Index: icu46/source/tools/makeconv/gencnvex.c |
=================================================================== |
--- icu46/source/tools/makeconv/gencnvex.c (revision 0) |
+++ icu46/source/tools/makeconv/gencnvex.c (revision 0) |
@@ -0,0 +1,1076 @@ |
+/* |
+******************************************************************************* |
+* |
+* Copyright (C) 2003-2007, International Business Machines |
+* Corporation and others. All Rights Reserved. |
+* |
+******************************************************************************* |
+* file name: gencnvex.c |
+* encoding: US-ASCII |
+* tab size: 8 (not used) |
+* indentation:4 |
+* |
+* created on: 2003oct12 |
+* created by: Markus W. Scherer |
+*/ |
+ |
+#include <stdio.h> |
+#include "unicode/utypes.h" |
+#include "unicode/ustring.h" |
+#include "cstring.h" |
+#include "cmemory.h" |
+#include "ucnv_cnv.h" |
+#include "ucnvmbcs.h" |
+#include "toolutil.h" |
+#include "unewdata.h" |
+#include "ucm.h" |
+#include "makeconv.h" |
+#include "genmbcs.h" |
+ |
+#define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof((array)[0])) |
+ |
+ |
+static void |
+CnvExtClose(NewConverter *cnvData); |
+ |
+static UBool |
+CnvExtIsValid(NewConverter *cnvData, |
+ const uint8_t *bytes, int32_t length); |
+ |
+static UBool |
+CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData); |
+ |
+static uint32_t |
+CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
+ UNewDataMemory *pData, int32_t tableType); |
+ |
+typedef struct CnvExtData { |
+ NewConverter newConverter; |
+ |
+ UCMFile *ucm; |
+ |
+ /* toUnicode (state table in ucm->states) */ |
+ UToolMemory *toUTable, *toUUChars; |
+ |
+ /* fromUnicode */ |
+ UToolMemory *fromUTableUChars, *fromUTableValues, *fromUBytes; |
+ |
+ uint16_t stage1[MBCS_STAGE_1_SIZE]; |
+ uint16_t stage2[MBCS_STAGE_2_SIZE]; |
+ uint16_t stage3[0x10000<<UCNV_EXT_STAGE_2_LEFT_SHIFT]; /* 0x10000 because of 16-bit stage 2/3 indexes */ |
+ uint32_t stage3b[0x10000]; |
+ |
+ int32_t stage1Top, stage2Top, stage3Top, stage3bTop; |
+ |
+ /* for stage3 compaction of <subchar1> |2 mappings */ |
+ uint16_t stage3Sub1Block; |
+ |
+ /* statistics */ |
+ int32_t |
+ maxInBytes, maxOutBytes, maxBytesPerUChar, |
+ maxInUChars, maxOutUChars, maxUCharsPerByte; |
+} CnvExtData; |
+ |
+NewConverter * |
+CnvExtOpen(UCMFile *ucm) { |
+ CnvExtData *extData; |
+ |
+ extData=(CnvExtData *)uprv_malloc(sizeof(CnvExtData)); |
+ if(extData==NULL) { |
+ printf("out of memory\n"); |
+ exit(U_MEMORY_ALLOCATION_ERROR); |
+ } |
+ uprv_memset(extData, 0, sizeof(CnvExtData)); |
+ |
+ extData->ucm=ucm; /* aliased, not owned */ |
+ |
+ extData->newConverter.close=CnvExtClose; |
+ extData->newConverter.isValid=CnvExtIsValid; |
+ extData->newConverter.addTable=CnvExtAddTable; |
+ extData->newConverter.write=CnvExtWrite; |
+ return &extData->newConverter; |
+} |
+ |
+static void |
+CnvExtClose(NewConverter *cnvData) { |
+ CnvExtData *extData=(CnvExtData *)cnvData; |
+ if(extData!=NULL) { |
+ utm_close(extData->toUTable); |
+ utm_close(extData->toUUChars); |
+ utm_close(extData->fromUTableUChars); |
+ utm_close(extData->fromUTableValues); |
+ utm_close(extData->fromUBytes); |
+ } |
+} |
+ |
+/* we do not expect this to be called */ |
+static UBool |
+CnvExtIsValid(NewConverter *cnvData, |
+ const uint8_t *bytes, int32_t length) { |
+ return FALSE; |
+} |
+ |
+static uint32_t |
+CnvExtWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
+ UNewDataMemory *pData, int32_t tableType) { |
+ CnvExtData *extData=(CnvExtData *)cnvData; |
+ int32_t length, top, headerSize; |
+ |
+ int32_t indexes[UCNV_EXT_INDEXES_MIN_LENGTH]={ 0 }; |
+ |
+ if(tableType&TABLE_BASE) { |
+ headerSize=0; |
+ } else { |
+ _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; |
+ |
+ /* write the header and base table name for an extension-only table */ |
+ length=(int32_t)uprv_strlen(extData->ucm->baseName)+1; |
+ while(length&3) { |
+ /* add padding */ |
+ extData->ucm->baseName[length++]=0; |
+ } |
+ |
+ headerSize=MBCS_HEADER_V4_LENGTH*4+length; |
+ |
+ /* fill the header */ |
+ header.version[0]=4; |
+ header.version[1]=2; |
+ header.flags=(uint32_t)((headerSize<<8)|MBCS_OUTPUT_EXT_ONLY); |
