| Index: icu46/source/i18n/regexcmp.cpp
|
| ===================================================================
|
| --- icu46/source/i18n/regexcmp.cpp (revision 0)
|
| +++ icu46/source/i18n/regexcmp.cpp (revision 0)
|
| @@ -0,0 +1,4323 @@
|
| +//
|
| +// file: regexcmp.cpp
|
| +//
|
| +// Copyright (C) 2002-2010 International Business Machines Corporation and others.
|
| +// All Rights Reserved.
|
| +//
|
| +// This file contains the ICU regular expression compiler, which is responsible
|
| +// for processing a regular expression pattern into the compiled form that
|
| +// is used by the match finding engine.
|
| +//
|
| +
|
| +#include "unicode/utypes.h"
|
| +
|
| +#if !UCONFIG_NO_REGULAR_EXPRESSIONS
|
| +
|
| +#include "unicode/ustring.h"
|
| +#include "unicode/unistr.h"
|
| +#include "unicode/uniset.h"
|
| +#include "unicode/uchar.h"
|
| +#include "unicode/uchriter.h"
|
| +#include "unicode/parsepos.h"
|
| +#include "unicode/parseerr.h"
|
| +#include "unicode/regex.h"
|
| +#include "util.h"
|
| +#include "putilimp.h"
|
| +#include "cmemory.h"
|
| +#include "cstring.h"
|
| +#include "uvectr32.h"
|
| +#include "uvectr64.h"
|
| +#include "uassert.h"
|
| +#include "ucln_in.h"
|
| +#include "uinvchar.h"
|
| +
|
| +#include "regeximp.h"
|
| +#include "regexcst.h" // Contains state table for the regex pattern parser.
|
| + // generated by a Perl script.
|
| +#include "regexcmp.h"
|
| +#include "regexst.h"
|
| +#include "regextxt.h"
|
| +
|
| +
|
| +
|
| +U_NAMESPACE_BEGIN
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// Constructor.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +RegexCompile::RegexCompile(RegexPattern *rxp, UErrorCode &status) :
|
| + fParenStack(status), fSetStack(status), fSetOpStack(status)
|
| +{
|
| + // Lazy init of all shared global sets (needed for init()'s empty text)
|
| + RegexStaticSets::initGlobals(&status);
|
| +
|
| + fStatus = &status;
|
| +
|
| + fRXPat = rxp;
|
| + fScanIndex = 0;
|
| + fLastChar = -1;
|
| + fPeekChar = -1;
|
| + fLineNum = 1;
|
| + fCharNum = 0;
|
| + fQuoteMode = FALSE;
|
| + fInBackslashQuote = FALSE;
|
| + fModeFlags = fRXPat->fFlags | 0x80000000;
|
| + fEOLComments = TRUE;
|
| +
|
| + fMatchOpenParen = -1;
|
| + fMatchCloseParen = -1;
|
| + fStringOpStart = -1;
|
| +
|
| + if (U_SUCCESS(status) && U_FAILURE(rxp->fDeferredStatus)) {
|
| + status = rxp->fDeferredStatus;
|
| + }
|
| +}
|
| +
|
| +static const UChar chAmp = 0x26; // '&'
|
| +static const UChar chDash = 0x2d; // '-'
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// Destructor
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +RegexCompile::~RegexCompile() {
|
| +}
|
| +
|
| +static inline void addCategory(UnicodeSet *set, int32_t value, UErrorCode& ec) {
|
| + set->addAll(UnicodeSet().applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, value, ec));
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// Compile regex pattern. The state machine for rexexp pattern parsing is here.
|
| +// The state tables are hand-written in the file regexcst.txt,
|
| +// and converted to the form used here by a perl
|
| +// script regexcst.pl
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::compile(
|
| + const UnicodeString &pat, // Source pat to be compiled.
|
| + UParseError &pp, // Error position info
|
| + UErrorCode &e) // Error Code
|
| +{
|
| + fRXPat->fPatternString = new UnicodeString(pat);
|
| + UText patternText = UTEXT_INITIALIZER;
|
| + utext_openConstUnicodeString(&patternText, fRXPat->fPatternString, &e);
|
| +
|
| + if (U_SUCCESS(e)) {
|
| + compile(&patternText, pp, e);
|
| + utext_close(&patternText);
|
| + }
|
| +}
|
| +
|
| +//
|
| +// compile, UText mode
|
| +// All the work is actually done here.
|
| +//
|
| +void RegexCompile::compile(
|
| + UText *pat, // Source pat to be compiled.
|
| + UParseError &pp, // Error position info
|
| + UErrorCode &e) // Error Code
|
| +{
|
| + fStatus = &e;
|
| + fParseErr = &pp;
|
| + fStackPtr = 0;
|
| + fStack[fStackPtr] = 0;
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + return;
|
| + }
|
| +
|
| + // There should be no pattern stuff in the RegexPattern object. They can not be reused.
|
| + U_ASSERT(fRXPat->fPattern == NULL || utext_nativeLength(fRXPat->fPattern) == 0);
|
| +
|
| + // Prepare the RegexPattern object to receive the compiled pattern.
|
| + fRXPat->fPattern = utext_clone(fRXPat->fPattern, pat, FALSE, TRUE, fStatus);
|
| + fRXPat->fStaticSets = RegexStaticSets::gStaticSets->fPropSets;
|
| + fRXPat->fStaticSets8 = RegexStaticSets::gStaticSets->fPropSets8;
|
| +
|
| +
|
| + // Initialize the pattern scanning state machine
|
| + fPatternLength = utext_nativeLength(pat);
|
| + uint16_t state = 1;
|
| + const RegexTableEl *tableEl;
|
| + nextChar(fC); // Fetch the first char from the pattern string.
|
| +
|
| + //
|
| + // Main loop for the regex pattern parsing state machine.
|
| + // Runs once per state transition.
|
| + // Each time through optionally performs, depending on the state table,
|
| + // - an advance to the the next pattern char
|
| + // - an action to be performed.
|
| + // - pushing or popping a state to/from the local state return stack.
|
| + // file regexcst.txt is the source for the state table. The logic behind
|
| + // recongizing the pattern syntax is there, not here.
|
| + //
|
| + for (;;) {
|
| + // Bail out if anything has gone wrong.
|
| + // Regex pattern parsing stops on the first error encountered.
|
| + if (U_FAILURE(*fStatus)) {
|
| + break;
|
| + }
|
| +
|
| + U_ASSERT(state != 0);
|
| +
|
| + // Find the state table element that matches the input char from the pattern, or the
|
| + // class of the input character. Start with the first table row for this
|
| + // state, then linearly scan forward until we find a row that matches the
|
| + // character. The last row for each state always matches all characters, so
|
| + // the search will stop there, if not before.
|
| + //
|
| + tableEl = &gRuleParseStateTable[state];
|
| + REGEX_SCAN_DEBUG_PRINTF(("char, line, col = (\'%c\', %d, %d) state=%s ",
|
| + fC.fChar, fLineNum, fCharNum, RegexStateNames[state]));
|
| +
|
| + for (;;) { // loop through table rows belonging to this state, looking for one
|
| + // that matches the current input char.
|
| + REGEX_SCAN_DEBUG_PRINTF(("."));
|
| + if (tableEl->fCharClass < 127 && fC.fQuoted == FALSE && tableEl->fCharClass == fC.fChar) {
|
| + // Table row specified an individual character, not a set, and
|
| + // the input character is not quoted, and
|
| + // the input character matched it.
|
| + break;
|
| + }
|
| + if (tableEl->fCharClass == 255) {
|
| + // Table row specified default, match anything character class.
|
| + break;
|
| + }
|
| + if (tableEl->fCharClass == 254 && fC.fQuoted) {
|
| + // Table row specified "quoted" and the char was quoted.
|
| + break;
|
| + }
|
| + if (tableEl->fCharClass == 253 && fC.fChar == (UChar32)-1) {
|
| + // Table row specified eof and we hit eof on the input.
|
| + break;
|
| + }
|
| +
|
| + if (tableEl->fCharClass >= 128 && tableEl->fCharClass < 240 && // Table specs a char class &&
|
| + fC.fQuoted == FALSE && // char is not escaped &&
|
| + fC.fChar != (UChar32)-1) { // char is not EOF
|
| + if (RegexStaticSets::gStaticSets->fRuleSets[tableEl->fCharClass-128].contains(fC.fChar)) {
|
| + // Table row specified a character class, or set of characters,
|
| + // and the current char matches it.
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // No match on this row, advance to the next row for this state,
|
| + tableEl++;
|
| + }
|
| + REGEX_SCAN_DEBUG_PRINTF(("\n"));
|
| +
|
| + //
|
| + // We've found the row of the state table that matches the current input
|
| + // character from the rules string.
|
| + // Perform any action specified by this row in the state table.
|
| + if (doParseActions(tableEl->fAction) == FALSE) {
|
| + // Break out of the state machine loop if the
|
| + // the action signalled some kind of error, or
|
| + // the action was to exit, occurs on normal end-of-rules-input.
|
| + break;
|
| + }
|
| +
|
| + if (tableEl->fPushState != 0) {
|
| + fStackPtr++;
|
| + if (fStackPtr >= kStackSize) {
|
| + error(U_REGEX_INTERNAL_ERROR);
|
| + REGEX_SCAN_DEBUG_PRINTF(("RegexCompile::parse() - state stack overflow.\n"));
|
| + fStackPtr--;
|
| + }
|
| + fStack[fStackPtr] = tableEl->fPushState;
|
| + }
|
| +
|
| + //
|
| + // NextChar. This is where characters are actually fetched from the pattern.
|
| + // Happens under control of the 'n' tag in the state table.
|
| + //
|
| + if (tableEl->fNextChar) {
|
| + nextChar(fC);
|
| + }
|
| +
|
| + // Get the next state from the table entry, or from the
|
| + // state stack if the next state was specified as "pop".
|
| + if (tableEl->fNextState != 255) {
|
| + state = tableEl->fNextState;
|
| + } else {
|
| + state = fStack[fStackPtr];
|
| + fStackPtr--;
|
| + if (fStackPtr < 0) {
|
| + // state stack underflow
|
| + // This will occur if the user pattern has mis-matched parentheses,
|
| + // with extra close parens.
|
| + //
|
| + fStackPtr++;
|
| + error(U_REGEX_MISMATCHED_PAREN);
|
| + }
|
| + }
|
| +
|
| + }
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + // Bail out if the pattern had errors.
|
| + // Set stack cleanup: a successful compile would have left it empty,
|
| + // but errors can leave temporary sets hanging around.
|
| + while (!fSetStack.empty()) {
|
| + delete (UnicodeSet *)fSetStack.pop();
|
| + }
|
| + return;
|
| + }
|
| +
|
| + //
|
| + // The pattern has now been read and processed, and the compiled code generated.
|
| + //
|
| +
|
| + //
|
| + // Compute the number of digits requried for the largest capture group number.
|
| + //
|
| + fRXPat->fMaxCaptureDigits = 1;
|
| + int32_t n = 10;
|
| + int32_t groupCount = fRXPat->fGroupMap->size();
|
| + while (n <= groupCount) {
|
| + fRXPat->fMaxCaptureDigits++;
|
| + n *= 10;
|
| + }
|
| +
|
| + //
|
| + // The pattern's fFrameSize so far has accumulated the requirements for
|
| + // storage for capture parentheses, counters, etc. that are encountered
|
| + // in the pattern. Add space for the two variables that are always
|
| + // present in the saved state: the input string position (int64_t) and
|
| + // the position in the compiled pattern.
|
| + //
|
| + fRXPat->fFrameSize+=RESTACKFRAME_HDRCOUNT;
|
| +
|
| + //
|
| + // Optimization pass 1: NOPs, back-references, and case-folding
|
| + //
|
| + stripNOPs();
|
| +
|
| + //
|
| + // Get bounds for the minimum and maximum length of a string that this
|
| + // pattern can match. Used to avoid looking for matches in strings that
|
| + // are too short.
|
| + //
|
| + fRXPat->fMinMatchLen = minMatchLength(3, fRXPat->fCompiledPat->size()-1);
|
| +
|
| + //
|
| + // Optimization pass 2: match start type
|
| + //
|
| + matchStartType();
|
| +
|
| + //
|
| + // Set up fast latin-1 range sets
|
| + //
|
| + int32_t numSets = fRXPat->fSets->size();
|
| + fRXPat->fSets8 = new Regex8BitSet[numSets];
|
| + // Null pointer check.
|
| + if (fRXPat->fSets8 == NULL) {
|
| + e = *fStatus = U_MEMORY_ALLOCATION_ERROR;
|
| + return;
|
| + }
|
| + int32_t i;
|
| + for (i=0; i<numSets; i++) {
|
| + UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(i);
|
| + fRXPat->fSets8[i].init(s);
|
| + }
|
| +
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// doParseAction Do some action during regex pattern parsing.
|
| +// Called by the parse state machine.
|
| +//
|
| +// Generation of the match engine PCode happens here, or
|
| +// in functions called from the parse actions defined here.
|
| +//
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +UBool RegexCompile::doParseActions(int32_t action)
|
| +{
|
| + UBool returnVal = TRUE;
|
| +
|
| + switch ((Regex_PatternParseAction)action) {
|
| +
|
| + case doPatStart:
|
| + // Start of pattern compiles to:
|
| + //0 SAVE 2 Fall back to position of FAIL
|
| + //1 jmp 3
|
| + //2 FAIL Stop if we ever reach here.
|
| + //3 NOP Dummy, so start of pattern looks the same as
|
| + // the start of an ( grouping.
|
| + //4 NOP Resreved, will be replaced by a save if there are
|
| + // OR | operators at the top level
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_STATE_SAVE, 2), *fStatus);
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_JMP, 3), *fStatus);
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_FAIL, 0), *fStatus);
|
| +
|
| + // Standard open nonCapture paren action emits the two NOPs and
|
| + // sets up the paren stack frame.
|
| + doParseActions(doOpenNonCaptureParen);
|
| + break;
|
| +
|
| + case doPatFinish:
|
| + // We've scanned to the end of the pattern
|
| + // The end of pattern compiles to:
|
| + // URX_END
|
| + // which will stop the runtime match engine.
|
| + // Encountering end of pattern also behaves like a close paren,
|
| + // and forces fixups of the State Save at the beginning of the compiled pattern
|
| + // and of any OR operations at the top level.
|
| + //
|
| + handleCloseParen();
|
| + if (fParenStack.size() > 0) {
|
| + // Missing close paren in pattern.
|
| + error(U_REGEX_MISMATCHED_PAREN);
|
| + }
|
| +
|
| + // add the END operation to the compiled pattern.
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_END, 0), *fStatus);
|
| +
|
| + // Terminate the pattern compilation state machine.
|
| + returnVal = FALSE;
|
| + break;
|
| +
|
| +
|
| +
|
| + case doOrOperator:
|
| + // Scanning a '|', as in (A|B)
|
| + {
|
| + // Insert a SAVE operation at the start of the pattern section preceding
|
| + // this OR at this level. This SAVE will branch the match forward
|
| + // to the right hand side of the OR in the event that the left hand
|
| + // side fails to match and backtracks. Locate the position for the
|
| + // save from the location on the top of the parentheses stack.
|
| + int32_t savePosition = fParenStack.popi();
|
| + int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(savePosition);
|
| + U_ASSERT(URX_TYPE(op) == URX_NOP); // original contents of reserved location
|
| + op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+1);
|
| + fRXPat->fCompiledPat->setElementAt(op, savePosition);
|
| +
|
| + // Append an JMP operation into the compiled pattern. The operand for
|
| + // the JMP will eventually be the location following the ')' for the
|
| + // group. This will be patched in later, when the ')' is encountered.
|
| + op = URX_BUILD(URX_JMP, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Push the position of the newly added JMP op onto the parentheses stack.
|
| + // This registers if for fixup when this block's close paren is encountered.
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
|
| +
|
| + // Append a NOP to the compiled pattern. This is the slot reserved
|
| + // for a SAVE in the event that there is yet another '|' following
|
| + // this one.
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doOpenCaptureParen:
|
| + // Open Paren.
|
| + // Compile to a
|
| + // - NOP, which later may be replaced by a save-state if the
|
| + // parenthesized group gets a * quantifier, followed by
|
| + // - START_CAPTURE n where n is stack frame offset to the capture group variables.
|
| + // - NOP, which may later be replaced by a save-state if there
|
| + // is an '|' alternation within the parens.
|
| + //
|
| + // Each capture group gets three slots in the save stack frame:
|
| + // 0: Capture Group start position (in input string being matched.)
|
| + // 1: Capture Group end position.
|
| + // 2: Start of Match-in-progress.
|
| + // The first two locations are for a completed capture group, and are
|
| + // referred to by back references and the like.
|
| + // The third location stores the capture start position when an START_CAPTURE is
|
| + // encountered. This will be promoted to a completed capture when (and if) the corresponding
|
| + // END_CAPTURE is encountered.
|
| + {
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| + int32_t varsLoc = fRXPat->fFrameSize; // Reserve three slots in match stack frame.
|
| + fRXPat->fFrameSize += 3;
|
| + int32_t cop = URX_BUILD(URX_START_CAPTURE, varsLoc);
|
| + fRXPat->fCompiledPat->addElement(cop, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the two NOPs. Depending on what follows in the pattern, the
|
| + // NOPs may be changed to SAVE_STATE or JMP ops, with a target
|
| + // address of the end of the parenthesized group.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(capturing, *fStatus); // Frame type.
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP location
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
|
| +
|
| + // Save the mapping from group number to stack frame variable position.
|
| + fRXPat->fGroupMap->addElement(varsLoc, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doOpenNonCaptureParen:
|
| + // Open non-caputuring (grouping only) Paren.
|
| + // Compile to a
|
| + // - NOP, which later may be replaced by a save-state if the
|
| + // parenthesized group gets a * quantifier, followed by
|
| + // - NOP, which may later be replaced by a save-state if there
|
| + // is an '|' alternation within the parens.
|
| + {
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the two NOPs.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(plain, *fStatus); // Begin a new frame.
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP loc
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doOpenAtomicParen:
|
| + // Open Atomic Paren. (?>
|
| + // Compile to a
|
| + // - NOP, which later may be replaced if the parenthesized group
|
| + // has a quantifier, followed by
|
| + // - STO_SP save state stack position, so it can be restored at the ")"
|
| + // - NOP, which may later be replaced by a save-state if there
|
| + // is an '|' alternation within the parens.
|
| + {
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| + int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the
|
| + fRXPat->fDataSize += 1; // state stack ptr.
|
| + int32_t stoOp = URX_BUILD(URX_STO_SP, varLoc);
|
| + fRXPat->fCompiledPat->addElement(stoOp, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the two NOPs. Depending on what follows in the pattern, the
|
| + // NOPs may be changed to SAVE_STATE or JMP ops, with a target
|
| + // address of the end of the parenthesized group.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(atomic, *fStatus); // Frame type.
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-3, *fStatus); // The first NOP
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doOpenLookAhead:
|
| + // Positive Look-ahead (?= stuff )
|
| + //
|
| + // Note: Addition of transparent input regions, with the need to
|
| + // restore the original regions when failing out of a lookahead
|
| + // block, complicated this sequence. Some conbined opcodes
|
| + // might make sense - or might not, lookahead aren't that common.
|
| + //
|
| + // Caution: min match length optimization knows about this
|
| + // sequence; don't change without making updates there too.
|
| + //
|
| + // Compiles to
|
| + // 1 START_LA dataLoc Saves SP, Input Pos
|
| + // 2. STATE_SAVE 4 on failure of lookahead, goto 4
|
| + // 3 JMP 6 continue ...
|
| + //
|
| + // 4. LA_END Look Ahead failed. Restore regions.
|
| + // 5. BACKTRACK and back track again.
|
| + //
|
| + // 6. NOP reserved for use by quantifiers on the block.
|
| + // Look-ahead can't have quantifiers, but paren stack
|
| + // compile time conventions require the slot anyhow.
|
| + // 7. NOP may be replaced if there is are '|' ops in the block.
|
| + // 8. code for parenthesized stuff.
|
| + // 9. LA_END
|
| + //
|
| + // Two data slots are reserved, for saving the stack ptr and the input position.
|
| + {
|
| + int32_t dataLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize += 2;
|
| + int32_t op = URX_BUILD(URX_LA_START, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+ 2);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_JMP, fRXPat->fCompiledPat->size()+ 3);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_LA_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_BACKTRACK, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_NOP, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the NOPs.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(lookAhead, *fStatus); // Frame type.
