const UChar * pEnd = pInp + stringLen;
|
| + UBool success = FALSE;
|
| + for(;;) {
|
| + if (*pInp == *pPat) {
|
| + pInp++;
|
| + pPat++;
|
| + if (pInp == pEnd) {
|
| + // Successful Match.
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } else {
|
| + // Match failed.
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (success) {
|
| + fp->fInputIdx += stringLen;
|
| + } else {
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size()) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Reset to last start point
|
| + int64_t reverseIndex = fp->fInputIdx;
|
| + UChar32 c;
|
| + pPat = litText+stringStartIdx;
|
| +
|
| + // Search backwards for a possible start
|
| + do {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + if ((U_IS_BMP(c) && *pPat == c) ||
|
| + (*pPat == U16_LEAD(c) && *(pPat+1) == U16_TRAIL(c))) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } while (reverseIndex > backSearchIndex);
|
| +
|
| + // And try again
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_STATE_SAVE:
|
| + fp = StateSave(fp, opValue, status);
|
| + break;
|
| +
|
| +
|
| + case URX_END:
|
| + // The match loop will exit via this path on a successful match,
|
| + // when we reach the end of the pattern.
|
| + if (toEnd && fp->fInputIdx != fActiveLimit) {
|
| + // The pattern matched, but not to the end of input. Try some more.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| + isMatch = TRUE;
|
| + goto breakFromLoop;
|
| +
|
| + // Start and End Capture stack frame variables are laid out out like this:
|
| + // fp->fExtra[opValue] - The start of a completed capture group
|
| + // opValue+1 - The end of a completed capture group
|
| + // opValue+2 - the start of a capture group whose end
|
| + // has not yet been reached (and might not ever be).
|
| + case URX_START_CAPTURE:
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
| + fp->fExtra[opValue+2] = fp->fInputIdx;
|
| + break;
|
| +
|
| +
|
| + case URX_END_CAPTURE:
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-3);
|
| + U_ASSERT(fp->fExtra[opValue+2] >= 0); // Start pos for this group must be set.
|
| + fp->fExtra[opValue] = fp->fExtra[opValue+2]; // Tentative start becomes real.
|
| + fp->fExtra[opValue+1] = fp->fInputIdx; // End position
|
| + U_ASSERT(fp->fExtra[opValue] <= fp->fExtra[opValue+1]);
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR: // $, test for End of line
|
| + // or for position before new line at end of input
|
| + if (fp->fInputIdx < fAnchorLimit-2) {
|
| + // We are no where near the end of input. Fail.
|
| + // This is the common case. Keep it first.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // We really are at the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| +
|
| + // If we are positioned just before a new-line that is located at the
|
| + // end of input, succeed.
|
| + if (fp->fInputIdx == fAnchorLimit-1) {
|
| + UChar32 c;
|
| + U16_GET(inputBuf, fAnchorStart, fp->fInputIdx, fAnchorLimit, c);
|
| +
|
| + if ((c>=0x0a && c<=0x0d) || c==0x85 || c==0x2028 || c==0x2029) {
|
| + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
|
| + // At new-line at end of input. Success
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + } else if (fp->fInputIdx == fAnchorLimit-2 &&
|
| + inputBuf[fp->fInputIdx]==0x0d && inputBuf[fp->fInputIdx+1]==0x0a) {
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break; // At CR/LF at end of input. Success
|
| + }
|
| +
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| +
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR_D: // $, test for End of Line, in UNIX_LINES mode.
|
| + if (fp->fInputIdx >= fAnchorLimit-1) {
|
| + // Either at the last character of input, or off the end.
|
| + if (fp->fInputIdx == fAnchorLimit-1) {
|
| + // At last char of input. Success if it's a new line.
|
| + if (inputBuf[fp->fInputIdx] == 0x0a) {
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| + } else {
|
| + // Off the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Not at end of input. Back-track out.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR_M: // $, test for End of line in multi-line mode
|
| + {
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // We really are at the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + break;
|
| + }
|
| + // If we are positioned just before a new-line, succeed.
|
| + // It makes no difference where the new-line is within the input.
|
| + UChar32 c = inputBuf[fp->fInputIdx];
|
| + if ((c>=0x0a && c<=0x0d) || c==0x85 ||c==0x2028 || c==0x2029) {
|
| + // At a line end, except for the odd chance of being in the middle of a CR/LF sequence
|
| + // In multi-line mode, hitting a new-line just before the end of input does not
|
| + // set the hitEnd or requireEnd flags
|
| + if ( !(c==0x0a && fp->fInputIdx>fAnchorStart && inputBuf[fp->fInputIdx-1]==0x0d)) {
|
| + break;
|
| + }
|
| + }
|
| + // not at a new line. Fail.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOLLAR_MD: // $, test for End of line in multi-line and UNIX_LINES mode
|
| + {
|
| + if (fp->fInputIdx >= fAnchorLimit) {
|
| + // We really are at the end of input. Success.