+ |
+ /* write the header and the base table name */ |
+ udata_writeBlock(pData, &header, MBCS_HEADER_V4_LENGTH*4); |
+ udata_writeBlock(pData, extData->ucm->baseName, length); |
+ } |
+ |
+ /* fill indexes[] - offsets/indexes are in units of the target array */ |
+ top=0; |
+ |
+ indexes[UCNV_EXT_INDEXES_LENGTH]=length=UCNV_EXT_INDEXES_MIN_LENGTH; |
+ top+=length*4; |
+ |
+ indexes[UCNV_EXT_TO_U_INDEX]=top; |
+ indexes[UCNV_EXT_TO_U_LENGTH]=length=utm_countItems(extData->toUTable); |
+ top+=length*4; |
+ |
+ indexes[UCNV_EXT_TO_U_UCHARS_INDEX]=top; |
+ indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]=length=utm_countItems(extData->toUUChars); |
+ top+=length*2; |
+ |
+ indexes[UCNV_EXT_FROM_U_UCHARS_INDEX]=top; |
+ length=utm_countItems(extData->fromUTableUChars); |
+ top+=length*2; |
+ |
+ if(top&3) { |
+ /* add padding */ |
+ *((UChar *)utm_alloc(extData->fromUTableUChars))=0; |
+ *((uint32_t *)utm_alloc(extData->fromUTableValues))=0; |
+ ++length; |
+ top+=2; |
+ } |
+ indexes[UCNV_EXT_FROM_U_LENGTH]=length; |
+ |
+ indexes[UCNV_EXT_FROM_U_VALUES_INDEX]=top; |
+ top+=length*4; |
+ |
+ indexes[UCNV_EXT_FROM_U_BYTES_INDEX]=top; |
+ length=utm_countItems(extData->fromUBytes); |
+ top+=length; |
+ |
+ if(top&1) { |
+ /* add padding */ |
+ *((uint8_t *)utm_alloc(extData->fromUBytes))=0; |
+ ++length; |
+ ++top; |
+ } |
+ indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]=length; |
+ |
+ indexes[UCNV_EXT_FROM_U_STAGE_12_INDEX]=top; |
+ indexes[UCNV_EXT_FROM_U_STAGE_1_LENGTH]=length=extData->stage1Top; |
+ indexes[UCNV_EXT_FROM_U_STAGE_12_LENGTH]=length+=extData->stage2Top; |
+ top+=length*2; |
+ |
+ indexes[UCNV_EXT_FROM_U_STAGE_3_INDEX]=top; |
+ length=extData->stage3Top; |
+ top+=length*2; |
+ |
+ if(top&3) { |
+ /* add padding */ |
+ extData->stage3[extData->stage3Top++]=0; |
+ ++length; |
+ top+=2; |
+ } |
+ indexes[UCNV_EXT_FROM_U_STAGE_3_LENGTH]=length; |
+ |
+ indexes[UCNV_EXT_FROM_U_STAGE_3B_INDEX]=top; |
+ indexes[UCNV_EXT_FROM_U_STAGE_3B_LENGTH]=length=extData->stage3bTop; |
+ top+=length*4; |
+ |
+ indexes[UCNV_EXT_SIZE]=top; |
+ |
+ /* statistics */ |
+ indexes[UCNV_EXT_COUNT_BYTES]= |
+ (extData->maxInBytes<<16)| |
+ (extData->maxOutBytes<<8)| |
+ extData->maxBytesPerUChar; |
+ indexes[UCNV_EXT_COUNT_UCHARS]= |
+ (extData->maxInUChars<<16)| |
+ (extData->maxOutUChars<<8)| |
+ extData->maxUCharsPerByte; |
+ |
+ indexes[UCNV_EXT_FLAGS]=extData->ucm->ext->unicodeMask; |
+ |
+ /* write the extension data */ |
+ udata_writeBlock(pData, indexes, sizeof(indexes)); |
+ udata_writeBlock(pData, utm_getStart(extData->toUTable), indexes[UCNV_EXT_TO_U_LENGTH]*4); |
+ udata_writeBlock(pData, utm_getStart(extData->toUUChars), indexes[UCNV_EXT_TO_U_UCHARS_LENGTH]*2); |
+ |
+ udata_writeBlock(pData, utm_getStart(extData->fromUTableUChars), indexes[UCNV_EXT_FROM_U_LENGTH]*2); |
+ udata_writeBlock(pData, utm_getStart(extData->fromUTableValues), indexes[UCNV_EXT_FROM_U_LENGTH]*4); |
+ udata_writeBlock(pData, utm_getStart(extData->fromUBytes), indexes[UCNV_EXT_FROM_U_BYTES_LENGTH]); |
+ |
+ udata_writeBlock(pData, extData->stage1, extData->stage1Top*2); |
+ udata_writeBlock(pData, extData->stage2, extData->stage2Top*2); |
+ udata_writeBlock(pData, extData->stage3, extData->stage3Top*2); |
+ udata_writeBlock(pData, extData->stage3b, extData->stage3bTop*4); |
+ |
+#if 0 |
+ { |
+ int32_t i, j; |
+ |
+ length=extData->stage1Top; |
+ printf("\nstage1[%x]:\n", length); |
+ |
+ for(i=0; i<length; ++i) { |
+ if(extData->stage1[i]!=length) { |
+ printf("stage1[%04x]=%04x\n", i, extData->stage1[i]); |
+ } |
+ } |
+ |
+ j=length; |
+ length=extData->stage2Top; |
+ printf("\nstage2[%x]:\n", length); |
+ |
+ for(i=0; i<length; ++j, ++i) { |
+ if(extData->stage2[i]!=0) { |
+ printf("stage12[%04x]=%04x\n", j, extData->stage2[i]); |
+ } |
+ } |
+ |
+ length=extData->stage3Top; |
+ printf("\nstage3[%x]:\n", length); |
+ |
+ for(i=0; i<length; ++i) { |
+ if(extData->stage3[i]!=0) { |
+ printf("stage3[%04x]=%04x\n", i, extData->stage3[i]); |
+ } |
+ } |
+ |
+ length=extData->stage3bTop; |
+ printf("\nstage3b[%x]:\n", length); |
+ |
+ for(i=0; i<length; ++i) { |
+ if(extData->stage3b[i]!=0) { |