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
|
| + }
|
| + break;
|
| +
|
| + case doOpenLookAheadNeg:
|
| + // Negated Lookahead. (?! stuff )
|
| + // Compiles to
|
| + // 1. START_LA dataloc
|
| + // 2. SAVE_STATE 7 // Fail within look-ahead block restores to this state,
|
| + // // which continues with the match.
|
| + // 3. NOP // Std. Open Paren sequence, for possible '|'
|
| + // 4. code for parenthesized stuff.
|
| + // 5. END_LA // Cut back stack, remove saved state from step 2.
|
| + // 6. BACKTRACK // code in block succeeded, so neg. lookahead fails.
|
| + // 7. END_LA // Restore match region, in case look-ahead was using
|
| + // an alternate (transparent) region.
|
| + {
|
| + int32_t dataLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize += 2;
|
| + int32_t op = URX_BUILD(URX_LA_START, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_STATE_SAVE, 0); // dest address will be patched later.
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + op = URX_BUILD(URX_NOP, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the StateSave and NOP.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(negLookAhead, *fStatus); // Frame type
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The STATE_SAVE location
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP location
|
| +
|
| + // Instructions #5 - #7 will be added when the ')' is encountered.
|
| + }
|
| + break;
|
| +
|
| + case doOpenLookBehind:
|
| + {
|
| + // Compile a (?<= look-behind open paren.
|
| + //
|
| + // Compiles to
|
| + // 0 URX_LB_START dataLoc
|
| + // 1 URX_LB_CONT dataLoc
|
| + // 2 MinMatchLen
|
| + // 3 MaxMatchLen
|
| + // 4 URX_NOP Standard '(' boilerplate.
|
| + // 5 URX_NOP Reserved slot for use with '|' ops within (block).
|
| + // 6 <code for LookBehind expression>
|
| + // 7 URX_LB_END dataLoc # Check match len, restore input len
|
| + // 8 URX_LA_END dataLoc # Restore stack, input pos
|
| + //
|
| + // Allocate a block of matcher data, to contain (when running a match)
|
| + // 0: Stack ptr on entry
|
| + // 1: Input Index on entry
|
| + // 2: Start index of match current match attempt.
|
| + // 3: Original Input String len.
|
| +
|
| + // Allocate data space
|
| + int32_t dataLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize += 4;
|
| +
|
| + // Emit URX_LB_START
|
| + int32_t op = URX_BUILD(URX_LB_START, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Emit URX_LB_CONT
|
| + op = URX_BUILD(URX_LB_CONT, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later.
|
| + fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later.
|
| +
|
| + // Emit the NOP
|
| + op = URX_BUILD(URX_NOP, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the URX_LB_CONT and the NOP.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(lookBehind, *fStatus); // Frame type
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
|
| +
|
| + // The final two instructions will be added when the ')' is encountered.
|
| + }
|
| +
|
| + break;
|
| +
|
| + case doOpenLookBehindNeg:
|
| + {
|
| + // Compile a (?<! negated look-behind open paren.
|
| + //
|
| + // Compiles to
|
| + // 0 URX_LB_START dataLoc # Save entry stack, input len
|
| + // 1 URX_LBN_CONT dataLoc # Iterate possible match positions
|
| + // 2 MinMatchLen
|
| + // 3 MaxMatchLen
|
| + // 4 continueLoc (9)
|
| + // 5 URX_NOP Standard '(' boilerplate.
|
| + // 6 URX_NOP Reserved slot for use with '|' ops within (block).
|
| + // 7 <code for LookBehind expression>
|
| + // 8 URX_LBN_END dataLoc # Check match len, cause a FAIL
|
| + // 9 ...
|
| + //
|
| + // Allocate a block of matcher data, to contain (when running a match)
|
| + // 0: Stack ptr on entry
|
| + // 1: Input Index on entry
|
| + // 2: Start index of match current match attempt.
|
| + // 3: Original Input String len.
|
| +
|
| + // Allocate data space
|
| + int32_t dataLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize += 4;
|
| +
|
| + // Emit URX_LB_START
|
| + int32_t op = URX_BUILD(URX_LB_START, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Emit URX_LBN_CONT
|
| + op = URX_BUILD(URX_LBN_CONT, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(0, *fStatus); // MinMatchLength. To be filled later.
|
| + fRXPat->fCompiledPat->addElement(0, *fStatus); // MaxMatchLength. To be filled later.
|
| + fRXPat->fCompiledPat->addElement(0, *fStatus); // Continue Loc. To be filled later.
|
| +
|
| + // Emit the NOP
|
| + op = URX_BUILD(URX_NOP, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the URX_LB_CONT and the NOP.
|
| + fParenStack.push(fModeFlags, *fStatus); // Match mode state
|
| + fParenStack.push(lookBehindN, *fStatus); // Frame type
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP location
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The 2nd NOP location
|
| +
|
| + // The final two instructions will be added when the ')' is encountered.
|
| + }
|
| + break;
|
| +
|
| + case doConditionalExpr:
|
| + // Conditionals such as (?(1)a:b)
|
| + case doPerlInline:
|
| + // Perl inline-condtionals. (?{perl code}a|b) We're not perl, no way to do them.
|
| + error(U_REGEX_UNIMPLEMENTED);
|
| + break;
|
| +
|
| +
|
| + case doCloseParen:
|
| + handleCloseParen();
|
| + if (fParenStack.size() <= 0) {
|
| + // Extra close paren, or missing open paren.
|
| + error(U_REGEX_MISMATCHED_PAREN);
|
| + }
|
| + break;
|
| +
|
| + case doNOP:
|
| + break;
|
| +
|
| +
|
| + case doBadOpenParenType:
|
| + case doRuleError:
|
| + error(U_REGEX_RULE_SYNTAX);
|
| + break;
|
| +
|
| +
|
| + case doMismatchedParenErr:
|
| + error(U_REGEX_MISMATCHED_PAREN);
|
| + break;
|
| +
|
| + case doPlus:
|
| + // Normal '+' compiles to
|
| + // 1. stuff to be repeated (already built)
|
| + // 2. jmp-sav 1
|
| + // 3. ...
|
| + //
|
| + // Or, if the item to be repeated can match a zero length string,
|
| + // 1. STO_INP_LOC data-loc
|
| + // 2. body of stuff to be repeated
|
| + // 3. JMP_SAV_X 2
|
| + // 4. ...
|
| +
|
| + //
|
| + // Or, if the item to be repeated is simple
|
| + // 1. Item to be repeated.
|
| + // 2. LOOP_SR_I set number (assuming repeated item is a set ref)
|
| + // 3. LOOP_C stack location
|
| + {
|
| + int32_t topLoc = blockTopLoc(FALSE); // location of item #1
|
| + int32_t frameLoc;
|
| +
|
| + // Check for simple constructs, which may get special optimized code.
|
| + if (topLoc == fRXPat->fCompiledPat->size() - 1) {
|
| + int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
|
| +
|
| + if (URX_TYPE(repeatedOp) == URX_SETREF) {
|
| + // Emit optimized code for [char set]+
|
| + int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp));
|
| + fRXPat->fCompiledPat->addElement(loopOpI, *fStatus);
|
| + frameLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| + int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc);
|
| + fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
|
| + break;
|
| + }
|
| +
|
| + if (URX_TYPE(repeatedOp) == URX_DOTANY ||
|
| + URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
|
| + URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
|
| + // Emit Optimized code for .+ operations.
|
| + int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0);
|
| + if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
|
| + // URX_LOOP_DOT_I operand is a flag indicating ". matches any" mode.
|
| + loopOpI |= 1;
|
| + }
|
| + if (fModeFlags & UREGEX_UNIX_LINES) {
|
| + loopOpI |= 2;
|
| + }
|
| + fRXPat->fCompiledPat->addElement(loopOpI, *fStatus);
|
| + frameLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| + int32_t loopOpC = URX_BUILD(URX_LOOP_C, frameLoc);
|
| + fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
|
| + break;
|
| + }
|
| +
|
| + }
|
| +
|
| + // General case.
|
| +
|
| + // Check for minimum match length of zero, which requires
|
| + // extra loop-breaking code.
|
| + if (minMatchLength(topLoc, fRXPat->fCompiledPat->size()-1) == 0) {
|
| + // Zero length match is possible.
|
| + // Emit the code sequence that can handle it.
|
| + insertOp(topLoc);
|
| + frameLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| +
|
| + int32_t op = URX_BUILD(URX_STO_INP_LOC, frameLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
| +
|
| + op = URX_BUILD(URX_JMP_SAV_X, topLoc+1);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + } else {
|
| + // Simpler code when the repeated body must match something non-empty
|
| + int32_t jmpOp = URX_BUILD(URX_JMP_SAV, topLoc);
|
| + fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case doNGPlus:
|
| + // Non-greedy '+?' compiles to
|
| + // 1. stuff to be repeated (already built)
|
| + // 2. state-save 1
|
| + // 3. ...
|
| + {
|
| + int32_t topLoc = blockTopLoc(FALSE);
|
| + int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, topLoc);
|
| + fRXPat->fCompiledPat->addElement(saveStateOp, *fStatus);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doOpt:
|
| + // Normal (greedy) ? quantifier.
|
| + // Compiles to
|
| + // 1. state save 3
|
| + // 2. body of optional block
|
| + // 3. ...
|
| + // Insert the state save into the compiled pattern, and we're done.
|
| + {
|
| + int32_t saveStateLoc = blockTopLoc(TRUE);
|
| + int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size());
|
| + fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
|
| + }
|
| + break;
|
| +
|
| + case doNGOpt:
|
| + // Non-greedy ?? quantifier
|
| + // compiles to
|
| + // 1. jmp 4
|
| + // 2. body of optional block
|
| + // 3 jmp 5
|
| + // 4. state save 2
|
| + // 5 ...
|
| + // This code is less than ideal, with two jmps instead of one, because we can only
|
| + // insert one instruction at the top of the block being iterated.
|
| + {
|
| + int32_t jmp1_loc = blockTopLoc(TRUE);
|
| + int32_t jmp2_loc = fRXPat->fCompiledPat->size();
|
| +
|
| + int32_t jmp1_op = URX_BUILD(URX_JMP, jmp2_loc+1);
|
| + fRXPat->fCompiledPat->setElementAt(jmp1_op, jmp1_loc);
|
| +
|
| + int32_t jmp2_op = URX_BUILD(URX_JMP, jmp2_loc+2);
|
| + fRXPat->fCompiledPat->addElement(jmp2_op, *fStatus);
|
| +
|
| + int32_t save_op = URX_BUILD(URX_STATE_SAVE, jmp1_loc+1);
|
| + fRXPat->fCompiledPat->addElement(save_op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doStar:
|
| + // Normal (greedy) * quantifier.
|
| + // Compiles to
|
| + // 1. STATE_SAVE 4
|
| + // 2. body of stuff being iterated over
|
| + // 3. JMP_SAV 2
|
| + // 4. ...
|
| + //
|
| + // Or, if the body is a simple [Set],
|
| + // 1. LOOP_SR_I set number
|
| + // 2. LOOP_C stack location
|
| + // ...
|
| + //
|
| + // Or if this is a .*
|
| + // 1. LOOP_DOT_I (. matches all mode flag)
|
| + // 2. LOOP_C stack location
|
| + //
|
| + // Or, if the body can match a zero-length string, to inhibit infinite loops,
|
| + // 1. STATE_SAVE 5
|
| + // 2. STO_INP_LOC data-loc
|
| + // 3. body of stuff
|
| + // 4. JMP_SAV_X 2
|
| + // 5. ...
|
| + {
|
| + // location of item #1, the STATE_SAVE
|
| + int32_t topLoc = blockTopLoc(FALSE);
|
| + int32_t dataLoc = -1;
|
| +
|
| + // Check for simple *, where the construct being repeated
|
| + // compiled to single opcode, and might be optimizable.
|
| + if (topLoc == fRXPat->fCompiledPat->size() - 1) {
|
| + int32_t repeatedOp = (int32_t)fRXPat->fCompiledPat->elementAti(topLoc);
|
| +
|
| + if (URX_TYPE(repeatedOp) == URX_SETREF) {
|
| + // Emit optimized code for a [char set]*
|
| + int32_t loopOpI = URX_BUILD(URX_LOOP_SR_I, URX_VAL(repeatedOp));
|
| + fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
|
| + dataLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| + int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
|
| + break;
|
| + }
|
| +
|
| + if (URX_TYPE(repeatedOp) == URX_DOTANY ||
|
| + URX_TYPE(repeatedOp) == URX_DOTANY_ALL ||
|
| + URX_TYPE(repeatedOp) == URX_DOTANY_UNIX) {
|
| + // Emit Optimized code for .* operations.
|
| + int32_t loopOpI = URX_BUILD(URX_LOOP_DOT_I, 0);
|
| + if (URX_TYPE(repeatedOp) == URX_DOTANY_ALL) {
|
| + // URX_LOOP_DOT_I operand is a flag indicating . matches any mode.
|
| + loopOpI |= 1;
|
| + }
|
| + if ((fModeFlags & UREGEX_UNIX_LINES) != 0) {
|
| + loopOpI |= 2;
|
| + }
|
| + fRXPat->fCompiledPat->setElementAt(loopOpI, topLoc);
|
| + dataLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| + int32_t loopOpC = URX_BUILD(URX_LOOP_C, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(loopOpC, *fStatus);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Emit general case code for this *
|
| + // The optimizations did not apply.
|
| +
|
| + int32_t saveStateLoc = blockTopLoc(TRUE);
|
| + int32_t jmpOp = URX_BUILD(URX_JMP_SAV, saveStateLoc+1);
|
| +
|
| + // Check for minimum match length of zero, which requires
|
| + // extra loop-breaking code.
|
| + if (minMatchLength(saveStateLoc, fRXPat->fCompiledPat->size()-1) == 0) {
|
| + insertOp(saveStateLoc);
|
| + dataLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| +
|
| + int32_t op = URX_BUILD(URX_STO_INP_LOC, dataLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, saveStateLoc+1);
|
| + jmpOp = URX_BUILD(URX_JMP_SAV_X, saveStateLoc+2);
|
| + }
|
| +
|
| + // Locate the position in the compiled pattern where the match will continue
|
| + // after completing the *. (4 or 5 in the comment above)
|
| + int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
|
| +
|
| + // Put together the save state op store it into the compiled code.
|
| + int32_t saveStateOp = URX_BUILD(URX_STATE_SAVE, continueLoc);
|
| + fRXPat->fCompiledPat->setElementAt(saveStateOp, saveStateLoc);
|
| +
|
| + // Append the URX_JMP_SAV or URX_JMPX operation to the compiled pattern.
|
| + fRXPat->fCompiledPat->addElement(jmpOp, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doNGStar:
|
| + // Non-greedy *? quantifier
|
| + // compiles to
|
| + // 1. JMP 3
|
| + // 2. body of stuff being iterated over
|
| + // 3. STATE_SAVE 2
|
| + // 4 ...
|
| + {
|
| + int32_t jmpLoc = blockTopLoc(TRUE); // loc 1.
|
| + int32_t saveLoc = fRXPat->fCompiledPat->size(); // loc 3.
|
| + int32_t jmpOp = URX_BUILD(URX_JMP, saveLoc);
|
| + int32_t stateSaveOp = URX_BUILD(URX_STATE_SAVE, jmpLoc+1);
|
| + fRXPat->fCompiledPat->setElementAt(jmpOp, jmpLoc);
|
| + fRXPat->fCompiledPat->addElement(stateSaveOp, *fStatus);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doIntervalInit:
|
| + // The '{' opening an interval quantifier was just scanned.
|
| + // Init the counter varaiables that will accumulate the values as the digits
|
| + // are scanned.
|
| + fIntervalLow = 0;
|
| + fIntervalUpper = -1;
|
| + break;
|
| +
|
| + case doIntevalLowerDigit:
|
| + // Scanned a digit from the lower value of an {lower,upper} interval
|
| + {
|
| + int32_t digitValue = u_charDigitValue(fC.fChar);
|
| + U_ASSERT(digitValue >= 0);
|
| + fIntervalLow = fIntervalLow*10 + digitValue;
|
| + if (fIntervalLow < 0) {
|
| + error(U_REGEX_NUMBER_TOO_BIG);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case doIntervalUpperDigit:
|
| + // Scanned a digit from the upper value of an {lower,upper} interval
|
| + {
|
| + if (fIntervalUpper < 0) {
|
| + fIntervalUpper = 0;
|
| + }
|
| + int32_t digitValue = u_charDigitValue(fC.fChar);
|
| + U_ASSERT(digitValue >= 0);
|
| + fIntervalUpper = fIntervalUpper*10 + digitValue;
|
| + if (fIntervalUpper < 0) {
|
| + error(U_REGEX_NUMBER_TOO_BIG);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case doIntervalSame:
|
| + // Scanned a single value interval like {27}. Upper = Lower.
|
| + fIntervalUpper = fIntervalLow;
|
| + break;
|
| +
|
| + case doInterval:
|
| + // Finished scanning a normal {lower,upper} interval. Generate the code for it.
|
| + if (compileInlineInterval() == FALSE) {
|
| + compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
|
| + }
|
| + break;
|
| +
|
| + case doPossessiveInterval:
|
| + // Finished scanning a Possessive {lower,upper}+ interval. Generate the code for it.
|
| + {
|
| + // Remember the loc for the top of the block being looped over.
|
| + // (Can not reserve a slot in the compiled pattern at this time, because
|
| + // compileInterval needs to reserve also, and blockTopLoc can only reserve
|
| + // once per block.)
|
| + int32_t topLoc = blockTopLoc(FALSE);
|
| +
|
| + // Produce normal looping code.
|
| + compileInterval(URX_CTR_INIT, URX_CTR_LOOP);
|
| +
|
| + // Surround the just-emitted normal looping code with a STO_SP ... LD_SP
|
| + // just as if the loop was inclosed in atomic parentheses.
|
| +
|
| + // First the STO_SP before the start of the loop
|
| + insertOp(topLoc);
|
| + int32_t varLoc = fRXPat->fDataSize; // Reserve a data location for saving the
|
| + fRXPat->fDataSize += 1; // state stack ptr.
|
| + int32_t op = URX_BUILD(URX_STO_SP, varLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
| +
|
| + int32_t loopOp = (int32_t)fRXPat->fCompiledPat->popi();
|
| + U_ASSERT(URX_TYPE(loopOp) == URX_CTR_LOOP && URX_VAL(loopOp) == topLoc);
|
| + loopOp++; // point LoopOp after the just-inserted STO_SP
|
| + fRXPat->fCompiledPat->push(loopOp, *fStatus);
|
| +
|
| + // Then the LD_SP after the end of the loop
|
| + op = URX_BUILD(URX_LD_SP, varLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| +
|
| + break;
|
| +
|
| + case doNGInterval:
|
| + // Finished scanning a non-greedy {lower,upper}? interval. Generate the code for it.