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE; // Java set requireEnd in this case, even though
|
| + break; // adding a new-line would not lose the match.
|
| + }
|
| + // If we are not positioned just before a new-line, the test fails; backtrack out.
|
| + // It makes no difference where the new-line is within the input.
|
| + if (inputBuf[fp->fInputIdx] != 0x0a) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CARET: // ^, test for start of line
|
| + if (fp->fInputIdx != fAnchorStart) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CARET_M: // ^, test for start of line in mulit-line mode
|
| + {
|
| + if (fp->fInputIdx == fAnchorStart) {
|
| + // We are at the start input. Success.
|
| + break;
|
| + }
|
| + // Check whether character just before the current pos is a new-line
|
| + // unless we are at the end of input
|
| + UChar c = inputBuf[fp->fInputIdx - 1];
|
| + if ((fp->fInputIdx < fAnchorLimit) &&
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
| + // It's a new-line. ^ is true. Success.
|
| + // TODO: what should be done with positions between a CR and LF?
|
| + break;
|
| + }
|
| + // Not at the start of a line. Fail.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CARET_M_UNIX: // ^, test for start of line in mulit-line + Unix-line mode
|
| + {
|
| + U_ASSERT(fp->fInputIdx >= fAnchorStart);
|
| + if (fp->fInputIdx <= fAnchorStart) {
|
| + // We are at the start input. Success.
|
| + break;
|
| + }
|
| + // Check whether character just before the current pos is a new-line
|
| + U_ASSERT(fp->fInputIdx <= fAnchorLimit);
|
| + UChar c = inputBuf[fp->fInputIdx - 1];
|
| + if (c != 0x0a) {
|
| + // Not at the start of a line. Back-track out.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_BACKSLASH_B: // Test for word boundaries
|
| + {
|
| + UBool success = isChunkWordBoundary((int32_t)fp->fInputIdx);
|
| + success ^= (opValue != 0); // flip sense for \B
|
| + if (!success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_BU: // Test for word boundaries, Unicode-style
|
| + {
|
| + UBool success = isUWordBoundary(fp->fInputIdx);
|
| + success ^= (opValue != 0); // flip sense for \B
|
| + if (!success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_D: // Test for decimal digit
|
| + {
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + int8_t ctype = u_charType(c); // TODO: make a unicode set for this. Will be faster.
|
| + UBool success = (ctype == U_DECIMAL_DIGIT_NUMBER);
|
| + success ^= (opValue != 0); // flip sense for \D
|
| + if (!success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_G: // Test for position at end of previous match
|
| + if (!((fMatch && fp->fInputIdx==fMatchEnd) || (fMatch==FALSE && fp->fInputIdx==fActiveStart))) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_X:
|
| + // Match a Grapheme, as defined by Unicode TR 29.
|
| + // Differs slightly from Perl, which consumes combining marks independently
|
| + // of context.
|
| + {
|
| +
|
| + // Fail if at end of input
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // Examine (and consume) the current char.
|
| + // Dispatch into a little state machine, based on the char.
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + UnicodeSet **sets = fPattern->fStaticSets;
|
| + if (sets[URX_GC_NORMAL]->contains(c)) goto GC_Extend;
|
| + if (sets[URX_GC_CONTROL]->contains(c)) goto GC_Control;
|
| + if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
| + if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
| + if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
| + goto GC_Extend;
|
| +
|
| +
|
| +
|
| +GC_L:
|
| + if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (sets[URX_GC_L]->contains(c)) goto GC_L;
|
| + if (sets[URX_GC_LV]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_LVT]->contains(c)) goto GC_T;
|
| + if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
| + U16_PREV(inputBuf, 0, fp->fInputIdx, c);
|
| + goto GC_Extend;
|
| +
|
| +GC_V:
|
| + if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (sets[URX_GC_V]->contains(c)) goto GC_V;
|
| + if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
| + U16_PREV(inputBuf, 0, fp->fInputIdx, c);
|
| + goto GC_Extend;
|
| +
|
| +GC_T:
|
| + if (fp->fInputIdx >= fActiveLimit) goto GC_Done;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (sets[URX_GC_T]->contains(c)) goto GC_T;
|
| + U16_PREV(inputBuf, 0, fp->fInputIdx, c);
|
| + goto GC_Extend;
|
| +
|
| +GC_Extend:
|
| + // Combining characters are consumed here
|
| + for (;;) {
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + break;
|
| + }
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (sets[URX_GC_EXTEND]->contains(c) == FALSE) {
|
| + U16_BACK_1(inputBuf, 0, fp->fInputIdx);
|
| + break;
|
| + }
|
| + }
|
| + goto GC_Done;
|
| +
|
| +GC_Control:
|
| + // Most control chars stand alone (don't combine with combining chars),
|
| + // except for that CR/LF sequence is a single grapheme cluster.
|
| + if (c == 0x0d && fp->fInputIdx < fActiveLimit && inputBuf[fp->fInputIdx] == 0x0a) {
|
| + fp->fInputIdx++;
|
| + }
|
| +
|
| +GC_Done:
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + }
|
| + break;
|
| + }
|
| +
|
| +
|
| +
|
| +
|
| + case URX_BACKSLASH_Z: // Test for end of Input
|
| + if (fp->fInputIdx < fAnchorLimit) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + } else {
|
| + fHitEnd = TRUE;
|
| + fRequireEnd = TRUE;
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| + case URX_STATIC_SETREF:
|
| + {
|
| + // Test input character against one of the predefined sets
|
| + // (Word Characters, for example)
|
| + // The high bit of the op value is a flag for the match polarity.
|
| + // 0: success if input char is in set.
|
| + // 1: success if input char is not in set.
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + UBool success = ((opValue & URX_NEG_SET) == URX_NEG_SET);
|
| + opValue &= ~URX_NEG_SET;
|
| + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
| +
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + success = !success;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c)) {
|
| + success = !success;
|
| + }
|
| + }
|
| + if (!success) {
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Try to find it, backwards
|
| + int64_t reverseIndex = fp->fInputIdx;
|
| + U16_BACK_1(inputBuf, backSearchIndex, reverseIndex); // skip the first character we tried
|
| + success = ((opValue & URX_NEG_SET) == URX_NEG_SET); // reset
|
| + do {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + success = !success;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c)) {
|
| + success = !success;
|
| + }
|
| + }
|
| + } while (reverseIndex > backSearchIndex && !success);
|
| +
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_STAT_SETREF_N:
|
| + {
|
| + // Test input character for NOT being a member of one of
|
| + // the predefined sets (Word Characters, for example)
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + U_ASSERT(opValue > 0 && opValue < URX_LAST_SET);
|
| +
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c) == FALSE) {
|
| + break;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c) == FALSE) {
|
| + break;
|
| + }
|
| + }
|
| +
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Try to find it, backwards
|
| + int64_t reverseIndex = fp->fInputIdx;
|
| + U16_BACK_1(inputBuf, backSearchIndex, reverseIndex); // skip the first character we tried
|
| + UBool success = FALSE;
|
| + do {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fStaticSets8[opValue];
|
| + if (s8->contains(c) == FALSE) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } else {
|
| + const UnicodeSet *s = fPattern->fStaticSets[opValue];
|
| + if (s->contains(c) == FALSE) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + } while (reverseIndex > backSearchIndex);
|
| +
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_SETREF:
|
| + {
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + U_ASSERT(opValue > 0 && opValue < sets->size());
|
| +
|
| + // There is input left. Pick up one char and test it for set membership.