+ printf("stage3b[%04x]=%08x\n", i, extData->stage3b[i]); |
+ } |
+ } |
+ } |
+#endif |
+ |
+ if(VERBOSE) { |
+ printf("size of extension data: %ld\n", (long)top); |
+ } |
+ |
+ /* return the number of bytes that should have been written */ |
+ return (uint32_t)(headerSize+top); |
+} |
+ |
+/* to Unicode --------------------------------------------------------------- */ |
+ |
+/* |
+ * Remove fromUnicode fallbacks and SUB mappings which are irrelevant for |
+ * the toUnicode table. |
+ * This includes mappings with MBCS_FROM_U_EXT_FLAG which were suitable |
+ * for the base toUnicode table but not for the base fromUnicode table. |
+ * The table must be sorted. |
+ * Modifies previous data in the reverseMap. |
+ */ |
+static int32_t |
+reduceToUMappings(UCMTable *table) { |
+ UCMapping *mappings; |
+ int32_t *map; |
+ int32_t i, j, count; |
+ int8_t flag; |
+ |
+ mappings=table->mappings; |
+ map=table->reverseMap; |
+ count=table->mappingsLength; |
+ |
+ /* leave the map alone for the initial mappings with desired flags */ |
+ for(i=j=0; i<count; ++i) { |
+ flag=mappings[map[i]].f; |
+ if(flag!=0 && flag!=3) { |
+ break; |
+ } |
+ } |
+ |
+ /* reduce from here to the rest */ |
+ for(j=i; i<count; ++i) { |
+ flag=mappings[map[i]].f; |
+ if(flag==0 || flag==3) { |
+ map[j++]=map[i]; |
+ } |
+ } |
+ |
+ return j; |
+} |
+ |
+static uint32_t |
+getToUnicodeValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { |
+ UChar32 *u32; |
+ UChar *u; |
+ uint32_t value; |
+ int32_t u16Length, ratio; |
+ UErrorCode errorCode; |
+ |
+ /* write the Unicode result code point or string index */ |
+ if(m->uLen==1) { |
+ u16Length=U16_LENGTH(m->u); |
+ value=(uint32_t)(UCNV_EXT_TO_U_MIN_CODE_POINT+m->u); |
+ } else { |
+ /* the parser enforces m->uLen<=UCNV_EXT_MAX_UCHARS */ |
+ |
+ /* get the result code point string and its 16-bit string length */ |
+ u32=UCM_GET_CODE_POINTS(table, m); |
+ errorCode=U_ZERO_ERROR; |
+ u_strFromUTF32(NULL, 0, &u16Length, u32, m->uLen, &errorCode); |
+ if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { |
+ exit(errorCode); |
+ } |
+ |
+ /* allocate it and put its length and index into the value */ |
+ value= |
+ (((uint32_t)m->uLen+UCNV_EXT_TO_U_LENGTH_OFFSET)<<UCNV_EXT_TO_U_LENGTH_SHIFT)| |
+ ((uint32_t)utm_countItems(extData->toUUChars)); |
+ u=utm_allocN(extData->toUUChars, u16Length); |
+ |
+ /* write the result 16-bit string */ |
+ errorCode=U_ZERO_ERROR; |
+ u_strFromUTF32(u, u16Length, NULL, u32, m->uLen, &errorCode); |
+ if(U_FAILURE(errorCode) && errorCode!=U_BUFFER_OVERFLOW_ERROR) { |
+ exit(errorCode); |
+ } |
+ } |
+ if(m->f==0) { |
+ value|=UCNV_EXT_TO_U_ROUNDTRIP_FLAG; |
+ } |
+ |
+ /* update statistics */ |
+ if(m->bLen>extData->maxInBytes) { |
+ extData->maxInBytes=m->bLen; |
+ } |
+ if(u16Length>extData->maxOutUChars) { |
+ extData->maxOutUChars=u16Length; |
+ } |
+ |
+ ratio=(u16Length+(m->bLen-1))/m->bLen; |
+ if(ratio>extData->maxUCharsPerByte) { |
+ extData->maxUCharsPerByte=ratio; |
+ } |
+ |
+ return value; |
+} |
+ |
+/* |
+ * Recursive toUTable generator core function. |
+ * Preconditions: |
+ * - start<limit (There is at least one mapping.) |
+ * - The mappings are sorted lexically. (Access is through the reverseMap.) |
+ * - All mappings between start and limit have input sequences that share |
+ * the same prefix of unitIndex length, and therefore all of these sequences |
+ * are at least unitIndex+1 long. |
+ * - There are only relevant mappings available through the reverseMap, |
+ * see reduceToUMappings(). |
+ * |
+ * One function invocation generates one section table. |
+ * |
+ * Steps: |
+ * 1. Count the number of unique unit values and get the low/high unit values |
+ * that occur at unitIndex. |
+ * 2. Allocate the section table with possible optimization for linear access. |
+ * 3. Write temporary version of the section table with start indexes of |
+ * subsections, each corresponding to one unit value at unitIndex. |
+ * 4. Iterate through the table once more, and depending on the subsection length: |
+ * 0: write 0 as a result value (unused byte in linear-access section table) |
+ * >0: if there is one mapping with an input unit sequence of unitIndex+1 |