|
| + compileInterval(URX_CTR_INIT_NG, URX_CTR_LOOP_NG);
|
| + break;
|
| +
|
| + case doIntervalError:
|
| + error(U_REGEX_BAD_INTERVAL);
|
| + break;
|
| +
|
| + case doLiteralChar:
|
| + // We've just scanned a "normal" character from the pattern,
|
| + literalChar(fC.fChar);
|
| + break;
|
| +
|
| +
|
| + case doEscapedLiteralChar:
|
| + // We've just scanned an backslashed escaped character with no
|
| + // special meaning. It represents itself.
|
| + if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
|
| + ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
|
| + (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
|
| + error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
| + }
|
| + literalChar(fC.fChar);
|
| + break;
|
| +
|
| +
|
| + case doDotAny:
|
| + // scanned a ".", match any single character.
|
| + {
|
| + int32_t op;
|
| + if (fModeFlags & UREGEX_DOTALL) {
|
| + op = URX_BUILD(URX_DOTANY_ALL, 0);
|
| + } else if (fModeFlags & UREGEX_UNIX_LINES) {
|
| + op = URX_BUILD(URX_DOTANY_UNIX, 0);
|
| + } else {
|
| + op = URX_BUILD(URX_DOTANY, 0);
|
| + }
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doCaret:
|
| + {
|
| + int32_t op = 0;
|
| + if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
|
| + op = URX_CARET;
|
| + } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
|
| + op = URX_CARET_M;
|
| + } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
|
| + op = URX_CARET; // Only testing true start of input.
|
| + } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
|
| + op = URX_CARET_M_UNIX;
|
| + }
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doDollar:
|
| + {
|
| + int32_t op = 0;
|
| + if ( (fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
|
| + op = URX_DOLLAR;
|
| + } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) == 0) {
|
| + op = URX_DOLLAR_M;
|
| + } else if ((fModeFlags & UREGEX_MULTILINE) == 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
|
| + op = URX_DOLLAR_D;
|
| + } else if ((fModeFlags & UREGEX_MULTILINE) != 0 && (fModeFlags & UREGEX_UNIX_LINES) != 0) {
|
| + op = URX_DOLLAR_MD;
|
| + }
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doBackslashA:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_CARET, 0), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashB:
|
| + {
|
| + #if UCONFIG_NO_BREAK_ITERATION==1
|
| + if (fModeFlags & UREGEX_UWORD) {
|
| + error(U_UNSUPPORTED_ERROR);
|
| + }
|
| + #endif
|
| + int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(op, 1), *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doBackslashb:
|
| + {
|
| + #if UCONFIG_NO_BREAK_ITERATION==1
|
| + if (fModeFlags & UREGEX_UWORD) {
|
| + error(U_UNSUPPORTED_ERROR);
|
| + }
|
| + #endif
|
| + int32_t op = (fModeFlags & UREGEX_UWORD)? URX_BACKSLASH_BU : URX_BACKSLASH_B;
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(op, 0), *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doBackslashD:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 1), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashd:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_D, 0), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashG:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_G, 0), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashS:
|
| + fRXPat->fCompiledPat->addElement(
|
| + URX_BUILD(URX_STAT_SETREF_N, URX_ISSPACE_SET), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashs:
|
| + fRXPat->fCompiledPat->addElement(
|
| + URX_BUILD(URX_STATIC_SETREF, URX_ISSPACE_SET), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashW:
|
| + fRXPat->fCompiledPat->addElement(
|
| + URX_BUILD(URX_STAT_SETREF_N, URX_ISWORD_SET), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashw:
|
| + fRXPat->fCompiledPat->addElement(
|
| + URX_BUILD(URX_STATIC_SETREF, URX_ISWORD_SET), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashX:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_X, 0), *fStatus);
|
| + break;
|
| +
|
| +
|
| + case doBackslashZ:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_DOLLAR, 0), *fStatus);
|
| + break;
|
| +
|
| + case doBackslashz:
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKSLASH_Z, 0), *fStatus);
|
| + break;
|
| +
|
| + case doEscapeError:
|
| + error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
| + break;
|
| +
|
| + case doExit:
|
| + returnVal = FALSE;
|
| + break;
|
| +
|
| + case doProperty:
|
| + {
|
| + UnicodeSet *theSet = scanProp();
|
| + compileSet(theSet);
|
| + }
|
| + break;
|
| +
|
| + case doNamedChar:
|
| + {
|
| + UChar32 c = scanNamedChar();
|
| + literalChar(c);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doBackRef:
|
| + // BackReference. Somewhat unusual in that the front-end can not completely parse
|
| + // the regular expression, because the number of digits to be consumed
|
| + // depends on the number of capture groups that have been defined. So
|
| + // we have to do it here instead.
|
| + {
|
| + int32_t numCaptureGroups = fRXPat->fGroupMap->size();
|
| + int32_t groupNum = 0;
|
| + UChar32 c = fC.fChar;
|
| +
|
| + for (;;) {
|
| + // Loop once per digit, for max allowed number of digits in a back reference.
|
| + int32_t digit = u_charDigitValue(c);
|
| + groupNum = groupNum * 10 + digit;
|
| + if (groupNum >= numCaptureGroups) {
|
| + break;
|
| + }
|
| + c = peekCharLL();
|
| + if (RegexStaticSets::gStaticSets->fRuleDigitsAlias->contains(c) == FALSE) {
|
| + break;
|
| + }
|
| + nextCharLL();
|
| + }
|
| +
|
| + // Scan of the back reference in the source regexp is complete. Now generate
|
| + // the compiled code for it.
|
| + // Because capture groups can be forward-referenced by back-references,
|
| + // we fill the operand with the capture group number. At the end
|
| + // of compilation, it will be changed to the variable's location.
|
| + U_ASSERT(groupNum > 0);
|
| + int32_t op;
|
| + if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
|
| + op = URX_BUILD(URX_BACKREF_I, groupNum);
|
| + } else {
|
| + op = URX_BUILD(URX_BACKREF, groupNum);
|
| + }
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doPossessivePlus:
|
| + // Possessive ++ quantifier.
|
| + // Compiles to
|
| + // 1. STO_SP
|
| + // 2. body of stuff being iterated over
|
| + // 3. STATE_SAVE 5
|
| + // 4. JMP 2
|
| + // 5. LD_SP
|
| + // 6. ...
|
| + //
|
| + // Note: TODO: This is pretty inefficient. A mass of saved state is built up
|
| + // then unconditionally discarded. Perhaps introduce a new opcode. Ticket 6056
|
| + //
|
| + {
|
| + // Emit the STO_SP
|
| + int32_t topLoc = blockTopLoc(TRUE);
|
| + int32_t stoLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
|
| + int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
| +
|
| + // Emit the STATE_SAVE
|
| + op = URX_BUILD(URX_STATE_SAVE, fRXPat->fCompiledPat->size()+2);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Emit the JMP
|
| + op = URX_BUILD(URX_JMP, topLoc+1);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Emit the LD_SP
|
| + op = URX_BUILD(URX_LD_SP, stoLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doPossessiveStar:
|
| + // Possessive *+ quantifier.
|
| + // Compiles to
|
| + // 1. STO_SP loc
|
| + // 2. STATE_SAVE 5
|
| + // 3. body of stuff being iterated over
|
| + // 4. JMP 2
|
| + // 5. LD_SP loc
|
| + // 6 ...
|
| + // TODO: do something to cut back the state stack each time through the loop.
|
| + {
|
| + // Reserve two slots at the top of the block.
|
| + int32_t topLoc = blockTopLoc(TRUE);
|
| + insertOp(topLoc);
|
| +
|
| + // emit STO_SP loc
|
| + int32_t stoLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
|
| + int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
| +
|
| + // Emit the SAVE_STATE 5
|
| + int32_t L7 = fRXPat->fCompiledPat->size()+1;
|
| + op = URX_BUILD(URX_STATE_SAVE, L7);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
|
| +
|
| + // Append the JMP operation.
|
| + op = URX_BUILD(URX_JMP, topLoc+1);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Emit the LD_SP loc
|
| + op = URX_BUILD(URX_LD_SP, stoLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doPossessiveOpt:
|
| + // Possessive ?+ quantifier.
|
| + // Compiles to
|
| + // 1. STO_SP loc
|
| + // 2. SAVE_STATE 5
|
| + // 3. body of optional block
|
| + // 4. LD_SP loc
|
| + // 5. ...
|
| + //
|
| + {
|
| + // Reserve two slots at the top of the block.
|
| + int32_t topLoc = blockTopLoc(TRUE);
|
| + insertOp(topLoc);
|
| +
|
| + // Emit the STO_SP
|
| + int32_t stoLoc = fRXPat->fDataSize;
|
| + fRXPat->fDataSize++; // Reserve the data location for storing save stack ptr.
|
| + int32_t op = URX_BUILD(URX_STO_SP, stoLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc);
|
| +
|
| + // Emit the SAVE_STATE
|
| + int32_t continueLoc = fRXPat->fCompiledPat->size()+1;
|
| + op = URX_BUILD(URX_STATE_SAVE, continueLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topLoc+1);
|
| +
|
| + // Emit the LD_SP
|
| + op = URX_BUILD(URX_LD_SP, stoLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doBeginMatchMode:
|
| + fNewModeFlags = fModeFlags;
|
| + fSetModeFlag = TRUE;
|
| + break;
|
| +
|
| + case doMatchMode: // (?i) and similar
|
| + {
|
| + int32_t bit = 0;
|
| + switch (fC.fChar) {
|
| + case 0x69: /* 'i' */ bit = UREGEX_CASE_INSENSITIVE; break;
|
| + case 0x64: /* 'd' */ bit = UREGEX_UNIX_LINES; break;
|
| + case 0x6d: /* 'm' */ bit = UREGEX_MULTILINE; break;
|
| + case 0x73: /* 's' */ bit = UREGEX_DOTALL; break;
|
| + case 0x75: /* 'u' */ bit = 0; /* Unicode casing */ break;
|
| + case 0x77: /* 'w' */ bit = UREGEX_UWORD; break;
|
| + case 0x78: /* 'x' */ bit = UREGEX_COMMENTS; break;
|
| + case 0x2d: /* '-' */ fSetModeFlag = FALSE; break;
|
| + default:
|
| + U_ASSERT(FALSE); // Should never happen. Other chars are filtered out
|
| + // by the scanner.
|
| + }
|
| + if (fSetModeFlag) {
|
| + fNewModeFlags |= bit;
|
| + } else {
|
| + fNewModeFlags &= ~bit;
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case doSetMatchMode:
|
| + // We've got a (?i) or similar. The match mode is being changed, but
|
| + // the change is not scoped to a parenthesized block.
|
| + U_ASSERT(fNewModeFlags < 0);
|
| + fModeFlags = fNewModeFlags;
|
| +
|
| + // Prevent any string from spanning across the change of match mode.
|
| + // Otherwise the pattern "abc(?i)def" would make a single string of "abcdef"
|
| + fixLiterals();
|
| + break;
|
| +
|
| +
|
| + case doMatchModeParen:
|
| + // We've got a (?i: or similar. Begin a parenthesized block, save old
|
| + // mode flags so they can be restored at the close of the block.
|
| + //
|
| + // Compile to a
|
| + // - NOP, which later may be replaced by a save-state if the
|
| + // parenthesized group gets a * quantifier, followed by
|
| + // - NOP, which may later be replaced by a save-state if there
|
| + // is an '|' alternation within the parens.
|
| + {
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_NOP, 0), *fStatus);
|
| +
|
| + // On the Parentheses stack, start a new frame and add the postions
|
| + // of the two NOPs (a normal non-capturing () frame, except for the
|
| + // saving of the orignal mode flags.)
|
| + fParenStack.push(fModeFlags, *fStatus);
|
| + fParenStack.push(flags, *fStatus); // Frame Marker
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-2, *fStatus); // The first NOP
|
| + fParenStack.push(fRXPat->fCompiledPat->size()-1, *fStatus); // The second NOP
|
| +
|
| + // Set the current mode flags to the new values.
|
| + U_ASSERT(fNewModeFlags < 0);
|
| + fModeFlags = fNewModeFlags;
|
| + }
|
| + break;
|
| +
|
| + case doBadModeFlag:
|
| + error(U_REGEX_INVALID_FLAG);
|
| + break;
|
| +
|
| + case doSuppressComments:
|
| + // We have just scanned a '(?'. We now need to prevent the character scanner from
|
| + // treating a '#' as a to-the-end-of-line comment.
|
| + // (This Perl compatibility just gets uglier and uglier to do...)
|
| + fEOLComments = FALSE;
|
| + break;
|
| +
|
| +
|
| + case doSetAddAmp:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + set->add(chAmp);
|
| + }
|
| + break;
|
| +
|
| + case doSetAddDash:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + set->add(chDash);
|
| + }
|
| + break;
|
| +
|
| + case doSetBackslash_s:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
|
| + break;
|
| + }
|
| +
|
| + case doSetBackslash_S:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISSPACE_SET]);
|
| + SSet.complement();
|
| + set->addAll(SSet);
|
| + break;
|
| + }
|
| +
|
| + case doSetBackslash_d:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + // TODO - make a static set, ticket 6058.
|
| + addCategory(set, U_GC_ND_MASK, *fStatus);
|
| + break;
|
| + }
|
| +
|
| + case doSetBackslash_D:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + UnicodeSet digits;
|
| + // TODO - make a static set, ticket 6058.
|
| + digits.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
|
| + digits.complement();
|
| + set->addAll(digits);
|
| + break;
|
| + }
|
| +
|
| + case doSetBackslash_w:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + set->addAll(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
|
| + break;
|
| + }
|
| +
|
| + case doSetBackslash_W:
|
| + {
|
| + UnicodeSet *set = (UnicodeSet *)fSetStack.peek();
|
| + UnicodeSet SSet(*RegexStaticSets::gStaticSets->fPropSets[URX_ISWORD_SET]);
|
| + SSet.complement();
|
| + set->addAll(SSet);
|
| + break;
|
| + }
|
| +
|
| + case doSetBegin:
|
| + fSetStack.push(new UnicodeSet(), *fStatus);
|
| + fSetOpStack.push(setStart, *fStatus);
|
| + if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
|
| + fSetOpStack.push(setCaseClose, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doSetBeginDifference1:
|
| + // We have scanned something like [[abc]-[
|
| + // Set up a new UnicodeSet for the set beginning with the just-scanned '['
|
| + // Push a Difference operator, which will cause the new set to be subtracted from what
|
| + // went before once it is created.
|
| + setPushOp(setDifference1);
|
| + fSetOpStack.push(setStart, *fStatus);
|
| + if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
|
| + fSetOpStack.push(setCaseClose, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doSetBeginIntersection1:
|
| + // We have scanned something like [[abc]&[
|
| + // Need both the '&' operator and the open '[' operator.
|
| + setPushOp(setIntersection1);
|
| + fSetOpStack.push(setStart, *fStatus);
|
| + if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
|
| + fSetOpStack.push(setCaseClose, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doSetBeginUnion:
|
| + // We have scanned something like [[abc][
|
| + // Need to handle the union operation explicitly [[abc] | [
|
| + setPushOp(setUnion);
|
| + fSetOpStack.push(setStart, *fStatus);
|
| + if ((fModeFlags & UREGEX_CASE_INSENSITIVE) != 0) {
|
| + fSetOpStack.push(setCaseClose, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case doSetDifference2:
|
| + // We have scanned something like [abc--
|
| + // Consider this to unambiguously be a set difference operator.
|
| + setPushOp(setDifference2);
|
| + break;
|
| +
|
| + case doSetEnd:
|
| + // Have encountered the ']' that closes a set.
|
| + // Force the evaluation of any pending operations within this set,
|
| + // leave the completed set on the top of the set stack.
|
| + setEval(setEnd);
|
| + U_ASSERT(fSetOpStack.peeki()==setStart);
|
| + fSetOpStack.popi();
|
| + break;
|
| +
|
| + case doSetFinish:
|
| + {
|
| + // Finished a complete set expression, including all nested sets.
|
| + // The close bracket has already triggered clearing out pending set operators,
|
| + // the operator stack should be empty and the operand stack should have just
|
| + // one entry, the result set.
|
| + U_ASSERT(fSetOpStack.empty());
|
| + UnicodeSet *theSet = (UnicodeSet *)fSetStack.pop();
|
| + U_ASSERT(fSetStack.empty());
|
| + compileSet(theSet);
|
| + break;
|
| + }
|
| +
|
| + case doSetIntersection2:
|
| + // Have scanned something like [abc&&
|
| + setPushOp(setIntersection2);
|
| + break;
|
| +
|
| + case doSetLiteral:
|
| + // Union the just-scanned literal character into the set being built.
|
| + // This operation is the highest precedence set operation, so we can always do
|
| + // it immediately, without waiting to see what follows. It is necessary to perform
|
| + // any pending '-' or '&' operation first, because these have the same precedence
|
| + // as union-ing in a literal'
|
| + {
|
| + setEval(setUnion);
|
| + UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
|
| + s->add(fC.fChar);
|
| + fLastSetLiteral = fC.fChar;
|
| + break;
|
| + }
|
| +
|
| + case doSetLiteralEscaped:
|
| + // A back-slash escaped literal character was encountered.
|
| + // Processing is the same as with setLiteral, above, with the addition of
|
| + // the optional check for errors on escaped ASCII letters.
|
| + {
|
| + if ((fModeFlags & UREGEX_ERROR_ON_UNKNOWN_ESCAPES) != 0 &&
|
| + ((fC.fChar >= 0x41 && fC.fChar<= 0x5A) || // in [A-Z]
|
| + (fC.fChar >= 0x61 && fC.fChar <= 0x7a))) { // in [a-z]
|
| + error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
| + }
|
| + setEval(setUnion);
|
| + UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
|
| + s->add(fC.fChar);
|
| + fLastSetLiteral = fC.fChar;
|
| + break;
|
| + }
|
| +
|
| + case doSetNamedChar:
|
| + // Scanning a \N{UNICODE CHARACTER NAME}
|
| + // Aside from the source of the character, the processing is identical to doSetLiteral,
|
| + // above.
|
| + {
|
| + UChar32 c = scanNamedChar();
|
| + setEval(setUnion);
|
| + UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
|
| + s->add(c);
|
| + fLastSetLiteral = c;
|
| + break;
|
| + }
|
| +
|
| + case doSetNamedRange:
|
| + // We have scanned literal-\N{CHAR NAME}. Add the range to the set.
|
| + // The left character is already in the set, and is saved in fLastSetLiteral.
|
| + // The right side needs to be picked up, the scan is at the 'N'.
|
| + // Lower Limit > Upper limit being an error matches both Java
|
| + // and ICU UnicodeSet behavior.
|
| + {
|
| + UChar32 c = scanNamedChar();
|
| + if (U_SUCCESS(*fStatus) && fLastSetLiteral > c) {
|
| + error(U_REGEX_INVALID_RANGE);
|
| + }
|
| + UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
|
| + s->add(fLastSetLiteral, c);
|
| + fLastSetLiteral = c;
|
| + break;
|
| + }
|
| +
|
| +
|
| + case doSetNegate:
|
| + // Scanned a '^' at the start of a set.
|
| + // Push the negation operator onto the set op stack.
|
| + // A twist for case-insensitive matching:
|
| + // the case closure operation must happen _before_ negation.
|
| + // But the case closure operation will already be on the stack if it's required.
|
| + // This requires checking for case closure, and swapping the stack order
|
| + // if it is present.
|
| + {
|
| + int32_t tosOp = fSetOpStack.peeki();
|
| + if (tosOp == setCaseClose) {
|
| + fSetOpStack.popi();
|
| + fSetOpStack.push(setNegation, *fStatus);
|
| + fSetOpStack.push(setCaseClose, *fStatus);
|
| + } else {
|
| + fSetOpStack.push(setNegation, *fStatus);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case doSetNoCloseError:
|
| + error(U_REGEX_MISSING_CLOSE_BRACKET);
|
| + break;
|
| +
|
| + case doSetOpError:
|
| + error(U_REGEX_RULE_SYNTAX); // -- or && at the end of a set. Illegal.
