OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** This file is in the public domain, so clarified as of |
| 3 ** 1996-06-05 by Arthur David Olson. |
| 4 */ |
| 5 |
| 6 #ifndef lint |
| 7 #ifndef NOID |
| 8 static char elsieid[] = "@(#)localtime.c 8.9"; |
| 9 #endif /* !defined NOID */ |
| 10 #endif /* !defined lint */ |
| 11 |
| 12 /* |
| 13 ** Leap second handling from Bradley White. |
| 14 ** POSIX-style TZ environment variable handling from Guy Harris. |
| 15 */ |
| 16 |
| 17 /*LINTLIBRARY*/ |
| 18 |
| 19 #include "private.h" |
| 20 #include "tzfile.h" |
| 21 #include "fcntl.h" |
| 22 #include "float.h" /* for FLT_MAX and DBL_MAX */ |
| 23 |
| 24 #ifndef TZ_ABBR_MAX_LEN |
| 25 #define TZ_ABBR_MAX_LEN 16 |
| 26 #endif /* !defined TZ_ABBR_MAX_LEN */ |
| 27 |
| 28 #ifndef TZ_ABBR_CHAR_SET |
| 29 #define TZ_ABBR_CHAR_SET \ |
| 30 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" |
| 31 #endif /* !defined TZ_ABBR_CHAR_SET */ |
| 32 |
| 33 #ifndef TZ_ABBR_ERR_CHAR |
| 34 #define TZ_ABBR_ERR_CHAR '_' |
| 35 #endif /* !defined TZ_ABBR_ERR_CHAR */ |
| 36 |
| 37 /* |
| 38 ** SunOS 4.1.1 headers lack O_BINARY. |
| 39 */ |
| 40 |
| 41 #ifdef O_BINARY |
| 42 #define OPEN_MODE (O_RDONLY | O_BINARY) |
| 43 #endif /* defined O_BINARY */ |
| 44 #ifndef O_BINARY |
| 45 #define OPEN_MODE O_RDONLY |
| 46 #endif /* !defined O_BINARY */ |
| 47 |
| 48 #ifndef WILDABBR |
| 49 /* |
| 50 ** Someone might make incorrect use of a time zone abbreviation: |
| 51 ** 1. They might reference tzname[0] before calling tzset (explicitly |
| 52 ** or implicitly). |
| 53 ** 2. They might reference tzname[1] before calling tzset (explicitly |
| 54 ** or implicitly). |
| 55 ** 3. They might reference tzname[1] after setting to a time zone |
| 56 ** in which Daylight Saving Time is never observed. |
| 57 ** 4. They might reference tzname[0] after setting to a time zone |
| 58 ** in which Standard Time is never observed. |
| 59 ** 5. They might reference tm.TM_ZONE after calling offtime. |
| 60 ** What's best to do in the above cases is open to debate; |
| 61 ** for now, we just set things up so that in any of the five cases |
| 62 ** WILDABBR is used. Another possibility: initialize tzname[0] to the |
| 63 ** string "tzname[0] used before set", and similarly for the other cases. |
| 64 ** And another: initialize tzname[0] to "ERA", with an explanation in the |
| 65 ** manual page of what this "time zone abbreviation" means (doing this so |
| 66 ** that tzname[0] has the "normal" length of three characters). |
| 67 */ |
| 68 #define WILDABBR " " |
| 69 #endif /* !defined WILDABBR */ |
| 70 |
| 71 static char wildabbr[] = WILDABBR; |
| 72 |
| 73 static const char gmt[] = "GMT"; |
| 74 |
| 75 /* |
| 76 ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. |
| 77 ** We default to US rules as of 1999-08-17. |
| 78 ** POSIX 1003.1 section 8.1.1 says that the default DST rules are |
| 79 ** implementation dependent; for historical reasons, US rules are a |
| 80 ** common default. |
| 81 */ |
| 82 #ifndef TZDEFRULESTRING |
| 83 #define TZDEFRULESTRING ",M4.1.0,M10.5.0" |
| 84 #endif /* !defined TZDEFDST */ |
| 85 |
| 86 struct ttinfo { /* time type information */ |
| 87 long tt_gmtoff; /* UTC offset in seconds */ |
| 88 int tt_isdst; /* used to set tm_isdst */ |
| 89 int tt_abbrind; /* abbreviation list index */ |
| 90 int tt_ttisstd; /* TRUE if transition is std time */ |
| 91 int tt_ttisgmt; /* TRUE if transition is UTC */ |
| 92 }; |
| 93 |
| 94 struct lsinfo { /* leap second information */ |
| 95 time_t ls_trans; /* transition time */ |
| 96 long ls_corr; /* correction to apply */ |
| 97 }; |
| 98 |
| 99 #define BIGGEST(a, b) (((a) > (b)) ? (a) : (b)) |
| 100 |
| 101 #ifdef TZNAME_MAX |
| 102 #define MY_TZNAME_MAX TZNAME_MAX |
| 103 #endif /* defined TZNAME_MAX */ |
| 104 #ifndef TZNAME_MAX |
| 105 #define MY_TZNAME_MAX 255 |
| 106 #endif /* !defined TZNAME_MAX */ |
| 107 |
| 108 struct state { |
| 109 int leapcnt; |
| 110 int timecnt; |
| 111 int typecnt; |
| 112 int charcnt; |
| 113 int goback; |
| 114 int goahead; |
| 115 time_t ats[TZ_MAX_TIMES]; |
| 116 unsigned char types[TZ_MAX_TIMES]; |
| 117 struct ttinfo ttis[TZ_MAX_TYPES]; |
| 118 char chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), |
| 119 (2 * (MY_TZNAME_MAX + 1)))]; |
| 120 struct lsinfo lsis[TZ_MAX_LEAPS]; |
| 121 }; |
| 122 |
| 123 struct rule { |
| 124 int r_type; /* type of rule--see below */ |
| 125 int r_day; /* day number of rule */ |
| 126 int r_week; /* week number of rule */ |
| 127 int r_mon; /* month number of rule */ |
| 128 long r_time; /* transition time of rule */ |
| 129 }; |
| 130 |
| 131 #define JULIAN_DAY 0 /* Jn - Julian day */ |
| 132 #define DAY_OF_YEAR 1 /* n - day of year */ |
| 133 #define MONTH_NTH_DAY_OF_WEEK 2 /* Mm.n.d - month, week, day of week */ |
| 134 |
| 135 /* |
| 136 ** Prototypes for static functions. |
| 137 */ |
| 138 |
| 139 static long detzcode(const char * codep); |
| 140 static time_t detzcode64(const char * codep); |
| 141 static int differ_by_repeat(time_t t1, time_t t0); |
| 142 static const char * getzname(const char * strp); |
| 143 static const char * getqzname(const char * strp, const int delim); |
| 144 static const char * getnum(const char * strp, int * nump, int min, |
| 145 int max); |
| 146 static const char * getsecs(const char * strp, long * secsp); |
| 147 static const char * getoffset(const char * strp, long * offsetp); |
| 148 static const char * getrule(const char * strp, struct rule * rulep); |
| 149 static void gmtload(struct state * sp); |
| 150 static struct tm * gmtsub(const time_t * timep, long offset, |
| 151 struct tm * tmp); |
| 152 static struct tm * localsub(const time_t * timep, long offset, |
| 153 struct tm * tmp); |
| 154 static int increment_overflow(int * number, int delta); |
| 155 static int leaps_thru_end_of(int y); |
| 156 static int long_increment_overflow(long * number, int delta); |
| 157 static int long_normalize_overflow(long * tensptr, |
| 158 int * unitsptr, int base); |
| 159 static int normalize_overflow(int * tensptr, int * unitsptr, |
| 160 int base); |
| 161 static void settzname(void); |
| 162 static time_t time1(struct tm * tmp, |
| 163 struct tm * (*funcp)(const time_t *, |
| 164 long, struct tm *), |
| 165 long offset); |
| 166 static time_t time2(struct tm *tmp, |
| 167 struct tm * (*funcp)(const time_t *, |
| 168 long, struct tm*), |
| 169 long offset, int * okayp); |
| 170 static time_t time2sub(struct tm *tmp, |
| 171 struct tm * (*funcp)(const time_t *, |
| 172 long, struct tm*), |
| 173 long offset, int * okayp, int do_norm_secs); |
| 174 static struct tm * timesub(const time_t * timep, long offset, |
| 175 const struct state * sp, struct tm * tmp); |
| 176 static int tmcomp(const struct tm * atmp, |
| 177 const struct tm * btmp); |
| 178 static time_t transtime(time_t janfirst, int year, |
| 179 const struct rule * rulep, long offset); |
| 180 static int typesequiv(const struct state * sp, int a, int b); |
| 181 static int tzload(const char * name, struct state * sp, |
| 182 int doextend); |
| 183 static int tzparse(const char * name, struct state * sp, |
| 184 int lastditch); |
| 185 |
| 186 #ifdef ALL_STATE |
| 187 static struct state * lclptr; |
| 188 static struct state * gmtptr; |
| 189 #endif /* defined ALL_STATE */ |
| 190 |
| 191 #ifndef ALL_STATE |
| 192 static struct state lclmem; |
| 193 static struct state gmtmem; |
| 194 #define lclptr (&lclmem) |
| 195 #define gmtptr (&gmtmem) |
| 196 #endif /* State Farm */ |
| 197 |
| 198 #ifndef TZ_STRLEN_MAX |
| 199 #define TZ_STRLEN_MAX 255 |
| 200 #endif /* !defined TZ_STRLEN_MAX */ |
| 201 |
| 202 static char lcl_TZname[TZ_STRLEN_MAX + 1]; |
| 203 static int lcl_is_set; |
| 204 static int gmt_is_set; |
| 205 |
| 206 char * tzname[2] = { |
| 207 wildabbr, |
| 208 wildabbr |
| 209 }; |
| 210 |
| 211 /* |
| 212 ** Section 4.12.3 of X3.159-1989 requires that |
| 213 ** Except for the strftime function, these functions [asctime, |