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (c<256) {
|
| + Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + // The character is in the set. A Match.
|
| + break;
|
| + }
|
| + } else {
|
| + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
| + if (s->contains(c)) {
|
| + // The character is in the set. A Match.
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // the character wasn't in the set.
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Try to find it, backwards
|
| + int64_t reverseIndex = fp->fInputIdx;
|
| + U16_BACK_1(inputBuf, backSearchIndex, reverseIndex); // skip the first character we tried
|
| + UBool success = FALSE;
|
| + do {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + if (c < 256) {
|
| + Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
| + if (s8->contains(c)) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } else {
|
| + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
| + if (s->contains(c)) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + }
|
| + } while (reverseIndex > backSearchIndex);
|
| +
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > reverseIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOTANY:
|
| + {
|
| + // . matches anything, but stops at end-of-line.
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + // At end of input. Match failed. Backtrack out.
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // There is input left. Advance over one char, unless we've hit end-of-line
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (((c & 0x7f) <= 0x29) && // First quickly bypass as many chars as possible
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 ||c==0x2028 || c==0x2029)) {
|
| + // End of line in normal mode. . does not match.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOTANY_ALL:
|
| + {
|
| + // . in dot-matches-all (including new lines) mode
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + // At end of input. Match failed. Backtrack out.
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // There is input left. Advance over one char, except if we are
|
| + // at a cr/lf, advance over both of them.
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (c==0x0d && fp->fInputIdx < fActiveLimit) {
|
| + // In the case of a CR/LF, we need to advance over both.
|
| + if (inputBuf[fp->fInputIdx] == 0x0a) {
|
| + U16_FWD_1(inputBuf, fp->fInputIdx, fActiveLimit);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_DOTANY_UNIX:
|
| + {
|
| + // '.' operator, matches all, but stops at end-of-line.
|
| + // UNIX_LINES mode, so 0x0a is the only recognized line ending.
|
| + if (fp->fInputIdx >= fActiveLimit) {
|
| + // At end of input. Match failed. Backtrack out.
|
| + fHitEnd = TRUE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // There is input left. Advance over one char, unless we've hit end-of-line
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (c == 0x0a) {
|
| + // End of line in normal mode. '.' does not match the \n
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_JMP:
|
| + fp->fPatIdx = opValue;
|
| + break;
|
| +
|
| + case URX_FAIL:
|
| + isMatch = FALSE;
|
| + goto breakFromLoop;
|
| +
|
| + case URX_JMP_SAV:
|
| + U_ASSERT(opValue < fPattern->fCompiledPat->size());
|
| + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
| + fp->fPatIdx = opValue; // Then JMP.
|
| + break;
|
| +
|
| + case URX_JMP_SAV_X:
|
| + // This opcode is used with (x)+, when x can match a zero length string.
|
| + // Same as JMP_SAV, except conditional on the match having made forward progress.
|
| + // Destination of the JMP must be a URX_STO_INP_LOC, from which we get the
|
| + // data address of the input position at the start of the loop.
|
| + {
|
| + U_ASSERT(opValue > 0 && opValue < fPattern->fCompiledPat->size());
|
| + int32_t stoOp = (int32_t)pat[opValue-1];
|
| + U_ASSERT(URX_TYPE(stoOp) == URX_STO_INP_LOC);
|
| + int32_t frameLoc = URX_VAL(stoOp);
|
| + U_ASSERT(frameLoc >= 0 && frameLoc < fFrameSize);
|
| + int32_t prevInputIdx = (int32_t)fp->fExtra[frameLoc];
|
| + U_ASSERT(prevInputIdx <= fp->fInputIdx);
|
| + if (prevInputIdx < fp->fInputIdx) {
|
| + // The match did make progress. Repeat the loop.
|
| + fp = StateSave(fp, fp->fPatIdx, status); // State save to loc following current
|
| + fp->fPatIdx = opValue;
|
| + fp->fExtra[frameLoc] = fp->fInputIdx;
|
| + }
|
| + // If the input position did not advance, we do nothing here,
|
| + // execution will fall out of the loop.
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_INIT:
|
| + {
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
| + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
| +
|
| + // Pick up the three extra operands that CTR_INIT has, and
|
| + // skip the pattern location counter past
|
| + int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
| + fp->fPatIdx += 3;
|
| + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
| + int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
| + int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
| + U_ASSERT(minCount>=0);
|
| + U_ASSERT(maxCount>=minCount || maxCount==-1);
|
| + U_ASSERT(loopLoc>fp->fPatIdx);
|
| +
|
| + if (minCount == 0) {
|
| + fp = StateSave(fp, loopLoc+1, status);
|
| + }
|
| + if (maxCount == 0) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_LOOP:
|
| + {
|
| + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
| + int32_t initOp = (int32_t)pat[opValue];
|
| + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT);
|
| + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
| + int32_t minCount = (int32_t)pat[opValue+2];
|
| + int32_t maxCount = (int32_t)pat[opValue+3];
|
| + // Increment the counter. Note: we DIDN'T worry about counter
|
| + // overflow, since the data comes from UnicodeStrings, which
|
| + // stores its length in an int32_t. Do we have to think about
|
| + // this now that we're using UText? Probably not, since the length
|
| + // in UChar32s is still an int32_t.
|
| + (*pCounter)++;
|
| + U_ASSERT(*pCounter > 0);
|
| + if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
| + U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
| + break;
|
| + }
|
| + if (*pCounter >= minCount) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx = opValue + 4; // Loop back.