|
| + break;
|
| +
|
| + case doSetPosixProp:
|
| + {
|
| + UnicodeSet *s = scanPosixProp();
|
| + if (s != NULL) {
|
| + UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
|
| + tos->addAll(*s);
|
| + delete s;
|
| + } // else error. scanProp() reported the error status already.
|
| + }
|
| + break;
|
| +
|
| + case doSetProp:
|
| + // Scanned a \p \P within [brackets].
|
| + {
|
| + UnicodeSet *s = scanProp();
|
| + if (s != NULL) {
|
| + UnicodeSet *tos = (UnicodeSet *)fSetStack.peek();
|
| + tos->addAll(*s);
|
| + delete s;
|
| + } // else error. scanProp() reported the error status already.
|
| + }
|
| + break;
|
| +
|
| +
|
| + case doSetRange:
|
| + // We have scanned literal-literal. Add the range to the set.
|
| + // The left character is already in the set, and is saved in fLastSetLiteral.
|
| + // The right side is the current character.
|
| + // Lower Limit > Upper limit being an error matches both Java
|
| + // and ICU UnicodeSet behavior.
|
| + {
|
| + if (fLastSetLiteral > fC.fChar) {
|
| + error(U_REGEX_INVALID_RANGE);
|
| + }
|
| + UnicodeSet *s = (UnicodeSet *)fSetStack.peek();
|
| + s->add(fLastSetLiteral, fC.fChar);
|
| + break;
|
| + }
|
| +
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + error(U_REGEX_INTERNAL_ERROR);
|
| + break;
|
| + }
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + returnVal = FALSE;
|
| + }
|
| +
|
| + return returnVal;
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// literalChar We've encountered a literal character from the pattern,
|
| +// or an escape sequence that reduces to a character.
|
| +// Add it to the string containing all literal chars/strings from
|
| +// the pattern.
|
| +// If we are in a pattern string already, add the new char to it.
|
| +// If we aren't in a pattern string, begin one now.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::literalChar(UChar32 c) {
|
| + int32_t op; // An operation in the compiled pattern.
|
| + int32_t opType;
|
| + int32_t patternLoc; // A position in the compiled pattern.
|
| + int32_t stringLen;
|
| +
|
| +
|
| + // If the last thing compiled into the pattern was not a literal char,
|
| + // force this new literal char to begin a new string, and not append to the previous.
|
| + op = (int32_t)fRXPat->fCompiledPat->lastElementi();
|
| + opType = URX_TYPE(op);
|
| + if (!(opType == URX_STRING_LEN || opType == URX_ONECHAR || opType == URX_ONECHAR_I)) {
|
| + fixLiterals();
|
| + }
|
| +
|
| + if (fStringOpStart == -1) {
|
| + // First char of a string in the pattern.
|
| + // Emit a OneChar op into the compiled pattern.
|
| + emitONE_CHAR(c);
|
| +
|
| + // Mark that we might actually be starting a string here
|
| + fStringOpStart = fRXPat->fLiteralText.length();
|
| + return;
|
| + }
|
| +
|
| + op = (int32_t)fRXPat->fCompiledPat->lastElementi();
|
| + opType = URX_TYPE(op);
|
| + U_ASSERT(opType == URX_ONECHAR || opType == URX_ONECHAR_I || opType == URX_STRING_LEN);
|
| +
|
| + // If the most recently emitted op is a URX_ONECHAR,
|
| + if (opType == URX_ONECHAR || opType == URX_ONECHAR_I) {
|
| + if (U16_IS_TRAIL(c) && U16_IS_LEAD(URX_VAL(op))) {
|
| + // The most recently emitted op is a ONECHAR that was the first half
|
| + // of a surrogate pair. Update the ONECHAR's operand to be the
|
| + // supplementary code point resulting from both halves of the pair.
|
| + c = U16_GET_SUPPLEMENTARY(URX_VAL(op), c);
|
| + op = URX_BUILD(opType, c);
|
| + patternLoc = fRXPat->fCompiledPat->size() - 1;
|
| + fRXPat->fCompiledPat->setElementAt(op, patternLoc);
|
| + return;
|
| + }
|
| +
|
| + // The most recently emitted op is a ONECHAR.
|
| + // We've now received another adjacent char. Change the ONECHAR op
|
| + // to a string op.
|
| + fRXPat->fLiteralText.append(URX_VAL(op));
|
| +
|
| + if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
|
| + op = URX_BUILD(URX_STRING_I, fStringOpStart);
|
| + } else {
|
| + op = URX_BUILD(URX_STRING, fStringOpStart);
|
| + }
|
| + patternLoc = fRXPat->fCompiledPat->size() - 1;
|
| + fRXPat->fCompiledPat->setElementAt(op, patternLoc);
|
| + op = URX_BUILD(URX_STRING_LEN, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| +
|
| + // We are adding onto an existing string
|
| + fRXPat->fLiteralText.append(c);
|
| +
|
| + // The pattern contains a URX_SRING / URX_STRING_LEN. Update the
|
| + // string length to reflect the new char we just added to the string.
|
| + stringLen = fRXPat->fLiteralText.length() - fStringOpStart;
|
| + op = URX_BUILD(URX_STRING_LEN, stringLen);
|
| + patternLoc = fRXPat->fCompiledPat->size() - 1;
|
| + fRXPat->fCompiledPat->setElementAt(op, patternLoc);
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// emitONE_CHAR emit a ONE_CHAR op into the generated code.
|
| +// Choose cased or uncased version, depending on the
|
| +// match mode and whether the character itself is cased.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::emitONE_CHAR(UChar32 c) {
|
| + int32_t op;
|
| + if ((fModeFlags & UREGEX_CASE_INSENSITIVE) &&
|
| + u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
|
| + // We have a cased character, and are in case insensitive matching mode.
|
| + //c = u_foldCase(c, U_FOLD_CASE_DEFAULT); // !!!: handled in stripNOPs() now
|
| + op = URX_BUILD(URX_ONECHAR_I, c);
|
| + } else {
|
| + // Uncased char, or case sensitive match mode.
|
| + // Either way, just generate a literal compare of the char.
|
| + op = URX_BUILD(URX_ONECHAR, c);
|
| + }
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +}
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// fixLiterals When compiling something that can follow a literal
|
| +// string in a pattern, we need to "fix" any preceding
|
| +// string, which will cause any subsequent literals to
|
| +// begin a new string, rather than appending to the
|
| +// old one.
|
| +//
|
| +// Optionally, split the last char of the string off into
|
| +// a single "ONE_CHAR" operation, so that quantifiers can
|
| +// apply to that char alone. Example: abc*
|
| +// The * must apply to the 'c' only.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::fixLiterals(UBool split) {
|
| + int32_t stringStart = fStringOpStart; // start index of the current literal string
|
| + int32_t op; // An op from/for the compiled pattern.
|
| + int32_t opType; // An opcode type from the compiled pattern.
|
| + int32_t stringLastCharIdx;
|
| + UChar32 lastChar;
|
| + int32_t stringNextToLastCharIdx;
|
| + UChar32 nextToLastChar;
|
| + int32_t stringLen;
|
| +
|
| + fStringOpStart = -1;
|
| + if (!split) {
|
| + return;
|
| + }
|
| +
|
| + // Split: We need to ensure that the last item in the compiled pattern does
|
| + // not refer to a literal string of more than one char. If it does,
|
| + // separate the last char from the rest of the string.
|
| +
|
| + // If the last operation from the compiled pattern is not a string,
|
| + // nothing needs to be done
|
| + op = (int32_t)fRXPat->fCompiledPat->lastElementi();
|
| + opType = URX_TYPE(op);
|
| + if (opType != URX_STRING_LEN) {
|
| + return;
|
| + }
|
| + stringLen = URX_VAL(op);
|
| +
|
| + //
|
| + // Find the position of the last code point in the string (might be a surrogate pair)
|
| + //
|
| + stringLastCharIdx = fRXPat->fLiteralText.length();
|
| + stringLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
|
| + lastChar = fRXPat->fLiteralText.char32At(stringLastCharIdx);
|
| +
|
| + // The string should always be at least two code points long, meaning that there
|
| + // should be something before the last char position that we just found.
|
| + U_ASSERT(stringLastCharIdx > stringStart);
|
| + stringNextToLastCharIdx = fRXPat->fLiteralText.moveIndex32(stringLastCharIdx, -1);
|
| + U_ASSERT(stringNextToLastCharIdx >= stringStart);
|
| + nextToLastChar = fRXPat->fLiteralText.char32At(stringNextToLastCharIdx);
|
| +
|
| + if (stringNextToLastCharIdx > stringStart) {
|
| + // The length of string remaining after removing one char is two or more.
|
| + // Leave the string in the compiled pattern, shorten it by one char,
|
| + // and append a URX_ONECHAR op for the last char.
|
| + stringLen -= (fRXPat->fLiteralText.length() - stringLastCharIdx);
|
| + op = URX_BUILD(URX_STRING_LEN, stringLen);
|
| + fRXPat->fCompiledPat->setElementAt(op, fRXPat->fCompiledPat->size() -1);
|
| + emitONE_CHAR(lastChar);
|
| + } else {
|
| + // The original string consisted of exactly two characters. Replace
|
| + // the existing compiled URX_STRING/URX_STRING_LEN ops with a pair
|
| + // of URX_ONECHARs.
|
| + fRXPat->fCompiledPat->setSize(fRXPat->fCompiledPat->size() -2);
|
| + emitONE_CHAR(nextToLastChar);
|
| + emitONE_CHAR(lastChar);
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// insertOp() Insert a slot for a new opcode into the already
|
| +// compiled pattern code.
|
| +//
|
| +// Fill the slot with a NOP. Our caller will replace it
|
| +// with what they really wanted.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::insertOp(int32_t where) {
|
| + UVector64 *code = fRXPat->fCompiledPat;
|
| + U_ASSERT(where>0 && where < code->size());
|
| +
|
| + int32_t nop = URX_BUILD(URX_NOP, 0);
|
| + code->insertElementAt(nop, where, *fStatus);
|
| +
|
| + // Walk through the pattern, looking for any ops with targets that
|
| + // were moved down by the insert. Fix them.
|
| + int32_t loc;
|
| + for (loc=0; loc<code->size(); loc++) {
|
| + int32_t op = (int32_t)code->elementAti(loc);
|
| + int32_t opType = URX_TYPE(op);
|
| + int32_t opValue = URX_VAL(op);
|
| + if ((opType == URX_JMP ||
|
| + opType == URX_JMPX ||
|
| + opType == URX_STATE_SAVE ||
|
| + opType == URX_CTR_LOOP ||
|
| + opType == URX_CTR_LOOP_NG ||
|
| + opType == URX_JMP_SAV ||
|
| + opType == URX_RELOC_OPRND) && opValue > where) {
|
| + // Target location for this opcode is after the insertion point and
|
| + // needs to be incremented to adjust for the insertion.
|
| + opValue++;
|
| + op = URX_BUILD(opType, opValue);
|
| + code->setElementAt(op, loc);
|
| + }
|
| + }
|
| +
|
| + // Now fix up the parentheses stack. All positive values in it are locations in
|
| + // the compiled pattern. (Negative values are frame boundaries, and don't need fixing.)
|
| + for (loc=0; loc<fParenStack.size(); loc++) {
|
| + int32_t x = fParenStack.elementAti(loc);
|
| + U_ASSERT(x < code->size());
|
| + if (x>where) {
|
| + x++;
|
| + fParenStack.setElementAt(x, loc);
|
| + }
|
| + }
|
| +
|
| + if (fMatchCloseParen > where) {
|
| + fMatchCloseParen++;
|
| + }
|
| + if (fMatchOpenParen > where) {
|
| + fMatchOpenParen++;
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// blockTopLoc() Find or create a location in the compiled pattern
|
| +// at the start of the operation or block that has
|
| +// just been compiled. Needed when a quantifier (* or
|
| +// whatever) appears, and we need to add an operation
|
| +// at the start of the thing being quantified.
|
| +//
|
| +// (Parenthesized Blocks) have a slot with a NOP that
|
| +// is reserved for this purpose. .* or similar don't
|
| +// and a slot needs to be added.
|
| +//
|
| +// parameter reserveLoc : TRUE - ensure that there is space to add an opcode
|
| +// at the returned location.
|
| +// FALSE - just return the address,
|
| +// do not reserve a location there.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +int32_t RegexCompile::blockTopLoc(UBool reserveLoc) {
|
| + int32_t theLoc;
|
| + if (fRXPat->fCompiledPat->size() == fMatchCloseParen)
|
| + {
|
| + // The item just processed is a parenthesized block.
|
| + theLoc = fMatchOpenParen; // A slot is already reserved for us.
|
| + U_ASSERT(theLoc > 0);
|
| + U_ASSERT(URX_TYPE(((uint32_t)fRXPat->fCompiledPat->elementAti(theLoc))) == URX_NOP);
|
| + }
|
| + else {
|
| + // Item just compiled is a single thing, a ".", or a single char, or a set reference.
|
| + // No slot for STATE_SAVE was pre-reserved in the compiled code.
|
| + // We need to make space now.
|
| + fixLiterals(TRUE); // If last item was a string, separate the last char.
|
| + theLoc = fRXPat->fCompiledPat->size()-1;
|
| + if (reserveLoc) {
|
| + /*int32_t opAtTheLoc = fRXPat->fCompiledPat->elementAti(theLoc);*/
|
| + int32_t nop = URX_BUILD(URX_NOP, 0);
|
| + fRXPat->fCompiledPat->insertElementAt(nop, theLoc, *fStatus);
|
| + }
|
| + }
|
| + return theLoc;
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// handleCloseParen When compiling a close paren, we need to go back
|
| +// and fix up any JMP or SAVE operations within the
|
| +// parenthesized block that need to target the end
|
| +// of the block. The locations of these are kept on
|
| +// the paretheses stack.
|
| +//
|
| +// This function is called both when encountering a
|
| +// real ) and at the end of the pattern.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::handleCloseParen() {
|
| + int32_t patIdx;
|
| + int32_t patOp;
|
| + if (fParenStack.size() <= 0) {
|
| + error(U_REGEX_MISMATCHED_PAREN);
|
| + return;
|
| + }
|
| +
|
| + // Force any literal chars that may follow the close paren to start a new string,
|
| + // and not attach to any preceding it.
|
| + fixLiterals(FALSE);
|
| +
|
| + // Fixup any operations within the just-closed parenthesized group
|
| + // that need to reference the end of the (block).
|
| + // (The first one popped from the stack is an unused slot for
|
| + // alternation (OR) state save, but applying the fixup to it does no harm.)
|
| + for (;;) {
|
| + patIdx = fParenStack.popi();
|
| + if (patIdx < 0) {
|
| + // value < 0 flags the start of the frame on the paren stack.
|
| + break;
|
| + }
|
| + U_ASSERT(patIdx>0 && patIdx <= fRXPat->fCompiledPat->size());
|
| + patOp = (int32_t)fRXPat->fCompiledPat->elementAti(patIdx);
|
| + U_ASSERT(URX_VAL(patOp) == 0); // Branch target for JMP should not be set.
|
| + patOp |= fRXPat->fCompiledPat->size(); // Set it now.
|
| + fRXPat->fCompiledPat->setElementAt(patOp, patIdx);
|
| + fMatchOpenParen = patIdx;
|
| + }
|
| +
|
| + // At the close of any parenthesized block, restore the match mode flags to
|
| + // the value they had at the open paren. Saved value is
|
| + // at the top of the paren stack.
|
| + fModeFlags = fParenStack.popi();
|
| + U_ASSERT(fModeFlags < 0);
|
| +
|
| + // DO any additional fixups, depending on the specific kind of
|
| + // parentesized grouping this is
|
| +
|
| + switch (patIdx) {
|
| + case plain:
|
| + case flags:
|
| + // No additional fixups required.
|
| + // (Grouping-only parentheses)
|
| + break;
|
| + case capturing:
|
| + // Capturing Parentheses.
|
| + // Insert a End Capture op into the pattern.
|
| + // The frame offset of the variables for this cg is obtained from the
|
| + // start capture op and put it into the end-capture op.
|
| + {
|
| + int32_t captureOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
|
| + U_ASSERT(URX_TYPE(captureOp) == URX_START_CAPTURE);
|
| +
|
| + int32_t frameVarLocation = URX_VAL(captureOp);
|
| + int32_t endCaptureOp = URX_BUILD(URX_END_CAPTURE, frameVarLocation);
|
| + fRXPat->fCompiledPat->addElement(endCaptureOp, *fStatus);
|
| + }
|
| + break;
|
| + case atomic:
|
| + // Atomic Parenthesis.
|
| + // Insert a LD_SP operation to restore the state stack to the position
|
| + // it was when the atomic parens were entered.
|
| + {
|
| + int32_t stoOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen+1);
|
| + U_ASSERT(URX_TYPE(stoOp) == URX_STO_SP);
|
| + int32_t stoLoc = URX_VAL(stoOp);
|
| + int32_t ldOp = URX_BUILD(URX_LD_SP, stoLoc);
|
| + fRXPat->fCompiledPat->addElement(ldOp, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case lookAhead:
|
| + {
|
| + int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
|
| + U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
|
| + int32_t dataLoc = URX_VAL(startOp);
|
| + int32_t op = URX_BUILD(URX_LA_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + break;
|
| +
|
| + case negLookAhead:
|
| + {
|
| + // See comment at doOpenLookAheadNeg
|
| + int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-1);
|
| + U_ASSERT(URX_TYPE(startOp) == URX_LA_START);
|
| + int32_t dataLoc = URX_VAL(startOp);
|
| + int32_t op = URX_BUILD(URX_LA_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + op = URX_BUILD(URX_BACKTRACK, 0);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + op = URX_BUILD(URX_LA_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Patch the URX_SAVE near the top of the block.
|
| + // The destination of the SAVE is the final LA_END that was just added.
|
| + int32_t saveOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen);
|
| + U_ASSERT(URX_TYPE(saveOp) == URX_STATE_SAVE);
|
| + int32_t dest = fRXPat->fCompiledPat->size()-1;
|
| + saveOp = URX_BUILD(URX_STATE_SAVE, dest);
|
| + fRXPat->fCompiledPat->setElementAt(saveOp, fMatchOpenParen);
|
| + }
|
| + break;
|
| +
|
| + case lookBehind:
|
| + {
|
| + // See comment at doOpenLookBehind.
|
| +
|
| + // Append the URX_LB_END and URX_LA_END to the compiled pattern.
|
| + int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-4);
|
| + U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
|
| + int32_t dataLoc = URX_VAL(startOp);
|
| + int32_t op = URX_BUILD(URX_LB_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + op = URX_BUILD(URX_LA_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Determine the min and max bounds for the length of the
|
| + // string that the pattern can match.
|
| + // An unbounded upper limit is an error.
|
| + int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
|
| + int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
|
| + int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
|
| + if (maxML == INT32_MAX) {
|
| + error(U_REGEX_LOOK_BEHIND_LIMIT);
|
| + break;
|
| + }
|
| + U_ASSERT(minML <= maxML);
|
| +
|
| + // Insert the min and max match len bounds into the URX_LB_CONT op that
|
| + // appears at the top of the look-behind block, at location fMatchOpenParen+1
|
| + fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-2);
|
| + fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-1);
|
| +
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| + case lookBehindN:
|
| + {
|
| + // See comment at doOpenLookBehindNeg.
|
| +
|
| + // Append the URX_LBN_END to the compiled pattern.
|
| + int32_t startOp = (int32_t)fRXPat->fCompiledPat->elementAti(fMatchOpenParen-5);
|
| + U_ASSERT(URX_TYPE(startOp) == URX_LB_START);
|
| + int32_t dataLoc = URX_VAL(startOp);
|
| + int32_t op = URX_BUILD(URX_LBN_END, dataLoc);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + // Determine the min and max bounds for the length of the
|
| + // string that the pattern can match.