| 214 ** ctime, gmtime, localtime] return values in one of two static |
| 215 ** objects: a broken-down time structure and an array of char. |
| 216 ** Thanks to Paul Eggert for noting this. |
| 217 */ |
| 218 |
| 219 static struct tm tm; |
| 220 |
| 221 #ifdef USG_COMPAT |
| 222 time_t timezone = 0; |
| 223 int daylight = 0; |
| 224 #endif /* defined USG_COMPAT */ |
| 225 |
| 226 #ifdef ALTZONE |
| 227 time_t altzone = 0; |
| 228 #endif /* defined ALTZONE */ |
| 229 |
| 230 static long |
| 231 detzcode(codep) |
| 232 const char * const codep; |
| 233 { |
| 234 register long result; |
| 235 register int i; |
| 236 |
| 237 result = (codep[0] & 0x80) ? ~0L : 0; |
| 238 for (i = 0; i < 4; ++i) |
| 239 result = (result << 8) | (codep[i] & 0xff); |
| 240 return result; |
| 241 } |
| 242 |
| 243 static time_t |
| 244 detzcode64(codep) |
| 245 const char * const codep; |
| 246 { |
| 247 register time_t result; |
| 248 register int i; |
| 249 |
| 250 result = (codep[0] & 0x80) ? (~(int_fast64_t) 0) : 0; |
| 251 for (i = 0; i < 8; ++i) |
| 252 result = result * 256 + (codep[i] & 0xff); |
| 253 return result; |
| 254 } |
| 255 |
| 256 static void |
| 257 settzname(void) |
| 258 { |
| 259 register struct state * const sp = lclptr; |
| 260 register int i; |
| 261 |
| 262 tzname[0] = wildabbr; |
| 263 tzname[1] = wildabbr; |
| 264 #ifdef USG_COMPAT |
| 265 daylight = 0; |
| 266 timezone = 0; |
| 267 #endif /* defined USG_COMPAT */ |
| 268 #ifdef ALTZONE |
| 269 altzone = 0; |
| 270 #endif /* defined ALTZONE */ |
| 271 #ifdef ALL_STATE |
| 272 if (sp == NULL) { |
| 273 tzname[0] = tzname[1] = gmt; |
| 274 return; |
| 275 } |
| 276 #endif /* defined ALL_STATE */ |
| 277 for (i = 0; i < sp->typecnt; ++i) { |
| 278 register const struct ttinfo * const ttisp = &sp->ttis[i]; |
| 279 |
| 280 tzname[ttisp->tt_isdst] = |
| 281 &sp->chars[ttisp->tt_abbrind]; |
| 282 #ifdef USG_COMPAT |
| 283 if (ttisp->tt_isdst) |
| 284 daylight = 1; |
| 285 if (i == 0 || !ttisp->tt_isdst) |
| 286 timezone = -(ttisp->tt_gmtoff); |
| 287 #endif /* defined USG_COMPAT */ |
| 288 #ifdef ALTZONE |
| 289 if (i == 0 || ttisp->tt_isdst) |
| 290 altzone = -(ttisp->tt_gmtoff); |
| 291 #endif /* defined ALTZONE */ |
| 292 } |
| 293 /* |
| 294 ** And to get the latest zone names into tzname. . . |
| 295 */ |
| 296 for (i = 0; i < sp->timecnt; ++i) { |
| 297 register const struct ttinfo * const ttisp = |
| 298 &sp->ttis[ |
| 299 sp->types[i]]; |
| 300 |
| 301 tzname[ttisp->tt_isdst] = |
| 302 &sp->chars[ttisp->tt_abbrind]; |
| 303 } |
| 304 /* |
| 305 ** Finally, scrub the abbreviations. |
| 306 ** First, replace bogus characters. |
| 307 */ |
| 308 for (i = 0; i < sp->charcnt; ++i) |
| 309 if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) |
| 310 sp->chars[i] = TZ_ABBR_ERR_CHAR; |
| 311 /* |
| 312 ** Second, truncate long abbreviations. |
| 313 */ |
| 314 for (i = 0; i < sp->typecnt; ++i) { |
| 315 register const struct ttinfo * const ttisp = &sp->ttis[i]; |
| 316 register char * cp = &sp->chars[ttisp->t
t_abbrind]; |
| 317 |
| 318 if (strlen(cp) > TZ_ABBR_MAX_LEN && |
| 319 strcmp(cp, GRANDPARENTED) != 0) |
| 320 *(cp + TZ_ABBR_MAX_LEN) = '\0'; |
| 321 } |
| 322 } |
| 323 |
| 324 static int |
| 325 differ_by_repeat(t1, t0) |
| 326 const time_t t1; |
| 327 const time_t t0; |
| 328 { |
| 329 if (TYPE_INTEGRAL(time_t) && |
| 330 TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) |
| 331 return 0; |
| 332 return t1 - t0 == SECSPERREPEAT; |
| 333 } |
| 334 |
| 335 static int |
| 336 tzload(name, sp, doextend) |
| 337 register const char * name; |
| 338 register struct state * const sp; |
| 339 register const int doextend; |
| 340 { |
| 341 register const char * p; |
| 342 register int i; |
| 343 register int fid; |
| 344 register int stored; |
| 345 register int nread; |
| 346 union { |
| 347 struct tzhead tzhead; |
| 348 char buf[2 * sizeof(struct tzhead) + |
| 349 2 * sizeof *sp + |
| 350 4 * TZ_MAX_TIMES]; |
| 351 } u; |
| 352 |
| 353 if (name == NULL && (name = TZDEFAULT) == NULL) |
| 354 return -1; |
| 355 { |
| 356 register int doaccess; |
| 357 /* |
| 358 ** Section 4.9.1 of the C standard says that |
| 359 ** "FILENAME_MAX expands to an integral constant expression |
| 360 ** that is the size needed for an array of char large enough |
| 361 ** to hold the longest file name string that the implementation |
| 362 ** guarantees can be opened." |
| 363 */ |
| 364 char fullname[FILENAME_MAX + 1]; |
| 365 |
| 366 if (name[0] == ':') |
| 367 ++name; |
| 368 doaccess = name[0] == '/'; |
| 369 if (!doaccess) { |
| 370 if ((p = TZDIR) == NULL) |
| 371 return -1; |
| 372 if ((strlen(p) + strlen(name) + 1) >= sizeof fullname) |
| 373 return -1; |
| 374 (void) strcpy(fullname, p); |
| 375 (void) strcat(fullname, "/"); |
| 376 (void) strcat(fullname, name); |
| 377 /* |
| 378 ** Set doaccess if '.' (as in "../") shows up in name. |
| 379 */ |
| 380 if (strchr(name, '.') != NULL) |
| 381 doaccess = TRUE; |
| 382 name = fullname; |
| 383 } |
| 384 if (doaccess && access(name, R_OK) != 0) |
| 385 return -1; |
| 386 if ((fid = open(name, OPEN_MODE)) == -1) |
| 387 return -1; |
| 388 } |
| 389 nread = read(fid, u.buf, sizeof u.buf); |
| 390 if (close(fid) < 0 || nread <= 0) |
| 391 return -1; |
| 392 for (stored = 4; stored <= 8; stored *= 2) { |
| 393 int ttisstdcnt; |
| 394 int ttisgmtcnt; |
| 395 |
| 396 ttisstdcnt = (int) detzcode(u.tzhead.tzh_ttisstdcnt); |
| 397 ttisgmtcnt = (int) detzcode(u.tzhead.tzh_ttisgmtcnt); |
| 398 sp->leapcnt = (int) detzcode(u.tzhead.tzh_leapcnt); |
| 399 sp->timecnt = (int) detzcode(u.tzhead.tzh_timecnt); |
| 400 sp->typecnt = (int) detzcode(u.tzhead.tzh_typecnt); |
| 401 sp->charcnt = (int) detzcode(u.tzhead.tzh_charcnt); |
| 402 p = u.tzhead.tzh_charcnt + sizeof u.tzhead.tzh_charcnt; |
| 403 if (sp->leapcnt < 0 || sp->leapcnt > TZ_MAX_LEAPS || |
| 404 sp->typecnt <= 0 || sp->typecnt > TZ_MAX_TYPES || |
| 405 sp->timecnt < 0 || sp->timecnt > TZ_MAX_TIMES || |
| 406 sp->charcnt < 0 || sp->charcnt > TZ_MAX_CHARS || |
| 407 (ttisstdcnt != sp->typecnt && ttisstdcnt != 0) || |
| 408 (ttisgmtcnt != sp->typecnt && ttisgmtcnt != 0)) |
| 409 return -1; |
| 410 if (nread - (p - u.buf) < |
| 411 sp->timecnt * stored + /* ats */ |
| 412 sp->timecnt + /* types */ |
| 413 sp->typecnt * 6 + /* ttinfos */ |
| 414 sp->charcnt + /* chars */ |
| 415 sp->leapcnt * (stored + 4) + /* lsinfos */ |
| 416 ttisstdcnt + /* ttisstds */ |
| 417 ttisgmtcnt) /* ttisgmts */ |
| 418 return -1; |
| 419 for (i = 0; i < sp->timecnt; ++i) { |
| 420 sp->ats[i] = (stored == 4) ? |
| 421 detzcode(p) : detzcode64(p); |
| 422 p += stored; |
| 423 } |
| 424 for (i = 0; i < sp->timecnt; ++i) { |
| 425 sp->types[i] = (unsigned char) *p++; |
| 426 if (sp->types[i] >= sp->typecnt) |
| 427 return -1; |
| 428 } |
| 429 for (i = 0; i < sp->typecnt; ++i) { |
| 430 register struct ttinfo * ttisp; |
| 431 |
| 432 ttisp = &sp->ttis[i]; |
| 433 ttisp->tt_gmtoff = detzcode(p); |
| 434 p += 4; |
| 435 ttisp->tt_isdst = (unsigned char) *p++; |
| 436 if (ttisp->tt_isdst != 0 && ttisp->tt_isdst != 1) |
| 437 return -1; |
| 438 ttisp->tt_abbrind = (unsigned char) *p++; |
| 439 if (ttisp->tt_abbrind < 0 || |
| 440 ttisp->tt_abbrind > sp->charcnt) |
| 441 return -1; |
| 442 } |
| 443 for (i = 0; i < sp->charcnt; ++i) |
| 444 sp->chars[i] = *p++; |
| 445 sp->chars[i] = '\0'; /* ensure '\0' at end */ |
| 446 for (i = 0; i < sp->leapcnt; ++i) { |
| 447 register struct lsinfo * lsisp; |
| 448 |
| 449 lsisp = &sp->lsis[i]; |
| 450 lsisp->ls_trans = (stored == 4) ? |
| 451 detzcode(p) : detzcode64(p); |
| 452 p += stored; |
| 453 lsisp->ls_corr = detzcode(p); |
| 454 p += 4; |
| 455 } |
| 456 for (i = 0; i < sp->typecnt; ++i) { |
| 457 register struct ttinfo * ttisp; |
| 458 |
| 459 ttisp = &sp->ttis[i]; |
| 460 if (ttisstdcnt == 0) |
| 461 ttisp->tt_ttisstd = FALSE; |
| 462 else { |
| 463 ttisp->tt_ttisstd = *p++; |
| 464 if (ttisp->tt_ttisstd != TRUE && |
| 465 ttisp->tt_ttisstd != FALSE) |
| 466 return -1; |
| 467 } |
| 468 } |
| 469 for (i = 0; i < sp->typecnt; ++i) { |