+ * then defaultValue=compute the mapping result for this whole sequence |
+ * else defaultValue=0 |
+ * |
+ * recurse into the subsection |
+ */ |
+static UBool |
+generateToUTable(CnvExtData *extData, UCMTable *table, |
+ int32_t start, int32_t limit, int32_t unitIndex, |
+ uint32_t defaultValue) { |
+ UCMapping *mappings, *m; |
+ int32_t *map; |
+ int32_t i, j, uniqueCount, count, subStart, subLimit; |
+ |
+ uint8_t *bytes; |
+ int32_t low, high, prev; |
+ |
+ uint32_t *section; |
+ |
+ mappings=table->mappings; |
+ map=table->reverseMap; |
+ |
+ /* step 1: examine the input units; set low, high, uniqueCount */ |
+ m=mappings+map[start]; |
+ bytes=UCM_GET_BYTES(table, m); |
+ low=bytes[unitIndex]; |
+ uniqueCount=1; |
+ |
+ prev=high=low; |
+ for(i=start+1; i<limit; ++i) { |
+ m=mappings+map[i]; |
+ bytes=UCM_GET_BYTES(table, m); |
+ high=bytes[unitIndex]; |
+ |
+ if(high!=prev) { |
+ prev=high; |
+ ++uniqueCount; |
+ } |
+ } |
+ |
+ /* step 2: allocate the section; set count, section */ |
+ count=(high-low)+1; |
+ if(count<0x100 && (unitIndex==0 || uniqueCount>=(3*count)/4)) { |
+ /* |
+ * for the root table and for fairly full tables: |
+ * allocate for direct, linear array access |
+ * by keeping count, to write an entry for each unit value |
+ * from low to high |
+ * exception: use a compact table if count==0x100 because |
+ * that cannot be encoded in the length byte |
+ */ |
+ } else { |
+ count=uniqueCount; |
+ } |
+ |
+ if(count>=0x100) { |
+ fprintf(stderr, "error: toUnicode extension table section overflow: %ld section entries\n", (long)count); |
+ return FALSE; |
+ } |
+ |
+ /* allocate the section: 1 entry for the header + count for the items */ |
+ section=(uint32_t *)utm_allocN(extData->toUTable, 1+count); |
+ |
+ /* write the section header */ |
+ *section++=((uint32_t)count<<UCNV_EXT_TO_U_BYTE_SHIFT)|defaultValue; |
+ |
+ /* step 3: write temporary section table with subsection starts */ |
+ prev=low-1; /* just before low to prevent empty subsections before low */ |
+ j=0; /* section table index */ |
+ for(i=start; i<limit; ++i) { |
+ m=mappings+map[i]; |
+ bytes=UCM_GET_BYTES(table, m); |
+ high=bytes[unitIndex]; |
+ |
+ if(high!=prev) { |
+ /* start of a new subsection for unit high */ |
+ if(count>uniqueCount) { |
+ /* write empty subsections for unused units in a linear table */ |
+ while(++prev<high) { |
+ section[j++]=((uint32_t)prev<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; |
+ } |
+ } else { |
+ prev=high; |
+ } |
+ |
+ /* write the entry with the subsection start */ |
+ section[j++]=((uint32_t)high<<UCNV_EXT_TO_U_BYTE_SHIFT)|(uint32_t)i; |
+ } |
+ } |
+ /* assert(j==count) */ |
+ |
+ /* step 4: recurse and write results */ |
+ subLimit=UCNV_EXT_TO_U_GET_VALUE(section[0]); |
+ for(j=0; j<count; ++j) { |
+ subStart=subLimit; |
+ subLimit= (j+1)<count ? UCNV_EXT_TO_U_GET_VALUE(section[j+1]) : limit; |
+ |
+ /* remove the subStart temporary value */ |
+ section[j]&=~UCNV_EXT_TO_U_VALUE_MASK; |
+ |
+ if(subStart==subLimit) { |
+ /* leave the value zero: empty subsection for unused unit in a linear table */ |
+ continue; |
+ } |
+ |
+ /* see if there is exactly one input unit sequence of length unitIndex+1 */ |
+ defaultValue=0; |
+ m=mappings+map[subStart]; |
+ if(m->bLen==unitIndex+1) { |
+ /* do not include this in generateToUTable() */ |
+ ++subStart; |
+ |
+ if(subStart<subLimit && mappings[map[subStart]].bLen==unitIndex+1) { |
+ /* print error for multiple same-input-sequence mappings */ |
+ fprintf(stderr, "error: multiple mappings from same bytes\n"); |
+ ucm_printMapping(table, m, stderr); |
+ ucm_printMapping(table, mappings+map[subStart], stderr); |
+ return FALSE; |
+ } |
+ |
+ defaultValue=getToUnicodeValue(extData, table, m); |
+ } |
+ |
+ if(subStart==subLimit) { |
+ /* write the result for the input sequence ending here */ |
+ section[j]|=defaultValue; |
+ } else { |
+ /* write the index to the subsection table */ |
+ section[j]|=(uint32_t)utm_countItems(extData->toUTable); |
+ |
+ /* recurse */ |
+ if(!generateToUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { |
+ return FALSE; |
+ } |
+ } |
+ } |
+ return TRUE; |
+} |
+ |
+/* |