|
| + // An unbounded upper limit is an error.
|
| + int32_t patEnd = fRXPat->fCompiledPat->size() - 1;
|
| + int32_t minML = minMatchLength(fMatchOpenParen, patEnd);
|
| + int32_t maxML = maxMatchLength(fMatchOpenParen, patEnd);
|
| + if (maxML == INT32_MAX) {
|
| + error(U_REGEX_LOOK_BEHIND_LIMIT);
|
| + break;
|
| + }
|
| + U_ASSERT(minML <= maxML);
|
| +
|
| + // Insert the min and max match len bounds into the URX_LB_CONT op that
|
| + // appears at the top of the look-behind block, at location fMatchOpenParen+1
|
| + fRXPat->fCompiledPat->setElementAt(minML, fMatchOpenParen-3);
|
| + fRXPat->fCompiledPat->setElementAt(maxML, fMatchOpenParen-2);
|
| +
|
| + // Insert the pattern location to continue at after a successful match
|
| + // as the last operand of the URX_LBN_CONT
|
| + op = URX_BUILD(URX_RELOC_OPRND, fRXPat->fCompiledPat->size());
|
| + fRXPat->fCompiledPat->setElementAt(op, fMatchOpenParen-1);
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + // remember the next location in the compiled pattern.
|
| + // The compilation of Quantifiers will look at this to see whether its looping
|
| + // over a parenthesized block or a single item
|
| + fMatchCloseParen = fRXPat->fCompiledPat->size();
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// compileSet Compile the pattern operations for a reference to a
|
| +// UnicodeSet.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::compileSet(UnicodeSet *theSet)
|
| +{
|
| + if (theSet == NULL) {
|
| + return;
|
| + }
|
| + // Remove any strings from the set.
|
| + // There shoudn't be any, but just in case.
|
| + // (Case Closure can add them; if we had a simple case closure avaialble that
|
| + // ignored strings, that would be better.)
|
| + theSet->removeAllStrings();
|
| + int32_t setSize = theSet->size();
|
| +
|
| + switch (setSize) {
|
| + case 0:
|
| + {
|
| + // Set of no elements. Always fails to match.
|
| + fRXPat->fCompiledPat->addElement(URX_BUILD(URX_BACKTRACK, 0), *fStatus);
|
| + delete theSet;
|
| + }
|
| + break;
|
| +
|
| + case 1:
|
| + {
|
| + // The set contains only a single code point. Put it into
|
| + // the compiled pattern as a single char operation rather
|
| + // than a set, and discard the set itself.
|
| + literalChar(theSet->charAt(0));
|
| + delete theSet;
|
| + }
|
| + break;
|
| +
|
| + default:
|
| + {
|
| + // The set contains two or more chars. (the normal case)
|
| + // Put it into the compiled pattern as a set.
|
| + int32_t setNumber = fRXPat->fSets->size();
|
| + fRXPat->fSets->addElement(theSet, *fStatus);
|
| + int32_t setOp = URX_BUILD(URX_SETREF, setNumber);
|
| + fRXPat->fCompiledPat->addElement(setOp, *fStatus);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// compileInterval Generate the code for a {min, max} style interval quantifier.
|
| +// Except for the specific opcodes used, the code is the same
|
| +// for all three types (greedy, non-greedy, possessive) of
|
| +// intervals. The opcodes are supplied as parameters.
|
| +//
|
| +// The code for interval loops has this form:
|
| +// 0 CTR_INIT counter loc (in stack frame)
|
| +// 1 5 patt address of CTR_LOOP at bottom of block
|
| +// 2 min count
|
| +// 3 max count (-1 for unbounded)
|
| +// 4 ... block to be iterated over
|
| +// 5 CTR_LOOP
|
| +//
|
| +// In
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::compileInterval(int32_t InitOp, int32_t LoopOp)
|
| +{
|
| + // The CTR_INIT op at the top of the block with the {n,m} quantifier takes
|
| + // four slots in the compiled code. Reserve them.
|
| + int32_t topOfBlock = blockTopLoc(TRUE);
|
| + insertOp(topOfBlock);
|
| + insertOp(topOfBlock);
|
| + insertOp(topOfBlock);
|
| +
|
| + // The operands for the CTR_INIT opcode include the index in the matcher data
|
| + // of the counter. Allocate it now.
|
| + int32_t counterLoc = fRXPat->fFrameSize;
|
| + fRXPat->fFrameSize++;
|
| +
|
| + int32_t op = URX_BUILD(InitOp, counterLoc);
|
| + fRXPat->fCompiledPat->setElementAt(op, topOfBlock);
|
| +
|
| + // The second operand of CTR_INIT is the location following the end of the loop.
|
| + // Must put in as a URX_RELOC_OPRND so that the value will be adjusted if the
|
| + // compilation of something later on causes the code to grow and the target
|
| + // position to move.
|
| + int32_t loopEnd = fRXPat->fCompiledPat->size();
|
| + op = URX_BUILD(URX_RELOC_OPRND, loopEnd);
|
| + fRXPat->fCompiledPat->setElementAt(op, topOfBlock+1);
|
| +
|
| + // Followed by the min and max counts.
|
| + fRXPat->fCompiledPat->setElementAt(fIntervalLow, topOfBlock+2);
|
| + fRXPat->fCompiledPat->setElementAt(fIntervalUpper, topOfBlock+3);
|
| +
|
| + // Apend the CTR_LOOP op. The operand is the location of the CTR_INIT op.
|
| + // Goes at end of the block being looped over, so just append to the code so far.
|
| + op = URX_BUILD(LoopOp, topOfBlock);
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| +
|
| + if ((fIntervalLow & 0xff000000) != 0 ||
|
| + (fIntervalUpper > 0 && (fIntervalUpper & 0xff000000) != 0)) {
|
| + error(U_REGEX_NUMBER_TOO_BIG);
|
| + }
|
| +
|
| + if (fIntervalLow > fIntervalUpper && fIntervalUpper != -1) {
|
| + error(U_REGEX_MAX_LT_MIN);
|
| + }
|
| +}
|
| +
|
| +
|
| +
|
| +UBool RegexCompile::compileInlineInterval() {
|
| + if (fIntervalUpper > 10 || fIntervalUpper < fIntervalLow) {
|
| + // Too big to inline. Fail, which will cause looping code to be generated.
|
| + // (Upper < Lower picks up unbounded upper and errors, both.)
|
| + return FALSE;
|
| + }
|
| +
|
| + int32_t topOfBlock = blockTopLoc(FALSE);
|
| + if (fIntervalUpper == 0) {
|
| + // Pathological case. Attempt no matches, as if the block doesn't exist.
|
| + fRXPat->fCompiledPat->setSize(topOfBlock);
|
| + return TRUE;
|
| + }
|
| +
|
| + if (topOfBlock != fRXPat->fCompiledPat->size()-1 && fIntervalUpper != 1) {
|
| + // The thing being repeated is not a single op, but some
|
| + // more complex block. Do it as a loop, not inlines.
|
| + // Note that things "repeated" a max of once are handled as inline, because
|
| + // the one copy of the code already generated is just fine.
|
| + return FALSE;
|
| + }
|
| +
|
| + // Pick up the opcode that is to be repeated
|
| + //
|
| + int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(topOfBlock);
|
| +
|
| + // Compute the pattern location where the inline sequence
|
| + // will end, and set up the state save op that will be needed.
|
| + //
|
| + int32_t endOfSequenceLoc = fRXPat->fCompiledPat->size()-1
|
| + + fIntervalUpper + (fIntervalUpper-fIntervalLow);
|
| + int32_t saveOp = URX_BUILD(URX_STATE_SAVE, endOfSequenceLoc);
|
| + if (fIntervalLow == 0) {
|
| + insertOp(topOfBlock);
|
| + fRXPat->fCompiledPat->setElementAt(saveOp, topOfBlock);
|
| + }
|
| +
|
| +
|
| +
|
| + // Loop, emitting the op for the thing being repeated each time.
|
| + // Loop starts at 1 because one instance of the op already exists in the pattern,
|
| + // it was put there when it was originally encountered.
|
| + int32_t i;
|
| + for (i=1; i<fIntervalUpper; i++ ) {
|
| + if (i == fIntervalLow) {
|
| + fRXPat->fCompiledPat->addElement(saveOp, *fStatus);
|
| + }
|
| + if (i > fIntervalLow) {
|
| + fRXPat->fCompiledPat->addElement(saveOp, *fStatus);
|
| + }
|
| + fRXPat->fCompiledPat->addElement(op, *fStatus);
|
| + }
|
| + return TRUE;
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// matchStartType Determine how a match can start.
|
| +// Used to optimize find() operations.
|
| +//
|
| +// Operation is very similar to minMatchLength(). Walk the compiled
|
| +// pattern, keeping an on-going minimum-match-length. For any
|
| +// op where the min match coming in is zero, add that ops possible
|
| +// starting matches to the possible starts for the overall pattern.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::matchStartType() {
|
| + if (U_FAILURE(*fStatus)) {
|
| + return;
|
| + }
|
| +
|
| +
|
| + int32_t loc; // Location in the pattern of the current op being processed.
|
| + int32_t op; // The op being processed
|
| + int32_t opType; // The opcode type of the op
|
| + int32_t currentLen = 0; // Minimum length of a match to this point (loc) in the pattern
|
| + int32_t numInitialStrings = 0; // Number of strings encountered that could match at start.
|
| +
|
| + UBool atStart = TRUE; // True if no part of the pattern yet encountered
|
| + // could have advanced the position in a match.
|
| + // (Maximum match length so far == 0)
|
| +
|
| + // forwardedLength is a vector holding minimum-match-length values that
|
| + // are propagated forward in the pattern by JMP or STATE_SAVE operations.
|
| + // It must be one longer than the pattern being checked because some ops
|
| + // will jmp to a end-of-block+1 location from within a block, and we must
|
| + // count those when checking the block.
|
| + int32_t end = fRXPat->fCompiledPat->size();
|
| + UVector32 forwardedLength(end+1, *fStatus);
|
| + forwardedLength.setSize(end+1);
|
| + for (loc=3; loc<end; loc++) {
|
| + forwardedLength.setElementAt(INT32_MAX, loc);
|
| + }
|
| +
|
| + for (loc = 3; loc<end; loc++) {
|
| + op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + opType = URX_TYPE(op);
|
| +
|
| + // The loop is advancing linearly through the pattern.
|
| + // If the op we are now at was the destination of a branch in the pattern,
|
| + // and that path has a shorter minimum length than the current accumulated value,
|
| + // replace the current accumulated value.
|
| + if (forwardedLength.elementAti(loc) < currentLen) {
|
| + currentLen = forwardedLength.elementAti(loc);
|
| + U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
|
| + }
|
| +
|
| + switch (opType) {
|
| + // Ops that don't change the total length matched
|
| + case URX_RESERVED_OP:
|
| + case URX_END:
|
| + case URX_FAIL:
|
| + case URX_STRING_LEN:
|
| + case URX_NOP:
|
| + case URX_START_CAPTURE:
|
| + case URX_END_CAPTURE:
|
| + case URX_BACKSLASH_B:
|
| + case URX_BACKSLASH_BU:
|
| + case URX_BACKSLASH_G:
|
| + case URX_BACKSLASH_Z:
|
| + case URX_DOLLAR:
|
| + case URX_DOLLAR_M:
|
| + case URX_DOLLAR_D:
|
| + case URX_DOLLAR_MD:
|
| + case URX_RELOC_OPRND:
|
| + case URX_STO_INP_LOC:
|
| + case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
|
| + case URX_BACKREF_I:
|
| +
|
| + case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
|
| + case URX_LD_SP:
|
| + break;
|
| +
|
| + case URX_CARET:
|
| + if (atStart) {
|
| + fRXPat->fStartType = START_START;
|
| + }
|
| + break;
|
| +
|
| + case URX_CARET_M:
|
| + case URX_CARET_M_UNIX:
|
| + if (atStart) {
|
| + fRXPat->fStartType = START_LINE;
|
| + }
|
| + break;
|
| +
|
| + case URX_ONECHAR:
|
| + if (currentLen == 0) {
|
| + // This character could appear at the start of a match.
|
| + // Add it to the set of possible starting characters.
|
| + fRXPat->fInitialChars->add(URX_VAL(op));
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_SETREF:
|
| + if (currentLen == 0) {
|
| + int32_t sn = URX_VAL(op);
|
| + U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
|
| + const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
|
| + fRXPat->fInitialChars->addAll(*s);
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| + case URX_LOOP_SR_I:
|
| + // [Set]*, like a SETREF, above, in what it can match,
|
| + // but may not match at all, so currentLen is not incremented.
|
| + if (currentLen == 0) {
|
| + int32_t sn = URX_VAL(op);
|
| + U_ASSERT(sn > 0 && sn < fRXPat->fSets->size());
|
| + const UnicodeSet *s = (UnicodeSet *)fRXPat->fSets->elementAt(sn);
|
| + fRXPat->fInitialChars->addAll(*s);
|
| + numInitialStrings += 2;
|
| + }
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| + case URX_LOOP_DOT_I:
|
| + if (currentLen == 0) {
|
| + // .* at the start of a pattern.
|
| + // Any character can begin the match.
|
| + fRXPat->fInitialChars->clear();
|
| + fRXPat->fInitialChars->complement();
|
| + numInitialStrings += 2;
|
| + }
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_STATIC_SETREF:
|
| + if (currentLen == 0) {
|
| + int32_t sn = URX_VAL(op);
|
| + U_ASSERT(sn>0 && sn<URX_LAST_SET);
|
| + const UnicodeSet *s = fRXPat->fStaticSets[sn];
|
| + fRXPat->fInitialChars->addAll(*s);
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| +
|
| + case URX_STAT_SETREF_N:
|
| + if (currentLen == 0) {
|
| + int32_t sn = URX_VAL(op);
|
| + const UnicodeSet *s = fRXPat->fStaticSets[sn];
|
| + UnicodeSet sc(*s);
|
| + sc.complement();
|
| + fRXPat->fInitialChars->addAll(sc);
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| +
|
| + case URX_BACKSLASH_D:
|
| + // Digit Char
|
| + if (currentLen == 0) {
|
| + UnicodeSet s;
|
| + s.applyIntPropertyValue(UCHAR_GENERAL_CATEGORY_MASK, U_GC_ND_MASK, *fStatus);
|
| + if (URX_VAL(op) != 0) {
|
| + s.complement();
|
| + }
|
| + fRXPat->fInitialChars->addAll(s);
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_ONECHAR_I:
|
| + // Case Insensitive Single Character.
|
| + if (currentLen == 0) {
|
| + UChar32 c = URX_VAL(op);
|
| + if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
|
| + // character may have distinct cased forms. Add all of them
|
| + // to the set of possible starting match chars.
|
| + UnicodeSet s(c, c);
|
| + s.closeOver(USET_CASE_INSENSITIVE);
|
| + fRXPat->fInitialChars->addAll(s);
|
| + } else {
|
| + // Char has no case variants. Just add it as-is to the
|
| + // set of possible starting chars.
|
| + fRXPat->fInitialChars->add(c);
|
| + }
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
|
| + case URX_DOTANY_ALL: // . matches one or two.
|
| + case URX_DOTANY:
|
| + case URX_DOTANY_UNIX:
|
| + if (currentLen == 0) {
|
| + // These constructs are all bad news when they appear at the start
|
| + // of a match. Any character can begin the match.
|
| + fRXPat->fInitialChars->clear();
|
| + fRXPat->fInitialChars->complement();
|
| + numInitialStrings += 2;
|
| + }
|
| + currentLen++;
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_JMPX:
|
| + loc++; // Except for extra operand on URX_JMPX, same as URX_JMP.
|
| + case URX_JMP:
|
| + {
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest < loc) {
|
| + // Loop of some kind. Can safely ignore, the worst that will happen
|
| + // is that we understate the true minimum length
|
| + currentLen = forwardedLength.elementAti(loc+1);
|
| +
|
| + } else {
|
| + // Forward jump. Propagate the current min length to the target loc of the jump.
|
| + U_ASSERT(jmpDest <= end+1);
|
| + if (forwardedLength.elementAti(jmpDest) > currentLen) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + }
|
| + }
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| + case URX_JMP_SAV:
|
| + case URX_JMP_SAV_X:
|
| + // Combo of state save to the next loc, + jmp backwards.
|
| + // Net effect on min. length computation is nothing.
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| + case URX_BACKTRACK:
|
| + // Fails are kind of like a branch, except that the min length was
|
| + // propagated already, by the state save.
|
| + currentLen = forwardedLength.elementAti(loc+1);
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_STATE_SAVE:
|
| + {
|
| + // State Save, for forward jumps, propagate the current minimum.
|
| + // of the state save.
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest > loc) {
|
| + if (currentLen < forwardedLength.elementAti(jmpDest)) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + }
|
| + }
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| +
|
| +
|
| + case URX_STRING:
|
| + {
|
| + loc++;
|
| + int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + int32_t stringLen = URX_VAL(stringLenOp);
|
| + U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
|
| + U_ASSERT(stringLenOp >= 2);
|
| + if (currentLen == 0) {
|
| + // Add the starting character of this string to the set of possible starting
|
| + // characters for this pattern.
|
| + int32_t stringStartIdx = URX_VAL(op);
|
| + UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
|
| + fRXPat->fInitialChars->add(c);
|
| +
|
| + // Remember this string. After the entire pattern has been checked,
|
| + // if nothing else is identified that can start a match, we'll use it.
|
| + numInitialStrings++;
|
| + fRXPat->fInitialStringIdx = stringStartIdx;
|
| + fRXPat->fInitialStringLen = stringLen;
|
| + }
|
| +
|
| + currentLen += stringLen;
|
| + atStart = FALSE;
|
| + }
|
| + break;
|
| +
|
| + case URX_STRING_I:
|
| + {
|
| + // Case-insensitive string. Unlike exact-match strings, we won't
|
| + // attempt a string search for possible match positions. But we
|
| + // do update the set of possible starting characters.
|
| + loc++;
|
| + int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + int32_t stringLen = URX_VAL(stringLenOp);
|
| + U_ASSERT(URX_TYPE(stringLenOp) == URX_STRING_LEN);
|
| + U_ASSERT(stringLenOp >= 2);
|
| + if (currentLen == 0) {
|
| + // Add the starting character of this string to the set of possible starting
|
| + // characters for this pattern.
|
| + int32_t stringStartIdx = URX_VAL(op);
|
| + UChar32 c = fRXPat->fLiteralText.char32At(stringStartIdx);
|
| + UnicodeSet s(c, c);
|
| + s.closeOver(USET_CASE_INSENSITIVE);
|
| + fRXPat->fInitialChars->addAll(s);
|
| + numInitialStrings += 2; // Matching on an initial string not possible.
|
| + }
|
| + currentLen += stringLen;
|
| + atStart = FALSE;
|
| + }
|
| + break;
|
| +
|
| + case URX_CTR_INIT:
|
| + case URX_CTR_INIT_NG:
|
| + {
|
| + // Loop Init Ops. These don't change the min length, but they are 4 word ops
|
| + // so location must be updated accordingly.
|
| + // Loop Init Ops.
|
| + // If the min loop count == 0
|
| + // move loc forwards to the end of the loop, skipping over the body.
|
| + // If the min count is > 0,
|
| + // continue normal processing of the body of the loop.
|
| + int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
|
| + loopEndLoc = URX_VAL(loopEndLoc);
|
| + int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
|
| + if (minLoopCount == 0) {
|
| + // Min Loop Count of 0, treat like a forward branch and
|
| + // move the current minimum length up to the target
|
| + // (end of loop) location.
|
| + U_ASSERT(loopEndLoc <= end+1);
|
| + if (forwardedLength.elementAti(loopEndLoc) > currentLen) {
|
| + forwardedLength.setElementAt(currentLen, loopEndLoc);
|
| + }
|
| + }
|
| + loc+=3; // Skips over operands of CTR_INIT
|
| + }
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_CTR_LOOP:
|
| + case URX_CTR_LOOP_NG:
|
| + // Loop ops.
|
| + // The jump is conditional, backwards only.