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_INIT_NG:
|
| + {
|
| + // Initialize a non-greedy loop
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize-2);
|
| + fp->fExtra[opValue] = 0; // Set the loop counter variable to zero
|
| +
|
| + // Pick up the three extra operands that CTR_INIT has, and
|
| + // skip the pattern location counter past
|
| + int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
| + fp->fPatIdx += 3;
|
| + int32_t loopLoc = URX_VAL(pat[instrOperandLoc]);
|
| + int32_t minCount = (int32_t)pat[instrOperandLoc+1];
|
| + int32_t maxCount = (int32_t)pat[instrOperandLoc+2];
|
| + U_ASSERT(minCount>=0);
|
| + U_ASSERT(maxCount>=minCount || maxCount==-1);
|
| + U_ASSERT(loopLoc>fp->fPatIdx);
|
| +
|
| + if (minCount == 0) {
|
| + if (maxCount != 0) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx = loopLoc+1; // Continue with stuff after repeated block
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_LOOP_NG:
|
| + {
|
| + // Non-greedy {min, max} loops
|
| + U_ASSERT(opValue>0 && opValue < fp->fPatIdx-2);
|
| + int32_t initOp = (int32_t)pat[opValue];
|
| + U_ASSERT(URX_TYPE(initOp) == URX_CTR_INIT_NG);
|
| + int64_t *pCounter = &fp->fExtra[URX_VAL(initOp)];
|
| + int32_t minCount = (int32_t)pat[opValue+2];
|
| + int32_t maxCount = (int32_t)pat[opValue+3];
|
| + // Increment the counter. Note: we DIDN'T worry about counter
|
| + // overflow, since the data comes from UnicodeStrings, which
|
| + // stores its length in an int32_t. Do we have to think about
|
| + // this now that we're using UText? Probably not, since the length
|
| + // in UChar32s is still an int32_t.
|
| + (*pCounter)++;
|
| + U_ASSERT(*pCounter > 0);
|
| +
|
| + if ((uint64_t)*pCounter >= (uint32_t)maxCount) {
|
| + // The loop has matched the maximum permitted number of times.
|
| + // Break out of here with no action. Matching will
|
| + // continue with the following pattern.
|
| + U_ASSERT(*pCounter == maxCount || maxCount == -1);
|
| + break;
|
| + }
|
| +
|
| + if (*pCounter < minCount) {
|
| + // We haven't met the minimum number of matches yet.
|
| + // Loop back for another one.
|
| + fp->fPatIdx = opValue + 4; // Loop back.
|
| + } else {
|
| + // We do have the minimum number of matches.
|
| + // Fall into the following pattern, but first do
|
| + // a state save to the top of the loop, so that a failure
|
| + // in the following pattern will try another iteration of the loop.
|
| + fp = StateSave(fp, opValue + 4, status);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_STO_SP:
|
| + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
| + fData[opValue] = fStack->size();
|
| + break;
|
| +
|
| + case URX_LD_SP:
|
| + {
|
| + U_ASSERT(opValue >= 0 && opValue < fPattern->fDataSize);
|
| + int32_t newStackSize = (int32_t)fData[opValue];
|
| + U_ASSERT(newStackSize <= fStack->size());
|
| + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
| + if (newFP == (int64_t *)fp) {
|
| + break;
|
| + }
|
| + int32_t i;
|
| + for (i=0; i<fFrameSize; i++) {
|
| + newFP[i] = ((int64_t *)fp)[i];
|
| + }
|
| + fp = (REStackFrame *)newFP;
|
| + fStack->setSize(newStackSize);
|
| + }
|
| + break;
|
| +
|
| + case URX_BACKREF:
|
| + case URX_BACKREF_I:
|
| + {
|
| + U_ASSERT(opValue < fFrameSize);
|
| + int64_t groupStartIdx = fp->fExtra[opValue];
|
| + int64_t groupEndIdx = fp->fExtra[opValue+1];
|
| + U_ASSERT(groupStartIdx <= groupEndIdx);
|
| + int64_t len = groupEndIdx-groupStartIdx;
|
| + if (groupStartIdx < 0) {
|
| + // This capture group has not participated in the match thus far,
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
| + }
|
| +
|
| + if (len == 0) {
|
| + // The capture group match was of an empty string.
|
| + // Verified by testing: Perl matches succeed in this case, so
|
| + // we do too.
|
| + break;
|
| + }
|
| +
|
| + UBool haveMatch = FALSE;
|
| + if (fp->fInputIdx + len <= fActiveLimit) {
|
| + if (opType == URX_BACKREF) {
|
| + if (u_strncmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx, (int32_t)len) == 0) {
|
| + haveMatch = TRUE;
|
| + }
|
| + } else {
|
| + if (u_strncasecmp(inputBuf+groupStartIdx, inputBuf+fp->fInputIdx,
|
| + (int32_t)len, U_FOLD_CASE_DEFAULT) == 0) {
|
| + haveMatch = TRUE;
|
| + }
|
| + }
|
| + } else {
|
| + // TODO: probably need to do a partial string comparison, and only
|
| + // set HitEnd if the available input matched. Ticket #6074
|
| + fHitEnd = TRUE;
|
| + }
|
| + if (haveMatch) {
|
| + fp->fInputIdx += len; // Match. Advance current input position.
|
| + } else {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no match.