+ * Generate the toUTable and toUUChars from the input table. |
+ * The input table must be sorted, and all precision flags must be 0..3. |
+ * This function will modify the table's reverseMap. |
+ */ |
+static UBool |
+makeToUTable(CnvExtData *extData, UCMTable *table) { |
+ int32_t toUCount; |
+ |
+ toUCount=reduceToUMappings(table); |
+ |
+ extData->toUTable=utm_open("cnv extension toUTable", 0x10000, UCNV_EXT_TO_U_MIN_CODE_POINT, 4); |
+ extData->toUUChars=utm_open("cnv extension toUUChars", 0x10000, UCNV_EXT_TO_U_INDEX_MASK+1, 2); |
+ |
+ return generateToUTable(extData, table, 0, toUCount, 0, 0); |
+} |
+ |
+/* from Unicode ------------------------------------------------------------- */ |
+ |
+/* |
+ * preprocessing: |
+ * rebuild reverseMap with mapping indexes for mappings relevant for from Unicode |
+ * change each Unicode string to encode all but the first code point in 16-bit form |
+ * |
+ * generation: |
+ * for each unique code point |
+ * write an entry in the 3-stage trie |
+ * check that there is only one single-code point sequence |
+ * start recursion for following 16-bit input units |
+ */ |
+ |
+/* |
+ * Remove toUnicode fallbacks and non-<subchar1> SUB mappings |
+ * which are irrelevant for the fromUnicode extension table. |
+ * Remove MBCS_FROM_U_EXT_FLAG bits. |
+ * Overwrite the reverseMap with an index array to the relevant mappings. |
+ * Modify the code point sequences to a generator-friendly format where |
+ * the first code points remains unchanged but the following are recoded |
+ * into 16-bit Unicode string form. |
+ * The table must be sorted. |
+ * Destroys previous data in the reverseMap. |
+ */ |
+static int32_t |
+prepareFromUMappings(UCMTable *table) { |
+ UCMapping *mappings, *m; |
+ int32_t *map; |
+ int32_t i, j, count; |
+ int8_t flag; |
+ |
+ mappings=table->mappings; |
+ map=table->reverseMap; |
+ count=table->mappingsLength; |
+ |
+ /* |
+ * we do not go through the map on input because the mappings are |
+ * sorted lexically |
+ */ |
+ m=mappings; |
+ |
+ for(i=j=0; i<count; ++m, ++i) { |
+ flag=m->f; |
+ if(flag>=0) { |
+ flag&=MBCS_FROM_U_EXT_MASK; |
+ m->f=flag; |
+ } |
+ if(flag==0 || flag==1 || (flag==2 && m->bLen==1)) { |
+ map[j++]=i; |
+ |
+ if(m->uLen>1) { |
+ /* recode all but the first code point to 16-bit Unicode */ |
+ UChar32 *u32; |
+ UChar *u; |
+ UChar32 c; |
+ int32_t q, r; |
+ |
+ u32=UCM_GET_CODE_POINTS(table, m); |
+ u=(UChar *)u32; /* destructive in-place recoding */ |
+ for(r=2, q=1; q<m->uLen; ++q) { |
+ c=u32[q]; |
+ U16_APPEND_UNSAFE(u, r, c); |
+ } |
+ |
+ /* counts the first code point always at 2 - the first 16-bit unit is at 16-bit index 2 */ |
+ m->uLen=(int8_t)r; |
+ } |
+ } |
+ } |
+ |
+ return j; |
+} |
+ |
+static uint32_t |
+getFromUBytesValue(CnvExtData *extData, UCMTable *table, UCMapping *m) { |
+ uint8_t *bytes, *resultBytes; |
+ uint32_t value; |
+ int32_t u16Length, ratio; |
+ |
+ if(m->f==2) { |
+ /* |
+ * no mapping, <subchar1> preferred |
+ * |
+ * no need to count in statistics because the subchars are already |
+ * counted for maxOutBytes and maxBytesPerUChar in UConverterStaticData, |
+ * and this non-mapping does not count for maxInUChars which are always |
+ * trivially at least two if counting unmappable supplementary code points |
+ */ |
+ return UCNV_EXT_FROM_U_SUBCHAR1; |
+ } |
+ |
+ bytes=UCM_GET_BYTES(table, m); |
+ value=0; |
+ switch(m->bLen) { |
+ /* 1..3: store the bytes in the value word */ |
+ case 3: |
+ value=((uint32_t)*bytes++)<<16; |
+ case 2: |
+ value|=((uint32_t)*bytes++)<<8; |
+ case 1: |
+ value|=*bytes; |
+ break; |
+ default: |
+ /* the parser enforces m->bLen<=UCNV_EXT_MAX_BYTES */ |
+ /* store the bytes in fromUBytes[] and the index in the value word */ |
+ value=(uint32_t)utm_countItems(extData->fromUBytes); |
+ resultBytes=utm_allocN(extData->fromUBytes, m->bLen); |
+ uprv_memcpy(resultBytes, bytes, m->bLen); |
+ break; |
+ } |
+ value|=(uint32_t)m->bLen<<UCNV_EXT_FROM_U_LENGTH_SHIFT; |
+ if(m->f==0) { |
+ value|=UCNV_EXT_FROM_U_ROUNDTRIP_FLAG; |
+ } |
+ |
+ /* calculate the real UTF-16 length (see recoding in prepareFromUMappings()) */ |
+ if(m->uLen==1) { |
+ u16Length=U16_LENGTH(m->u); |