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| + case URX_LOOP_C:
|
| + // More loop ops. These state-save to themselves.
|
| + // don't change the minimum match
|
| + atStart = FALSE;
|
| + break;
|
| +
|
| +
|
| + case URX_LA_START:
|
| + case URX_LB_START:
|
| + {
|
| + // Look-around. Scan forward until the matching look-ahead end,
|
| + // without processing the look-around block. This is overly pessimistic.
|
| +
|
| + // Keep track of the nesting depth of look-around blocks. Boilerplate code for
|
| + // lookahead contains two LA_END instructions, so count goes up by two
|
| + // for each LA_START.
|
| + int32_t depth = (opType == URX_LA_START? 2: 1);
|
| + for (;;) {
|
| + loc++;
|
| + op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + if (URX_TYPE(op) == URX_LA_START) {
|
| + depth+=2;
|
| + }
|
| + if (URX_TYPE(op) == URX_LB_START) {
|
| + depth++;
|
| + }
|
| + if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
|
| + depth--;
|
| + if (depth == 0) {
|
| + break;
|
| + }
|
| + }
|
| + if (URX_TYPE(op) == URX_STATE_SAVE) {
|
| + // Need this because neg lookahead blocks will FAIL to outside
|
| + // of the block.
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest > loc) {
|
| + if (currentLen < forwardedLength.elementAti(jmpDest)) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + }
|
| + }
|
| + U_ASSERT(loc <= end);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_LA_END:
|
| + case URX_LB_CONT:
|
| + case URX_LB_END:
|
| + case URX_LBN_CONT:
|
| + case URX_LBN_END:
|
| + U_ASSERT(FALSE); // Shouldn't get here. These ops should be
|
| + // consumed by the scan in URX_LA_START and LB_START
|
| +
|
| + break;
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + }
|
| +
|
| +
|
| + // We have finished walking through the ops. Check whether some forward jump
|
| + // propagated a shorter length to location end+1.
|
| + if (forwardedLength.elementAti(end+1) < currentLen) {
|
| + currentLen = forwardedLength.elementAti(end+1);
|
| + }
|
| +
|
| +
|
| + fRXPat->fInitialChars8->init(fRXPat->fInitialChars);
|
| +
|
| +
|
| + // Sort out what we should check for when looking for candidate match start positions.
|
| + // In order of preference,
|
| + // 1. Start of input text buffer.
|
| + // 2. A literal string.
|
| + // 3. Start of line in multi-line mode.
|
| + // 4. A single literal character.
|
| + // 5. A character from a set of characters.
|
| + //
|
| + if (fRXPat->fStartType == START_START) {
|
| + // Match only at the start of an input text string.
|
| + // start type is already set. We're done.
|
| + } else if (numInitialStrings == 1 && fRXPat->fMinMatchLen > 0) {
|
| + // Match beginning only with a literal string.
|
| + UChar32 c = fRXPat->fLiteralText.char32At(fRXPat->fInitialStringIdx);
|
| + U_ASSERT(fRXPat->fInitialChars->contains(c));
|
| + fRXPat->fStartType = START_STRING;
|
| + fRXPat->fInitialChar = c;
|
| + } else if (fRXPat->fStartType == START_LINE) {
|
| + // Match at start of line in Multi-Line mode.
|
| + // Nothing to do here; everything is already set.
|
| + } else if (fRXPat->fMinMatchLen == 0) {
|
| + // Zero length match possible. We could start anywhere.
|
| + fRXPat->fStartType = START_NO_INFO;
|
| + } else if (fRXPat->fInitialChars->size() == 1) {
|
| + // All matches begin with the same char.
|
| + fRXPat->fStartType = START_CHAR;
|
| + fRXPat->fInitialChar = fRXPat->fInitialChars->charAt(0);
|
| + U_ASSERT(fRXPat->fInitialChar != (UChar32)-1);
|
| + } else if (fRXPat->fInitialChars->contains((UChar32)0, (UChar32)0x10ffff) == FALSE &&
|
| + fRXPat->fMinMatchLen > 0) {
|
| + // Matches start with a set of character smaller than the set of all chars.
|
| + fRXPat->fStartType = START_SET;
|
| + } else {
|
| + // Matches can start with anything
|
| + fRXPat->fStartType = START_NO_INFO;
|
| + }
|
| +
|
| + return;
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// minMatchLength Calculate the length of the shortest string that could
|
| +// match the specified pattern.
|
| +// Length is in 16 bit code units, not code points.
|
| +//
|
| +// The calculated length may not be exact. The returned
|
| +// value may be shorter than the actual minimum; it must
|
| +// never be longer.
|
| +//
|
| +// start and end are the range of p-code operations to be
|
| +// examined. The endpoints are included in the range.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +int32_t RegexCompile::minMatchLength(int32_t start, int32_t end) {
|
| + if (U_FAILURE(*fStatus)) {
|
| + return 0;
|
| + }
|
| +
|
| + U_ASSERT(start <= end);
|
| + U_ASSERT(end < fRXPat->fCompiledPat->size());
|
| +
|
| +
|
| + int32_t loc;
|
| + int32_t op;
|
| + int32_t opType;
|
| + int32_t currentLen = 0;
|
| +
|
| +
|
| + // forwardedLength is a vector holding minimum-match-length values that
|
| + // are propagated forward in the pattern by JMP or STATE_SAVE operations.
|
| + // It must be one longer than the pattern being checked because some ops
|
| + // will jmp to a end-of-block+1 location from within a block, and we must
|
| + // count those when checking the block.
|
| + UVector32 forwardedLength(end+2, *fStatus);
|
| + forwardedLength.setSize(end+2);
|
| + for (loc=start; loc<=end+1; loc++) {
|
| + forwardedLength.setElementAt(INT32_MAX, loc);
|
| + }
|
| +
|
| + for (loc = start; loc<=end; loc++) {
|
| + op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + opType = URX_TYPE(op);
|
| +
|
| + // The loop is advancing linearly through the pattern.
|
| + // If the op we are now at was the destination of a branch in the pattern,
|
| + // and that path has a shorter minimum length than the current accumulated value,
|
| + // replace the current accumulated value.
|
| + // U_ASSERT(currentLen>=0 && currentLen < INT32_MAX); // MinLength == INT32_MAX for some
|
| + // no-match-possible cases.
|
| + if (forwardedLength.elementAti(loc) < currentLen) {
|
| + currentLen = forwardedLength.elementAti(loc);
|
| + U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
|
| + }
|
| +
|
| + switch (opType) {
|
| + // Ops that don't change the total length matched
|
| + case URX_RESERVED_OP:
|
| + case URX_END:
|
| + case URX_STRING_LEN:
|
| + case URX_NOP:
|
| + case URX_START_CAPTURE:
|
| + case URX_END_CAPTURE:
|
| + case URX_BACKSLASH_B:
|
| + case URX_BACKSLASH_BU:
|
| + case URX_BACKSLASH_G:
|
| + case URX_BACKSLASH_Z:
|
| + case URX_CARET:
|
| + case URX_DOLLAR:
|
| + case URX_DOLLAR_M:
|
| + case URX_DOLLAR_D:
|
| + case URX_DOLLAR_MD:
|
| + case URX_RELOC_OPRND:
|
| + case URX_STO_INP_LOC:
|
| + case URX_CARET_M:
|
| + case URX_CARET_M_UNIX:
|
| + case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
|
| + case URX_BACKREF_I:
|
| +
|
| + case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
|
| + case URX_LD_SP:
|
| +
|
| + case URX_JMP_SAV:
|
| + case URX_JMP_SAV_X:
|
| + break;
|
| +
|
| +
|
| + // Ops that match a minimum of one character (one or two 16 bit code units.)
|
| + //
|
| + case URX_ONECHAR:
|
| + case URX_STATIC_SETREF:
|
| + case URX_STAT_SETREF_N:
|
| + case URX_SETREF:
|
| + case URX_BACKSLASH_D:
|
| + case URX_ONECHAR_I:
|
| + case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
|
| + case URX_DOTANY_ALL: // . matches one or two.
|
| + case URX_DOTANY:
|
| + case URX_DOTANY_UNIX:
|
| + currentLen++;
|
| + break;
|
| +
|
| +
|
| + case URX_JMPX:
|
| + loc++; // URX_JMPX has an extra operand, ignored here,
|
| + // otherwise processed identically to URX_JMP.
|
| + case URX_JMP:
|
| + {
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest < loc) {
|
| + // Loop of some kind. Can safely ignore, the worst that will happen
|
| + // is that we understate the true minimum length
|
| + currentLen = forwardedLength.elementAti(loc+1);
|
| + } else {
|
| + // Forward jump. Propagate the current min length to the target loc of the jump.
|
| + U_ASSERT(jmpDest <= end+1);
|
| + if (forwardedLength.elementAti(jmpDest) > currentLen) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_BACKTRACK:
|
| + {
|
| + // Back-tracks are kind of like a branch, except that the min length was
|
| + // propagated already, by the state save.
|
| + currentLen = forwardedLength.elementAti(loc+1);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_STATE_SAVE:
|
| + {
|
| + // State Save, for forward jumps, propagate the current minimum.
|
| + // of the state save.
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest > loc) {
|
| + if (currentLen < forwardedLength.elementAti(jmpDest)) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_STRING:
|
| + case URX_STRING_I:
|
| + {
|
| + loc++;
|
| + int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + currentLen += URX_VAL(stringLenOp);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CTR_INIT:
|
| + case URX_CTR_INIT_NG:
|
| + {
|
| + // Loop Init Ops.
|
| + // If the min loop count == 0
|
| + // move loc forwards to the end of the loop, skipping over the body.
|
| + // If the min count is > 0,
|
| + // continue normal processing of the body of the loop.
|
| + int32_t loopEndLoc = (int32_t)fRXPat->fCompiledPat->elementAti(loc+1);
|
| + loopEndLoc = URX_VAL(loopEndLoc);
|
| + int32_t minLoopCount = (int32_t)fRXPat->fCompiledPat->elementAti(loc+2);
|
| + if (minLoopCount == 0) {
|
| + loc = loopEndLoc;
|
| + } else {
|
| + loc+=3; // Skips over operands of CTR_INIT
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CTR_LOOP:
|
| + case URX_CTR_LOOP_NG:
|
| + // Loop ops.
|
| + // The jump is conditional, backwards only.
|
| + break;
|
| +
|
| + case URX_LOOP_SR_I:
|
| + case URX_LOOP_DOT_I:
|
| + case URX_LOOP_C:
|
| + // More loop ops. These state-save to themselves.
|
| + // don't change the minimum match - could match nothing at all.
|
| + break;
|
| +
|
| +
|
| + case URX_LA_START:
|
| + case URX_LB_START:
|
| + {
|
| + // Look-around. Scan forward until the matching look-ahead end,
|
| + // without processing the look-around block. This is overly pessimistic for look-ahead,
|
| + // it assumes that the look-ahead match might be zero-length.
|
| + // TODO: Positive lookahead could recursively do the block, then continue
|
| + // with the longer of the block or the value coming in. Ticket 6060
|
| + int32_t depth = (opType == URX_LA_START? 2: 1);;
|
| + for (;;) {
|
| + loc++;
|
| + op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + if (URX_TYPE(op) == URX_LA_START) {
|
| + // The boilerplate for look-ahead includes two LA_END insturctions,
|
| + // Depth will be decremented by each one when it is seen.
|
| + depth += 2;
|
| + }
|
| + if (URX_TYPE(op) == URX_LB_START) {
|
| + depth++;
|
| + }
|
| + if (URX_TYPE(op) == URX_LA_END) {
|
| + depth--;
|
| + if (depth == 0) {
|
| + break;
|
| + }
|
| + }
|
| + if (URX_TYPE(op)==URX_LBN_END) {
|
| + depth--;
|
| + if (depth == 0) {
|
| + break;
|
| + }
|
| + }
|
| + if (URX_TYPE(op) == URX_STATE_SAVE) {
|
| + // Need this because neg lookahead blocks will FAIL to outside
|
| + // of the block.
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest > loc) {
|
| + if (currentLen < forwardedLength.elementAti(jmpDest)) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + }
|
| + }
|
| + U_ASSERT(loc <= end);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_LA_END:
|
| + case URX_LB_CONT:
|
| + case URX_LB_END:
|
| + case URX_LBN_CONT:
|
| + case URX_LBN_END:
|
| + // Only come here if the matching URX_LA_START or URX_LB_START was not in the
|
| + // range being sized, which happens when measuring size of look-behind blocks.
|
| + break;
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| + }
|
| +
|
| + // We have finished walking through the ops. Check whether some forward jump
|
| + // propagated a shorter length to location end+1.
|
| + if (forwardedLength.elementAti(end+1) < currentLen) {
|
| + currentLen = forwardedLength.elementAti(end+1);
|
| + U_ASSERT(currentLen>=0 && currentLen < INT32_MAX);
|
| + }
|
| +
|
| + return currentLen;
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// maxMatchLength Calculate the length of the longest string that could
|
| +// match the specified pattern.
|
| +// Length is in 16 bit code units, not code points.
|
| +//
|
| +// The calculated length may not be exact. The returned
|
| +// value may be longer than the actual maximum; it must
|
| +// never be shorter.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +int32_t RegexCompile::maxMatchLength(int32_t start, int32_t end) {
|
| + if (U_FAILURE(*fStatus)) {
|
| + return 0;
|
| + }
|
| + U_ASSERT(start <= end);
|
| + U_ASSERT(end < fRXPat->fCompiledPat->size());
|
| +
|
| +
|
| + int32_t loc;
|
| + int32_t op;
|
| + int32_t opType;
|
| + int32_t currentLen = 0;
|
| + UVector32 forwardedLength(end+1, *fStatus);
|
| + forwardedLength.setSize(end+1);
|
| +
|
| + for (loc=start; loc<=end; loc++) {
|
| + forwardedLength.setElementAt(0, loc);
|
| + }
|
| +
|
| + for (loc = start; loc<=end; loc++) {
|
| + op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + opType = URX_TYPE(op);
|
| +
|
| + // The loop is advancing linearly through the pattern.
|
| + // If the op we are now at was the destination of a branch in the pattern,
|
| + // and that path has a longer maximum length than the current accumulated value,
|
| + // replace the current accumulated value.
|
| + if (forwardedLength.elementAti(loc) > currentLen) {
|
| + currentLen = forwardedLength.elementAti(loc);
|
| + }
|
| +
|
| + switch (opType) {
|
| + // Ops that don't change the total length matched
|
| + case URX_RESERVED_OP:
|
| + case URX_END:
|
| + case URX_STRING_LEN:
|
| + case URX_NOP:
|
| + case URX_START_CAPTURE:
|
| + case URX_END_CAPTURE:
|
| + case URX_BACKSLASH_B:
|
| + case URX_BACKSLASH_BU:
|
| + case URX_BACKSLASH_G:
|
| + case URX_BACKSLASH_Z:
|
| + case URX_CARET:
|
| + case URX_DOLLAR:
|
| + case URX_DOLLAR_M:
|
| + case URX_DOLLAR_D:
|
| + case URX_DOLLAR_MD:
|
| + case URX_RELOC_OPRND:
|
| + case URX_STO_INP_LOC:
|
| + case URX_CARET_M:
|
| + case URX_CARET_M_UNIX:
|
| +
|
| + case URX_STO_SP: // Setup for atomic or possessive blocks. Doesn't change what can match.
|
| + case URX_LD_SP:
|
| +
|
| + case URX_LB_END:
|
| + case URX_LB_CONT:
|
| + case URX_LBN_CONT:
|
| + case URX_LBN_END:
|
| + break;
|
| +
|
| +
|
| + // Ops that increase that cause an unbounded increase in the length
|
| + // of a matched string, or that increase it a hard to characterize way.
|
| + // Call the max length unbounded, and stop further checking.
|
| + case URX_BACKREF: // BackRef. Must assume that it might be a zero length match
|
| + case URX_BACKREF_I:
|
| + case URX_BACKSLASH_X: // Grahpeme Cluster. Minimum is 1, max unbounded.
|
| + currentLen = INT32_MAX;
|
| + break;
|
| +
|
| +
|
| + // Ops that match a max of one character (possibly two 16 bit code units.)
|
| + //
|
| + case URX_STATIC_SETREF:
|
| + case URX_STAT_SETREF_N:
|
| + case URX_SETREF:
|
| + case URX_BACKSLASH_D:
|
| + case URX_ONECHAR_I:
|
| + case URX_DOTANY_ALL:
|
| + case URX_DOTANY:
|
| + case URX_DOTANY_UNIX:
|
| + currentLen+=2;
|
| + break;
|
| +
|
| + // Single literal character. Increase current max length by one or two,
|
| + // depending on whether the char is in the supplementary range.
|
| + case URX_ONECHAR:
|
| + currentLen++;
|
| + if (URX_VAL(op) > 0x10000) {
|
| + currentLen++;
|
| + }
|
| + break;
|
| +
|
| + // Jumps.
|
| + //
|
| + case URX_JMP:
|
| + case URX_JMPX:
|
| + case URX_JMP_SAV:
|
| + case URX_JMP_SAV_X:
|
| + {
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest < loc) {
|
| + // Loop of some kind. Max match length is unbounded.
|
| + currentLen = INT32_MAX;
|
| + } else {
|
| + // Forward jump. Propagate the current min length to the target loc of the jump.
|
| + if (forwardedLength.elementAti(jmpDest) < currentLen) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + currentLen = 0;
|
| + }
|
| + }
|
| + break;
|
| +
|
| + case URX_BACKTRACK:
|
| + // back-tracks are kind of like a branch, except that the max length was
|
| + // propagated already, by the state save.
|
| + currentLen = forwardedLength.elementAti(loc+1);
|
| + break;
|
| +
|
| +
|
| + case URX_STATE_SAVE:
|
| + {
|
| + // State Save, for forward jumps, propagate the current minimum.
|
| + // of the state save.
|
| + // For backwards jumps, they create a loop, maximum
|
| + // match length is unbounded.
|
| + int32_t jmpDest = URX_VAL(op);
|
| + if (jmpDest > loc) {
|
| + if (currentLen > forwardedLength.elementAti(jmpDest)) {
|
| + forwardedLength.setElementAt(currentLen, jmpDest);
|
| + }
|
| + } else {
|
| + currentLen = INT32_MAX;
|
| + }
|
| + }
|
| + break;
|
| +
|
| +
|
| +
|
| +
|
| + case URX_STRING:
|
| + case URX_STRING_I:
|
| + {
|
| + loc++;
|
| + int32_t stringLenOp = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + currentLen += URX_VAL(stringLenOp);
|
| + }
|
| + break;
|
| +
|
| +
|
| + case URX_CTR_INIT:
|
| + case URX_CTR_INIT_NG:
|
| + case URX_CTR_LOOP:
|
| + case URX_CTR_LOOP_NG:
|
| + case URX_LOOP_SR_I:
|
| + case URX_LOOP_DOT_I:
|
| + case URX_LOOP_C:
|
| + // For anything to do with loops, make the match length unbounded.
|
| + // Note: INIT instructions are multi-word. Can ignore because
|
| + // INT32_MAX length will stop the per-instruction loop.
|
| + currentLen = INT32_MAX;
|
| + break;
|
| +
|
| +
|
| +
|
| + case URX_LA_START:
|
| + case URX_LA_END:
|
| + // Look-ahead. Just ignore, treat the look-ahead block as if
|
| + // it were normal pattern. Gives a too-long match length,
|
| + // but good enough for now.