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_STO_INP_LOC:
|
| + {
|
| + U_ASSERT(opValue >= 0 && opValue < fFrameSize);
|
| + fp->fExtra[opValue] = fp->fInputIdx;
|
| + }
|
| + break;
|
| +
|
| + case URX_JMPX:
|
| + {
|
| + int32_t instrOperandLoc = (int32_t)fp->fPatIdx;
|
| + fp->fPatIdx += 1;
|
| + int32_t dataLoc = URX_VAL(pat[instrOperandLoc]);
|
| + U_ASSERT(dataLoc >= 0 && dataLoc < fFrameSize);
|
| + int32_t savedInputIdx = (int32_t)fp->fExtra[dataLoc];
|
| + U_ASSERT(savedInputIdx <= fp->fInputIdx);
|
| + if (savedInputIdx < fp->fInputIdx) {
|
| + fp->fPatIdx = opValue; // JMP
|
| + } else {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize); // FAIL, no progress in loop.
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_LA_START:
|
| + {
|
| + // Entering a lookahead block.
|
| + // Save Stack Ptr, Input Pos.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + fData[opValue] = fStack->size();
|
| + fData[opValue+1] = fp->fInputIdx;
|
| + fActiveStart = fLookStart; // Set the match region change for
|
| + fActiveLimit = fLookLimit; // transparent bounds.
|
| + }
|
| + break;
|
| +
|
| + case URX_LA_END:
|
| + {
|
| + // Leaving a look-ahead block.
|
| + // restore Stack Ptr, Input Pos to positions they had on entry to block.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int32_t stackSize = fStack->size();
|
| + int32_t newStackSize = (int32_t)fData[opValue];
|
| + U_ASSERT(stackSize >= newStackSize);
|
| + if (stackSize > newStackSize) {
|
| + // Copy the current top frame back to the new (cut back) top frame.
|
| + // This makes the capture groups from within the look-ahead
|
| + // expression available.
|
| + int64_t *newFP = fStack->getBuffer() + newStackSize - fFrameSize;
|
| + int32_t i;
|
| + for (i=0; i<fFrameSize; i++) {
|
| + newFP[i] = ((int64_t *)fp)[i];
|
| + }
|
| + fp = (REStackFrame *)newFP;
|
| + fStack->setSize(newStackSize);
|
| + }
|
| + fp->fInputIdx = fData[opValue+1];
|
| +
|
| + // Restore the active region bounds in the input string; they may have
|
| + // been changed because of transparent bounds on a Region.
|
| + fActiveStart = fRegionStart;
|
| + fActiveLimit = fRegionLimit;
|
| + }
|
| + break;
|
| +
|
| + case URX_ONECHAR_I:
|
| + if (fp->fInputIdx < fActiveLimit) {
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
|
| + break;
|
| + }
|
| + } else {
|
| + fHitEnd = TRUE;
|
| + }
|
| +
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size() > fFrameSize) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + UBool success = FALSE;
|
| + int64_t reverseIndex = fp->fInputIdx;
|
| + UChar32 c;
|
| + while (reverseIndex > backSearchIndex) {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + if (u_foldCase(c, U_FOLD_CASE_DEFAULT) == opValue) {
|
| + success = TRUE;
|
| + break;
|
| + } else if (c == U_SENTINEL) {
|
| + break;
|
| + }
|
| + }
|
| + if (success) {
|
| + fHitEnd = FALSE;
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| +
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| +
|
| + case URX_STRING_I:
|
| + {
|
| + // Test input against a literal string.
|
| + // Strings require two slots in the compiled pattern, one for the
|
| + // offset to the string text, and one for the length.
|
| + const UCaseProps *csp = ucase_getSingleton();
|
| + {
|
| + int32_t stringStartIdx, stringLen;
|
| + stringStartIdx = opValue;
|
| +
|
| + op = (int32_t)pat[fp->fPatIdx];
|
| + fp->fPatIdx++;
|
| + opType = URX_TYPE(op);
|
| + opValue = URX_VAL(op);
|
| + U_ASSERT(opType == URX_STRING_LEN);
|
| + stringLen = opValue;
|
| +
|
| + const UChar *patternChars = litText+stringStartIdx;
|
| + const UChar *patternEnd = patternChars+stringLen;
|
| +
|
| + const UChar *foldChars = NULL;
|
| + int32_t foldOffset, foldLength;
|
| + UChar32 c;
|
| +
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + int32_t originalInputIdx = fp->fInputIdx;
|
| + #endif
|
| + UBool success = TRUE;
|
| +
|
| + foldOffset = foldLength = 0;
|
| +
|
| + while (patternChars < patternEnd && success) {
|
| + if(foldOffset < foldLength) {
|
| + U16_NEXT_UNSAFE(foldChars, foldOffset, c);
|
| + } else {
|
| + U16_NEXT(inputBuf, fp->fInputIdx, fActiveLimit, c);
|
| + foldLength = ucase_toFullFolding(csp, c, &foldChars, U_FOLD_CASE_DEFAULT);
|
| + if(foldLength >= 0) {
|
| + if(foldLength <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle chars that fold to 0-length strings
|
| + foldOffset = 0;
|
| + U16_NEXT_UNSAFE(foldChars, foldOffset, c);
|
| + } else {
|
| + c = foldLength;
|
| + foldLength = foldOffset; // to avoid reading chars from the folding buffer
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (fp->fInputIdx <= fActiveLimit) {
|
| + if (U_IS_BMP(c)) {
|
| + success = (*patternChars == c);
|
| + patternChars += 1;
|
| + } else if (patternChars+1 < patternEnd) {
|
| + success = (*patternChars == U16_LEAD(c) && *(patternChars+1) == U16_TRAIL(c));
|
| + patternChars += 2;
|
| + }
|
| + } else {
|
| + success = FALSE;
|
| + fHitEnd = TRUE; // TODO: See ticket 6074
|
| + }
|
| + }
|
| +
|
| + if (!success) {