+ } else { |
+ u16Length=U16_LENGTH(UCM_GET_CODE_POINTS(table, m)[0])+(m->uLen-2); |
+ } |
+ |
+ /* update statistics */ |
+ if(u16Length>extData->maxInUChars) { |
+ extData->maxInUChars=u16Length; |
+ } |
+ if(m->bLen>extData->maxOutBytes) { |
+ extData->maxOutBytes=m->bLen; |
+ } |
+ |
+ ratio=(m->bLen+(u16Length-1))/u16Length; |
+ if(ratio>extData->maxBytesPerUChar) { |
+ extData->maxBytesPerUChar=ratio; |
+ } |
+ |
+ return value; |
+} |
+ |
+/* |
+ * works like generateToUTable(), except that the |
+ * output section consists of two arrays, one for input UChars and one |
+ * for result values |
+ * |
+ * also, fromUTable sections are always stored in a compact form for |
+ * access via binary search |
+ */ |
+static UBool |
+generateFromUTable(CnvExtData *extData, UCMTable *table, |
+ int32_t start, int32_t limit, int32_t unitIndex, |
+ uint32_t defaultValue) { |
+ UCMapping *mappings, *m; |
+ int32_t *map; |
+ int32_t i, j, uniqueCount, count, subStart, subLimit; |
+ |
+ UChar *uchars; |
+ UChar32 low, high, prev; |
+ |
+ UChar *sectionUChars; |
+ uint32_t *sectionValues; |
+ |
+ mappings=table->mappings; |
+ map=table->reverseMap; |
+ |
+ /* step 1: examine the input units; set low, high, uniqueCount */ |
+ m=mappings+map[start]; |
+ uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
+ low=uchars[unitIndex]; |
+ uniqueCount=1; |
+ |
+ prev=high=low; |
+ for(i=start+1; i<limit; ++i) { |
+ m=mappings+map[i]; |
+ uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
+ high=uchars[unitIndex]; |
+ |
+ if(high!=prev) { |
+ prev=high; |
+ ++uniqueCount; |
+ } |
+ } |
+ |
+ /* step 2: allocate the section; set count, section */ |
+ /* the fromUTable always stores for access via binary search */ |
+ count=uniqueCount; |
+ |
+ /* allocate the section: 1 entry for the header + count for the items */ |
+ sectionUChars=(UChar *)utm_allocN(extData->fromUTableUChars, 1+count); |
+ sectionValues=(uint32_t *)utm_allocN(extData->fromUTableValues, 1+count); |
+ |
+ /* write the section header */ |
+ *sectionUChars++=(UChar)count; |
+ *sectionValues++=defaultValue; |
+ |
+ /* step 3: write temporary section table with subsection starts */ |
+ prev=low-1; /* just before low to prevent empty subsections before low */ |
+ j=0; /* section table index */ |
+ for(i=start; i<limit; ++i) { |
+ m=mappings+map[i]; |
+ uchars=(UChar *)UCM_GET_CODE_POINTS(table, m); |
+ high=uchars[unitIndex]; |
+ |
+ if(high!=prev) { |
+ /* start of a new subsection for unit high */ |
+ prev=high; |
+ |
+ /* write the entry with the subsection start */ |
+ sectionUChars[j]=(UChar)high; |
+ sectionValues[j]=(uint32_t)i; |
+ ++j; |
+ } |
+ } |
+ /* assert(j==count) */ |
+ |
+ /* step 4: recurse and write results */ |
+ subLimit=(int32_t)(sectionValues[0]); |
+ for(j=0; j<count; ++j) { |
+ subStart=subLimit; |
+ subLimit= (j+1)<count ? (int32_t)(sectionValues[j+1]) : limit; |
+ |
+ /* see if there is exactly one input unit sequence of length unitIndex+1 */ |
+ defaultValue=0; |
+ m=mappings+map[subStart]; |
+ if(m->uLen==unitIndex+1) { |
+ /* do not include this in generateToUTable() */ |
+ ++subStart; |
+ |
+ if(subStart<subLimit && mappings[map[subStart]].uLen==unitIndex+1) { |
+ /* print error for multiple same-input-sequence mappings */ |
+ fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); |
+ ucm_printMapping(table, m, stderr); |
+ ucm_printMapping(table, mappings+map[subStart], stderr); |
+ return FALSE; |
+ } |
+ |
+ defaultValue=getFromUBytesValue(extData, table, m); |
+ } |
+ |
+ if(subStart==subLimit) { |
+ /* write the result for the input sequence ending here */ |
+ sectionValues[j]=defaultValue; |
+ } else { |
+ /* write the index to the subsection table */ |
+ sectionValues[j]=(uint32_t)utm_countItems(extData->fromUTableValues); |
+ |
+ /* recurse */ |
+ if(!generateFromUTable(extData, table, subStart, subLimit, unitIndex+1, defaultValue)) { |
+ return FALSE; |
+ } |
+ } |
+ } |
+ return TRUE; |
+} |
+ |
+/* |
+ * add entries to the fromUnicode trie, |
+ * assume to be called with code points in ascending order |
+ * and use that to build the trie in precompacted form |
+ */ |
+static void |