| 470 register struct ttinfo * ttisp; |
| 471 |
| 472 ttisp = &sp->ttis[i]; |
| 473 if (ttisgmtcnt == 0) |
| 474 ttisp->tt_ttisgmt = FALSE; |
| 475 else { |
| 476 ttisp->tt_ttisgmt = *p++; |
| 477 if (ttisp->tt_ttisgmt != TRUE && |
| 478 ttisp->tt_ttisgmt != FALSE) |
| 479 return -1; |
| 480 } |
| 481 } |
| 482 /* |
| 483 ** Out-of-sort ats should mean we're running on a |
| 484 ** signed time_t system but using a data file with |
| 485 ** unsigned values (or vice versa). |
| 486 */ |
| 487 for (i = 0; i < sp->timecnt - 2; ++i) |
| 488 if (sp->ats[i] > sp->ats[i + 1]) { |
| 489 ++i; |
| 490 if (TYPE_SIGNED(time_t)) { |
| 491 /* |
| 492 ** Ignore the end (easy). |
| 493 */ |
| 494 sp->timecnt = i; |
| 495 } else { |
| 496 /* |
| 497 ** Ignore the beginning (harder). |
| 498 */ |
| 499 register int j; |
| 500 |
| 501 for (j = 0; j + i < sp->timecnt; ++j) { |
| 502 sp->ats[j] = sp->ats[j + i]; |
| 503 sp->types[j] = sp->types[j + i]; |
| 504 } |
| 505 sp->timecnt = j; |
| 506 } |
| 507 break; |
| 508 } |
| 509 /* |
| 510 ** If this is an old file, we're done. |
| 511 */ |
| 512 if (u.tzhead.tzh_version[0] == '\0') |
| 513 break; |
| 514 nread -= p - u.buf; |
| 515 for (i = 0; i < nread; ++i) |
| 516 u.buf[i] = p[i]; |
| 517 /* |
| 518 ** If this is a narrow integer time_t system, we're done. |
| 519 */ |
| 520 if (stored >= (int) sizeof(time_t) && TYPE_INTEGRAL(time_t)) |
| 521 break; |
| 522 } |
| 523 if (doextend && nread > 2 && |
| 524 u.buf[0] == '\n' && u.buf[nread - 1] == '\n' && |
| 525 sp->typecnt + 2 <= TZ_MAX_TYPES) { |
| 526 struct state ts; |
| 527 register int result; |
| 528 |
| 529 u.buf[nread - 1] = '\0'; |
| 530 result = tzparse(&u.buf[1], &ts, FALSE); |
| 531 if (result == 0 && ts.typecnt == 2 && |
| 532 sp->charcnt + ts.charcnt <= TZ_MAX_CHARS) { |
| 533 for (i = 0; i < 2; ++i) |
| 534 ts.ttis[i].tt_abbrind += |
| 535 sp->charcnt; |
| 536 for (i = 0; i < ts.charcnt; ++i) |
| 537 sp->chars[sp->charcnt++] = |
| 538 ts.chars[i]; |
| 539 i = 0; |
| 540 while (i < ts.timecnt && |
| 541 ts.ats[i] <= |
| 542 sp->ats[sp->timecnt - 1]) |
| 543 ++i; |
| 544 while (i < ts.timecnt && |
| 545 sp->timecnt < TZ_MAX_TIMES) { |
| 546 sp->ats[sp->timecnt] = |
| 547 ts.ats[i]; |
| 548 sp->types[sp->timecnt] = |
| 549 sp->typecnt + |
| 550 ts.types[i]; |
| 551 ++sp->timecnt; |
| 552 ++i; |
| 553 } |
| 554 sp->ttis[sp->typecnt++] = ts.ttis[0]; |
| 555 sp->ttis[sp->typecnt++] = ts.ttis[1]; |
| 556 } |
| 557 } |
| 558 sp->goback = sp->goahead = FALSE; |
| 559 if (sp->timecnt > 1) { |
| 560 for (i = 1; i < sp->timecnt; ++i) |
| 561 if (typesequiv(sp, sp->types[i], sp->types[0]) && |
| 562 differ_by_repeat(sp->ats[i], sp->ats[0])) { |
| 563 sp->goback = TRUE; |
| 564 break; |
| 565 } |
| 566 for (i = sp->timecnt - 2; i >= 0; --i) |
| 567 if (typesequiv(sp, sp->types[sp->timecnt - 1], |
| 568 sp->types[i]) && |
| 569 differ_by_repeat(sp->ats[sp->timecnt - 1], |
| 570 sp->ats[i])) { |
| 571 sp->goahead = TRUE; |
| 572 break; |
| 573 } |
| 574 } |
| 575 return 0; |
| 576 } |
| 577 |
| 578 static int |
| 579 typesequiv(sp, a, b) |
| 580 const struct state * const sp; |
| 581 const int a; |
| 582 const int b; |
| 583 { |
| 584 register int result; |
| 585 |
| 586 if (sp == NULL || |
| 587 a < 0 || a >= sp->typecnt || |
| 588 b < 0 || b >= sp->typecnt) |
| 589 result = FALSE; |
| 590 else { |
| 591 register const struct ttinfo * ap = &sp->ttis[a]; |
| 592 register const struct ttinfo * bp = &sp->ttis[b]; |
| 593 result = ap->tt_gmtoff == bp->tt_gmtoff && |
| 594 ap->tt_isdst == bp->tt_isdst && |
| 595 ap->tt_ttisstd == bp->tt_ttisstd && |
| 596 ap->tt_ttisgmt == bp->tt_ttisgmt && |
| 597 strcmp(&sp->chars[ap->tt_abbrind], |
| 598 &sp->chars[bp->tt_abbrind]) == 0; |
| 599 } |
| 600 return result; |
| 601 } |
| 602 |
| 603 static const int mon_lengths[2][MONSPERYEAR] = { |
| 604 { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, |
| 605 { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } |
| 606 }; |
| 607 |
| 608 static const int year_lengths[2] = { |
| 609 DAYSPERNYEAR, DAYSPERLYEAR |
| 610 }; |
| 611 |
| 612 /* |
| 613 ** Given a pointer into a time zone string, scan until a character that is not |
| 614 ** a valid character in a zone name is found. Return a pointer to that |
| 615 ** character. |
| 616 */ |
| 617 |
| 618 static const char * |
| 619 getzname(strp) |
| 620 register const char * strp; |
| 621 { |
| 622 register char c; |
| 623 |
| 624 while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && |
| 625 c != '+') |
| 626 ++strp; |
| 627 return strp; |
| 628 } |
| 629 |
| 630 /* |
| 631 ** Given a pointer into an extended time zone string, scan until the ending |
| 632 ** delimiter of the zone name is located. Return a pointer to the delimiter. |
| 633 ** |
| 634 ** As with getzname above, the legal character set is actually quite |
| 635 ** restricted, with other characters producing undefined results. |
| 636 ** We don't do any checking here; checking is done later in common-case code. |
| 637 */ |
| 638 |
| 639 static const char * |
| 640 getqzname(register const char *strp, const int delim) |
| 641 { |
| 642 register int c; |
| 643 |
| 644 while ((c = *strp) != '\0' && c != delim) |
| 645 ++strp; |
| 646 return strp; |
| 647 } |
| 648 |
| 649 /* |
| 650 ** Given a pointer into a time zone string, extract a number from that string. |
| 651 ** Check that the number is within a specified range; if it is not, return |
| 652 ** NULL. |
| 653 ** Otherwise, return a pointer to the first character not part of the number. |
| 654 */ |
| 655 |
| 656 static const char * |
| 657 getnum(strp, nump, min, max) |
| 658 register const char * strp; |
| 659 int * const nump; |
| 660 const int min; |
| 661 const int max; |
| 662 { |
| 663 register char c; |
| 664 register int num; |
| 665 |
| 666 if (strp == NULL || !is_digit(c = *strp)) |
| 667 return NULL; |
| 668 num = 0; |
| 669 do { |
| 670 num = num * 10 + (c - '0'); |
| 671 if (num > max) |
| 672 return NULL; /* illegal value */ |
| 673 c = *++strp; |
| 674 } while (is_digit(c)); |
| 675 if (num < min) |
| 676 return NULL; /* illegal value */ |
| 677 *nump = num; |
| 678 return strp; |
| 679 } |
| 680 |
| 681 /* |
| 682 ** Given a pointer into a time zone string, extract a number of seconds, |
| 683 ** in hh[:mm[:ss]] form, from the string. |
| 684 ** If any error occurs, return NULL. |
| 685 ** Otherwise, return a pointer to the first character not part of the number |
| 686 ** of seconds. |
| 687 */ |
| 688 |
| 689 static const char * |
| 690 getsecs(strp, secsp) |
| 691 register const char * strp; |
| 692 long * const secsp; |
| 693 { |
| 694 int num; |
| 695 |
| 696 /* |
| 697 ** `HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like |
| 698 ** "M10.4.6/26", which does not conform to Posix, |
| 699 ** but which specifies the equivalent of |
| 700 ** ``02:00 on the first Sunday on or after 23 Oct''. |
| 701 */ |
| 702 strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); |
| 703 if (strp == NULL) |
| 704 return NULL; |
| 705 *secsp = num * (long) SECSPERHOUR; |
| 706 if (*strp == ':') { |
| 707 ++strp; |
| 708 strp = getnum(strp, &num, 0, MINSPERHOUR - 1); |
| 709 if (strp == NULL) |
| 710 return NULL; |
| 711 *secsp += num * SECSPERMIN; |
| 712 if (*strp == ':') { |
| 713 ++strp; |
| 714 /* `SECSPERMIN' allows for leap seconds. */ |
| 715 strp = getnum(strp, &num, 0, SECSPERMIN); |
| 716 if (strp == NULL) |
| 717 return NULL; |
| 718 *secsp += num; |
| 719 } |
| 720 } |
| 721 return strp; |
| 722 } |
| 723 |
| 724 /* |
| 725 ** Given a pointer into a time zone string, extract an offset, in |
| 726 ** [+-]hh[:mm[:ss]] form, from the string. |
| 727 ** If any error occurs, return NULL. |
| 728 ** Otherwise, return a pointer to the first character not part of the time. |
| 729 */ |
| 730 |
| 731 static const char * |
| 732 getoffset(strp, offsetp) |
| 733 register const char * strp; |
| 734 long * const offsetp; |
| 735 { |
| 736 register int neg = 0; |
| 737 |
| 738 if (*strp == '-') { |
| 739 neg = 1; |
| 740 ++strp; |
| 741 } else if (*strp == '+') |
| 742 ++strp; |
| 743 strp = getsecs(strp, offsetp); |
| 744 if (strp == NULL) |
| 745 return NULL; /* illegal time */ |
| 746 if (neg) |
| 747 *offsetp = -*offsetp; |
| 748 return strp; |
| 749 } |
| 750 |
| 751 /* |
| 752 ** Given a pointer into a time zone string, extract a rule in the form |
| 753 ** date[/time]. See POSIX section 8 for the format of "date" and "time". |
| 754 ** If a valid rule is not found, return NULL. |
| 755 ** Otherwise, return a pointer to the first character not part of the rule. |
| 756 */ |
| 757 |
| 758 static const char * |
| 759 getrule(strp, rulep) |
| 760 const char * strp; |
| 761 register struct rule * const rulep; |
| 762 { |
| 763 if (*strp == 'J') { |
| 764 /* |
| 765 ** Julian day. |
| 766 */ |
| 767 rulep->r_type = JULIAN_DAY; |
| 768 ++strp; |
| 769 strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); |
| 770 } else if (*strp == 'M') { |
| 771 /* |
| 772 ** Month, week, day. |
| 773 */ |
| 774 rulep->r_type = MONTH_NTH_DAY_OF_WEEK; |
| 775 ++strp; |
| 776 strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); |
| 777 if (strp == NULL) |
| 778 return NULL; |
| 779 if (*strp++ != '.') |
| 780 return NULL; |
| 781 strp = getnum(strp, &rulep->r_week, 1, 5); |
| 782 if (strp == NULL) |
| 783 return NULL; |
| 784 if (*strp++ != '.') |
| 785 return NULL; |
| 786 strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); |
| 787 } else if (is_digit(*strp)) { |
| 788 /* |
| 789 ** Day of year. |
| 790 */ |
| 791 rulep->r_type = DAY_OF_YEAR; |
| 792 strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); |
| 793 } else return NULL; /* invalid format */ |
| 794 if (strp == NULL) |
| 795 return NULL; |
| 796 if (*strp == '/') { |
| 797 /* |
| 798 ** Time specified. |
| 799 */ |
| 800 ++strp; |
| 801 strp = getsecs(strp, &rulep->r_time); |
| 802 } else rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */ |
| 803 return strp; |
| 804 } |
| 805 |
| 806 /* |
| 807 ** Given the Epoch-relative time of January 1, 00:00:00 UTC, in a year, the |
| 808 ** year, a rule, and the offset from UTC at the time that rule takes effect, |
| 809 ** calculate the Epoch-relative time that rule takes effect. |
| 810 */ |
| 811 |
| 812 static time_t |
| 813 transtime(janfirst, year, rulep, offset) |
| 814 const time_t janfirst; |
| 815 const int year; |
| 816 register const struct rule * const rulep; |
| 817 const long offset; |
| 818 { |
| 819 register int leapyear; |
| 820 register time_t value; |
| 821 register int i; |
| 822 int d, m1, yy0, yy1, yy2, dow; |
| 823 |
| 824 INITIALIZE(value); |
| 825 leapyear = isleap(year); |
| 826 switch (rulep->r_type) { |
| 827 |
| 828 case JULIAN_DAY: |
| 829 /* |
| 830 ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap |
| 831 ** years. |
| 832 ** In non-leap years, or if the day number is 59 or less, just |
| 833 ** add SECSPERDAY times the day number-1 to the time of |
| 834 ** January 1, midnight, to get the day. |
| 835 */ |
| 836 value = janfirst + (rulep->r_day - 1) * SECSPERDAY; |
| 837 if (leapyear && rulep->r_day >= 60) |
| 838 value += SECSPERDAY; |
| 839 break; |
| 840 |
| 841 case DAY_OF_YEAR: |
| 842 /* |
| 843 ** n - day of year. |
| 844 ** Just add SECSPERDAY times the day number to the time of |
| 845 ** January 1, midnight, to get the day. |
| 846 */ |
| 847 value = janfirst + rulep->r_day * SECSPERDAY; |
| 848 break; |
| 849 |
| 850 case MONTH_NTH_DAY_OF_WEEK: |
| 851 /* |
| 852 ** Mm.n.d - nth "dth day" of month m. |
| 853 */ |
| 854 value = janfirst; |
| 855 for (i = 0; i < rulep->r_mon - 1; ++i) |
| 856 value += mon_lengths[leapyear][i] * SECSPERDAY; |
| 857 |
| 858 /* |
| 859 ** Use Zeller's Congruence to get day-of-week of first day of |
| 860 ** month. |
| 861 */ |
| 862 m1 = (rulep->r_mon + 9) % 12 + 1; |
| 863 yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; |
| 864 yy1 = yy0 / 100; |
| 865 yy2 = yy0 % 100; |
| 866 dow = ((26 * m1 - 2) / 10 + |
| 867 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; |
| 868 if (dow < 0) |
| 869 dow += DAYSPERWEEK; |
| 870 |
| 871 /* |
| 872 ** "dow" is the day-of-week of the first day of the month. Get |
| 873 ** the day-of-month (zero-origin) of the first "dow" day of the |
| 874 ** month. |
| 875 */ |
| 876 d = rulep->r_day - dow; |
| 877 if (d < 0) |
| 878 d += DAYSPERWEEK; |
| 879 for (i = 1; i < rulep->r_week; ++i) { |
| 880 if (d + DAYSPERWEEK >= |
| 881 mon_lengths[leapyear][rulep->r_mon - 1]) |
| 882 break; |
| 883 d += DAYSPERWEEK; |
| 884 } |
| 885 |
| 886 /* |
| 887 ** "d" is the day-of-month (zero-origin) of the day we want. |
| 888 */ |
| 889 value += d * SECSPERDAY; |
| 890 break; |
| 891 } |
| 892 |
| 893 /* |
| 894 ** "value" is the Epoch-relative time of 00:00:00 UTC on the day in |
| 895 ** question. To get the Epoch-relative time of the specified local |
| 896 ** time on that day, add the transition time and the current offset |
| 897 ** from UTC. |
| 898 */ |
| 899 return value + rulep->r_time + offset; |
| 900 } |
| 901 |
| 902 /* |
| 903 ** Given a POSIX section 8-style TZ string, fill in the rule tables as |
| 904 ** appropriate. |
| 905 */ |
| 906 |
| 907 static int |
| 908 tzparse(name, sp, lastditch) |
| 909 const char * name; |
| 910 register struct state * const sp; |
| 911 const int lastditch; |
| 912 { |
| 913 const char * stdname; |
| 914 const char * dstname; |
| 915 size_t stdlen; |
| 916 size_t dstlen; |
| 917 long stdoffset; |
| 918 long dstoffset; |
| 919 register time_t * atp; |
| 920 register unsigned char * typep; |
| 921 register char * cp; |
| 922 register int load_result; |
| 923 |
| 924 INITIALIZE(dstname); |
| 925 stdname = name; |
| 926 if (lastditch) { |
| 927 stdlen = strlen(name); /* length of standard zone name */ |
| 928 name += stdlen; |
| 929 if (stdlen >= sizeof sp->chars) |
| 930 stdlen = (sizeof sp->chars) - 1; |
| 931 stdoffset = 0; |
| 932 } else { |
| 933 if (*name == '<') { |
| 934 name++; |
| 935 stdname = name; |
| 936 name = getqzname(name, '>'); |
| 937 if (*name != '>') |
| 938 return (-1); |
| 939 stdlen = name - stdname; |
| 940 name++; |
| 941 } else { |
| 942 name = getzname(name); |
| 943 stdlen = name - stdname; |
| 944 } |
| 945 if (*name == '\0') |
| 946 return -1; |
| 947 name = getoffset(name, &stdoffset); |
| 948 if (name == NULL) |
| 949 return -1; |
| 950 } |
| 951 load_result = tzload(TZDEFRULES, sp, FALSE); |
| 952 if (load_result != 0) |
| 953 sp->leapcnt = 0; /* so, we're off a little */ |
| 954 if (*name != '\0') { |
| 955 if (*name == '<') { |
| 956 dstname = ++name; |
| 957 name = getqzname(name, '>'); |
| 958 if (*name != '>') |
| 959 return -1; |
| 960 dstlen = name - dstname; |
| 961 name++; |
| 962 } else { |
| 963 dstname = name; |
| 964 name = getzname(name); |
| 965 dstlen = name - dstname; /* length of DST zone name */ |
| 966 } |
| 967 if (*name != '\0' && *name != ',' && *name != ';') { |
| 968 name = getoffset(name, &dstoffset); |
| 969 if (name == NULL) |
| 970 return -1; |
| 971 } else dstoffset = stdoffset - SECSPERHOUR; |
| 972 if (*name == '\0' && load_result != 0) |
| 973 name = TZDEFRULESTRING; |
| 974 if (*name == ',' || *name == ';') { |
| 975 struct rule start; |
| 976 struct rule end; |
| 977 register int year; |
| 978 register time_t janfirst; |
| 979 time_t starttime; |
| 980 time_t endtime; |
| 981 |
| 982 ++name; |
| 983 if ((name = getrule(name, &start)) == NULL) |
| 984 return -1; |
| 985 if (*name++ != ',') |
| 986 return -1; |
| 987 if ((name = getrule(name, &end)) == NULL) |
| 988 return -1; |
| 989 if (*name != '\0') |
| 990 return -1; |
| 991 sp->typecnt = 2; /* standard time and DST */ |
| 992 /* |
| 993 ** Two transitions per year, from EPOCH_YEAR forward. |
| 994 */ |
| 995 sp->ttis[0].tt_gmtoff = -dstoffset; |
| 996 sp->ttis[0].tt_isdst = 1; |
| 997 sp->ttis[0].tt_abbrind = stdlen + 1; |
| 998 sp->ttis[1].tt_gmtoff = -stdoffset; |
| 999 sp->ttis[1].tt_isdst = 0; |
| 1000 sp->ttis[1].tt_abbrind = 0; |
| 1001 atp = sp->ats; |
| 1002 typep = sp->types; |
| 1003 janfirst = 0; |
| 1004 sp->timecnt = 0; |
| 1005 for (year = EPOCH_YEAR; |
| 1006 sp->timecnt + 2 <= TZ_MAX_TIMES; |
| 1007 ++year) { |
| 1008 time_t newfirst; |
| 1009 |
| 1010 starttime = transtime(janfirst, year, &start, |
| 1011 stdoffset); |
| 1012 endtime = transtime(janfirst, year, &end, |
| 1013 dstoffset); |
| 1014 if (starttime > endtime) { |
| 1015 *atp++ = endtime; |
| 1016 *typep++ = 1; /* DST ends */ |
| 1017 *atp++ = starttime; |
| 1018 *typep++ = 0; /* DST begins */ |
| 1019 } else { |
| 1020 *atp++ = starttime; |
| 1021 *typep++ = 0; /* DST begins */ |
| 1022 *atp++ = endtime; |
| 1023 *typep++ = 1; /* DST ends */ |
| 1024 } |
| 1025 sp->timecnt += 2; |
| 1026 newfirst = janfirst; |
| 1027 newfirst += year_lengths[isleap(year)] * |
| 1028 SECSPERDAY; |
| 1029 if (newfirst <= janfirst) |
| 1030 break; |
| 1031 janfirst = newfirst; |
| 1032 } |
| 1033 } else { |
| 1034 register long theirstdoffset; |
| 1035 register long theirdstoffset; |
| 1036 register long theiroffset; |
| 1037 register int isdst; |
| 1038 register int i; |
| 1039 register int j; |
| 1040 |
| 1041 if (*name != '\0') |
| 1042 return -1; |
| 1043 /* |
| 1044 ** Initial values of theirstdoffset and theirdstoffset. |
| 1045 */ |
| 1046 theirstdoffset = 0; |
| 1047 for (i = 0; i < sp->timecnt; ++i) { |
| 1048 j = sp->types[i]; |
| 1049 if (!sp->ttis[j].tt_isdst) { |
| 1050 theirstdoffset = |
| 1051 -sp->ttis[j].tt_gmtoff; |
| 1052 break; |
| 1053 } |
| 1054 } |
| 1055 theirdstoffset = 0; |
| 1056 for (i = 0; i < sp->timecnt; ++i) { |
| 1057 j = sp->types[i]; |
| 1058 if (sp->ttis[j].tt_isdst) { |
| 1059 theirdstoffset = |
| 1060 -sp->ttis[j].tt_gmtoff; |
| 1061 break; |
| 1062 } |
| 1063 } |
| 1064 /* |
| 1065 ** Initially we're assumed to be in standard time. |
| 1066 */ |
| 1067 isdst = FALSE; |
| 1068 theiroffset = theirstdoffset; |
| 1069 /* |
| 1070 ** Now juggle transition times and types |
| 1071 ** tracking offsets as you do. |
| 1072 */ |
| 1073 for (i = 0; i < sp->timecnt; ++i) { |
| 1074 j = sp->types[i]; |
| 1075 sp->types[i] = sp->ttis[j].tt_isdst; |
| 1076 if (sp->ttis[j].tt_ttisgmt) { |
| 1077 /* No adjustment to transition time */ |
| 1078 } else { |
| 1079 /* |
| 1080 ** If summer time is in effect, and the |
| 1081 ** transition time was not specified as |
| 1082 ** standard time, add the summer time |
| 1083 ** offset to the transition time; |
| 1084 ** otherwise, add the standard time |
| 1085 ** offset to the transition time. |
| 1086 */ |
| 1087 /* |
| 1088 ** Transitions from DST to DDST |
| 1089 ** will effectively disappear since |
| 1090 ** POSIX provides for only one DST |
| 1091 ** offset. |
| 1092 */ |
| 1093 if (isdst && !sp->ttis[j].tt_ttisstd) { |
| 1094 sp->ats[i] += dstoffset - |
| 1095 theirdstoffset; |
| 1096 } else { |
| 1097 sp->ats[i] += stdoffset - |
| 1098 theirstdoffset; |
| 1099 } |
| 1100 } |
| 1101 theiroffset = -sp->ttis[j].tt_gmtoff; |
| 1102 if (sp->ttis[j].tt_isdst) |
| 1103 theirdstoffset = theiroffset; |
| 1104 else theirstdoffset = theiroffset; |
| 1105 } |
| 1106 /* |
| 1107 ** Finally, fill in ttis. |
| 1108 ** ttisstd and ttisgmt need not be handled. |
| 1109 */ |
| 1110 sp->ttis[0].tt_gmtoff = -stdoffset; |
| 1111 sp->ttis[0].tt_isdst = FALSE; |
| 1112 sp->ttis[0].tt_abbrind = 0; |
| 1113 sp->ttis[1].tt_gmtoff = -dstoffset; |
| 1114 sp->ttis[1].tt_isdst = TRUE; |
| 1115 sp->ttis[1].tt_abbrind = stdlen + 1; |
| 1116 sp->typecnt = 2; |
| 1117 } |
| 1118 } else { |
| 1119 dstlen = 0; |
| 1120 sp->typecnt = 1; /* only standard time */ |
| 1121 sp->timecnt = 0; |
| 1122 sp->ttis[0].tt_gmtoff = -stdoffset; |
| 1123 sp->ttis[0].tt_isdst = 0; |
| 1124 sp->ttis[0].tt_abbrind = 0; |
| 1125 } |
| 1126 sp->charcnt = stdlen + 1; |
| 1127 if (dstlen != 0) |
| 1128 sp->charcnt += dstlen + 1; |
| 1129 if ((size_t) sp->charcnt > sizeof sp->chars) |
| 1130 return -1; |
| 1131 cp = sp->chars; |
| 1132 (void) strncpy(cp, stdname, stdlen); |
| 1133 cp += stdlen; |
| 1134 *cp++ = '\0'; |
| 1135 if (dstlen != 0) { |
| 1136 (void) strncpy(cp, dstname, dstlen); |
| 1137 *(cp + dstlen) = '\0'; |
| 1138 } |
| 1139 return 0; |
| 1140 } |
| 1141 |
| 1142 static void |
| 1143 gmtload(sp) |
| 1144 struct state * const sp; |
| 1145 { |
| 1146 if (tzload(gmt, sp, TRUE) != 0) |
| 1147 (void) tzparse(gmt, sp, TRUE); |
| 1148 } |
| 1149 |
| 1150 #ifndef STD_INSPIRED |
| 1151 /* |
| 1152 ** A non-static declaration of tzsetwall in a system header file |
| 1153 ** may cause a warning about this upcoming static declaration... |
| 1154 */ |
| 1155 static |
| 1156 #endif /* !defined STD_INSPIRED */ |
| 1157 void |
| 1158 tzsetwall(void) |
| 1159 { |
| 1160 if (lcl_is_set < 0) |
| 1161 return; |
| 1162 lcl_is_set = -1; |
| 1163 |
| 1164 #ifdef ALL_STATE |
| 1165 if (lclptr == NULL) { |
| 1166 lclptr = (struct state *) malloc(sizeof *lclptr); |
| 1167 if (lclptr == NULL) { |
| 1168 settzname(); /* all we can do */ |
| 1169 return; |
| 1170 } |
| 1171 } |
| 1172 #endif /* defined ALL_STATE */ |
| 1173 if (tzload((char *) NULL, lclptr, TRUE) != 0) |
| 1174 gmtload(lclptr); |
| 1175 settzname(); |
| 1176 } |
| 1177 |
| 1178 void |
| 1179 tzset(void) |
| 1180 { |
| 1181 register const char * name; |
| 1182 |
| 1183 name = getenv("TZ"); |
| 1184 if (name == NULL) { |
| 1185 tzsetwall(); |
| 1186 return; |
| 1187 } |
| 1188 |
| 1189 if (lcl_is_set > 0 && strcmp(lcl_TZname, name) == 0) |
| 1190 return; |
| 1191 lcl_is_set = strlen(name) < sizeof lcl_TZname; |
| 1192 if (lcl_is_set) |
| 1193 (void) strcpy(lcl_TZname, name); |
| 1194 |
| 1195 #ifdef ALL_STATE |
| 1196 if (lclptr == NULL) { |
| 1197 lclptr = (struct state *) malloc(sizeof *lclptr); |
| 1198 if (lclptr == NULL) { |
| 1199 settzname(); /* all we can do */ |
| 1200 return; |
| 1201 } |
| 1202 } |
| 1203 #endif /* defined ALL_STATE */ |
| 1204 if (*name == '\0') { |
| 1205 /* |
| 1206 ** User wants it fast rather than right. |
| 1207 */ |
| 1208 lclptr->leapcnt = 0; /* so, we're off a little */ |
| 1209 lclptr->timecnt = 0; |
| 1210 lclptr->typecnt = 0; |
| 1211 lclptr->ttis[0].tt_isdst = 0; |
| 1212 lclptr->ttis[0].tt_gmtoff = 0; |
| 1213 lclptr->ttis[0].tt_abbrind = 0; |
| 1214 (void) strcpy(lclptr->chars, gmt); |
| 1215 } else if (tzload(name, lclptr, TRUE) != 0) |
| 1216 if (name[0] == ':' || tzparse(name, lclptr, FALSE) != 0) |
| 1217 (void) gmtload(lclptr); |
| 1218 settzname(); |
| 1219 } |
| 1220 |
| 1221 /* |
| 1222 ** The easy way to behave "as if no library function calls" localtime |
| 1223 ** is to not call it--so we drop its guts into "localsub", which can be |
| 1224 ** freely called. (And no, the PANS doesn't require the above behavior-- |
| 1225 ** but it *is* desirable.) |
| 1226 ** |
| 1227 ** The unused offset argument is for the benefit of mktime variants. |
| 1228 */ |
| 1229 |
| 1230 /*ARGSUSED*/ |
| 1231 static struct tm * |
| 1232 localsub(timep, offset, tmp) |
| 1233 const time_t * const timep; |
| 1234 const long offset; |
| 1235 struct tm * const tmp; |
| 1236 { |
| 1237 register struct state * sp; |
| 1238 register const struct ttinfo * ttisp; |
| 1239 register int i; |
| 1240 register struct tm * result; |
| 1241 const time_t t = *timep; |
| 1242 |
| 1243 sp = lclptr; |
| 1244 #ifdef ALL_STATE |
| 1245 if (sp == NULL) |
| 1246 return gmtsub(timep, offset, tmp); |
| 1247 #endif /* defined ALL_STATE */ |
| 1248 if ((sp->goback && t < sp->ats[0]) || |
| 1249 (sp->goahead && t > sp->ats[sp->timecnt - 1])) { |
| 1250 time_t newt = t; |
| 1251 register time_t seconds; |
| 1252 register time_t tcycles; |
| 1253 register int_fast64_t icycles; |
| 1254 |
| 1255 if (t < sp->ats[0]) |
| 1256 seconds = sp->ats[0] - t; |
| 1257 else seconds = t - sp->ats[sp->timecnt - 1]; |
| 1258 --seconds; |
| 1259 tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR; |
| 1260 ++tcycles; |
| 1261 icycles = tcycles; |
| 1262 if (tcycles - icycles >= 1 || icycles - tcycles >= 1) |
| 1263 return NULL; |
| 1264 seconds = icycles; |
| 1265 seconds *= YEARSPERREPEAT; |
| 1266 seconds *= AVGSECSPERYEAR; |
| 1267 if (t < sp->ats[0]) |
| 1268 newt += seconds; |
| 1269 else newt -= seconds; |
| 1270 if (newt < sp->ats[0] || |
| 1271 newt > sp->ats[sp->timecnt - 1]) |
| 1272 return NULL; /* "cannot happen" */ |
| 1273 result = localsub(&newt, offset, tmp); |
| 1274 if (result == tmp) { |
| 1275 register time_t newy; |
| 1276 |
| 1277 newy = tmp->tm_year; |
| 1278 if (t < sp->ats[0]) |
| 1279 newy -= icycles * YEARSPERREPEAT; |
| 1280 else newy += icycles * YEARSPERREPEAT; |
| 1281 tmp->tm_year = newy; |
| 1282 if (tmp->tm_year != newy) |
| 1283 return NULL; |
| 1284 } |
| 1285 return result; |
| 1286 } |
| 1287 if (sp->timecnt == 0 || t < sp->ats[0]) { |
| 1288 i = 0; |
| 1289 while (sp->ttis[i].tt_isdst) |
| 1290 if (++i >= sp->typecnt) { |
| 1291 i = 0; |
| 1292 break; |
| 1293 } |
| 1294 } else { |
| 1295 register int lo = 1; |
| 1296 register int hi = sp->timecnt; |
| 1297 |
| 1298 while (lo < hi) { |
| 1299 register int mid = (lo + hi) >> 1; |
| 1300 |
| 1301 if (t < sp->ats[mid]) |
| 1302 hi = mid; |
| 1303 else lo = mid + 1; |
| 1304 } |
| 1305 i = (int) sp->types[lo - 1]; |
| 1306 } |
| 1307 ttisp = &sp->ttis[i]; |
| 1308 /* |
| 1309 ** To get (wrong) behavior that's compatible with System V Release 2.0 |
| 1310 ** you'd replace the statement below with |
| 1311 ** t += ttisp->tt_gmtoff; |
| 1312 ** timesub(&t, 0L, sp, tmp); |
| 1313 */ |
| 1314 result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); |
| 1315 tmp->tm_isdst = ttisp->tt_isdst; |
| 1316 tzname[tmp->tm_isdst] = &sp->chars[ttisp->tt_abbrind]; |
| 1317 #ifdef TM_ZONE |
| 1318 tmp->TM_ZONE = &sp->chars[ttisp->tt_abbrind]; |
| 1319 #endif /* defined TM_ZONE */ |
| 1320 return result; |
| 1321 } |
| 1322 |
| 1323 struct tm * |
| 1324 localtime(timep) |
| 1325 const time_t * const timep; |
| 1326 { |
| 1327 tzset(); |
| 1328 return localsub(timep, 0L, &tm); |
| 1329 } |
| 1330 |
| 1331 /* |
| 1332 ** Re-entrant version of localtime. |
| 1333 */ |
| 1334 |
| 1335 struct tm * |
| 1336 localtime_r(timep, tmp) |
| 1337 const time_t * const timep; |
| 1338 struct tm * tmp; |
| 1339 { |
| 1340 return localsub(timep, 0L, tmp); |
| 1341 } |
| 1342 |
| 1343 /* |
| 1344 ** gmtsub is to gmtime as localsub is to localtime. |
| 1345 */ |
| 1346 |
| 1347 static struct tm * |
| 1348 gmtsub(timep, offset, tmp) |
| 1349 const time_t * const timep; |
| 1350 const long offset; |
| 1351 struct tm * const tmp; |
| 1352 { |
| 1353 register struct tm * result; |
| 1354 |
| 1355 if (!gmt_is_set) { |
| 1356 gmt_is_set = TRUE; |
| 1357 #ifdef ALL_STATE |
| 1358 gmtptr = (struct state *) malloc(sizeof *gmtptr); |
| 1359 if (gmtptr != NULL) |
| 1360 #endif /* defined ALL_STATE */ |
| 1361 gmtload(gmtptr); |
| 1362 } |
| 1363 result = timesub(timep, offset, gmtptr, tmp); |
| 1364 #ifdef TM_ZONE |
| 1365 /* |
| 1366 ** Could get fancy here and deliver something such as |
| 1367 ** "UTC+xxxx" or "UTC-xxxx" if offset is non-zero, |
| 1368 ** but this is no time for a treasure hunt. |
| 1369 */ |
| 1370 if (offset != 0) |
| 1371 tmp->TM_ZONE = wildabbr; |
| 1372 else { |
| 1373 #ifdef ALL_STATE |
| 1374 if (gmtptr == NULL) |
| 1375 tmp->TM_ZONE = gmt; |
| 1376 else tmp->TM_ZONE = gmtptr->chars; |
| 1377 #endif /* defined ALL_STATE */ |
| 1378 #ifndef ALL_STATE |
| 1379 tmp->TM_ZONE = gmtptr->chars; |
| 1380 #endif /* State Farm */ |
| 1381 } |
| 1382 #endif /* defined TM_ZONE */ |
| 1383 return result; |
| 1384 } |
| 1385 |
| 1386 struct tm * |
| 1387 gmtime(timep) |
| 1388 const time_t * const timep; |
| 1389 { |
| 1390 return gmtsub(timep, 0L, &tm); |
| 1391 } |
| 1392 |
| 1393 /* |
| 1394 * Re-entrant version of gmtime. |
| 1395 */ |
| 1396 |
| 1397 struct tm * |
| 1398 gmtime_r(timep, tmp) |
| 1399 const time_t * const timep; |
| 1400 struct tm * tmp; |
| 1401 { |
| 1402 return gmtsub(timep, 0L, tmp); |
| 1403 } |
| 1404 |
| 1405 #ifdef STD_INSPIRED |
| 1406 |
| 1407 struct tm * |
| 1408 offtime(timep, offset) |
| 1409 const time_t * const timep; |
| 1410 const long offset; |
| 1411 { |
| 1412 return gmtsub(timep, offset, &tm); |
| 1413 } |
| 1414 |
| 1415 #endif /* defined STD_INSPIRED */ |
| 1416 |
| 1417 /* |
| 1418 ** Return the number of leap years through the end of the given year |
| 1419 ** where, to make the math easy, the answer for year zero is defined as zero. |
| 1420 */ |
| 1421 |
| 1422 static int |
| 1423 leaps_thru_end_of(y) |
| 1424 register const int y; |
| 1425 { |
| 1426 return (y >= 0) ? (y / 4 - y / 100 + y / 400) : |
| 1427 -(leaps_thru_end_of(-(y + 1)) + 1); |
| 1428 } |
| 1429 |
| 1430 static struct tm * |
| 1431 timesub(timep, offset, sp, tmp) |
| 1432 const time_t * const timep; |
| 1433 const long offset; |
| 1434 register const struct state * const sp; |
| 1435 register struct tm * const tmp; |
| 1436 { |
| 1437 register const struct lsinfo * lp; |
| 1438 register time_t tdays; |
| 1439 register int idays; /* unsigned would be so 2003 */ |
| 1440 register long rem; |
| 1441 int y; |
| 1442 register const int * ip; |
| 1443 register long corr; |
| 1444 register int hit; |
| 1445 register int i; |
| 1446 |
| 1447 corr = 0; |
| 1448 hit = 0; |
| 1449 #ifdef ALL_STATE |
| 1450 i = (sp == NULL) ? 0 : sp->leapcnt; |
| 1451 #endif /* defined ALL_STATE */ |
| 1452 #ifndef ALL_STATE |
| 1453 i = sp->leapcnt; |
| 1454 #endif /* State Farm */ |
| 1455 while (--i >= 0) { |
| 1456 lp = &sp->lsis[i]; |
| 1457 if (*timep >= lp->ls_trans) { |
| 1458 if (*timep == lp->ls_trans) { |
| 1459 hit = ((i == 0 && lp->ls_corr > 0) || |
| 1460 lp->ls_corr > sp->lsis[i - 1].ls_corr); |
| 1461 if (hit) |
| 1462 while (i > 0 && |
| 1463 sp->lsis[i].ls_trans == |
| 1464 sp->lsis[i - 1].ls_trans + 1 && |
| 1465 sp->lsis[i].ls_corr == |
| 1466 sp->lsis[i - 1].ls_corr + 1) { |
| 1467 ++hit; |
| 1468 --i; |
| 1469 } |
| 1470 } |
| 1471 corr = lp->ls_corr; |
| 1472 break; |
| 1473 } |
| 1474 } |
| 1475 y = EPOCH_YEAR; |
| 1476 tdays = *timep / SECSPERDAY; |
| 1477 rem = *timep - tdays * SECSPERDAY; |
| 1478 while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { |
| 1479 int newy; |
| 1480 register time_t tdelta; |
| 1481 register int idelta; |
| 1482 register int leapdays; |
| 1483 |
| 1484 tdelta = tdays / DAYSPERLYEAR; |
| 1485 idelta = tdelta; |
| 1486 if (tdelta - idelta >= 1 || idelta - tdelta >= 1) |
| 1487 return NULL; |
| 1488 if (idelta == 0) |
| 1489 idelta = (tdays < 0) ? -1 : 1; |
| 1490 newy = y; |
| 1491 if (increment_overflow(&newy, idelta)) |
| 1492 return NULL; |
| 1493 leapdays = leaps_thru_end_of(newy - 1) - |
| 1494 leaps_thru_end_of(y - 1); |
| 1495 tdays -= ((time_t) newy - y) * DAYSPERNYEAR; |
| 1496 tdays -= leapdays; |
| 1497 y = newy; |
| 1498 } |
| 1499 { |
| 1500 register long seconds; |
| 1501 |
| 1502 seconds = tdays * SECSPERDAY + 0.5; |
| 1503 tdays = seconds / SECSPERDAY; |
| 1504 rem += seconds - tdays * SECSPERDAY; |
| 1505 } |
| 1506 /* |
| 1507 ** Given the range, we can now fearlessly cast... |
| 1508 */ |
| 1509 idays = tdays; |
| 1510 rem += offset - corr; |
| 1511 while (rem < 0) { |
| 1512 rem += SECSPERDAY; |
| 1513 --idays; |
| 1514 } |
| 1515 while (rem >= SECSPERDAY) { |
| 1516 rem -= SECSPERDAY; |
| 1517 ++idays; |
| 1518 } |
| 1519 while (idays < 0) { |
| 1520 if (increment_overflow(&y, -1)) |
| 1521 return NULL; |
| 1522 idays += year_lengths[isleap(y)]; |
| 1523 } |
| 1524 while (idays >= year_lengths[isleap(y)]) { |
| 1525 idays -= year_lengths[isleap(y)]; |
| 1526 if (increment_overflow(&y, 1)) |
| 1527 return NULL; |
| 1528 } |
| 1529 tmp->tm_year = y; |
| 1530 if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) |
| 1531 return NULL; |
| 1532 tmp->tm_yday = idays; |
| 1533 /* |
| 1534 ** The "extra" mods below avoid overflow problems. |
| 1535 */ |
| 1536 tmp->tm_wday = EPOCH_WDAY + |
| 1537 ((y - EPOCH_YEAR) % DAYSPERWEEK) * |
| 1538 (DAYSPERNYEAR % DAYSPERWEEK) + |
| 1539 leaps_thru_end_of(y - 1) - |
| 1540 leaps_thru_end_of(EPOCH_YEAR - 1) + |
| 1541 idays; |
| 1542 tmp->tm_wday %= DAYSPERWEEK; |
| 1543 if (tmp->tm_wday < 0) |
| 1544 tmp->tm_wday += DAYSPERWEEK; |
| 1545 tmp->tm_hour = (int) (rem / SECSPERHOUR); |
| 1546 rem %= SECSPERHOUR; |
| 1547 tmp->tm_min = (int) (rem / SECSPERMIN); |
| 1548 /* |
| 1549 ** A positive leap second requires a special |
| 1550 ** representation. This uses "... ??:59:60" et seq. |
| 1551 */ |
| 1552 tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; |
| 1553 ip = mon_lengths[isleap(y)]; |
| 1554 for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) |
| 1555 idays -= ip[tmp->tm_mon]; |
| 1556 tmp->tm_mday = (int) (idays + 1); |
| 1557 tmp->tm_isdst = 0; |
| 1558 #ifdef TM_GMTOFF |
| 1559 tmp->TM_GMTOFF = offset; |
| 1560 #endif /* defined TM_GMTOFF */ |
| 1561 return tmp; |
| 1562 } |
| 1563 |
| 1564 char * |
| 1565 ctime(timep) |
| 1566 const time_t * const timep; |
| 1567 { |
| 1568 /* |
| 1569 ** Section 4.12.3.2 of X3.159-1989 requires that |
| 1570 ** The ctime function converts the calendar time pointed to by timer |
| 1571 ** to local time in the form of a string. It is equivalent to |
| 1572 ** asctime(localtime(timer)) |
| 1573 */ |
| 1574 return asctime(localtime(timep)); |
| 1575 } |
| 1576 |
| 1577 char * |
| 1578 ctime_r(timep, buf) |
| 1579 const time_t * const timep; |
| 1580 char * buf; |
| 1581 { |
| 1582 struct tm mytm; |
| 1583 |
| 1584 return asctime_r(localtime_r(timep, &mytm), buf); |
| 1585 } |
| 1586 |
| 1587 /* |
| 1588 ** Adapted from code provided by Robert Elz, who writes: |
| 1589 ** The "best" way to do mktime I think is based on an idea of Bob |
| 1590 ** Kridle's (so its said...) from a long time ago. |
| 1591 ** It does a binary search of the time_t space. Since time_t's are |
| 1592 ** just 32 bits, its a max of 32 iterations (even at 64 bits it |
| 1593 ** would still be very reasonable). |
| 1594 */ |
| 1595 |
| 1596 #ifndef WRONG |
| 1597 #define WRONG (-1) |
| 1598 #endif /* !defined WRONG */ |
| 1599 |
| 1600 /* |
| 1601 ** Simplified normalize logic courtesy Paul Eggert. |
| 1602 */ |
| 1603 |
| 1604 static int |
| 1605 increment_overflow(number, delta) |
| 1606 int * number; |
| 1607 int delta; |
| 1608 { |
| 1609 int number0; |
| 1610 |
| 1611 number0 = *number; |
| 1612 *number += delta; |
| 1613 return (*number < number0) != (delta < 0); |
| 1614 } |
| 1615 |
| 1616 static int |
| 1617 long_increment_overflow(number, delta) |
| 1618 long * number; |
| 1619 int delta; |
| 1620 { |
| 1621 long number0; |
| 1622 |
| 1623 number0 = *number; |
| 1624 *number += delta; |
| 1625 return (*number < number0) != (delta < 0); |
| 1626 } |
| 1627 |
| 1628 static int |
| 1629 normalize_overflow(tensptr, unitsptr, base) |
| 1630 int * const tensptr; |
| 1631 int * const unitsptr; |
| 1632 const int base; |
| 1633 { |
| 1634 register int tensdelta; |
| 1635 |
| 1636 tensdelta = (*unitsptr >= 0) ? |
| 1637 (*unitsptr / base) : |
| 1638 (-1 - (-1 - *unitsptr) / base); |
| 1639 *unitsptr -= tensdelta * base; |
| 1640 return increment_overflow(tensptr, tensdelta); |
| 1641 } |
| 1642 |
| 1643 static int |
| 1644 long_normalize_overflow(tensptr, unitsptr, base) |
| 1645 long * const tensptr; |
| 1646 int * const unitsptr; |
| 1647 const int base; |
| 1648 { |
| 1649 register int tensdelta; |
| 1650 |
| 1651 tensdelta = (*unitsptr >= 0) ? |
| 1652 (*unitsptr / base) : |
| 1653 (-1 - (-1 - *unitsptr) / base); |
| 1654 *unitsptr -= tensdelta * base; |
| 1655 return long_increment_overflow(tensptr, tensdelta); |
| 1656 } |
| 1657 |
| 1658 static int |
| 1659 tmcomp(atmp, btmp) |
| 1660 register const struct tm * const atmp; |
| 1661 register const struct tm * const btmp; |
| 1662 { |
| 1663 register int result; |
| 1664 |
| 1665 if ((result = (atmp->tm_year - btmp->tm_year)) == 0 && |
| 1666 (result = (atmp->tm_mon - btmp->tm_mon)) == 0 && |
| 1667 (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && |
| 1668 (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && |
| 1669 (result = (atmp->tm_min - btmp->tm_min)) == 0) |
| 1670 result = atmp->tm_sec - btmp->tm_sec; |
| 1671 return result; |
| 1672 } |
| 1673 |
| 1674 static time_t |
| 1675 time2sub(tmp, funcp, offset, okayp, do_norm_secs) |
| 1676 struct tm * const tmp; |
| 1677 struct tm * (* const funcp)(const time_t*, long, struct tm*); |
| 1678 const long offset; |
| 1679 int * const okayp; |
| 1680 const int do_norm_secs; |
| 1681 { |
| 1682 register const struct state * sp; |
| 1683 register int dir; |
| 1684 register int i, j; |
| 1685 register int saved_seconds; |
| 1686 register long li; |
| 1687 register time_t lo; |
| 1688 register time_t hi; |
| 1689 long y; |
| 1690 time_t newt; |
| 1691 time_t t; |
| 1692 struct tm yourtm, mytm; |
| 1693 |
| 1694 *okayp = FALSE; |
| 1695 yourtm = *tmp; |
| 1696 if (do_norm_secs) { |
| 1697 if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, |
| 1698 SECSPERMIN)) |
| 1699 return WRONG; |
| 1700 } |
| 1701 if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) |
| 1702 return WRONG; |
| 1703 if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) |
| 1704 return WRONG; |
| 1705 y = yourtm.tm_year; |
| 1706 if (long_normalize_overflow(&y, &yourtm.tm_mon, MONSPERYEAR)) |
| 1707 return WRONG; |
| 1708 /* |
| 1709 ** Turn y into an actual year number for now. |
| 1710 ** It is converted back to an offset from TM_YEAR_BASE later. |
| 1711 */ |
| 1712 if (long_increment_overflow(&y, TM_YEAR_BASE)) |
| 1713 return WRONG; |
| 1714 while (yourtm.tm_mday <= 0) { |
| 1715 if (long_increment_overflow(&y, -1)) |
| 1716 return WRONG; |
| 1717 li = y + (1 < yourtm.tm_mon); |
| 1718 yourtm.tm_mday += year_lengths[isleap(li)]; |
| 1719 } |
| 1720 while (yourtm.tm_mday > DAYSPERLYEAR) { |
| 1721 li = y + (1 < yourtm.tm_mon); |
| 1722 yourtm.tm_mday -= year_lengths[isleap(li)]; |
| 1723 if (long_increment_overflow(&y, 1)) |
| 1724 return WRONG; |
| 1725 } |
| 1726 for ( ; ; ) { |
| 1727 i = mon_lengths[isleap(y)][yourtm.tm_mon]; |
| 1728 if (yourtm.tm_mday <= i) |
| 1729 break; |
| 1730 yourtm.tm_mday -= i; |
| 1731 if (++yourtm.tm_mon >= MONSPERYEAR) { |
| 1732 yourtm.tm_mon = 0; |
| 1733 if (long_increment_overflow(&y, 1)) |
| 1734 return WRONG; |
| 1735 } |
| 1736 } |
| 1737 if (long_increment_overflow(&y, -TM_YEAR_BASE)) |
| 1738 return WRONG; |
| 1739 yourtm.tm_year = y; |
| 1740 if (yourtm.tm_year != y) |
| 1741 return WRONG; |
| 1742 if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) |
| 1743 saved_seconds = 0; |
| 1744 else if (y + TM_YEAR_BASE < EPOCH_YEAR) { |
| 1745 /* |
| 1746 ** We can't set tm_sec to 0, because that might push the |
| 1747 ** time below the minimum representable time. |
| 1748 ** Set tm_sec to 59 instead. |
| 1749 ** This assumes that the minimum representable time is |
| 1750 ** not in the same minute that a leap second was deleted from, |
| 1751 ** which is a safer assumption than using 58 would be. |
| 1752 */ |
| 1753 if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) |
| 1754 return WRONG; |
| 1755 saved_seconds = yourtm.tm_sec; |
| 1756 yourtm.tm_sec = SECSPERMIN - 1; |
| 1757 } else { |
| 1758 saved_seconds = yourtm.tm_sec; |
| 1759 yourtm.tm_sec = 0; |
| 1760 } |
| 1761 /* |
| 1762 ** Do a binary search (this works whatever time_t's type is). |
| 1763 */ |
| 1764 if (!TYPE_SIGNED(time_t)) { |
| 1765 lo = 0; |
| 1766 hi = lo - 1; |
| 1767 } else if (!TYPE_INTEGRAL(time_t)) { |
| 1768 if (sizeof(time_t) > sizeof(float)) |
| 1769 hi = (time_t) DBL_MAX; |
| 1770 else hi = (time_t) FLT_MAX; |
| 1771 lo = -hi; |
| 1772 } else { |
| 1773 lo = 1; |
| 1774 for (i = 0; i < (int) TYPE_BIT(time_t) - 1; ++i) |
| 1775 lo *= 2; |
| 1776 hi = -(lo + 1); |
| 1777 } |
| 1778 for ( ; ; ) { |
| 1779 t = lo / 2 + hi / 2; |
| 1780 if (t < lo) |
| 1781 t = lo; |
| 1782 else if (t > hi) |
| 1783 t = hi; |
| 1784 if ((*funcp)(&t, offset, &mytm) == NULL) { |
| 1785 /* |
| 1786 ** Assume that t is too extreme to be represented in |
| 1787 ** a struct tm; arrange things so that it is less |
| 1788 ** extreme on the next pass. |
| 1789 */ |
| 1790 dir = (t > 0) ? 1 : -1; |
| 1791 } else dir = tmcomp(&mytm, &yourtm); |
| 1792 if (dir != 0) { |
| 1793 if (t == lo) { |
| 1794 ++t; |
| 1795 if (t <= lo) |
| 1796 return WRONG; |
| 1797 ++lo; |
| 1798 } else if (t == hi) { |
| 1799 --t; |
| 1800 if (t >= hi) |
| 1801 return WRONG; |
| 1802 --hi; |
| 1803 } |
| 1804 if (lo > hi) |
| 1805 return WRONG; |
| 1806 if (dir > 0) |
| 1807 hi = t; |
| 1808 else lo = t; |
| 1809 continue; |
| 1810 } |
| 1811 if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) |
| 1812 break; |
| 1813 /* |
| 1814 ** Right time, wrong type. |
| 1815 ** Hunt for right time, right type. |
| 1816 ** It's okay to guess wrong since the guess |
| 1817 ** gets checked. |
| 1818 */ |
| 1819 sp = (const struct state *) |
| 1820 ((funcp == localsub) ? lclptr : gmtptr); |
| 1821 #ifdef ALL_STATE |
| 1822 if (sp == NULL) |
| 1823 return WRONG; |
| 1824 #endif /* defined ALL_STATE */ |
| 1825 for (i = sp->typecnt - 1; i >= 0; --i) { |
| 1826 if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) |
| 1827 continue; |
| 1828 for (j = sp->typecnt - 1; j >= 0; --j) { |
| 1829 if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) |
| 1830 continue; |
| 1831 newt = t + sp->ttis[j].tt_gmtoff - |
| 1832 sp->ttis[i].tt_gmtoff; |
| 1833 if ((*funcp)(&newt, offset, &mytm) == NULL) |
| 1834 continue; |
| 1835 if (tmcomp(&mytm, &yourtm) != 0) |
| 1836 continue; |
| 1837 if (mytm.tm_isdst != yourtm.tm_isdst) |
| 1838 continue; |
| 1839 /* |
| 1840 ** We have a match. |
| 1841 */ |
| 1842 t = newt; |
| 1843 goto label; |
| 1844 } |
| 1845 } |
| 1846 return WRONG; |
| 1847 } |
| 1848 label: |
| 1849 newt = t + saved_seconds; |
| 1850 if ((newt < t) != (saved_seconds < 0)) |
| 1851 return WRONG; |
| 1852 t = newt; |
| 1853 if ((*funcp)(&t, offset, tmp)) |
| 1854 *okayp = TRUE; |
| 1855 return t; |
| 1856 } |
| 1857 |
| 1858 static time_t |
| 1859 time2(tmp, funcp, offset, okayp) |
| 1860 struct tm * const tmp; |
| 1861 struct tm * (* const funcp)(const time_t*, long, struct tm*); |
| 1862 const long offset; |
| 1863 int * const okayp; |
| 1864 { |
| 1865 time_t t; |
| 1866 |
| 1867 /* |
| 1868 ** First try without normalization of seconds |
| 1869 ** (in case tm_sec contains a value associated with a leap second). |
| 1870 ** If that fails, try with normalization of seconds. |
| 1871 */ |
| 1872 t = time2sub(tmp, funcp, offset, okayp, FALSE); |
| 1873 return *okayp ? t : time2sub(tmp, funcp, offset, okayp, TRUE); |
| 1874 } |
| 1875 |
| 1876 static time_t |
| 1877 time1(tmp, funcp, offset) |
| 1878 struct tm * const tmp; |
| 1879 struct tm * (* const funcp)(const time_t *, long, struct tm *); |
| 1880 const long offset; |
| 1881 { |
| 1882 register time_t t; |
| 1883 register const struct state * sp; |
| 1884 register int samei, otheri; |
| 1885 register int sameind, otherind; |
| 1886 register int i; |
| 1887 register int nseen; |
| 1888 int seen[TZ_MAX_TYPES]; |
| 1889 int types[TZ_MAX_TYPES]; |
| 1890 int okay; |
| 1891 |
| 1892 if (tmp->tm_isdst > 1) |
| 1893 tmp->tm_isdst = 1; |
| 1894 t = time2(tmp, funcp, offset, &okay); |
| 1895 #ifdef PCTS |
| 1896 /* |
| 1897 ** PCTS code courtesy Grant Sullivan. |
| 1898 */ |
| 1899 if (okay) |
| 1900 return t; |
| 1901 if (tmp->tm_isdst < 0) |
| 1902 tmp->tm_isdst = 0; /* reset to std and try again */ |
| 1903 #endif /* defined PCTS */ |
| 1904 #ifndef PCTS |
| 1905 if (okay || tmp->tm_isdst < 0) |
| 1906 return t; |
| 1907 #endif /* !defined PCTS */ |
| 1908 /* |
| 1909 ** We're supposed to assume that somebody took a time of one type |
| 1910 ** and did some math on it that yielded a "struct tm" that's bad. |
| 1911 ** We try to divine the type they started from and adjust to the |
| 1912 ** type they need. |
| 1913 */ |
| 1914 sp = (const struct state *) ((funcp == localsub) ? lclptr : gmtptr); |
| 1915 #ifdef ALL_STATE |
| 1916 if (sp == NULL) |
| 1917 return WRONG; |
| 1918 #endif /* defined ALL_STATE */ |
| 1919 for (i = 0; i < sp->typecnt; ++i) |
| 1920 seen[i] = FALSE; |
| 1921 nseen = 0; |
| 1922 for (i = sp->timecnt - 1; i >= 0; --i) |
| 1923 if (!seen[sp->types[i]]) { |
| 1924 seen[sp->types[i]] = TRUE; |
| 1925 types[nseen++] = sp->types[i]; |
| 1926 } |
| 1927 for (sameind = 0; sameind < nseen; ++sameind) { |
| 1928 samei = types[sameind]; |
| 1929 if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) |
| 1930 continue; |
| 1931 for (otherind = 0; otherind < nseen; ++otherind) { |
| 1932 otheri = types[otherind]; |
| 1933 if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) |
| 1934 continue; |
| 1935 tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - |
| 1936 sp->ttis[samei].tt_gmtoff; |
| 1937 tmp->tm_isdst = !tmp->tm_isdst; |
| 1938 t = time2(tmp, funcp, offset, &okay); |
| 1939 if (okay) |
| 1940 return t; |
| 1941 tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - |
| 1942 sp->ttis[samei].tt_gmtoff; |
| 1943 tmp->tm_isdst = !tmp->tm_isdst; |
| 1944 } |
| 1945 } |
| 1946 return WRONG; |
| 1947 } |
| 1948 |
| 1949 time_t |
| 1950 mktime(tmp) |
| 1951 struct tm * const tmp; |
| 1952 { |
| 1953 tzset(); |
| 1954 return time1(tmp, localsub, 0L); |
| 1955 } |
| 1956 |
| 1957 #ifdef STD_INSPIRED |
| 1958 |
| 1959 time_t |
| 1960 timelocal(tmp) |
| 1961 struct tm * const tmp; |
| 1962 { |
| 1963 tmp->tm_isdst = -1; /* in case it wasn't initialized */ |
| 1964 return mktime(tmp); |
| 1965 } |
| 1966 |
| 1967 time_t |
| 1968 timegm(tmp) |
| 1969 struct tm * const tmp; |
| 1970 { |
| 1971 tmp->tm_isdst = 0; |
| 1972 return time1(tmp, gmtsub, 0L); |
| 1973 } |
| 1974 |
| 1975 time_t |
| 1976 timeoff(tmp, offset) |
| 1977 struct tm * const tmp; |
| 1978 const long offset; |
| 1979 { |
| 1980 tmp->tm_isdst = 0; |
| 1981 return time1(tmp, gmtsub, offset); |
| 1982 } |
| 1983 |
| 1984 #endif /* defined STD_INSPIRED */ |
| 1985 |
| 1986 #ifdef CMUCS |
| 1987 |
| 1988 /* |
| 1989 ** The following is supplied for compatibility with |
| 1990 ** previous versions of the CMUCS runtime library. |
| 1991 */ |
| 1992 |
| 1993 long |
| 1994 gtime(tmp) |
| 1995 struct tm * const tmp; |
| 1996 { |
| 1997 const time_t t = mktime(tmp); |
| 1998 |
| 1999 if (t == WRONG) |
| 2000 return -1; |
| 2001 return t; |
| 2002 } |
| 2003 |
| 2004 #endif /* defined CMUCS */ |
| 2005 |
| 2006 /* |
| 2007 ** XXX--is the below the right way to conditionalize?? |
| 2008 */ |
| 2009 |
| 2010 #ifdef STD_INSPIRED |
| 2011 |
| 2012 /* |
| 2013 ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 |
| 2014 ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which |
| 2015 ** is not the case if we are accounting for leap seconds. |
| 2016 ** So, we provide the following conversion routines for use |
| 2017 ** when exchanging timestamps with POSIX conforming systems. |
| 2018 */ |
| 2019 |
| 2020 static long |
| 2021 leapcorr(timep) |
| 2022 time_t * timep; |
| 2023 { |
| 2024 register struct state * sp; |
| 2025 register struct lsinfo * lp; |
| 2026 register int i; |
| 2027 |
| 2028 sp = lclptr; |
| 2029 i = sp->leapcnt; |
| 2030 while (--i >= 0) { |
| 2031 lp = &sp->lsis[i]; |
| 2032 if (*timep >= lp->ls_trans) |
| 2033 return lp->ls_corr; |
| 2034 } |
| 2035 return 0; |
| 2036 } |
| 2037 |
| 2038 time_t |
| 2039 time2posix(t) |
| 2040 time_t t; |
| 2041 { |
| 2042 tzset(); |
| 2043 return t - leapcorr(&t); |
| 2044 } |
| 2045 |
| 2046 time_t |
| 2047 posix2time(t) |
| 2048 time_t t; |
| 2049 { |
| 2050 time_t x; |
| 2051 time_t y; |
| 2052 |
| 2053 tzset(); |
| 2054 /* |
| 2055 ** For a positive leap second hit, the result |
| 2056 ** is not unique. For a negative leap second |
| 2057 ** hit, the corresponding time doesn't exist, |
| 2058 ** so we return an adjacent second. |
| 2059 */ |
| 2060 x = t + leapcorr(&t); |
| 2061 y = x - leapcorr(&x); |
| 2062 if (y < t) { |
| 2063 do { |
| 2064 x++; |
| 2065 y = x - leapcorr(&x); |
| 2066 } while (y < t); |
| 2067 if (t != y) |
| 2068 return x - 1; |
| 2069 } else if (y > t) { |
| 2070 do { |
| 2071 --x; |
| 2072 y = x - leapcorr(&x); |
| 2073 } while (y > t); |
| 2074 if (t != y) |
| 2075 return x + 1; |
| 2076 } |
| 2077 return x; |
| 2078 } |
| 2079 |
| 2080 #endif /* defined STD_INSPIRED */ |
OLD | NEW |