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + if (fp->fInputIdx > backSearchIndex && fStack->size()) {
|
| + REStackFrame *prevFrame = (REStackFrame *)fStack->peekFrame(fFrameSize);
|
| + if (URX_LOOP_C == URX_TYPE(pat[prevFrame->fPatIdx]) && fp->fInputIdx <= prevFrame->fInputIdx) {
|
| + // Reset to last start point
|
| + int64_t reverseIndex = originalInputIdx;
|
| + patternChars = litText+stringStartIdx;
|
| +
|
| + // Search backwards for a possible start
|
| + do {
|
| + U16_PREV(inputBuf, backSearchIndex, reverseIndex, c);
|
| + foldLength = ucase_toFullFolding(csp, c, &foldChars, U_FOLD_CASE_DEFAULT);
|
| + if(foldLength >= 0) {
|
| + if(foldLength <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not correctly handle chars that fold to 0-length strings
|
| + foldOffset = 0;
|
| + U16_NEXT_UNSAFE(foldChars, foldOffset, c);
|
| + } else {
|
| + c = foldLength;
|
| + foldLength = foldOffset; // to avoid reading chars from the folding buffer
|
| + }
|
| + }
|
| +
|
| + if ((U_IS_BMP(c) && *patternChars == c) ||
|
| + (*patternChars == U16_LEAD(c) && *(patternChars+1) == U16_TRAIL(c))) {
|
| + success = TRUE;
|
| + break;
|
| + }
|
| + } while (reverseIndex > backSearchIndex);
|
| +
|
| + // And try again
|
| + if (success) {
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + fp->fInputIdx = reverseIndex;
|
| + if (fp->fInputIdx > backSearchIndex) {
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + }
|
| + fp->fPatIdx++; // Skip the LOOP_C, we just did that
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + #endif
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_LB_START:
|
| + {
|
| + // Entering a look-behind block.
|
| + // Save Stack Ptr, Input Pos.
|
| + // TODO: implement transparent bounds. Ticket #6067
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + fData[opValue] = fStack->size();
|
| + fData[opValue+1] = fp->fInputIdx;
|
| + // Init the variable containing the start index for attempted matches.
|
| + fData[opValue+2] = -1;
|
| + // Save input string length, then reset to pin any matches to end at
|
| + // the current position.
|
| + fData[opValue+3] = fActiveLimit;
|
| + fActiveLimit = fp->fInputIdx;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LB_CONT:
|
| + {
|
| + // Positive Look-Behind, at top of loop checking for matches of LB expression
|
| + // at all possible input starting positions.
|
| +
|
| + // Fetch the min and max possible match lengths. They are the operands
|
| + // of this op in the pattern.
|
| + int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
| + int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
| + U_ASSERT(minML <= maxML);
|
| + U_ASSERT(minML >= 0);
|
| +
|
| + // Fetch (from data) the last input index where a match was attempted.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int64_t *lbStartIdx = &fData[opValue+2];
|
| + if (*lbStartIdx < 0) {
|
| + // First time through loop.
|
| + *lbStartIdx = fp->fInputIdx - minML;
|
| + } else {
|
| + // 2nd through nth time through the loop.
|
| + // Back up start position for match by one.
|
| + if (*lbStartIdx == 0) {
|
| + (*lbStartIdx)--;
|
| + } else {
|
| + U16_BACK_1(inputBuf, 0, *lbStartIdx);
|
| + }
|
| + }
|
| +
|
| + if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
| + // We have tried all potential match starting points without
|
| + // getting a match. Backtrack out, and out of the
|
| + // Look Behind altogether.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + int64_t restoreInputLen = fData[opValue+3];
|
| + U_ASSERT(restoreInputLen >= fActiveLimit);
|
| + U_ASSERT(restoreInputLen <= fInputLength);
|
| + fActiveLimit = restoreInputLen;
|
| + break;
|
| + }
|
| +
|
| + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
| + // (successful match will fall off the end of the loop.)
|
| + fp = StateSave(fp, fp->fPatIdx-3, status);
|
| + fp->fInputIdx = *lbStartIdx;
|
| + }
|
| + break;
|
| +
|
| + case URX_LB_END:
|
| + // End of a look-behind block, after a successful match.
|
| + {
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + if (fp->fInputIdx != fActiveLimit) {
|
| + // The look-behind expression matched, but the match did not
|
| + // extend all the way to the point that we are looking behind from.
|
| + // FAIL out of here, which will take us back to the LB_CONT, which
|
| + // will retry the match starting at another position or fail
|
| + // the look-behind altogether, whichever is appropriate.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // Look-behind match is good. Restore the orignal input string length,
|
| + // which had been truncated to pin the end of the lookbehind match to the
|
| + // position being looked-behind.
|
| + int64_t originalInputLen = fData[opValue+3];
|
| + U_ASSERT(originalInputLen >= fActiveLimit);
|
| + U_ASSERT(originalInputLen <= fInputLength);
|
| + fActiveLimit = originalInputLen;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LBN_CONT:
|
| + {
|
| + // Negative Look-Behind, at top of loop checking for matches of LB expression
|
| + // at all possible input starting positions.
|
| +
|
| + // Fetch the extra parameters of this op.
|
| + int32_t minML = (int32_t)pat[fp->fPatIdx++];
|
| + int32_t maxML = (int32_t)pat[fp->fPatIdx++];
|
| + int32_t continueLoc = (int32_t)pat[fp->fPatIdx++];
|
| + continueLoc = URX_VAL(continueLoc);
|
| + U_ASSERT(minML <= maxML);
|
| + U_ASSERT(minML >= 0);
|
| + U_ASSERT(continueLoc > fp->fPatIdx);
|
| +
|
| + // Fetch (from data) the last input index where a match was attempted.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int64_t *lbStartIdx = &fData[opValue+2];
|
| + if (*lbStartIdx < 0) {
|
| + // First time through loop.
|
| + *lbStartIdx = fp->fInputIdx - minML;
|
| + } else {
|
| + // 2nd through nth time through the loop.
|
| + // Back up start position for match by one.
|
| + if (*lbStartIdx == 0) {
|
| + (*lbStartIdx)--; // Because U16_BACK is unsafe starting at 0.
|
| + } else {
|
| + U16_BACK_1(inputBuf, 0, *lbStartIdx);
|
| + }
|
| + }
|
| +
|
| + if (*lbStartIdx < 0 || *lbStartIdx < fp->fInputIdx - maxML) {
|
| + // We have tried all potential match starting points without
|
| + // getting a match, which means that the negative lookbehind as
|
| + // a whole has succeeded. Jump forward to the continue location
|
| + int64_t restoreInputLen = fData[opValue+3];
|
| + U_ASSERT(restoreInputLen >= fActiveLimit);
|
| + U_ASSERT(restoreInputLen <= fInputLength);
|
| + fActiveLimit = restoreInputLen;
|
| + fp->fPatIdx = continueLoc;
|
| + break;
|
| + }
|
| +
|
| + // Save state to this URX_LB_CONT op, so failure to match will repeat the loop.
|
| + // (successful match will cause a FAIL out of the loop altogether.)
|
| + fp = StateSave(fp, fp->fPatIdx-4, status);
|
| + fp->fInputIdx = *lbStartIdx;
|
| + }
|
| + break;
|
| +
|
| + case URX_LBN_END:
|
| + // End of a negative look-behind block, after a successful match.
|
| + {
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + if (fp->fInputIdx != fActiveLimit) {
|
| + // The look-behind expression matched, but the match did not
|
| + // extend all the way to the point that we are looking behind from.
|
| + // FAIL out of here, which will take us back to the LB_CONT, which
|
| + // will retry the match starting at another position or succeed
|
| + // the look-behind altogether, whichever is appropriate.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + break;
|
| + }
|
| +
|
| + // Look-behind expression matched, which means look-behind test as
|
| + // a whole Fails
|
| +
|
| + // Restore the orignal input string length, which had been truncated
|
| + // inorder to pin the end of the lookbehind match
|
| + // to the position being looked-behind.
|
| + int64_t originalInputLen = fData[opValue+3];
|
| + U_ASSERT(originalInputLen >= fActiveLimit);
|
| + U_ASSERT(originalInputLen <= fInputLength);
|
| + fActiveLimit = originalInputLen;
|
| +
|
| + // Restore original stack position, discarding any state saved
|
| + // by the successful pattern match.
|
| + U_ASSERT(opValue>=0 && opValue+1<fPattern->fDataSize);
|
| + int32_t newStackSize = (int32_t)fData[opValue];
|
| + U_ASSERT(fStack->size() > newStackSize);
|
| + fStack->setSize(newStackSize);
|
| +
|
| + // FAIL, which will take control back to someplace
|
| + // prior to entering the look-behind test.
|
| + fp = (REStackFrame *)fStack->popFrame(fFrameSize);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LOOP_SR_I:
|
| + // Loop Initialization for the optimized implementation of
|
| + // [some character set]*
|
| + // This op scans through all matching input.
|
| + // The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
| + {
|
| + U_ASSERT(opValue > 0 && opValue < sets->size());
|
| + Regex8BitSet *s8 = &fPattern->fSets8[opValue];
|
| + UnicodeSet *s = (UnicodeSet *)sets->elementAt(opValue);
|
| +
|
| + // Loop through input, until either the input is exhausted or
|
| + // we reach a character that is not a member of the set.
|
| + int32_t ix = (int32_t)fp->fInputIdx;
|
| + for (;;) {
|
| + if (ix >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + break;
|
| + }
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, ix, fActiveLimit, c);
|
| + if (c<256) {
|
| + if (s8->contains(c) == FALSE) {
|
| + U16_BACK_1(inputBuf, 0, ix);
|
| + break;
|
| + }
|
| + } else {
|
| + if (s->contains(c) == FALSE) {
|
| + U16_BACK_1(inputBuf, 0, ix);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // If there were no matching characters, skip over the loop altogether.
|
| + // The loop doesn't run at all, a * op always succeeds.
|
| + if (ix == fp->fInputIdx) {
|
| + fp->fPatIdx++; // skip the URX_LOOP_C op.
|
| + break;
|
| + }
|
| +
|
| + // Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
| + // must follow. It's operand is the stack location
|
| + // that holds the starting input index for the match of this [set]*
|
| + int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
| + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
| + int32_t stackLoc = URX_VAL(loopcOp);
|
| + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
| + fp->fExtra[stackLoc] = fp->fInputIdx;
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + backSearchIndex = fp->fInputIdx;
|
| + #endif
|
| + fp->fInputIdx = ix;
|
| +
|
| + // Save State to the URX_LOOP_C op that follows this one,
|
| + // so that match failures in the following code will return to there.
|
| + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + fp->fPatIdx++;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LOOP_DOT_I:
|
| + // Loop Initialization for the optimized implementation of .*
|
| + // This op scans through all remaining input.
|
| + // The following LOOP_C op emulates stack unwinding if the following pattern fails.
|
| + {
|
| + // Loop through input until the input is exhausted (we reach an end-of-line)
|
| + // In DOTALL mode, we can just go straight to the end of the input.