+addFromUTrieEntry(CnvExtData *extData, UChar32 c, uint32_t value) { |
+ int32_t i1, i2, i3, i3b, nextOffset, min, newBlock; |
+ |
+ if(value==0) { |
+ return; |
+ } |
+ |
+ /* |
+ * compute the index for each stage, |
+ * allocate a stage block if necessary, |
+ * and write the stage value |
+ */ |
+ i1=c>>10; |
+ if(i1>=extData->stage1Top) { |
+ extData->stage1Top=i1+1; |
+ } |
+ |
+ nextOffset=(c>>4)&0x3f; |
+ |
+ if(extData->stage1[i1]==0) { |
+ /* allocate another block in stage 2; overlap with the previous block */ |
+ newBlock=extData->stage2Top; |
+ min=newBlock-nextOffset; /* minimum block start with overlap */ |
+ while(min<newBlock && extData->stage2[newBlock-1]==0) { |
+ --newBlock; |
+ } |
+ |
+ extData->stage1[i1]=(uint16_t)newBlock; |
+ extData->stage2Top=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
+ if(extData->stage2Top>LENGTHOF(extData->stage2)) { |
+ fprintf(stderr, "error: too many stage 2 entries at U+%04x\n", (int)c); |
+ exit(U_MEMORY_ALLOCATION_ERROR); |
+ } |
+ } |
+ |
+ i2=extData->stage1[i1]+nextOffset; |
+ nextOffset=c&0xf; |
+ |
+ if(extData->stage2[i2]==0) { |
+ /* allocate another block in stage 3; overlap with the previous block */ |
+ newBlock=extData->stage3Top; |
+ min=newBlock-nextOffset; /* minimum block start with overlap */ |
+ while(min<newBlock && extData->stage3[newBlock-1]==0) { |
+ --newBlock; |
+ } |
+ |
+ /* round up to a multiple of stage 3 granularity >1 (similar to utrie.c) */ |
+ newBlock=(newBlock+(UCNV_EXT_STAGE_3_GRANULARITY-1))&~(UCNV_EXT_STAGE_3_GRANULARITY-1); |
+ extData->stage2[i2]=(uint16_t)(newBlock>>UCNV_EXT_STAGE_2_LEFT_SHIFT); |
+ |
+ extData->stage3Top=newBlock+MBCS_STAGE_3_BLOCK_SIZE; |
+ if(extData->stage3Top>LENGTHOF(extData->stage3)) { |
+ fprintf(stderr, "error: too many stage 3 entries at U+%04x\n", (int)c); |
+ exit(U_MEMORY_ALLOCATION_ERROR); |
+ } |
+ } |
+ |
+ i3=((int32_t)extData->stage2[i2]<<UCNV_EXT_STAGE_2_LEFT_SHIFT)+nextOffset; |
+ /* |
+ * assume extData->stage3[i3]==0 because we get |
+ * code points in strictly ascending order |
+ */ |
+ |
+ if(value==UCNV_EXT_FROM_U_SUBCHAR1) { |
+ /* <subchar1> SUB mapping, see getFromUBytesValue() and prepareFromUMappings() */ |
+ extData->stage3[i3]=1; |
+ |
+ /* |
+ * precompaction is not optimal for <subchar1> |2 mappings because |
+ * stage3 values for them are all the same, unlike for other mappings |
+ * which all have unique values; |
+ * use a simple compaction of reusing a whole block filled with these |
+ * mappings |
+ */ |
+ |
+ /* is the entire block filled with <subchar1> |2 mappings? */ |
+ if(nextOffset==MBCS_STAGE_3_BLOCK_SIZE-1) { |
+ for(min=i3-nextOffset; |
+ min<i3 && extData->stage3[min]==1; |
+ ++min) {} |
+ |
+ if(min==i3) { |
+ /* the entire block is filled with these mappings */ |
+ if(extData->stage3Sub1Block!=0) { |
+ /* point to the previous such block and remove this block from stage3 */ |
+ extData->stage2[i2]=extData->stage3Sub1Block; |
+ extData->stage3Top-=MBCS_STAGE_3_BLOCK_SIZE; |
+ uprv_memset(extData->stage3+extData->stage3Top, 0, MBCS_STAGE_3_BLOCK_SIZE*2); |
+ } else { |
+ /* remember this block's stage2 entry */ |
+ extData->stage3Sub1Block=extData->stage2[i2]; |
+ } |
+ } |
+ } |
+ } else { |
+ if((i3b=extData->stage3bTop++)>=LENGTHOF(extData->stage3b)) { |
+ fprintf(stderr, "error: too many stage 3b entries at U+%04x\n", (int)c); |
+ exit(U_MEMORY_ALLOCATION_ERROR); |
+ } |
+ |
+ /* roundtrip or fallback mapping */ |
+ extData->stage3[i3]=(uint16_t)i3b; |
+ extData->stage3b[i3b]=value; |
+ } |
+} |
+ |
+static UBool |
+generateFromUTrie(CnvExtData *extData, UCMTable *table, int32_t mapLength) { |
+ UCMapping *mappings, *m; |
+ int32_t *map; |
+ uint32_t value; |
+ int32_t subStart, subLimit; |
+ |
+ UChar32 *codePoints; |
+ UChar32 c, next; |
+ |
+ if(mapLength==0) { |
+ return TRUE; |
+ } |
+ |
+ mappings=table->mappings; |
+ map=table->reverseMap; |
+ |
+ /* |
+ * iterate over same-initial-code point mappings, |
+ * enter the initial code point into the trie, |
+ * and start a recursion on the corresponding mappings section |
+ * with generateFromUTable() |
+ */ |
+ m=mappings+map[0]; |
+ codePoints=UCM_GET_CODE_POINTS(table, m); |
+ next=codePoints[0]; |