|
| + break;
|
| +
|
| + // End of look-ahead ops should always be consumed by the processing at
|
| + // the URX_LA_START op.
|
| + // U_ASSERT(FALSE);
|
| + // break;
|
| +
|
| + case URX_LB_START:
|
| + {
|
| + // Look-behind. Scan forward until the matching look-around end,
|
| + // without processing the look-behind block.
|
| + int32_t depth = 0;
|
| + for (;;) {
|
| + loc++;
|
| + op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + if (URX_TYPE(op) == URX_LA_START || URX_TYPE(op) == URX_LB_START) {
|
| + depth++;
|
| + }
|
| + if (URX_TYPE(op) == URX_LA_END || URX_TYPE(op)==URX_LBN_END) {
|
| + if (depth == 0) {
|
| + break;
|
| + }
|
| + depth--;
|
| + }
|
| + U_ASSERT(loc < end);
|
| + }
|
| + }
|
| + break;
|
| +
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + }
|
| +
|
| +
|
| + if (currentLen == INT32_MAX) {
|
| + // The maximum length is unbounded.
|
| + // Stop further processing of the pattern.
|
| + break;
|
| + }
|
| +
|
| + }
|
| + return currentLen;
|
| +
|
| +}
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// stripNOPs Remove any NOP operations from the compiled pattern code.
|
| +// Extra NOPs are inserted for some constructs during the initial
|
| +// code generation to provide locations that may be patched later.
|
| +// Many end up unneeded, and are removed by this function.
|
| +//
|
| +// In order to minimize the number of passes through the pattern,
|
| +// back-reference fixup is also performed here (adjusting
|
| +// back-reference operands to point to the correct frame offsets).
|
| +//
|
| +// In addition, case-insensitive character and string literals are
|
| +// now case-folded here, rather than when first parsed or at match
|
| +// time.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::stripNOPs() {
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + return;
|
| + }
|
| +
|
| + int32_t end = fRXPat->fCompiledPat->size();
|
| + UVector32 deltas(end, *fStatus);
|
| +
|
| + // Make a first pass over the code, computing the amount that things
|
| + // will be offset at each location in the original code.
|
| + int32_t loc;
|
| + int32_t d = 0;
|
| + for (loc=0; loc<end; loc++) {
|
| + deltas.addElement(d, *fStatus);
|
| + int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(loc);
|
| + if (URX_TYPE(op) == URX_NOP) {
|
| + d++;
|
| + }
|
| + }
|
| +
|
| + UnicodeString caseStringBuffer;
|
| + int32_t stringDelta = 0;
|
| +
|
| + // Make a second pass over the code, removing the NOPs by moving following
|
| + // code up, and patching operands that refer to code locations that
|
| + // are being moved. The array of offsets from the first step is used
|
| + // to compute the new operand values.
|
| + int32_t src;
|
| + int32_t dst = 0;
|
| + for (src=0; src<end; src++) {
|
| + int32_t op = (int32_t)fRXPat->fCompiledPat->elementAti(src);
|
| + int32_t opType = URX_TYPE(op);
|
| + switch (opType) {
|
| + case URX_NOP:
|
| + break;
|
| +
|
| + case URX_STATE_SAVE:
|
| + case URX_JMP:
|
| + case URX_CTR_LOOP:
|
| + case URX_CTR_LOOP_NG:
|
| + case URX_RELOC_OPRND:
|
| + case URX_JMPX:
|
| + case URX_JMP_SAV:
|
| + case URX_JMP_SAV_X:
|
| + // These are instructions with operands that refer to code locations.
|
| + {
|
| + int32_t operandAddress = URX_VAL(op);
|
| + U_ASSERT(operandAddress>=0 && operandAddress<deltas.size());
|
| + int32_t fixedOperandAddress = operandAddress - deltas.elementAti(operandAddress);
|
| + op = URX_BUILD(opType, fixedOperandAddress);
|
| + fRXPat->fCompiledPat->setElementAt(op, dst);
|
| + dst++;
|
| + break;
|
| + }
|
| +
|
| + case URX_ONECHAR_I:
|
| + {
|
| + UChar32 c = URX_VAL(op);
|
| + if (u_hasBinaryProperty(c, UCHAR_CASE_SENSITIVE)) {
|
| + // We have a cased character to fold
|
| + c = u_foldCase(c, U_FOLD_CASE_DEFAULT);
|
| + op = URX_BUILD(URX_ONECHAR_I, c);
|
| + }
|
| +
|
| + fRXPat->fCompiledPat->setElementAt(op, dst);
|
| + dst++;
|
| + break;
|
| + }
|
| + case URX_STRING_I:
|
| + {
|
| + op = URX_BUILD(URX_STRING_I, URX_VAL(op)+stringDelta);
|
| +
|
| + src++;
|
| + int32_t lengthOp = (int32_t)fRXPat->fCompiledPat->elementAti(src);
|
| +
|
| + caseStringBuffer.setTo(fRXPat->fLiteralText, URX_VAL(op), URX_VAL(lengthOp));
|
| + caseStringBuffer.foldCase(U_FOLD_CASE_DEFAULT);
|
| +
|
| + int32_t newLen = caseStringBuffer.length();
|
| + if (newLen <= URX_VAL(lengthOp)) {
|
| + // don't shift if we don't have to, take the tiny memory hit of a smaller string
|
| + fRXPat->fLiteralText.replace(URX_VAL(op), newLen, caseStringBuffer);
|
| + } else {
|
| + // shift other strings over...at least UnicodeString handles this for us!
|
| + fRXPat->fLiteralText.replace(URX_VAL(op), URX_VAL(lengthOp), caseStringBuffer);
|
| + stringDelta += newLen - URX_VAL(lengthOp);
|
| + }
|
| + lengthOp = URX_BUILD(URX_STRING_LEN, newLen);
|
| +
|
| + fRXPat->fCompiledPat->setElementAt(op, dst);
|
| + fRXPat->fCompiledPat->setElementAt(lengthOp, dst+1);
|
| + dst += 2;
|
| + break;
|
| + }
|
| + case URX_BACKREF:
|
| + case URX_BACKREF_I:
|
| + {
|
| + int32_t where = URX_VAL(op);
|
| + if (where > fRXPat->fGroupMap->size()) {
|
| + error(U_REGEX_INVALID_BACK_REF);
|
| + break;
|
| + }
|
| + where = fRXPat->fGroupMap->elementAti(where-1);
|
| + op = URX_BUILD(opType, where);
|
| + fRXPat->fCompiledPat->setElementAt(op, dst);
|
| + dst++;
|
| +
|
| + fRXPat->fNeedsAltInput = TRUE;
|
| + break;
|
| + }
|
| + case URX_STRING:
|
| + op = URX_BUILD(URX_STRING, URX_VAL(op)+stringDelta);
|
| + // continue
|
| + case URX_RESERVED_OP:
|
| + case URX_RESERVED_OP_N:
|
| + case URX_BACKTRACK:
|
| + case URX_END:
|
| + case URX_ONECHAR:
|
| + case URX_STRING_LEN:
|
| + case URX_START_CAPTURE:
|
| + case URX_END_CAPTURE:
|
| + case URX_STATIC_SETREF:
|
| + case URX_STAT_SETREF_N:
|
| + case URX_SETREF:
|
| + case URX_DOTANY:
|
| + case URX_FAIL:
|
| + case URX_BACKSLASH_B:
|
| + case URX_BACKSLASH_BU:
|
| + case URX_BACKSLASH_G:
|
| + case URX_BACKSLASH_X:
|
| + case URX_BACKSLASH_Z:
|
| + case URX_DOTANY_ALL:
|
| + case URX_BACKSLASH_D:
|
| + case URX_CARET:
|
| + case URX_DOLLAR:
|
| + case URX_CTR_INIT:
|
| + case URX_CTR_INIT_NG:
|
| + case URX_DOTANY_UNIX:
|
| + case URX_STO_SP:
|
| + case URX_LD_SP:
|
| + case URX_STO_INP_LOC:
|
| + case URX_LA_START:
|
| + case URX_LA_END:
|
| + case URX_DOLLAR_M:
|
| + case URX_CARET_M:
|
| + case URX_CARET_M_UNIX:
|
| + case URX_LB_START:
|
| + case URX_LB_CONT:
|
| + case URX_LB_END:
|
| + case URX_LBN_CONT:
|
| + case URX_LBN_END:
|
| + case URX_LOOP_SR_I:
|
| + case URX_LOOP_DOT_I:
|
| + case URX_LOOP_C:
|
| + case URX_DOLLAR_D:
|
| + case URX_DOLLAR_MD:
|
| + // These instructions are unaltered by the relocation.
|
| + fRXPat->fCompiledPat->setElementAt(op, dst);
|
| + dst++;
|
| + break;
|
| +
|
| + default:
|
| + // Some op is unaccounted for.
|
| + U_ASSERT(FALSE);
|
| + error(U_REGEX_INTERNAL_ERROR);
|
| + }
|
| + }
|
| +
|
| + fRXPat->fCompiledPat->setSize(dst);
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// Error Report a rule parse error.
|
| +// Only report it if no previous error has been recorded.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::error(UErrorCode e) {
|
| + if (U_SUCCESS(*fStatus)) {
|
| + *fStatus = e;
|
| + // Hmm. fParseErr (UParseError) line & offset fields are int32_t in public
|
| + // API (see common/unicode/parseerr.h), while fLineNum and fCharNum are
|
| + // int64_t. If the values of the latter are out of range for the former,
|
| + // set them to the appropriate "field not supported" values.
|
| + if (fLineNum > 0x7FFFFFFF) {
|
| + fParseErr->line = 0;
|
| + fParseErr->offset = -1;
|
| + } else if (fCharNum > 0x7FFFFFFF) {
|
| + fParseErr->line = (int32_t)fLineNum;
|
| + fParseErr->offset = -1;
|
| + } else {
|
| + fParseErr->line = (int32_t)fLineNum;
|
| + fParseErr->offset = (int32_t)fCharNum;
|
| + }
|
| +
|
| + UErrorCode status = U_ZERO_ERROR; // throwaway status for extracting context
|
| +
|
| + // Fill in the context.
|
| + // Note: extractBetween() pins supplied indicies to the string bounds.
|
| + uprv_memset(fParseErr->preContext, 0, sizeof(fParseErr->preContext));
|
| + uprv_memset(fParseErr->postContext, 0, sizeof(fParseErr->postContext));
|
| + utext_extract(fRXPat->fPattern, fScanIndex-U_PARSE_CONTEXT_LEN+1, fScanIndex, fParseErr->preContext, U_PARSE_CONTEXT_LEN, &status);
|
| + utext_extract(fRXPat->fPattern, fScanIndex, fScanIndex+U_PARSE_CONTEXT_LEN-1, fParseErr->postContext, U_PARSE_CONTEXT_LEN, &status);
|
| + }
|
| +}
|
| +
|
| +
|
| +//
|
| +// Assorted Unicode character constants.
|
| +// Numeric because there is no portable way to enter them as literals.
|
| +// (Think EBCDIC).
|
| +//
|
| +static const UChar chCR = 0x0d; // New lines, for terminating comments.
|
| +static const UChar chLF = 0x0a; // Line Feed
|
| +static const UChar chPound = 0x23; // '#', introduces a comment.
|
| +static const UChar chDigit0 = 0x30; // '0'
|
| +static const UChar chDigit7 = 0x37; // '9'
|
| +static const UChar chColon = 0x3A; // ':'
|
| +static const UChar chE = 0x45; // 'E'
|
| +static const UChar chQ = 0x51; // 'Q'
|
| +static const UChar chN = 0x4E; // 'N'
|
| +static const UChar chP = 0x50; // 'P'
|
| +static const UChar chBackSlash = 0x5c; // '\' introduces a char escape
|
| +static const UChar chLBracket = 0x5b; // '['
|
| +static const UChar chRBracket = 0x5d; // ']'
|
| +static const UChar chUp = 0x5e; // '^'
|
| +static const UChar chLowerP = 0x70;
|
| +static const UChar chLBrace = 0x7b; // '{'
|
| +static const UChar chRBrace = 0x7d; // '}'
|
| +static const UChar chNEL = 0x85; // NEL newline variant
|
| +static const UChar chLS = 0x2028; // Unicode Line Separator
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// nextCharLL Low Level Next Char from the regex pattern.
|
| +// Get a char from the string, keep track of input position
|
| +// for error reporting.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +UChar32 RegexCompile::nextCharLL() {
|
| + UChar32 ch;
|
| +
|
| + if (fPeekChar != -1) {
|
| + ch = fPeekChar;
|
| + fPeekChar = -1;
|
| + return ch;
|
| + }
|
| +
|
| + // assume we're already in the right place
|
| + ch = UTEXT_NEXT32(fRXPat->fPattern);
|
| + if (ch == U_SENTINEL) {
|
| + return ch;
|
| + }
|
| +
|
| + if (ch == chCR ||
|
| + ch == chNEL ||
|
| + ch == chLS ||
|
| + (ch == chLF && fLastChar != chCR)) {
|
| + // Character is starting a new line. Bump up the line number, and
|
| + // reset the column to 0.
|
| + fLineNum++;
|
| + fCharNum=0;
|
| + }
|
| + else {
|
| + // Character is not starting a new line. Except in the case of a
|
| + // LF following a CR, increment the column position.
|
| + if (ch != chLF) {
|
| + fCharNum++;
|
| + }
|
| + }
|
| + fLastChar = ch;
|
| + return ch;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// peekCharLL Low Level Character Scanning, sneak a peek at the next
|
| +// character without actually getting it.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +UChar32 RegexCompile::peekCharLL() {
|
| + if (fPeekChar == -1) {
|
| + fPeekChar = nextCharLL();
|
| + }
|
| + return fPeekChar;
|
| +}
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// nextChar for pattern scanning. At this level, we handle stripping
|
| +// out comments and processing some backslash character escapes.
|
| +// The rest of the pattern grammar is handled at the next level up.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +void RegexCompile::nextChar(RegexPatternChar &c) {
|
| +
|
| + fScanIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
|
| + c.fChar = nextCharLL();
|
| + c.fQuoted = FALSE;
|
| +
|
| + if (fQuoteMode) {
|
| + c.fQuoted = TRUE;
|
| + if ((c.fChar==chBackSlash && peekCharLL()==chE) || c.fChar == (UChar32)-1) {
|
| + fQuoteMode = FALSE; // Exit quote mode,
|
| + nextCharLL(); // discard the E
|
| + nextChar(c); // recurse to get the real next char
|
| + }
|
| + }
|
| + else if (fInBackslashQuote) {
|
| + // The current character immediately follows a '\'
|
| + // Don't check for any further escapes, just return it as-is.
|
| + // Don't set c.fQuoted, because that would prevent the state machine from
|
| + // dispatching on the character.
|
| + fInBackslashQuote = FALSE;
|
| + }
|
| + else
|
| + {
|
| + // We are not in a \Q quoted region \E of the source.
|
| + //
|
| + if (fModeFlags & UREGEX_COMMENTS) {
|
| + //
|
| + // We are in free-spacing and comments mode.
|
| + // Scan through any white space and comments, until we
|
| + // reach a significant character or the end of inut.
|
| + for (;;) {
|
| + if (c.fChar == (UChar32)-1) {
|
| + break; // End of Input
|
| + }
|
| + if (c.fChar == chPound && fEOLComments == TRUE) {
|
| + // Start of a comment. Consume the rest of it, until EOF or a new line
|
| + for (;;) {
|
| + c.fChar = nextCharLL();
|
| + if (c.fChar == (UChar32)-1 || // EOF
|
| + c.fChar == chCR ||
|
| + c.fChar == chLF ||
|
| + c.fChar == chNEL ||
|
| + c.fChar == chLS) {
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + // TODO: check what Java & Perl do with non-ASCII white spaces. Ticket 6061.
|
| + if (uprv_isRuleWhiteSpace(c.fChar) == FALSE) {
|
| + break;
|
| + }
|
| + c.fChar = nextCharLL();
|
| + }
|
| + }
|
| +
|
| + //
|
| + // check for backslash escaped characters.
|
| + //
|
| + if (c.fChar == chBackSlash) {
|
| + int64_t pos = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
|
| + if (RegexStaticSets::gStaticSets->fUnescapeCharSet.contains(peekCharLL())) {
|
| + //
|
| + // A '\' sequence that is handled by ICU's standard unescapeAt function.
|
| + // Includes \uxxxx, \n, \r, many others.
|
| + // Return the single equivalent character.
|
| + //
|
| + nextCharLL(); // get & discard the peeked char.
|
| + c.fQuoted = TRUE;
|
| +
|
| + if (UTEXT_FULL_TEXT_IN_CHUNK(fRXPat->fPattern, fPatternLength)) {
|
| + int32_t endIndex = (int32_t)pos;
|
| + c.fChar = u_unescapeAt(uregex_ucstr_unescape_charAt, &endIndex, (int32_t)fPatternLength, (void *)fRXPat->fPattern->chunkContents);
|
| +
|
| + if (endIndex == pos) {
|
| + error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
| + }
|
| + fCharNum += endIndex - pos;
|
| + UTEXT_SETNATIVEINDEX(fRXPat->fPattern, endIndex);
|
| + } else {
|
| + int32_t offset = 0;
|
| + struct URegexUTextUnescapeCharContext context = U_REGEX_UTEXT_UNESCAPE_CONTEXT(fRXPat->fPattern);
|
| +
|
| + UTEXT_SETNATIVEINDEX(fRXPat->fPattern, pos);
|
| + c.fChar = u_unescapeAt(uregex_utext_unescape_charAt, &offset, INT32_MAX, &context);
|
| +
|
| + if (offset == 0) {
|
| + error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
| + } else if (context.lastOffset == offset) {
|
| + UTEXT_PREVIOUS32(fRXPat->fPattern);
|
| + } else if (context.lastOffset != offset-1) {
|
| + utext_moveIndex32(fRXPat->fPattern, offset - context.lastOffset - 1);
|
| + }
|
| + fCharNum += offset;
|
| + }
|
| + }
|
| + else if (peekCharLL() == chDigit0) {
|
| + // Octal Escape, using Java Regexp Conventions
|
| + // which are \0 followed by 1-3 octal digits.
|
| + // Different from ICU Unescape handling of Octal, which does not
|
| + // require the leading 0.
|
| + // Java also has the convention of only consuming 2 octal digits if
|
| + // the three digit number would be > 0xff
|
| + //
|
| + c.fChar = 0;
|
| + nextCharLL(); // Consume the initial 0.
|
| + int index;
|
| + for (index=0; index<3; index++) {
|
| + int32_t ch = peekCharLL();
|
| + if (ch<chDigit0 || ch>chDigit7) {
|
| + if (index==0) {
|
| + // \0 is not followed by any octal digits.
|
| + error(U_REGEX_BAD_ESCAPE_SEQUENCE);
|
| + }
|
| + break;
|
| + }
|
| + c.fChar <<= 3;
|
| + c.fChar += ch&7;
|
| + if (c.fChar <= 255) {
|
| + nextCharLL();
|
| + } else {
|
| + // The last digit made the number too big. Forget we saw it.
|
| + c.fChar >>= 3;
|
| + }
|
| + }
|
| + c.fQuoted = TRUE;
|
| + }
|
| + else if (peekCharLL() == chQ) {
|
| + // "\Q" enter quote mode, which will continue until "\E"
|
| + fQuoteMode = TRUE;
|
| + nextCharLL(); // discard the 'Q'.
|
| + nextChar(c); // recurse to get the real next char.
|
| + }
|
| + else
|
| + {
|
| + // We are in a '\' escape that will be handled by the state table scanner.
|
| + // Just return the backslash, but remember that the following char is to
|
| + // be taken literally.
|
| + fInBackslashQuote = TRUE;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // re-enable # to end-of-line comments, in case they were disabled.
|
| + // They are disabled by the parser upon seeing '(?', but this lasts for
|
| + // the fetching of the next character only.
|
| + fEOLComments = TRUE;
|
| +
|
| + // putc(c.fChar, stdout);
|
| +}
|
| +
|
| +
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// scanNamedChar
|
| + // Get a UChar32 from a \N{UNICODE CHARACTER NAME} in the pattern.
|
| +//
|
| +// The scan position will be at the 'N'. On return
|
| +// the scan position should be just after the '}'
|
| +//
|
| +// Return the UChar32
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +UChar32 RegexCompile::scanNamedChar() {
|
| + if (U_FAILURE(*fStatus)) {
|
| + return 0;
|
| + }
|
| +
|
| + nextChar(fC);
|
| + if (fC.fChar != chLBrace) {
|
| + error(U_REGEX_PROPERTY_SYNTAX);
|
| + return 0;
|
| + }
|
| +
|
| + UnicodeString charName;
|
| + for (;;) {
|
| + nextChar(fC);
|
| + if (fC.fChar == chRBrace) {
|
| + break;
|
| + }
|
| + if (fC.fChar == -1) {
|
| + error(U_REGEX_PROPERTY_SYNTAX);
|
| + return 0;
|
| + }
|
| + charName.append(fC.fChar);
|
| + }
|
| +
|
| + char name[100];
|
| + if (!uprv_isInvariantUString(charName.getBuffer(), charName.length()) ||
|
| + (uint32_t)charName.length()>=sizeof(name)) {
|
| + // All Unicode character names have only invariant characters.
|
| + // The API to get a character, given a name, accepts only char *, forcing us to convert,
|
| + // which requires this error check
|
| + error(U_REGEX_PROPERTY_SYNTAX);
|
| + return 0;
|
| + }
|
| + charName.extract(0, charName.length(), name, sizeof(name), US_INV);
|
| +
|
| + UChar32 theChar = u_charFromName(U_UNICODE_CHAR_NAME, name, fStatus);
|
| + if (U_FAILURE(*fStatus)) {
|
| + error(U_REGEX_PROPERTY_SYNTAX);
|
| + }
|
| +
|
| + nextChar(fC); // Continue overall regex pattern processing with char after the '}'
|
| + return theChar;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// scanProp Construct a UnicodeSet from the text at the current scan
|
| +// position, which will be of the form \p{whaterver}
|
| +//
|
| +// The scan position will be at the 'p' or 'P'. On return
|
| +// the scan position should be just after the '}'
|
| +//
|
| +// Return a UnicodeSet, constructed from the \P pattern,
|
| +// or NULL if the pattern is invalid.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +UnicodeSet *RegexCompile::scanProp() {
|
| + UnicodeSet *uset = NULL;
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + return NULL;
|
| + }
|
| + U_ASSERT(fC.fChar == chLowerP || fC.fChar == chP);
|
| + UBool negated = (fC.fChar == chP);
|
| +
|
| + UnicodeString propertyName;
|
| + nextChar(fC);
|
| + if (fC.fChar != chLBrace) {
|
| + error(U_REGEX_PROPERTY_SYNTAX);
|
| + return NULL;
|
| + }
|
| + for (;;) {
|
| + nextChar(fC);
|
| + if (fC.fChar == chRBrace) {
|
| + break;
|
| + }
|
| + if (fC.fChar == -1) {
|
| + // Hit the end of the input string without finding the closing '}'
|
| + error(U_REGEX_PROPERTY_SYNTAX);
|
| + return NULL;
|
| + }
|
| + propertyName.append(fC.fChar);
|
| + }
|
| + uset = createSetForProperty(propertyName, negated);
|
| + nextChar(fC); // Move input scan to position following the closing '}'
|
| + return uset;
|
| +}
|
| +
|
| +//------------------------------------------------------------------------------
|
| +//
|
| +// scanPosixProp Construct a UnicodeSet from the text at the current scan
|
| +// position, which is expected be of the form [:property expression:]
|
| +//
|
| +// The scan position will be at the opening ':'. On return
|
| +// the scan position must be on the closing ']'
|
| +//
|
| +// Return a UnicodeSet constructed from the pattern,
|
| +// or NULL if this is not a valid POSIX-style set expression.
|
| +// If not a property expression, restore the initial scan position
|
| +// (to the opening ':')
|
| +//
|
| +// Note: the opening '[:' is not sufficient to guarantee that
|
| +// this is a [:property:] expression.
|
| +// [:'+=,] is a perfectly good ordinary set expression that
|
| +// happens to include ':' as one of its characters.
|
| +//
|
| +//------------------------------------------------------------------------------
|
| +UnicodeSet *RegexCompile::scanPosixProp() {
|
| + UnicodeSet *uset = NULL;
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + return NULL;
|
| + }
|
| +
|
| + U_ASSERT(fC.fChar == chColon);
|
| +
|
| + // Save the scanner state.
|
| + // TODO: move this into the scanner, with the state encapsulated in some way. Ticket 6062
|
| + int64_t savedScanIndex = fScanIndex;
|
| + int64_t savedNextIndex = UTEXT_GETNATIVEINDEX(fRXPat->fPattern);
|
| + UBool savedQuoteMode = fQuoteMode;
|
| + UBool savedInBackslashQuote = fInBackslashQuote;
|
| + UBool savedEOLComments = fEOLComments;
|
| + int64_t savedLineNum = fLineNum;
|
| + int64_t savedCharNum = fCharNum;
|
| + UChar32 savedLastChar = fLastChar;
|
| + UChar32 savedPeekChar = fPeekChar;
|
| + RegexPatternChar savedfC = fC;
|
| +
|
| + // Scan for a closing ]. A little tricky because there are some perverse
|
| + // edge cases possible. "[:abc\Qdef:] \E]" is a valid non-property expression,
|
| + // ending on the second closing ].
|
| +
|
| + UnicodeString propName;
|
| + UBool negated = FALSE;
|
| +
|
| + // Check for and consume the '^' in a negated POSIX property, e.g. [:^Letter:]
|
| + nextChar(fC);
|
| + if (fC.fChar == chUp) {
|
| + negated = TRUE;
|
| + nextChar(fC);
|
| + }
|
| +
|
| + // Scan for the closing ":]", collecting the property name along the way.
|
| + UBool sawPropSetTerminator = FALSE;
|
| + for (;;) {
|
| + propName.append(fC.fChar);
|
| + nextChar(fC);
|
| + if (fC.fQuoted || fC.fChar == -1) {
|
| + // Escaped characters or end of input - either says this isn't a [:Property:]
|
| + break;
|
| + }
|
| + if (fC.fChar == chColon) {
|
| + nextChar(fC);
|
| + if (fC.fChar == chRBracket) {
|
| + sawPropSetTerminator = TRUE;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (sawPropSetTerminator) {
|
| + uset = createSetForProperty(propName, negated);
|
| + }
|
| + else
|
| + {
|
| + // No closing ":]".
|
| + // Restore the original scan position.
|
| + // The main scanner will retry the input as a normal set expression,
|
| + // not a [:Property:] expression.
|
| + fScanIndex = savedScanIndex;
|
| + fQuoteMode = savedQuoteMode;
|
| + fInBackslashQuote = savedInBackslashQuote;
|
| + fEOLComments = savedEOLComments;
|
| + fLineNum = savedLineNum;
|
| + fCharNum = savedCharNum;
|
| + fLastChar = savedLastChar;
|
| + fPeekChar = savedPeekChar;
|
| + fC = savedfC;
|
| + UTEXT_SETNATIVEINDEX(fRXPat->fPattern, savedNextIndex);
|
| + }
|
| + return uset;
|
| +}
|
| +
|
| +static inline void addIdentifierIgnorable(UnicodeSet *set, UErrorCode& ec) {
|
| + set->add(0, 8).add(0x0e, 0x1b).add(0x7f, 0x9f);
|
| + addCategory(set, U_GC_CF_MASK, ec);
|
| +}
|
| +
|
| +//
|
| +// Create a Unicode Set from a Unicode Property expression.
|
| +// This is common code underlying both \p{...} ane [:...:] expressions.
|
| +// Includes trying the Java "properties" that aren't supported as
|
| +// normal ICU UnicodeSet properties
|
| +//
|
| +static const UChar posSetPrefix[] = {0x5b, 0x5c, 0x70, 0x7b, 0}; // "[\p{"
|
| +static const UChar negSetPrefix[] = {0x5b, 0x5c, 0x50, 0x7b, 0}; // "[\P{"
|
| +UnicodeSet *RegexCompile::createSetForProperty(const UnicodeString &propName, UBool negated) {
|
| + UnicodeString setExpr;
|
| + UnicodeSet *set;
|
| + uint32_t usetFlags = 0;
|
| +
|
| + if (U_FAILURE(*fStatus)) {
|
| + return NULL;
|
| + }
|
| +
|
| + //
|
| + // First try the property as we received it
|
| + //
|
| + if (negated) {
|
| + setExpr.append(negSetPrefix, -1);
|
| + } else {
|
| + setExpr.append(posSetPrefix, -1);
|
| + }
|
| + setExpr.append(propName);
|
| + setExpr.append(chRBrace);
|
| + setExpr.append(chRBracket);
|
| + if (fModeFlags & UREGEX_CASE_INSENSITIVE) {
|
| + usetFlags |= USET_CASE_INSENSITIVE;
|
| + }
|
| + set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus);
|
| + if (U_SUCCESS(*fStatus)) {
|
| + return set;
|
| + }
|
| + delete set;
|
| + set = NULL;
|
| +
|
| + //
|
| + // The property as it was didn't work.
|
| +
|
| + // Do [:word:]. It is not recognized as a property by UnicodeSet. "word" not standard POSIX
|
| + // or standard Java, but many other regular expression packages do recognize it.
|
| +
|
| + if (propName.caseCompare(UNICODE_STRING_SIMPLE("word"), 0) == 0) {
|
| + *fStatus = U_ZERO_ERROR;
|
| + set = new UnicodeSet(*(fRXPat->fStaticSets[URX_ISWORD_SET]));
|
| + if (set == NULL) {
|
| + *fStatus = U_MEMORY_ALLOCATION_ERROR;
|
| + return set;
|
| + }
|
| + if (negated) {
|
| + set->complement();
|
| + }
|
| + return set;
|
| + }
|
| +
|
| +
|
| + // Do Java fixes -
|
| + // InGreek -> InGreek or Coptic, that being the official Unicode name for that block.
|
| + // InCombiningMarksforSymbols -> InCombiningDiacriticalMarksforSymbols.
|
| + //
|
| + // Note on Spaces: either "InCombiningMarksForSymbols" or "InCombining Marks for Symbols"
|
| + // is accepted by Java. The property part of the name is compared
|
| + // case-insenstively. The spaces must be exactly as shown, either
|
| + // all there, or all omitted, with exactly one at each position
|
| + // if they are present. From checking against JDK 1.6
|
| + //
|
| + // This code should be removed when ICU properties support the Java compatibility names
|
| + // (ICU 4.0?)
|
| + //
|
| + UnicodeString mPropName = propName;
|
| + if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InGreek"), 0) == 0) {
|
| + mPropName = UNICODE_STRING_SIMPLE("InGreek and Coptic");
|
| + }
|
| + if (mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombining Marks for Symbols"), 0) == 0 ||
|
| + mPropName.caseCompare(UNICODE_STRING_SIMPLE("InCombiningMarksforSymbols"), 0) == 0) {
|
| + mPropName = UNICODE_STRING_SIMPLE("InCombining Diacritical Marks for Symbols");
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) {
|
| + mPropName = UNICODE_STRING_SIMPLE("javaValidCodePoint");
|
| + }
|
| +
|
| + // See if the property looks like a Java "InBlockName", which
|
| + // we will recast as "Block=BlockName"
|
| + //
|
| + static const UChar IN[] = {0x49, 0x6E, 0}; // "In"
|
| + static const UChar BLOCK[] = {0x42, 0x6C, 0x6f, 0x63, 0x6b, 0x3d, 00}; // "Block="
|
| + if (mPropName.startsWith(IN, 2) && propName.length()>=3) {
|
| + setExpr.truncate(4); // Leaves "[\p{", or "[\P{"
|
| + setExpr.append(BLOCK, -1);
|
| + setExpr.append(UnicodeString(mPropName, 2)); // Property with the leading "In" removed.
|
| + setExpr.append(chRBrace);
|
| + setExpr.append(chRBracket);
|
| + *fStatus = U_ZERO_ERROR;
|
| + set = new UnicodeSet(setExpr, usetFlags, NULL, *fStatus);
|
| + if (U_SUCCESS(*fStatus)) {
|
| + return set;
|
| + }
|
| + delete set;
|
| + set = NULL;
|
| + }
|
| +
|
| + if (propName.startsWith(UNICODE_STRING_SIMPLE("java")) ||
|
| + propName.compare(UNICODE_STRING_SIMPLE("all")) == 0)
|
| + {
|
| + UErrorCode localStatus = U_ZERO_ERROR;
|
| + //setExpr.remove();
|
| + set = new UnicodeSet();
|
| + //
|
| + // Try the various Java specific properties.
|
| + // These all begin with "java"
|
| + //
|
| + if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDefined")) == 0) {
|
| + addCategory(set, U_GC_CN_MASK, localStatus);
|
| + set->complement();
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaDigit")) == 0) {
|
| + addCategory(set, U_GC_ND_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaIdentifierIgnorable")) == 0) {
|
| + addIdentifierIgnorable(set, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaISOControl")) == 0) {
|
| + set->add(0, 0x1F).add(0x7F, 0x9F);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierPart")) == 0) {
|
| + addCategory(set, U_GC_L_MASK, localStatus);
|
| + addCategory(set, U_GC_SC_MASK, localStatus);
|
| + addCategory(set, U_GC_PC_MASK, localStatus);
|
| + addCategory(set, U_GC_ND_MASK, localStatus);
|
| + addCategory(set, U_GC_NL_MASK, localStatus);
|
| + addCategory(set, U_GC_MC_MASK, localStatus);
|
| + addCategory(set, U_GC_MN_MASK, localStatus);
|
| + addIdentifierIgnorable(set, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaJavaIdentifierStart")) == 0) {
|
| + addCategory(set, U_GC_L_MASK, localStatus);
|
| + addCategory(set, U_GC_NL_MASK, localStatus);
|
| + addCategory(set, U_GC_SC_MASK, localStatus);
|
| + addCategory(set, U_GC_PC_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetter")) == 0) {
|
| + addCategory(set, U_GC_L_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLetterOrDigit")) == 0) {
|
| + addCategory(set, U_GC_L_MASK, localStatus);
|
| + addCategory(set, U_GC_ND_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaLowerCase")) == 0) {
|
| + addCategory(set, U_GC_LL_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaMirrored")) == 0) {
|
| + set->applyIntPropertyValue(UCHAR_BIDI_MIRRORED, 1, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSpaceChar")) == 0) {
|
| + addCategory(set, U_GC_Z_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaSupplementaryCodePoint")) == 0) {
|
| + set->add(0x10000, UnicodeSet::MAX_VALUE);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaTitleCase")) == 0) {
|
| + addCategory(set, U_GC_LT_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierStart")) == 0) {
|
| + addCategory(set, U_GC_L_MASK, localStatus);
|
| + addCategory(set, U_GC_NL_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUnicodeIdentifierPart")) == 0) {
|
| + addCategory(set, U_GC_L_MASK, localStatus);
|
| + addCategory(set, U_GC_PC_MASK, localStatus);
|
| + addCategory(set, U_GC_ND_MASK, localStatus);
|
| + addCategory(set, U_GC_NL_MASK, localStatus);
|
| + addCategory(set, U_GC_MC_MASK, localStatus);
|
| + addCategory(set, U_GC_MN_MASK, localStatus);
|
| + addIdentifierIgnorable(set, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaUpperCase")) == 0) {
|
| + addCategory(set, U_GC_LU_MASK, localStatus);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaValidCodePoint")) == 0) {
|
| + set->add(0, UnicodeSet::MAX_VALUE);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("javaWhitespace")) == 0) {
|
| + addCategory(set, U_GC_Z_MASK, localStatus);
|
| + set->removeAll(UnicodeSet().add(0xa0).add(0x2007).add(0x202f));
|
| + set->add(9, 0x0d).add(0x1c, 0x1f);
|
| + }
|
| + else if (mPropName.compare(UNICODE_STRING_SIMPLE("all")) == 0) {
|
| + set->add(0, UnicodeSet::MAX_VALUE);
|
| + }
|
| +
|
| + if (U_SUCCESS(localStatus) && !set->isEmpty()) {
|
| + *fStatus = U_ZERO_ERROR;
|
| + if (usetFlags & USET_CASE_INSENSITIVE) {
|
| + set->closeOver(USET_CASE_INSENSITIVE);
|
| + }
|
| + if (negated) {
|
| + set->complement();
|
| + }
|
| + return set;
|
| + }
|
| + delete set;
|
| + set = NULL;
|
| + }
|
| + error(*fStatus);
|
| + return NULL;
|
| +}
|
| +
|
| +
|
| +
|
| +//
|
| +// SetEval Part of the evaluation of [set expressions].
|
| +// Perform any pending (stacked) operations with precedence
|
| +// equal or greater to that of the next operator encountered
|
| +// in the expression.
|
| +//
|
| +void RegexCompile::setEval(int32_t nextOp) {
|
| + UnicodeSet *rightOperand = NULL;
|
| + UnicodeSet *leftOperand = NULL;
|
| + for (;;) {
|
| + U_ASSERT(fSetOpStack.empty()==FALSE);
|
| + int32_t pendingSetOperation = fSetOpStack.peeki();
|
| + if ((pendingSetOperation&0xffff0000) < (nextOp&0xffff0000)) {
|
| + break;
|
| + }
|
| + fSetOpStack.popi();
|
| + U_ASSERT(fSetStack.empty() == FALSE);
|
| + rightOperand = (UnicodeSet *)fSetStack.peek();
|
| + switch (pendingSetOperation) {
|
| + case setNegation:
|
| + rightOperand->complement();
|
| + break;
|
| + case setCaseClose:
|
| + // TODO: need a simple close function. Ticket 6065
|
| + rightOperand->closeOver(USET_CASE_INSENSITIVE);
|
| + rightOperand->removeAllStrings();
|
| + break;
|
| + case setDifference1:
|
| + case setDifference2:
|
| + fSetStack.pop();
|
| + leftOperand = (UnicodeSet *)fSetStack.peek();
|
| + leftOperand->removeAll(*rightOperand);
|
| + delete rightOperand;
|
| + break;
|
| + case setIntersection1:
|
| + case setIntersection2:
|
| + fSetStack.pop();
|
| + leftOperand = (UnicodeSet *)fSetStack.peek();
|
| + leftOperand->retainAll(*rightOperand);
|
| + delete rightOperand;
|
| + break;
|
| + case setUnion:
|
| + fSetStack.pop();
|
| + leftOperand = (UnicodeSet *)fSetStack.peek();
|
| + leftOperand->addAll(*rightOperand);
|
| + delete rightOperand;
|
| + break;
|
| + default:
|
| + U_ASSERT(FALSE);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| +void RegexCompile::setPushOp(int32_t op) {
|
| + setEval(op);
|
| + fSetOpStack.push(op, *fStatus);
|
| + fSetStack.push(new UnicodeSet(), *fStatus);
|
| +}
|
| +
|
| +U_NAMESPACE_END
|
| +#endif // !UCONFIG_NO_REGULAR_EXPRESSIONS
|
| +
|
|
|
| Property changes on: icu46/source/i18n/regexcmp.cpp
|
| ___________________________________________________________________
|
| Added: svn:eol-style
|
| + LF
|
|
|
|
|