|
| + int32_t ix;
|
| + if ((opValue & 1) == 1) {
|
| + // Dot-matches-All mode. Jump straight to the end of the string.
|
| + ix = (int32_t)fActiveLimit;
|
| + fHitEnd = TRUE;
|
| + } else {
|
| + // NOT DOT ALL mode. Line endings do not match '.'
|
| + // Scan forward until a line ending or end of input.
|
| + ix = (int32_t)fp->fInputIdx;
|
| + for (;;) {
|
| + if (ix >= fActiveLimit) {
|
| + fHitEnd = TRUE;
|
| + break;
|
| + }
|
| + UChar32 c;
|
| + U16_NEXT(inputBuf, ix, fActiveLimit, c); // c = inputBuf[ix++]
|
| + if ((c & 0x7f) <= 0x29) { // Fast filter of non-new-line-s
|
| + if ((c == 0x0a) || // 0x0a is newline in both modes.
|
| + (((opValue & 2) == 0) && // IF not UNIX_LINES mode
|
| + ((c<=0x0d && c>=0x0a) || c==0x85 || c==0x2028 || c==0x2029))) {
|
| + // char is a line ending. Put the input pos back to the
|
| + // line ending char, and exit the scanning loop.
|
| + U16_BACK_1(inputBuf, 0, ix);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + // If there were no matching characters, skip over the loop altogether.
|
| + // The loop doesn't run at all, a * op always succeeds.
|
| + if (ix == fp->fInputIdx) {
|
| + fp->fPatIdx++; // skip the URX_LOOP_C op.
|
| + break;
|
| + }
|
| +
|
| + // Peek ahead in the compiled pattern, to the URX_LOOP_C that
|
| + // must follow. It's operand is the stack location
|
| + // that holds the starting input index for the match of this .*
|
| + int32_t loopcOp = (int32_t)pat[fp->fPatIdx];
|
| + U_ASSERT(URX_TYPE(loopcOp) == URX_LOOP_C);
|
| + int32_t stackLoc = URX_VAL(loopcOp);
|
| + U_ASSERT(stackLoc >= 0 && stackLoc < fFrameSize);
|
| + fp->fExtra[stackLoc] = fp->fInputIdx;
|
| + #ifdef REGEX_SMART_BACKTRACKING
|
| + backSearchIndex = fp->fInputIdx;
|
| + #endif
|
| + fp->fInputIdx = ix;
|
| +
|
| + // Save State to the URX_LOOP_C op that follows this one,
|
| + // so that match failures in the following code will return to there.
|
| + // Then bump the pattern idx so the LOOP_C is skipped on the way out of here.
|
| + fp = StateSave(fp, fp->fPatIdx, status);
|
| + fp->fPatIdx++;
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_LOOP_C:
|
| + {
|
| + U_ASSERT(opValue>=0 && opValue<fFrameSize);
|
| + backSearchIndex = (int32_t)fp->fExtra[opValue];
|
| + U_ASSERT(backSearchIndex <= fp->fInputIdx);
|
| + if (backSearchIndex == fp->fInputIdx) {
|
| + // We've backed up the input idx to the point that the loop started.
|
| + // The loop is done. Leave here without saving state.
|
| + // Subsequent failures won't come back here.
|
| + break;
|
| + }
|
| + // Set up for the next iteration of the loop, with input index
|
| + // backed up by one from the last time through,
|
| + // and a state save to this instruction in case the following code fails again.
|
| + // (We're going backwards because this loop emulates stack unwinding, not
|
| + // the initial scan forward.)
|
| + U_ASSERT(fp->fInputIdx > 0);
|
| + UChar32 prevC;
|
| + U16_PREV(inputBuf, 0, fp->fInputIdx, prevC); // !!!: should this 0 be one of f*Limit?
|
| +
|
| + if (prevC == 0x0a &&
|
| + fp->fInputIdx > backSearchIndex &&
|
| + inputBuf[fp->fInputIdx-1] == 0x0d) {
|
| + int32_t prevOp = (int32_t)pat[fp->fPatIdx-2];
|
| + if (URX_TYPE(prevOp) == URX_LOOP_DOT_I) {
|
| + // .*, stepping back over CRLF pair.
|
| + U16_BACK_1(inputBuf, 0, fp->fInputIdx);
|
| + }
|
| + }
|
| +
|
| +
|
| + fp = StateSave(fp, fp->fPatIdx-1, status);
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| + default:
|
| + // Trouble. The compiled pattern contains an entry with an
|
| + // unrecognized type tag.
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + if (U_FAILURE(status)) {
|
| + isMatch = FALSE;
|
| + break;
|
| + }
|
| + }
|
| +
|
| +breakFromLoop:
|
| + fMatch = isMatch;
|
| + if (isMatch) {
|
| + fLastMatchEnd = fMatchEnd;
|
| + fMatchStart = startIdx;
|
| + fMatchEnd = fp->fInputIdx;
|
| + if (fTraceDebug) {
|
| + REGEX_RUN_DEBUG_PRINTF(("Match. start=%d end=%d\n\n", fMatchStart, fMatchEnd));
|
| + }
|
| + }
|
| + else
|
| + {
|
| + if (fTraceDebug) {
|
| + REGEX_RUN_DEBUG_PRINTF(("No match\n\n"));
|
| + }
|
| + }
|
| +
|
| + fFrame = fp; // The active stack frame when the engine stopped.
|
| + // Contains the capture group results that we need to
|
| + // access later.
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +UOBJECT_DEFINE_RTTI_IMPLEMENTATION(RegexMatcher)
|
| +
|
| +U_NAMESPACE_END
|
| +
|
| +#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
|
| +
|
|
|
| Property changes on: icu46/source/i18n/rematch.cpp
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|