+ subLimit=0; |
+ while(subLimit<mapLength) { |
+ /* get a new subsection of mappings starting with the same code point */ |
+ subStart=subLimit; |
+ c=next; |
+ while(next==c && ++subLimit<mapLength) { |
+ m=mappings+map[subLimit]; |
+ codePoints=UCM_GET_CODE_POINTS(table, m); |
+ next=codePoints[0]; |
+ } |
+ |
+ /* |
+ * compute the value for this code point; |
+ * if there is a mapping for this code point alone, it is at subStart |
+ * because the table is sorted lexically |
+ */ |
+ value=0; |
+ m=mappings+map[subStart]; |
+ codePoints=UCM_GET_CODE_POINTS(table, m); |
+ if(m->uLen==1) { |
+ /* do not include this in generateFromUTable() */ |
+ ++subStart; |
+ |
+ if(subStart<subLimit && mappings[map[subStart]].uLen==1) { |
+ /* print error for multiple same-input-sequence mappings */ |
+ fprintf(stderr, "error: multiple mappings from same Unicode code points\n"); |
+ ucm_printMapping(table, m, stderr); |
+ ucm_printMapping(table, mappings+map[subStart], stderr); |
+ return FALSE; |
+ } |
+ |
+ value=getFromUBytesValue(extData, table, m); |
+ } |
+ |
+ if(subStart==subLimit) { |
+ /* write the result for this one code point */ |
+ addFromUTrieEntry(extData, c, value); |
+ } else { |
+ /* write the index to the subsection table */ |
+ addFromUTrieEntry(extData, c, (uint32_t)utm_countItems(extData->fromUTableValues)); |
+ |
+ /* recurse, starting from 16-bit-unit index 2, the first 16-bit unit after c */ |
+ if(!generateFromUTable(extData, table, subStart, subLimit, 2, value)) { |
+ return FALSE; |
+ } |
+ } |
+ } |
+ return TRUE; |
+} |
+ |
+/* |
+ * Generate the fromU data structures from the input table. |
+ * The input table must be sorted, and all precision flags must be 0..3. |
+ * This function will modify the table's reverseMap. |
+ */ |
+static UBool |
+makeFromUTable(CnvExtData *extData, UCMTable *table) { |
+ uint16_t *stage1; |
+ int32_t i, stage1Top, fromUCount; |
+ |
+ fromUCount=prepareFromUMappings(table); |
+ |
+ extData->fromUTableUChars=utm_open("cnv extension fromUTableUChars", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 2); |
+ extData->fromUTableValues=utm_open("cnv extension fromUTableValues", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 4); |
+ extData->fromUBytes=utm_open("cnv extension fromUBytes", 0x10000, UCNV_EXT_FROM_U_DATA_MASK+1, 1); |
+ |
+ /* allocate all-unassigned stage blocks */ |
+ extData->stage2Top=MBCS_STAGE_2_FIRST_ASSIGNED; |
+ extData->stage3Top=MBCS_STAGE_3_FIRST_ASSIGNED; |
+ |
+ /* |
+ * stage 3b stores only unique values, and in |
+ * index 0: 0 for "no mapping" |
+ * index 1: "no mapping" with preference for <subchar1> rather than <subchar> |
+ */ |
+ extData->stage3b[1]=UCNV_EXT_FROM_U_SUBCHAR1; |
+ extData->stage3bTop=2; |
+ |
+ /* allocate the first entry in the fromUTable because index 0 means "no result" */ |
+ utm_alloc(extData->fromUTableUChars); |
+ utm_alloc(extData->fromUTableValues); |
+ |
+ if(!generateFromUTrie(extData, table, fromUCount)) { |
+ return FALSE; |
+ } |
+ |
+ /* |
+ * offset the stage 1 trie entries by stage1Top because they will |
+ * be stored in a single array |
+ */ |
+ stage1=extData->stage1; |
+ stage1Top=extData->stage1Top; |
+ for(i=0; i<stage1Top; ++i) { |
+ stage1[i]=(uint16_t)(stage1[i]+stage1Top); |
+ } |
+ |
+ return TRUE; |
+} |
+ |
+/* -------------------------------------------------------------------------- */ |
+ |
+static UBool |
+CnvExtAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *staticData) { |
+ CnvExtData *extData; |
+ |
+ if(table->unicodeMask&UCNV_HAS_SURROGATES) { |
+ fprintf(stderr, "error: contains mappings for surrogate code points\n"); |
+ return FALSE; |
+ } |
+ |
+ staticData->conversionType=UCNV_MBCS; |
+ |
+ extData=(CnvExtData *)cnvData; |
+ |
+ /* |
+ * assume that the table is sorted |
+ * |
+ * call the functions in this order because |
+ * makeToUTable() modifies the original reverseMap, |
+ * makeFromUTable() writes a whole new mapping into reverseMap |
+ */ |
+ return |
+ makeToUTable(extData, table) && |
+ makeFromUTable(extData, table); |
+} |
Property changes on: icu46/source/tools/makeconv/gencnvex.c |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |