OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ******************************************************************************* |
| 3 * |
| 4 * Copyright (C) 2000-2010, International Business Machines |
| 5 * Corporation and others. All Rights Reserved. |
| 6 * |
| 7 ******************************************************************************* |
| 8 * file name: genmbcs.c |
| 9 * encoding: US-ASCII |
| 10 * tab size: 8 (not used) |
| 11 * indentation:4 |
| 12 * |
| 13 * created on: 2000jul06 |
| 14 * created by: Markus W. Scherer |
| 15 */ |
| 16 |
| 17 #include <stdio.h> |
| 18 #include "unicode/utypes.h" |
| 19 #include "cstring.h" |
| 20 #include "cmemory.h" |
| 21 #include "unewdata.h" |
| 22 #include "ucnv_cnv.h" |
| 23 #include "ucnvmbcs.h" |
| 24 #include "ucm.h" |
| 25 #include "makeconv.h" |
| 26 #include "genmbcs.h" |
| 27 |
| 28 /* |
| 29 * TODO: Split this file into toUnicode, SBCSFromUnicode and MBCSFromUnicode fil
es. |
| 30 * Reduce tests for maxCharLength. |
| 31 */ |
| 32 |
| 33 struct MBCSData { |
| 34 NewConverter newConverter; |
| 35 |
| 36 UCMFile *ucm; |
| 37 |
| 38 /* toUnicode (state table in ucm->states) */ |
| 39 _MBCSToUFallback toUFallbacks[MBCS_MAX_FALLBACK_COUNT]; |
| 40 int32_t countToUFallbacks; |
| 41 uint16_t *unicodeCodeUnits; |
| 42 |
| 43 /* fromUnicode */ |
| 44 uint16_t stage1[MBCS_STAGE_1_SIZE]; |
| 45 uint16_t stage2Single[MBCS_STAGE_2_SIZE]; /* stage 2 for single-byte codepag
es */ |
| 46 uint32_t stage2[MBCS_STAGE_2_SIZE]; /* stage 2 for MBCS */ |
| 47 uint8_t *fromUBytes; |
| 48 uint32_t stage2Top, stage3Top; |
| 49 |
| 50 /* fromUTF8 */ |
| 51 uint16_t stageUTF8[0x10000>>MBCS_UTF8_STAGE_SHIFT]; /* allow for utf8Max=0x
ffff */ |
| 52 |
| 53 /* |
| 54 * Maximum UTF-8-friendly code point. |
| 55 * 0 if !utf8Friendly, otherwise 0x01ff..0xffff in steps of 0x100. |
| 56 * If utf8Friendly, utf8Max is normally either MBCS_UTF8_MAX or 0xffff. |
| 57 */ |
| 58 uint16_t utf8Max; |
| 59 |
| 60 UBool utf8Friendly; |
| 61 UBool omitFromU; |
| 62 }; |
| 63 |
| 64 /* prototypes */ |
| 65 static void |
| 66 MBCSClose(NewConverter *cnvData); |
| 67 |
| 68 static UBool |
| 69 MBCSStartMappings(MBCSData *mbcsData); |
| 70 |
| 71 static UBool |
| 72 MBCSAddToUnicode(MBCSData *mbcsData, |
| 73 const uint8_t *bytes, int32_t length, |
| 74 UChar32 c, |
| 75 int8_t flag); |
| 76 |
| 77 static UBool |
| 78 MBCSIsValid(NewConverter *cnvData, |
| 79 const uint8_t *bytes, int32_t length); |
| 80 |
| 81 static UBool |
| 82 MBCSSingleAddFromUnicode(MBCSData *mbcsData, |
| 83 const uint8_t *bytes, int32_t length, |
| 84 UChar32 c, |
| 85 int8_t flag); |
| 86 |
| 87 static UBool |
| 88 MBCSAddFromUnicode(MBCSData *mbcsData, |
| 89 const uint8_t *bytes, int32_t length, |
| 90 UChar32 c, |
| 91 int8_t flag); |
| 92 |
| 93 static void |
| 94 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData); |
| 95 |
| 96 static UBool |
| 97 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *stati
cData); |
| 98 |
| 99 static uint32_t |
| 100 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
| 101 UNewDataMemory *pData, int32_t tableType); |
| 102 |
| 103 /* helper ------------------------------------------------------------------- */ |
| 104 |
| 105 static U_INLINE char |
| 106 hexDigit(uint8_t digit) { |
| 107 return digit<=9 ? (char)('0'+digit) : (char)('a'-10+digit); |
| 108 } |
| 109 |
| 110 static U_INLINE char * |
| 111 printBytes(char *buffer, const uint8_t *bytes, int32_t length) { |
| 112 char *s=buffer; |
| 113 while(length>0) { |
| 114 *s++=hexDigit((uint8_t)(*bytes>>4)); |
| 115 *s++=hexDigit((uint8_t)(*bytes&0xf)); |
| 116 ++bytes; |
| 117 --length; |
| 118 } |
| 119 |
| 120 *s=0; |
| 121 return buffer; |
| 122 } |
| 123 |
| 124 /* implementation ----------------------------------------------------------- */ |
| 125 |
| 126 static MBCSData gDummy; |
| 127 |
| 128 U_CFUNC const MBCSData * |
| 129 MBCSGetDummy() { |
| 130 uprv_memset(&gDummy, 0, sizeof(MBCSData)); |
| 131 |
| 132 /* |
| 133 * Set "pessimistic" values which may sometimes move too many |
| 134 * mappings to the extension table (but never too few). |
| 135 * These values cause MBCSOkForBaseFromUnicode() to return FALSE for the |
| 136 * largest set of mappings. |
| 137 * Assume maxCharLength>1. |
| 138 */ |
| 139 gDummy.utf8Friendly=TRUE; |
| 140 if(SMALL) { |
| 141 gDummy.utf8Max=0xffff; |
| 142 gDummy.omitFromU=TRUE; |
| 143 } else { |
| 144 gDummy.utf8Max=MBCS_UTF8_MAX; |
| 145 } |
| 146 return &gDummy; |
| 147 } |
| 148 |
| 149 static void |
| 150 MBCSInit(MBCSData *mbcsData, UCMFile *ucm) { |
| 151 uprv_memset(mbcsData, 0, sizeof(MBCSData)); |
| 152 |
| 153 mbcsData->ucm=ucm; /* aliased, not owned */ |
| 154 |
| 155 mbcsData->newConverter.close=MBCSClose; |
| 156 mbcsData->newConverter.isValid=MBCSIsValid; |
| 157 mbcsData->newConverter.addTable=MBCSAddTable; |
| 158 mbcsData->newConverter.write=MBCSWrite; |
| 159 } |
| 160 |
| 161 NewConverter * |
| 162 MBCSOpen(UCMFile *ucm) { |
| 163 MBCSData *mbcsData=(MBCSData *)uprv_malloc(sizeof(MBCSData)); |
| 164 if(mbcsData==NULL) { |
| 165 printf("out of memory\n"); |
| 166 exit(U_MEMORY_ALLOCATION_ERROR); |
| 167 } |
| 168 |
| 169 MBCSInit(mbcsData, ucm); |
| 170 return &mbcsData->newConverter; |
| 171 } |
| 172 |
| 173 static void |
| 174 MBCSDestruct(MBCSData *mbcsData) { |
| 175 uprv_free(mbcsData->unicodeCodeUnits); |
| 176 uprv_free(mbcsData->fromUBytes); |
| 177 } |
| 178 |
| 179 static void |
| 180 MBCSClose(NewConverter *cnvData) { |
| 181 MBCSData *mbcsData=(MBCSData *)cnvData; |
| 182 if(mbcsData!=NULL) { |
| 183 MBCSDestruct(mbcsData); |
| 184 uprv_free(mbcsData); |
| 185 } |
| 186 } |
| 187 |
| 188 static UBool |
| 189 MBCSStartMappings(MBCSData *mbcsData) { |
| 190 int32_t i, sum, maxCharLength, |
| 191 stage2NullLength, stage2AllocLength, |
| 192 stage3NullLength, stage3AllocLength; |
| 193 |
| 194 /* toUnicode */ |
| 195 |
| 196 /* allocate the code unit array and prefill it with "unassigned" values */ |
| 197 sum=mbcsData->ucm->states.countToUCodeUnits; |
| 198 if(VERBOSE) { |
| 199 printf("the total number of offsets is 0x%lx=%ld\n", (long)sum, (long)su
m); |
| 200 } |
| 201 |
| 202 if(sum>0) { |
| 203 mbcsData->unicodeCodeUnits=(uint16_t *)uprv_malloc(sum*sizeof(uint16_t))
; |
| 204 if(mbcsData->unicodeCodeUnits==NULL) { |
| 205 fprintf(stderr, "error: out of memory allocating %ld 16-bit code uni
ts\n", |
| 206 (long)sum); |
| 207 return FALSE; |
| 208 } |
| 209 for(i=0; i<sum; ++i) { |
| 210 mbcsData->unicodeCodeUnits[i]=0xfffe; |
| 211 } |
| 212 } |
| 213 |
| 214 /* fromUnicode */ |
| 215 maxCharLength=mbcsData->ucm->states.maxCharLength; |
| 216 |
| 217 /* allocate the codepage mappings and preset the first 16 characters to 0 */ |
| 218 if(maxCharLength==1) { |
| 219 /* allocate 64k 16-bit results for single-byte codepages */ |
| 220 sum=0x20000; |
| 221 } else { |
| 222 /* allocate 1M * maxCharLength bytes for at most 1M mappings */ |
| 223 sum=0x100000*maxCharLength; |
| 224 } |
| 225 mbcsData->fromUBytes=(uint8_t *)uprv_malloc(sum); |
| 226 if(mbcsData->fromUBytes==NULL) { |
| 227 fprintf(stderr, "error: out of memory allocating %ld B for target mappin
gs\n", (long)sum); |
| 228 return FALSE; |
| 229 } |
| 230 uprv_memset(mbcsData->fromUBytes, 0, sum); |
| 231 |
| 232 /* |
| 233 * UTF-8-friendly fromUnicode tries: allocate multiple blocks at a time. |
| 234 * See ucnvmbcs.h for details. |
| 235 * |
| 236 * There is code, for example in ucnv_MBCSGetUnicodeSetForUnicode(), which |
| 237 * assumes that the initial stage 2/3 blocks are the all-unassigned ones. |
| 238 * Therefore, we refine the data structure while maintaining this placement |
| 239 * even though it would be convenient to allocate the ASCII block at the |
| 240 * beginning of stage 3, for example. |
| 241 * |
| 242 * UTF-8-friendly fromUnicode tries work from sorted tables and are built |
| 243 * pre-compacted, overlapping adjacent stage 2/3 blocks. |
| 244 * This is necessary because the block allocation and compaction changes |
| 245 * at SBCS_UTF8_MAX or MBCS_UTF8_MAX, and for MBCS tables the additional |
| 246 * stage table uses direct indexes into stage 3, without a multiplier and |
| 247 * thus with a smaller reach. |
| 248 * |
| 249 * Non-UTF-8-friendly fromUnicode tries work from unsorted tables |
| 250 * (because implicit precision is used), and are compacted |
| 251 * in post-processing. |
| 252 * |
| 253 * Preallocation for UTF-8-friendly fromUnicode tries: |
| 254 * |
| 255 * Stage 3: |
| 256 * 64-entry all-unassigned first block followed by ASCII (128 entries). |
| 257 * |
| 258 * Stage 2: |
| 259 * 64-entry all-unassigned first block followed by preallocated |
| 260 * 64-block for ASCII. |
| 261 */ |
| 262 |
| 263 /* Preallocate ASCII as a linear 128-entry stage 3 block. */ |
| 264 stage2NullLength=MBCS_STAGE_2_BLOCK_SIZE; |
| 265 stage2AllocLength=MBCS_STAGE_2_BLOCK_SIZE; |
| 266 |
| 267 stage3NullLength=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
| 268 stage3AllocLength=128; /* ASCII U+0000..U+007f */ |
| 269 |
| 270 /* Initialize stage 1 for the preallocated blocks. */ |
| 271 sum=stage2NullLength; |
| 272 for(i=0; i<(stage2AllocLength>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT); ++i) { |
| 273 mbcsData->stage1[i]=sum; |
| 274 sum+=MBCS_STAGE_2_BLOCK_SIZE; |
| 275 } |
| 276 mbcsData->stage2Top=stage2NullLength+stage2AllocLength; /* ==sum */ |
| 277 |
| 278 /* |
| 279 * Stage 2 indexes count 16-blocks in stage 3 as follows: |
| 280 * SBCS: directly, indexes increment by 16 |
| 281 * MBCS: indexes need to be multiplied by 16*maxCharLength, indexes incremen
t by 1 |
| 282 * MBCS UTF-8: directly, indexes increment by 16 |
| 283 */ |
| 284 if(maxCharLength==1) { |
| 285 sum=stage3NullLength; |
| 286 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { |
| 287 mbcsData->stage2Single[mbcsData->stage1[0]+i]=sum; |
| 288 sum+=MBCS_STAGE_3_BLOCK_SIZE; |
| 289 } |
| 290 } else { |
| 291 sum=stage3NullLength/MBCS_STAGE_3_GRANULARITY; |
| 292 for(i=0; i<(stage3AllocLength/MBCS_STAGE_3_BLOCK_SIZE); ++i) { |
| 293 mbcsData->stage2[mbcsData->stage1[0]+i]=sum; |
| 294 sum+=MBCS_STAGE_3_BLOCK_SIZE/MBCS_STAGE_3_GRANULARITY; |
| 295 } |
| 296 } |
| 297 |
| 298 sum=stage3NullLength; |
| 299 for(i=0; i<(stage3AllocLength/MBCS_UTF8_STAGE_3_BLOCK_SIZE); ++i) { |
| 300 mbcsData->stageUTF8[i]=sum; |
| 301 sum+=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
| 302 } |
| 303 |
| 304 /* |
| 305 * Allocate a 64-entry all-unassigned first stage 3 block, |
| 306 * for UTF-8-friendly lookup with a trail byte, |
| 307 * plus 128 entries for ASCII. |
| 308 */ |
| 309 mbcsData->stage3Top=(stage3NullLength+stage3AllocLength)*maxCharLength; /* =
=sum*maxCharLength */ |
| 310 |
| 311 return TRUE; |
| 312 } |
| 313 |
| 314 /* return TRUE for success */ |
| 315 static UBool |
| 316 setFallback(MBCSData *mbcsData, uint32_t offset, UChar32 c) { |
| 317 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbac
ks, offset); |
| 318 if(i>=0) { |
| 319 /* if there is already a fallback for this offset, then overwrite it */ |
| 320 mbcsData->toUFallbacks[i].codePoint=c; |
| 321 return TRUE; |
| 322 } else { |
| 323 /* if there is no fallback for this offset, then add one */ |
| 324 i=mbcsData->countToUFallbacks; |
| 325 if(i>=MBCS_MAX_FALLBACK_COUNT) { |
| 326 fprintf(stderr, "error: too many toUnicode fallbacks, currently at:
U+%x\n", (int)c); |
| 327 return FALSE; |
| 328 } else { |
| 329 mbcsData->toUFallbacks[i].offset=offset; |
| 330 mbcsData->toUFallbacks[i].codePoint=c; |
| 331 mbcsData->countToUFallbacks=i+1; |
| 332 return TRUE; |
| 333 } |
| 334 } |
| 335 } |
| 336 |
| 337 /* remove fallback if there is one with this offset; return the code point if th
ere was such a fallback, otherwise -1 */ |
| 338 static int32_t |
| 339 removeFallback(MBCSData *mbcsData, uint32_t offset) { |
| 340 int32_t i=ucm_findFallback(mbcsData->toUFallbacks, mbcsData->countToUFallbac
ks, offset); |
| 341 if(i>=0) { |
| 342 _MBCSToUFallback *toUFallbacks; |
| 343 int32_t limit, old; |
| 344 |
| 345 toUFallbacks=mbcsData->toUFallbacks; |
| 346 limit=mbcsData->countToUFallbacks; |
| 347 old=(int32_t)toUFallbacks[i].codePoint; |
| 348 |
| 349 /* copy the last fallback entry here to keep the list contiguous */ |
| 350 toUFallbacks[i].offset=toUFallbacks[limit-1].offset; |
| 351 toUFallbacks[i].codePoint=toUFallbacks[limit-1].codePoint; |
| 352 mbcsData->countToUFallbacks=limit-1; |
| 353 return old; |
| 354 } else { |
| 355 return -1; |
| 356 } |
| 357 } |
| 358 |
| 359 /* |
| 360 * isFallback is almost a boolean: |
| 361 * 1 (TRUE) this is a fallback mapping |
| 362 * 0 (FALSE) this is a precise mapping |
| 363 * -1 the precision of this mapping is not specified |
| 364 */ |
| 365 static UBool |
| 366 MBCSAddToUnicode(MBCSData *mbcsData, |
| 367 const uint8_t *bytes, int32_t length, |
| 368 UChar32 c, |
| 369 int8_t flag) { |
| 370 char buffer[10]; |
| 371 uint32_t offset=0; |
| 372 int32_t i=0, entry, old; |
| 373 uint8_t state=0; |
| 374 |
| 375 if(mbcsData->ucm->states.countStates==0) { |
| 376 fprintf(stderr, "error: there is no state information!\n"); |
| 377 return FALSE; |
| 378 } |
| 379 |
| 380 /* for SI/SO (like EBCDIC-stateful), double-byte sequences start in state 1
*/ |
| 381 if(length==2 && mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO) { |
| 382 state=1; |
| 383 } |
| 384 |
| 385 /* |
| 386 * Walk down the state table like in conversion, |
| 387 * much like getNextUChar(). |
| 388 * We assume that c<=0x10ffff. |
| 389 */ |
| 390 for(i=0;;) { |
| 391 entry=mbcsData->ucm->states.stateTable[state][bytes[i++]]; |
| 392 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 393 if(i==length) { |
| 394 fprintf(stderr, "error: byte sequence too short, ends in non-fin
al state %hu: 0x%s (U+%x)\n", |
| 395 (short)state, printBytes(buffer, bytes, length), (int)c); |
| 396 return FALSE; |
| 397 } |
| 398 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 399 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 400 } else { |
| 401 if(i<length) { |
| 402 fprintf(stderr, "error: byte sequence too long by %d bytes, fina
l state %hu: 0x%s (U+%x)\n", |
| 403 (int)(length-i), state, printBytes(buffer, bytes, length), (
int)c); |
| 404 return FALSE; |
| 405 } |
| 406 switch(MBCS_ENTRY_FINAL_ACTION(entry)) { |
| 407 case MBCS_STATE_ILLEGAL: |
| 408 fprintf(stderr, "error: byte sequence ends in illegal state at U
+%04x<->0x%s\n", |
| 409 (int)c, printBytes(buffer, bytes, length)); |
| 410 return FALSE; |
| 411 case MBCS_STATE_CHANGE_ONLY: |
| 412 fprintf(stderr, "error: byte sequence ends in state-change-only
at U+%04x<->0x%s\n", |
| 413 (int)c, printBytes(buffer, bytes, length)); |
| 414 return FALSE; |
| 415 case MBCS_STATE_UNASSIGNED: |
| 416 fprintf(stderr, "error: byte sequence ends in unassigned state a
t U+%04x<->0x%s\n", |
| 417 (int)c, printBytes(buffer, bytes, length)); |
| 418 return FALSE; |
| 419 case MBCS_STATE_FALLBACK_DIRECT_16: |
| 420 case MBCS_STATE_VALID_DIRECT_16: |
| 421 case MBCS_STATE_FALLBACK_DIRECT_20: |
| 422 case MBCS_STATE_VALID_DIRECT_20: |
| 423 if(MBCS_ENTRY_SET_STATE(entry, 0)!=MBCS_ENTRY_FINAL(0, MBCS_STAT
E_VALID_DIRECT_16, 0xfffe)) { |
| 424 /* the "direct" action's value is not "valid-direct-16-unass
igned" any more */ |
| 425 if(MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_DIRECT_1
6 || MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 426 old=MBCS_ENTRY_FINAL_VALUE(entry); |
| 427 } else { |
| 428 old=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 429 } |
| 430 if(flag>=0) { |
| 431 fprintf(stderr, "error: duplicate codepage byte sequence
at U+%04x<->0x%s see U+%04x\n", |
| 432 (int)c, printBytes(buffer, bytes, length), (int)old)
; |
| 433 return FALSE; |
| 434 } else if(VERBOSE) { |
| 435 fprintf(stderr, "duplicate codepage byte sequence at U+%
04x<->0x%s see U+%04x\n", |
| 436 (int)c, printBytes(buffer, bytes, length), (int)old)
; |
| 437 } |
| 438 /* |
| 439 * Continue after the above warning |
| 440 * if the precision of the mapping is unspecified. |
| 441 */ |
| 442 } |
| 443 /* reassign the correct action code */ |
| 444 entry=MBCS_ENTRY_FINAL_SET_ACTION(entry, (MBCS_STATE_VALID_DIREC
T_16+(flag==3 ? 2 : 0)+(c>=0x10000 ? 1 : 0))); |
| 445 |
| 446 /* put the code point into bits 22..7 for BMP, c-0x10000 into 26
..7 for others */ |
| 447 if(c<=0xffff) { |
| 448 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c); |
| 449 } else { |
| 450 entry=MBCS_ENTRY_FINAL_SET_VALUE(entry, c-0x10000); |
| 451 } |
| 452 mbcsData->ucm->states.stateTable[state][bytes[i-1]]=entry; |
| 453 break; |
| 454 case MBCS_STATE_VALID_16: |
| 455 /* bits 26..16 are not used, 0 */ |
| 456 /* bits 15..7 contain the final offset delta to one 16-bit code
unit */ |
| 457 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 458 /* check that this byte sequence is still unassigned */ |
| 459 if((old=mbcsData->unicodeCodeUnits[offset])!=0xfffe || (old=remo
veFallback(mbcsData, offset))!=-1) { |
| 460 if(flag>=0) { |
| 461 fprintf(stderr, "error: duplicate codepage byte sequence
at U+%04x<->0x%s see U+%04x\n", |
| 462 (int)c, printBytes(buffer, bytes, length), (int)old)
; |
| 463 return FALSE; |
| 464 } else if(VERBOSE) { |
| 465 fprintf(stderr, "duplicate codepage byte sequence at U+%
04x<->0x%s see U+%04x\n", |
| 466 (int)c, printBytes(buffer, bytes, length), (int)old)
; |
| 467 } |
| 468 } |
| 469 if(c>=0x10000) { |
| 470 fprintf(stderr, "error: code point does not fit into valid-1
6-bit state at U+%04x<->0x%s\n", |
| 471 (int)c, printBytes(buffer, bytes, length)); |
| 472 return FALSE; |
| 473 } |
| 474 if(flag>0) { |
| 475 /* assign only if there is no precise mapping */ |
| 476 if(mbcsData->unicodeCodeUnits[offset]==0xfffe) { |
| 477 return setFallback(mbcsData, offset, c); |
| 478 } |
| 479 } else { |
| 480 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| 481 } |
| 482 break; |
| 483 case MBCS_STATE_VALID_16_PAIR: |
| 484 /* bits 26..16 are not used, 0 */ |
| 485 /* bits 15..7 contain the final offset delta to two 16-bit code
units */ |
| 486 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 487 /* check that this byte sequence is still unassigned */ |
| 488 old=mbcsData->unicodeCodeUnits[offset]; |
| 489 if(old<0xfffe) { |
| 490 int32_t real; |
| 491 if(old<0xd800) { |
| 492 real=old; |
| 493 } else if(old<=0xdfff) { |
| 494 real=0x10000+((old&0x3ff)<<10)+((mbcsData->unicodeCodeUn
its[offset+1])&0x3ff); |
| 495 } else /* old<=0xe001 */ { |
| 496 real=mbcsData->unicodeCodeUnits[offset+1]; |
| 497 } |
| 498 if(flag>=0) { |
| 499 fprintf(stderr, "error: duplicate codepage byte sequence
at U+%04x<->0x%s see U+%04x\n", |
| 500 (int)c, printBytes(buffer, bytes, length), (int)real
); |
| 501 return FALSE; |
| 502 } else if(VERBOSE) { |
| 503 fprintf(stderr, "duplicate codepage byte sequence at U+%
04x<->0x%s see U+%04x\n", |
| 504 (int)c, printBytes(buffer, bytes, length), (int)real
); |
| 505 } |
| 506 } |
| 507 if(flag>0) { |
| 508 /* assign only if there is no precise mapping */ |
| 509 if(old<=0xdbff || old==0xe000) { |
| 510 /* do nothing */ |
| 511 } else if(c<=0xffff) { |
| 512 /* set a BMP fallback code point as a pair with 0xe001 *
/ |
| 513 mbcsData->unicodeCodeUnits[offset++]=0xe001; |
| 514 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| 515 } else { |
| 516 /* set a fallback surrogate pair with two second surroga
tes */ |
| 517 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xdbc0+(
c>>10)); |
| 518 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&
0x3ff)); |
| 519 } |
| 520 } else { |
| 521 if(c<0xd800) { |
| 522 /* set a BMP code point */ |
| 523 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| 524 } else if(c<=0xffff) { |
| 525 /* set a BMP code point above 0xd800 as a pair with 0xe0
00 */ |
| 526 mbcsData->unicodeCodeUnits[offset++]=0xe000; |
| 527 mbcsData->unicodeCodeUnits[offset]=(uint16_t)c; |
| 528 } else { |
| 529 /* set a surrogate pair */ |
| 530 mbcsData->unicodeCodeUnits[offset++]=(uint16_t)(0xd7c0+(
c>>10)); |
| 531 mbcsData->unicodeCodeUnits[offset]=(uint16_t)(0xdc00+(c&
0x3ff)); |
| 532 } |
| 533 } |
| 534 break; |
| 535 default: |
| 536 /* reserved, must never occur */ |
| 537 fprintf(stderr, "internal error: byte sequence reached reserved
action code, entry 0x%02x: 0x%s (U+%x)\n", |
| 538 (int)entry, printBytes(buffer, bytes, length), (int)c); |
| 539 return FALSE; |
| 540 } |
| 541 |
| 542 return TRUE; |
| 543 } |
| 544 } |
| 545 } |
| 546 |
| 547 /* is this byte sequence valid? (this is almost the same as MBCSAddToUnicode())
*/ |
| 548 static UBool |
| 549 MBCSIsValid(NewConverter *cnvData, |
| 550 const uint8_t *bytes, int32_t length) { |
| 551 MBCSData *mbcsData=(MBCSData *)cnvData; |
| 552 |
| 553 return (UBool)(1==ucm_countChars(&mbcsData->ucm->states, bytes, length)); |
| 554 } |
| 555 |
| 556 static UBool |
| 557 MBCSSingleAddFromUnicode(MBCSData *mbcsData, |
| 558 const uint8_t *bytes, int32_t length, |
| 559 UChar32 c, |
| 560 int8_t flag) { |
| 561 uint16_t *stage3, *p; |
| 562 uint32_t idx; |
| 563 uint16_t old; |
| 564 uint8_t b; |
| 565 |
| 566 uint32_t blockSize, newTop, i, nextOffset, newBlock, min; |
| 567 |
| 568 /* ignore |2 SUB mappings */ |
| 569 if(flag==2) { |
| 570 return TRUE; |
| 571 } |
| 572 |
| 573 /* |
| 574 * Walk down the triple-stage compact array ("trie") and |
| 575 * allocate parts as necessary. |
| 576 * Note that the first stage 2 and 3 blocks are reserved for all-unassigned
mappings. |
| 577 * We assume that length<=maxCharLength and that c<=0x10ffff. |
| 578 */ |
| 579 stage3=(uint16_t *)mbcsData->fromUBytes; |
| 580 b=*bytes; |
| 581 |
| 582 /* inspect stage 1 */ |
| 583 idx=c>>MBCS_STAGE_1_SHIFT; |
| 584 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { |
| 585 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_S
TAGE_3_BLOCKS-1); |
| 586 } else { |
| 587 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; |
| 588 } |
| 589 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { |
| 590 /* allocate another block in stage 2 */ |
| 591 newBlock=mbcsData->stage2Top; |
| 592 if(mbcsData->utf8Friendly) { |
| 593 min=newBlock-nextOffset; /* minimum block start with overlap */ |
| 594 while(min<newBlock && mbcsData->stage2Single[newBlock-1]==0) { |
| 595 --newBlock; |
| 596 } |
| 597 } |
| 598 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
| 599 |
| 600 if(newTop>MBCS_MAX_STAGE_2_TOP) { |
| 601 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%02x\
n", (int)c, b); |
| 602 return FALSE; |
| 603 } |
| 604 |
| 605 /* |
| 606 * each stage 2 block contains 64 16-bit words: |
| 607 * 6 code point bits 9..4 with 1 stage 3 index |
| 608 */ |
| 609 mbcsData->stage1[idx]=(uint16_t)newBlock; |
| 610 mbcsData->stage2Top=newTop; |
| 611 } |
| 612 |
| 613 /* inspect stage 2 */ |
| 614 idx=mbcsData->stage1[idx]+nextOffset; |
| 615 if(mbcsData->utf8Friendly && c<=SBCS_UTF8_MAX) { |
| 616 /* allocate 64-entry blocks for UTF-8-friendly lookup */ |
| 617 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE; |
| 618 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; |
| 619 } else { |
| 620 blockSize=MBCS_STAGE_3_BLOCK_SIZE; |
| 621 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; |
| 622 } |
| 623 if(mbcsData->stage2Single[idx]==0) { |
| 624 /* allocate another block in stage 3 */ |
| 625 newBlock=mbcsData->stage3Top; |
| 626 if(mbcsData->utf8Friendly) { |
| 627 min=newBlock-nextOffset; /* minimum block start with overlap */ |
| 628 while(min<newBlock && stage3[newBlock-1]==0) { |
| 629 --newBlock; |
| 630 } |
| 631 } |
| 632 newTop=newBlock+blockSize; |
| 633 |
| 634 if(newTop>MBCS_STAGE_3_SBCS_SIZE) { |
| 635 fprintf(stderr, "error: too many code points at U+%04x<->0x%02x\n",
(int)c, b); |
| 636 return FALSE; |
| 637 } |
| 638 /* each block has 16 uint16_t entries */ |
| 639 i=idx; |
| 640 while(newBlock<newTop) { |
| 641 mbcsData->stage2Single[i++]=(uint16_t)newBlock; |
| 642 newBlock+=MBCS_STAGE_3_BLOCK_SIZE; |
| 643 } |
| 644 mbcsData->stage3Top=newTop; /* ==newBlock */ |
| 645 } |
| 646 |
| 647 /* write the codepage entry into stage 3 and get the previous entry */ |
| 648 p=stage3+mbcsData->stage2Single[idx]+nextOffset; |
| 649 old=*p; |
| 650 if(flag<=0) { |
| 651 *p=(uint16_t)(0xf00|b); |
| 652 } else if(IS_PRIVATE_USE(c)) { |
| 653 *p=(uint16_t)(0xc00|b); |
| 654 } else { |
| 655 *p=(uint16_t)(0x800|b); |
| 656 } |
| 657 |
| 658 /* check that this Unicode code point was still unassigned */ |
| 659 if(old>=0x100) { |
| 660 if(flag>=0) { |
| 661 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%
02x see 0x%02x\n", |
| 662 (int)c, b, old&0xff); |
| 663 return FALSE; |
| 664 } else if(VERBOSE) { |
| 665 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%02x see
0x%02x\n", |
| 666 (int)c, b, old&0xff); |
| 667 } |
| 668 /* continue after the above warning if the precision of the mapping is u
nspecified */ |
| 669 } |
| 670 |
| 671 return TRUE; |
| 672 } |
| 673 |
| 674 static UBool |
| 675 MBCSAddFromUnicode(MBCSData *mbcsData, |
| 676 const uint8_t *bytes, int32_t length, |
| 677 UChar32 c, |
| 678 int8_t flag) { |
| 679 char buffer[10]; |
| 680 const uint8_t *pb; |
| 681 uint8_t *stage3, *p; |
| 682 uint32_t idx, b, old, stage3Index; |
| 683 int32_t maxCharLength; |
| 684 |
| 685 uint32_t blockSize, newTop, i, nextOffset, newBlock, min, overlap, maxOverla
p; |
| 686 |
| 687 maxCharLength=mbcsData->ucm->states.maxCharLength; |
| 688 |
| 689 if( mbcsData->ucm->states.outputType==MBCS_OUTPUT_2_SISO && |
| 690 (!IGNORE_SISO_CHECK && (*bytes==0xe || *bytes==0xf)) |
| 691 ) { |
| 692 fprintf(stderr, "error: illegal mapping to SI or SO for SI/SO codepage:
U+%04x<->0x%s\n", |
| 693 (int)c, printBytes(buffer, bytes, length)); |
| 694 return FALSE; |
| 695 } |
| 696 |
| 697 if(flag==1 && length==1 && *bytes==0) { |
| 698 fprintf(stderr, "error: unable to encode a |1 fallback from U+%04x to 0x
%02x\n", |
| 699 (int)c, *bytes); |
| 700 return FALSE; |
| 701 } |
| 702 |
| 703 /* |
| 704 * Walk down the triple-stage compact array ("trie") and |
| 705 * allocate parts as necessary. |
| 706 * Note that the first stage 2 and 3 blocks are reserved for |
| 707 * all-unassigned mappings. |
| 708 * We assume that length<=maxCharLength and that c<=0x10ffff. |
| 709 */ |
| 710 stage3=mbcsData->fromUBytes; |
| 711 |
| 712 /* inspect stage 1 */ |
| 713 idx=c>>MBCS_STAGE_1_SHIFT; |
| 714 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
| 715 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK&~(MBCS_UTF8_S
TAGE_3_BLOCKS-1); |
| 716 } else { |
| 717 nextOffset=(c>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_MASK; |
| 718 } |
| 719 if(mbcsData->stage1[idx]==MBCS_STAGE_2_ALL_UNASSIGNED_INDEX) { |
| 720 /* allocate another block in stage 2 */ |
| 721 newBlock=mbcsData->stage2Top; |
| 722 if(mbcsData->utf8Friendly) { |
| 723 min=newBlock-nextOffset; /* minimum block start with overlap */ |
| 724 while(min<newBlock && mbcsData->stage2[newBlock-1]==0) { |
| 725 --newBlock; |
| 726 } |
| 727 } |
| 728 newTop=newBlock+MBCS_STAGE_2_BLOCK_SIZE; |
| 729 |
| 730 if(newTop>MBCS_MAX_STAGE_2_TOP) { |
| 731 fprintf(stderr, "error: too many stage 2 entries at U+%04x<->0x%s\n"
, |
| 732 (int)c, printBytes(buffer, bytes, length)); |
| 733 return FALSE; |
| 734 } |
| 735 |
| 736 /* |
| 737 * each stage 2 block contains 64 32-bit words: |
| 738 * 6 code point bits 9..4 with value with bits 31..16 "assigned" flags a
nd bits 15..0 stage 3 index |
| 739 */ |
| 740 i=idx; |
| 741 while(newBlock<newTop) { |
| 742 mbcsData->stage1[i++]=(uint16_t)newBlock; |
| 743 newBlock+=MBCS_STAGE_2_BLOCK_SIZE; |
| 744 } |
| 745 mbcsData->stage2Top=newTop; /* ==newBlock */ |
| 746 } |
| 747 |
| 748 /* inspect stage 2 */ |
| 749 idx=mbcsData->stage1[idx]+nextOffset; |
| 750 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
| 751 /* allocate 64-entry blocks for UTF-8-friendly lookup */ |
| 752 blockSize=MBCS_UTF8_STAGE_3_BLOCK_SIZE*maxCharLength; |
| 753 nextOffset=c&MBCS_UTF8_STAGE_3_BLOCK_MASK; |
| 754 } else { |
| 755 blockSize=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; |
| 756 nextOffset=c&MBCS_STAGE_3_BLOCK_MASK; |
| 757 } |
| 758 if(mbcsData->stage2[idx]==0) { |
| 759 /* allocate another block in stage 3 */ |
| 760 newBlock=mbcsData->stage3Top; |
| 761 if(mbcsData->utf8Friendly && nextOffset>=MBCS_STAGE_3_GRANULARITY) { |
| 762 /* |
| 763 * Overlap stage 3 blocks only in multiples of 16-entry blocks |
| 764 * because of the indexing granularity in stage 2. |
| 765 */ |
| 766 maxOverlap=(nextOffset&~(MBCS_STAGE_3_GRANULARITY-1))*maxCharLength; |
| 767 for(overlap=0; |
| 768 overlap<maxOverlap && stage3[newBlock-overlap-1]==0; |
| 769 ++overlap) {} |
| 770 |
| 771 overlap=(overlap/MBCS_STAGE_3_GRANULARITY)/maxCharLength; |
| 772 overlap=(overlap*MBCS_STAGE_3_GRANULARITY)*maxCharLength; |
| 773 |
| 774 newBlock-=overlap; |
| 775 } |
| 776 newTop=newBlock+blockSize; |
| 777 |
| 778 if(newTop>MBCS_STAGE_3_MBCS_SIZE*(uint32_t)maxCharLength) { |
| 779 fprintf(stderr, "error: too many code points at U+%04x<->0x%s\n", |
| 780 (int)c, printBytes(buffer, bytes, length)); |
| 781 return FALSE; |
| 782 } |
| 783 /* each block has 16*maxCharLength bytes */ |
| 784 i=idx; |
| 785 while(newBlock<newTop) { |
| 786 mbcsData->stage2[i++]=(newBlock/MBCS_STAGE_3_GRANULARITY)/maxCharLen
gth; |
| 787 newBlock+=MBCS_STAGE_3_BLOCK_SIZE*maxCharLength; |
| 788 } |
| 789 mbcsData->stage3Top=newTop; /* ==newBlock */ |
| 790 } |
| 791 |
| 792 stage3Index=MBCS_STAGE_3_GRANULARITY*(uint32_t)(uint16_t)mbcsData->stage2[id
x]; |
| 793 |
| 794 /* Build an alternate, UTF-8-friendly stage table as well. */ |
| 795 if(mbcsData->utf8Friendly && c<=mbcsData->utf8Max) { |
| 796 /* Overflow for uint16_t entries in stageUTF8? */ |
| 797 if(stage3Index>0xffff) { |
| 798 /* |
| 799 * This can occur only if the mapping table is nearly perfectly fill
ed and if |
| 800 * utf8Max==0xffff. |
| 801 * (There is no known charset like this. GB 18030 does not map |
| 802 * surrogate code points and LMBCS does not map 256 PUA code points.
) |
| 803 * |
| 804 * Otherwise, stage3Index<=MBCS_UTF8_LIMIT<0xffff |
| 805 * (stage3Index can at most reach exactly MBCS_UTF8_LIMIT) |
| 806 * because we have a sorted table and there are at most MBCS_UTF8_LI
MIT |
| 807 * mappings with 0<=c<MBCS_UTF8_LIMIT, and there is only also |
| 808 * the initial all-unassigned block in stage3. |
| 809 * |
| 810 * Solution for the overflow: Reduce utf8Max to the next lower value
, 0xfeff. |
| 811 * |
| 812 * (See svn revision 20866 of the markus/ucnvutf8 feature branch for |
| 813 * code that causes MBCSAddTable() to rebuild the table not utf8Frie
ndly |
| 814 * in case of overflow. That code was not tested.) |
| 815 */ |
| 816 mbcsData->utf8Max=0xfeff; |
| 817 } else { |
| 818 /* |
| 819 * The stage 3 block has been assigned for the regular trie. |
| 820 * Just copy its index into stageUTF8[], without the granularity. |
| 821 */ |
| 822 mbcsData->stageUTF8[c>>MBCS_UTF8_STAGE_SHIFT]=(uint16_t)stage3Index; |
| 823 } |
| 824 } |
| 825 |
| 826 /* write the codepage bytes into stage 3 and get the previous bytes */ |
| 827 |
| 828 /* assemble the bytes into a single integer */ |
| 829 pb=bytes; |
| 830 b=0; |
| 831 switch(length) { |
| 832 case 4: |
| 833 b=*pb++; |
| 834 case 3: |
| 835 b=(b<<8)|*pb++; |
| 836 case 2: |
| 837 b=(b<<8)|*pb++; |
| 838 case 1: |
| 839 default: |
| 840 b=(b<<8)|*pb++; |
| 841 break; |
| 842 } |
| 843 |
| 844 old=0; |
| 845 p=stage3+(stage3Index+nextOffset)*maxCharLength; |
| 846 switch(maxCharLength) { |
| 847 case 2: |
| 848 old=*(uint16_t *)p; |
| 849 *(uint16_t *)p=(uint16_t)b; |
| 850 break; |
| 851 case 3: |
| 852 old=(uint32_t)*p<<16; |
| 853 *p++=(uint8_t)(b>>16); |
| 854 old|=(uint32_t)*p<<8; |
| 855 *p++=(uint8_t)(b>>8); |
| 856 old|=*p; |
| 857 *p=(uint8_t)b; |
| 858 break; |
| 859 case 4: |
| 860 old=*(uint32_t *)p; |
| 861 *(uint32_t *)p=b; |
| 862 break; |
| 863 default: |
| 864 /* will never occur */ |
| 865 break; |
| 866 } |
| 867 |
| 868 /* check that this Unicode code point was still unassigned */ |
| 869 if((mbcsData->stage2[idx+(nextOffset>>MBCS_STAGE_2_SHIFT)]&(1UL<<(16+(c&0xf)
)))!=0 || old!=0) { |
| 870 if(flag>=0) { |
| 871 fprintf(stderr, "error: duplicate Unicode code point at U+%04x<->0x%
s see 0x%02x\n", |
| 872 (int)c, printBytes(buffer, bytes, length), (int)old); |
| 873 return FALSE; |
| 874 } else if(VERBOSE) { |
| 875 fprintf(stderr, "duplicate Unicode code point at U+%04x<->0x%s see 0
x%02x\n", |
| 876 (int)c, printBytes(buffer, bytes, length), (int)old); |
| 877 } |
| 878 /* continue after the above warning if the precision of the mapping is |
| 879 unspecified */ |
| 880 } |
| 881 if(flag<=0) { |
| 882 /* set the roundtrip flag */ |
| 883 mbcsData->stage2[idx+(nextOffset>>4)]|=(1UL<<(16+(c&0xf))); |
| 884 } |
| 885 |
| 886 return TRUE; |
| 887 } |
| 888 |
| 889 U_CFUNC UBool |
| 890 MBCSOkForBaseFromUnicode(const MBCSData *mbcsData, |
| 891 const uint8_t *bytes, int32_t length, |
| 892 UChar32 c, int8_t flag) { |
| 893 /* |
| 894 * A 1:1 mapping does not fit into the MBCS base table's fromUnicode table u
nder |
| 895 * the following conditions: |
| 896 * |
| 897 * - a |2 SUB mapping for <subchar1> (no base table data structure for them) |
| 898 * - a |1 fallback to 0x00 (result value 0, indistinguishable from unmappabl
e entry) |
| 899 * - a multi-byte mapping with leading 0x00 bytes (no explicit length field) |
| 900 * |
| 901 * Some of these tests are redundant with ucm_mappingType(). |
| 902 */ |
| 903 if( (flag==2 && length==1) || |
| 904 (flag==1 && bytes[0]==0) || /* testing length==1 would be redundant with
the next test */ |
| 905 (flag<=1 && length>1 && bytes[0]==0) |
| 906 ) { |
| 907 return FALSE; |
| 908 } |
| 909 |
| 910 /* |
| 911 * Additional restrictions for UTF-8-friendly fromUnicode tables, |
| 912 * for code points up to the maximum optimized one: |
| 913 * |
| 914 * - any mapping to 0x00 (result value 0, indistinguishable from unmappable
entry) |
| 915 * - any |1 fallback (no roundtrip flags in the optimized table) |
| 916 */ |
| 917 if(mbcsData->utf8Friendly && flag<=1 && c<=mbcsData->utf8Max && (bytes[0]==0
|| flag==1)) { |
| 918 return FALSE; |
| 919 } |
| 920 |
| 921 /* |
| 922 * If we omit the fromUnicode data, we can only store roundtrips there |
| 923 * because only they are recoverable from the toUnicode data. |
| 924 * Fallbacks must go into the extension table. |
| 925 */ |
| 926 if(mbcsData->omitFromU && flag!=0) { |
| 927 return FALSE; |
| 928 } |
| 929 |
| 930 /* All other mappings do fit into the base table. */ |
| 931 return TRUE; |
| 932 } |
| 933 |
| 934 /* we can assume that the table only contains 1:1 mappings with <=4 bytes each *
/ |
| 935 static UBool |
| 936 MBCSAddTable(NewConverter *cnvData, UCMTable *table, UConverterStaticData *stati
cData) { |
| 937 MBCSData *mbcsData; |
| 938 UCMapping *m; |
| 939 UChar32 c; |
| 940 int32_t i, maxCharLength; |
| 941 int8_t f; |
| 942 UBool isOK, utf8Friendly; |
| 943 |
| 944 staticData->unicodeMask=table->unicodeMask; |
| 945 if(staticData->unicodeMask==3) { |
| 946 fprintf(stderr, "error: contains mappings for both supplementary and sur
rogate code points\n"); |
| 947 return FALSE; |
| 948 } |
| 949 |
| 950 staticData->conversionType=UCNV_MBCS; |
| 951 |
| 952 mbcsData=(MBCSData *)cnvData; |
| 953 maxCharLength=mbcsData->ucm->states.maxCharLength; |
| 954 |
| 955 /* |
| 956 * Generation of UTF-8-friendly data requires |
| 957 * a sorted table, which makeconv generates when explicit precision |
| 958 * indicators are used. |
| 959 */ |
| 960 mbcsData->utf8Friendly=utf8Friendly=(UBool)((table->flagsType&UCM_FLAGS_EXPL
ICIT)!=0); |
| 961 if(utf8Friendly) { |
| 962 mbcsData->utf8Max=MBCS_UTF8_MAX; |
| 963 if(SMALL && maxCharLength>1) { |
| 964 mbcsData->omitFromU=TRUE; |
| 965 } |
| 966 } else { |
| 967 mbcsData->utf8Max=0; |
| 968 if(SMALL && maxCharLength>1) { |
| 969 fprintf(stderr, |
| 970 "makeconv warning: --small not available for .ucm files without
|0 etc.\n"); |
| 971 } |
| 972 } |
| 973 |
| 974 if(!MBCSStartMappings(mbcsData)) { |
| 975 return FALSE; |
| 976 } |
| 977 |
| 978 staticData->hasFromUnicodeFallback=FALSE; |
| 979 staticData->hasToUnicodeFallback=FALSE; |
| 980 |
| 981 isOK=TRUE; |
| 982 |
| 983 m=table->mappings; |
| 984 for(i=0; i<table->mappingsLength; ++m, ++i) { |
| 985 c=m->u; |
| 986 f=m->f; |
| 987 |
| 988 /* |
| 989 * Small optimization for --small .cnv files: |
| 990 * |
| 991 * If there are fromUnicode mappings above MBCS_UTF8_MAX, |
| 992 * then the file size will be smaller if we make utf8Max larger |
| 993 * because the size increase in stageUTF8 will be more than balanced by |
| 994 * how much less of stage2 needs to be stored. |
| 995 * |
| 996 * There is no point in doing this incrementally because stageUTF8 |
| 997 * uses so much less space per block than stage2, |
| 998 * so we immediately increase utf8Max to 0xffff. |
| 999 * |
| 1000 * Do not increase utf8Max if it is already at 0xfeff because MBCSAddFro
mUnicode() |
| 1001 * sets it to that value when stageUTF8 overflows. |
| 1002 */ |
| 1003 if( mbcsData->omitFromU && f<=1 && |
| 1004 mbcsData->utf8Max<c && c<=0xffff && |
| 1005 mbcsData->utf8Max<0xfeff |
| 1006 ) { |
| 1007 mbcsData->utf8Max=0xffff; |
| 1008 } |
| 1009 |
| 1010 switch(f) { |
| 1011 case -1: |
| 1012 /* there was no precision/fallback indicator */ |
| 1013 /* fall through to set the mappings */ |
| 1014 case 0: |
| 1015 /* set roundtrip mappings */ |
| 1016 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| 1017 |
| 1018 if(maxCharLength==1) { |
| 1019 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c,
f); |
| 1020 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c,
f)) { |
| 1021 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| 1022 } else { |
| 1023 m->f|=MBCS_FROM_U_EXT_FLAG; |
| 1024 m->moveFlag=UCM_MOVE_TO_EXT; |
| 1025 } |
| 1026 break; |
| 1027 case 1: |
| 1028 /* set only a fallback mapping from Unicode to codepage */ |
| 1029 if(maxCharLength==1) { |
| 1030 staticData->hasFromUnicodeFallback=TRUE; |
| 1031 isOK&=MBCSSingleAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c,
f); |
| 1032 } else if(MBCSOkForBaseFromUnicode(mbcsData, m->b.bytes, m->bLen, c,
f)) { |
| 1033 staticData->hasFromUnicodeFallback=TRUE; |
| 1034 isOK&=MBCSAddFromUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| 1035 } else { |
| 1036 m->f|=MBCS_FROM_U_EXT_FLAG; |
| 1037 m->moveFlag=UCM_MOVE_TO_EXT; |
| 1038 } |
| 1039 break; |
| 1040 case 2: |
| 1041 /* ignore |2 SUB mappings, except to move <subchar1> mappings to the
extension table */ |
| 1042 if(maxCharLength>1 && m->bLen==1) { |
| 1043 m->f|=MBCS_FROM_U_EXT_FLAG; |
| 1044 m->moveFlag=UCM_MOVE_TO_EXT; |
| 1045 } |
| 1046 break; |
| 1047 case 3: |
| 1048 /* set only a fallback mapping from codepage to Unicode */ |
| 1049 staticData->hasToUnicodeFallback=TRUE; |
| 1050 isOK&=MBCSAddToUnicode(mbcsData, m->b.bytes, m->bLen, c, f); |
| 1051 break; |
| 1052 default: |
| 1053 /* will not occur because the parser checked it already */ |
| 1054 fprintf(stderr, "error: illegal fallback indicator %d\n", f); |
| 1055 return FALSE; |
| 1056 } |
| 1057 } |
| 1058 |
| 1059 MBCSPostprocess(mbcsData, staticData); |
| 1060 |
| 1061 return isOK; |
| 1062 } |
| 1063 |
| 1064 static UBool |
| 1065 transformEUC(MBCSData *mbcsData) { |
| 1066 uint8_t *p8; |
| 1067 uint32_t i, value, oldLength, old3Top, new3Top; |
| 1068 uint8_t b; |
| 1069 |
| 1070 oldLength=mbcsData->ucm->states.maxCharLength; |
| 1071 if(oldLength<3) { |
| 1072 return FALSE; |
| 1073 } |
| 1074 |
| 1075 old3Top=mbcsData->stage3Top; |
| 1076 |
| 1077 /* careful: 2-byte and 4-byte codes are stored in platform endianness! */ |
| 1078 |
| 1079 /* test if all first bytes are in {0, 0x8e, 0x8f} */ |
| 1080 p8=mbcsData->fromUBytes; |
| 1081 |
| 1082 #if !U_IS_BIG_ENDIAN |
| 1083 if(oldLength==4) { |
| 1084 p8+=3; |
| 1085 } |
| 1086 #endif |
| 1087 |
| 1088 for(i=0; i<old3Top; i+=oldLength) { |
| 1089 b=p8[i]; |
| 1090 if(b!=0 && b!=0x8e && b!=0x8f) { |
| 1091 /* some first byte does not fit the EUC pattern, nothing to be done
*/ |
| 1092 return FALSE; |
| 1093 } |
| 1094 } |
| 1095 /* restore p if it was modified above */ |
| 1096 p8=mbcsData->fromUBytes; |
| 1097 |
| 1098 /* modify outputType and adjust stage3Top */ |
| 1099 mbcsData->ucm->states.outputType=(int8_t)(MBCS_OUTPUT_3_EUC+oldLength-3); |
| 1100 mbcsData->stage3Top=new3Top=(old3Top*(oldLength-1))/oldLength; |
| 1101 |
| 1102 /* |
| 1103 * EUC-encode all byte sequences; |
| 1104 * see "CJKV Information Processing" (1st ed. 1999) from Ken Lunde, O'Reilly
, |
| 1105 * p. 161 in chapter 4 "Encoding Methods" |
| 1106 * |
| 1107 * This also must reverse the byte order if the platform is little-endian! |
| 1108 */ |
| 1109 if(oldLength==3) { |
| 1110 uint16_t *q=(uint16_t *)p8; |
| 1111 for(i=0; i<old3Top; i+=oldLength) { |
| 1112 b=*p8; |
| 1113 if(b==0) { |
| 1114 /* short sequences are stored directly */ |
| 1115 /* code set 0 or 1 */ |
| 1116 (*q++)=(uint16_t)((p8[1]<<8)|p8[2]); |
| 1117 } else if(b==0x8e) { |
| 1118 /* code set 2 */ |
| 1119 (*q++)=(uint16_t)(((p8[1]&0x7f)<<8)|p8[2]); |
| 1120 } else /* b==0x8f */ { |
| 1121 /* code set 3 */ |
| 1122 (*q++)=(uint16_t)((p8[1]<<8)|(p8[2]&0x7f)); |
| 1123 } |
| 1124 p8+=3; |
| 1125 } |
| 1126 } else /* oldLength==4 */ { |
| 1127 uint8_t *q=p8; |
| 1128 uint32_t *p32=(uint32_t *)p8; |
| 1129 for(i=0; i<old3Top; i+=4) { |
| 1130 value=(*p32++); |
| 1131 if(value<=0xffffff) { |
| 1132 /* short sequences are stored directly */ |
| 1133 /* code set 0 or 1 */ |
| 1134 (*q++)=(uint8_t)(value>>16); |
| 1135 (*q++)=(uint8_t)(value>>8); |
| 1136 (*q++)=(uint8_t)value; |
| 1137 } else if(value<=0x8effffff) { |
| 1138 /* code set 2 */ |
| 1139 (*q++)=(uint8_t)((value>>16)&0x7f); |
| 1140 (*q++)=(uint8_t)(value>>8); |
| 1141 (*q++)=(uint8_t)value; |
| 1142 } else /* first byte is 0x8f */ { |
| 1143 /* code set 3 */ |
| 1144 (*q++)=(uint8_t)(value>>16); |
| 1145 (*q++)=(uint8_t)((value>>8)&0x7f); |
| 1146 (*q++)=(uint8_t)value; |
| 1147 } |
| 1148 } |
| 1149 } |
| 1150 |
| 1151 return TRUE; |
| 1152 } |
| 1153 |
| 1154 /* |
| 1155 * Compact stage 2 for SBCS by overlapping adjacent stage 2 blocks as far |
| 1156 * as possible. Overlapping is done on unassigned head and tail |
| 1157 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. |
| 1158 * Stage 1 indexes need to be adjusted accordingly. |
| 1159 * This function is very similar to genprops/store.c/compactStage(). |
| 1160 */ |
| 1161 static void |
| 1162 singleCompactStage2(MBCSData *mbcsData) { |
| 1163 /* this array maps the ordinal number of a stage 2 block to its new stage 1
index */ |
| 1164 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; |
| 1165 uint16_t i, start, prevEnd, newStart; |
| 1166 |
| 1167 /* enter the all-unassigned first stage 2 block into the map */ |
| 1168 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; |
| 1169 |
| 1170 /* begin with the first block after the all-unassigned one */ |
| 1171 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; |
| 1172 while(start<mbcsData->stage2Top) { |
| 1173 prevEnd=(uint16_t)(newStart-1); |
| 1174 |
| 1175 /* find the size of the overlap */ |
| 1176 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2Single[start+i]==0
&& mbcsData->stage2Single[prevEnd-i]==0; ++i) {} |
| 1177 |
| 1178 if(i>0) { |
| 1179 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); |
| 1180 |
| 1181 /* move the non-overlapping indexes to their new positions */ |
| 1182 start+=i; |
| 1183 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { |
| 1184 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start+
+]; |
| 1185 } |
| 1186 } else if(newStart<start) { |
| 1187 /* move the indexes to their new positions */ |
| 1188 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; |
| 1189 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { |
| 1190 mbcsData->stage2Single[newStart++]=mbcsData->stage2Single[start+
+]; |
| 1191 } |
| 1192 } else /* no overlap && newStart==start */ { |
| 1193 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; |
| 1194 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; |
| 1195 } |
| 1196 } |
| 1197 |
| 1198 /* adjust stage2Top */ |
| 1199 if(VERBOSE && newStart<mbcsData->stage2Top) { |
| 1200 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld byt
es\n", |
| 1201 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, |
| 1202 (long)(mbcsData->stage2Top-newStart)*2); |
| 1203 } |
| 1204 mbcsData->stage2Top=newStart; |
| 1205 |
| 1206 /* now adjust stage 1 */ |
| 1207 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { |
| 1208 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHI
FT]; |
| 1209 } |
| 1210 } |
| 1211 |
| 1212 /* Compact stage 3 for SBCS - same algorithm as above. */ |
| 1213 static void |
| 1214 singleCompactStage3(MBCSData *mbcsData) { |
| 1215 uint16_t *stage3=(uint16_t *)mbcsData->fromUBytes; |
| 1216 |
| 1217 /* this array maps the ordinal number of a stage 3 block to its new stage 2
index */ |
| 1218 uint16_t map[0x1000]; |
| 1219 uint16_t i, start, prevEnd, newStart; |
| 1220 |
| 1221 /* enter the all-unassigned first stage 3 block into the map */ |
| 1222 map[0]=0; |
| 1223 |
| 1224 /* begin with the first block after the all-unassigned one */ |
| 1225 start=newStart=16; |
| 1226 while(start<mbcsData->stage3Top) { |
| 1227 prevEnd=(uint16_t)(newStart-1); |
| 1228 |
| 1229 /* find the size of the overlap */ |
| 1230 for(i=0; i<16 && stage3[start+i]==0 && stage3[prevEnd-i]==0; ++i) {} |
| 1231 |
| 1232 if(i>0) { |
| 1233 map[start>>4]=(uint16_t)(newStart-i); |
| 1234 |
| 1235 /* move the non-overlapping indexes to their new positions */ |
| 1236 start+=i; |
| 1237 for(i=(uint16_t)(16-i); i>0; --i) { |
| 1238 stage3[newStart++]=stage3[start++]; |
| 1239 } |
| 1240 } else if(newStart<start) { |
| 1241 /* move the indexes to their new positions */ |
| 1242 map[start>>4]=newStart; |
| 1243 for(i=16; i>0; --i) { |
| 1244 stage3[newStart++]=stage3[start++]; |
| 1245 } |
| 1246 } else /* no overlap && newStart==start */ { |
| 1247 map[start>>4]=start; |
| 1248 start=newStart+=16; |
| 1249 } |
| 1250 } |
| 1251 |
| 1252 /* adjust stage3Top */ |
| 1253 if(VERBOSE && newStart<mbcsData->stage3Top) { |
| 1254 printf("compacting stage 3 from stage3Top=0x%lx to 0x%lx, saving %ld byt
es\n", |
| 1255 (unsigned long)mbcsData->stage3Top, (unsigned long)newStart, |
| 1256 (long)(mbcsData->stage3Top-newStart)*2); |
| 1257 } |
| 1258 mbcsData->stage3Top=newStart; |
| 1259 |
| 1260 /* now adjust stage 2 */ |
| 1261 for(i=0; i<mbcsData->stage2Top; ++i) { |
| 1262 mbcsData->stage2Single[i]=map[mbcsData->stage2Single[i]>>4]; |
| 1263 } |
| 1264 } |
| 1265 |
| 1266 /* |
| 1267 * Compact stage 2 by overlapping adjacent stage 2 blocks as far |
| 1268 * as possible. Overlapping is done on unassigned head and tail |
| 1269 * parts of blocks in steps of MBCS_STAGE_2_MULTIPLIER. |
| 1270 * Stage 1 indexes need to be adjusted accordingly. |
| 1271 * This function is very similar to genprops/store.c/compactStage(). |
| 1272 */ |
| 1273 static void |
| 1274 compactStage2(MBCSData *mbcsData) { |
| 1275 /* this array maps the ordinal number of a stage 2 block to its new stage 1
index */ |
| 1276 uint16_t map[MBCS_STAGE_2_MAX_BLOCKS]; |
| 1277 uint16_t i, start, prevEnd, newStart; |
| 1278 |
| 1279 /* enter the all-unassigned first stage 2 block into the map */ |
| 1280 map[0]=MBCS_STAGE_2_ALL_UNASSIGNED_INDEX; |
| 1281 |
| 1282 /* begin with the first block after the all-unassigned one */ |
| 1283 start=newStart=MBCS_STAGE_2_FIRST_ASSIGNED; |
| 1284 while(start<mbcsData->stage2Top) { |
| 1285 prevEnd=(uint16_t)(newStart-1); |
| 1286 |
| 1287 /* find the size of the overlap */ |
| 1288 for(i=0; i<MBCS_STAGE_2_BLOCK_SIZE && mbcsData->stage2[start+i]==0 && mb
csData->stage2[prevEnd-i]==0; ++i) {} |
| 1289 |
| 1290 if(i>0) { |
| 1291 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=(uint16_t)(newStart-i); |
| 1292 |
| 1293 /* move the non-overlapping indexes to their new positions */ |
| 1294 start+=i; |
| 1295 for(i=(uint16_t)(MBCS_STAGE_2_BLOCK_SIZE-i); i>0; --i) { |
| 1296 mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; |
| 1297 } |
| 1298 } else if(newStart<start) { |
| 1299 /* move the indexes to their new positions */ |
| 1300 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=newStart; |
| 1301 for(i=MBCS_STAGE_2_BLOCK_SIZE; i>0; --i) { |
| 1302 mbcsData->stage2[newStart++]=mbcsData->stage2[start++]; |
| 1303 } |
| 1304 } else /* no overlap && newStart==start */ { |
| 1305 map[start>>MBCS_STAGE_2_BLOCK_SIZE_SHIFT]=start; |
| 1306 start=newStart+=MBCS_STAGE_2_BLOCK_SIZE; |
| 1307 } |
| 1308 } |
| 1309 |
| 1310 /* adjust stage2Top */ |
| 1311 if(VERBOSE && newStart<mbcsData->stage2Top) { |
| 1312 printf("compacting stage 2 from stage2Top=0x%lx to 0x%lx, saving %ld byt
es\n", |
| 1313 (unsigned long)mbcsData->stage2Top, (unsigned long)newStart, |
| 1314 (long)(mbcsData->stage2Top-newStart)*4); |
| 1315 } |
| 1316 mbcsData->stage2Top=newStart; |
| 1317 |
| 1318 /* now adjust stage 1 */ |
| 1319 for(i=0; i<MBCS_STAGE_1_SIZE; ++i) { |
| 1320 mbcsData->stage1[i]=map[mbcsData->stage1[i]>>MBCS_STAGE_2_BLOCK_SIZE_SHI
FT]; |
| 1321 } |
| 1322 } |
| 1323 |
| 1324 static void |
| 1325 MBCSPostprocess(MBCSData *mbcsData, const UConverterStaticData *staticData) { |
| 1326 UCMStates *states; |
| 1327 int32_t maxCharLength, stage3Width; |
| 1328 |
| 1329 states=&mbcsData->ucm->states; |
| 1330 stage3Width=maxCharLength=states->maxCharLength; |
| 1331 |
| 1332 ucm_optimizeStates(states, |
| 1333 &mbcsData->unicodeCodeUnits, |
| 1334 mbcsData->toUFallbacks, mbcsData->countToUFallbacks, |
| 1335 VERBOSE); |
| 1336 |
| 1337 /* try to compact the fromUnicode tables */ |
| 1338 if(transformEUC(mbcsData)) { |
| 1339 --stage3Width; |
| 1340 } |
| 1341 |
| 1342 /* |
| 1343 * UTF-8-friendly tries are built precompacted, to cope with variable |
| 1344 * stage 3 allocation block sizes. |
| 1345 * |
| 1346 * Tables without precision indicators cannot be built that way, |
| 1347 * because if a block was overlapped with a previous one, then a smaller |
| 1348 * code point for the same block would not fit. |
| 1349 * Therefore, such tables are not marked UTF-8-friendly and must be |
| 1350 * compacted after all mappings are entered. |
| 1351 */ |
| 1352 if(!mbcsData->utf8Friendly) { |
| 1353 if(maxCharLength==1) { |
| 1354 singleCompactStage3(mbcsData); |
| 1355 singleCompactStage2(mbcsData); |
| 1356 } else { |
| 1357 compactStage2(mbcsData); |
| 1358 } |
| 1359 } |
| 1360 |
| 1361 if(VERBOSE) { |
| 1362 /*uint32_t c, i1, i2, i2Limit, i3;*/ |
| 1363 |
| 1364 printf("fromUnicode number of uint%s_t in stage 2: 0x%lx=%lu\n", |
| 1365 maxCharLength==1 ? "16" : "32", |
| 1366 (unsigned long)mbcsData->stage2Top, |
| 1367 (unsigned long)mbcsData->stage2Top); |
| 1368 printf("fromUnicode number of %d-byte stage 3 mapping entries: 0x%lx=%lu
\n", |
| 1369 (int)stage3Width, |
| 1370 (unsigned long)mbcsData->stage3Top/stage3Width, |
| 1371 (unsigned long)mbcsData->stage3Top/stage3Width); |
| 1372 #if 0 |
| 1373 c=0; |
| 1374 for(i1=0; i1<MBCS_STAGE_1_SIZE; ++i1) { |
| 1375 i2=mbcsData->stage1[i1]; |
| 1376 if(i2==0) { |
| 1377 c+=MBCS_STAGE_2_BLOCK_SIZE*MBCS_STAGE_3_BLOCK_SIZE; |
| 1378 continue; |
| 1379 } |
| 1380 for(i2Limit=i2+MBCS_STAGE_2_BLOCK_SIZE; i2<i2Limit; ++i2) { |
| 1381 if(maxCharLength==1) { |
| 1382 i3=mbcsData->stage2Single[i2]; |
| 1383 } else { |
| 1384 i3=(uint16_t)mbcsData->stage2[i2]; |
| 1385 } |
| 1386 if(i3==0) { |
| 1387 c+=MBCS_STAGE_3_BLOCK_SIZE; |
| 1388 continue; |
| 1389 } |
| 1390 printf("U+%04lx i1=0x%02lx i2=0x%04lx i3=0x%04lx\n", |
| 1391 (unsigned long)c, |
| 1392 (unsigned long)i1, |
| 1393 (unsigned long)i2, |
| 1394 (unsigned long)i3); |
| 1395 c+=MBCS_STAGE_3_BLOCK_SIZE; |
| 1396 } |
| 1397 } |
| 1398 #endif |
| 1399 } |
| 1400 } |
| 1401 |
| 1402 static uint32_t |
| 1403 MBCSWrite(NewConverter *cnvData, const UConverterStaticData *staticData, |
| 1404 UNewDataMemory *pData, int32_t tableType) { |
| 1405 MBCSData *mbcsData=(MBCSData *)cnvData; |
| 1406 uint32_t stage2Start, stage2Length; |
| 1407 uint32_t top, stageUTF8Length=0; |
| 1408 int32_t i, stage1Top; |
| 1409 uint32_t headerLength; |
| 1410 |
| 1411 _MBCSHeader header={ { 0, 0, 0, 0 }, 0, 0, 0, 0, 0, 0, 0 }; |
| 1412 |
| 1413 stage2Length=mbcsData->stage2Top; |
| 1414 if(mbcsData->omitFromU) { |
| 1415 /* find how much of stage2 can be omitted */ |
| 1416 int32_t utf8Limit=(int32_t)mbcsData->utf8Max+1; |
| 1417 uint32_t st2=0; /*initialized it to avoid compiler warnings */ |
| 1418 |
| 1419 i=utf8Limit>>MBCS_STAGE_1_SHIFT; |
| 1420 if((utf8Limit&((1<<MBCS_STAGE_1_SHIFT)-1))!=0 && (st2=mbcsData->stage1[i
])!=0) { |
| 1421 /* utf8Limit is in the middle of an existing stage 2 block */ |
| 1422 stage2Start=st2+((utf8Limit>>MBCS_STAGE_2_SHIFT)&MBCS_STAGE_2_BLOCK_
MASK); |
| 1423 } else { |
| 1424 /* find the last stage2 block with mappings before utf8Limit */ |
| 1425 while(i>0 && (st2=mbcsData->stage1[--i])==0) {} |
| 1426 /* stage2 up to the end of this block corresponds to stageUTF8 */ |
| 1427 stage2Start=st2+MBCS_STAGE_2_BLOCK_SIZE; |
| 1428 } |
| 1429 header.options|=MBCS_OPT_NO_FROM_U; |
| 1430 header.fullStage2Length=stage2Length; |
| 1431 stage2Length-=stage2Start; |
| 1432 if(VERBOSE) { |
| 1433 printf("+ omitting %lu out of %lu stage2 entries and %lu fromUBytes\
n", |
| 1434 (unsigned long)stage2Start, |
| 1435 (unsigned long)mbcsData->stage2Top, |
| 1436 (unsigned long)mbcsData->stage3Top); |
| 1437 printf("+ total size savings: %lu bytes\n", (unsigned long)stage2Sta
rt*4+mbcsData->stage3Top); |
| 1438 } |
| 1439 } else { |
| 1440 stage2Start=0; |
| 1441 } |
| 1442 |
| 1443 if(staticData->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
| 1444 stage1Top=MBCS_STAGE_1_SIZE; /* 0x440==1088 */ |
| 1445 } else { |
| 1446 stage1Top=0x40; /* 0x40==64 */ |
| 1447 } |
| 1448 |
| 1449 /* adjust stage 1 entries to include the size of stage 1 in the offsets to s
tage 2 */ |
| 1450 if(mbcsData->ucm->states.maxCharLength==1) { |
| 1451 for(i=0; i<stage1Top; ++i) { |
| 1452 mbcsData->stage1[i]+=(uint16_t)stage1Top; |
| 1453 } |
| 1454 |
| 1455 /* stage2Top/Length have counted 16-bit results, now we need to count by
tes */ |
| 1456 /* also round up to a multiple of 4 bytes */ |
| 1457 stage2Length=(stage2Length*2+1)&~1; |
| 1458 |
| 1459 /* stage3Top has counted 16-bit results, now we need to count bytes */ |
| 1460 mbcsData->stage3Top*=2; |
| 1461 |
| 1462 if(mbcsData->utf8Friendly) { |
| 1463 header.version[2]=(uint8_t)(SBCS_UTF8_MAX>>8); /* store 0x1f for max
==0x1fff */ |
| 1464 } |
| 1465 } else { |
| 1466 for(i=0; i<stage1Top; ++i) { |
| 1467 mbcsData->stage1[i]+=(uint16_t)stage1Top/2; /* stage 2 contains 32-b
it entries, stage 1 16-bit entries */ |
| 1468 } |
| 1469 |
| 1470 /* stage2Top/Length have counted 32-bit results, now we need to count by
tes */ |
| 1471 stage2Length*=4; |
| 1472 /* leave stage2Start counting 32-bit units */ |
| 1473 |
| 1474 if(mbcsData->utf8Friendly) { |
| 1475 stageUTF8Length=(mbcsData->utf8Max+1)>>MBCS_UTF8_STAGE_SHIFT; |
| 1476 header.version[2]=(uint8_t)(mbcsData->utf8Max>>8); /* store 0xd7 for
max==0xd7ff */ |
| 1477 } |
| 1478 |
| 1479 /* stage3Top has already counted bytes */ |
| 1480 } |
| 1481 |
| 1482 /* round up stage3Top so that the sizes of all data blocks are multiples of
4 */ |
| 1483 mbcsData->stage3Top=(mbcsData->stage3Top+3)&~3; |
| 1484 |
| 1485 /* fill the header */ |
| 1486 if(header.options&MBCS_OPT_INCOMPATIBLE_MASK) { |
| 1487 header.version[0]=5; |
| 1488 if(header.options&MBCS_OPT_NO_FROM_U) { |
| 1489 headerLength=10; /* include fullStage2Length */ |
| 1490 } else { |
| 1491 headerLength=MBCS_HEADER_V5_MIN_LENGTH; /* 9 */ |
| 1492 } |
| 1493 } else { |
| 1494 header.version[0]=4; |
| 1495 headerLength=MBCS_HEADER_V4_LENGTH; /* 8 */ |
| 1496 } |
| 1497 header.version[1]=3; |
| 1498 /* header.version[2] set above for utf8Friendly data */ |
| 1499 |
| 1500 header.options|=(uint32_t)headerLength; |
| 1501 |
| 1502 header.countStates=mbcsData->ucm->states.countStates; |
| 1503 header.countToUFallbacks=mbcsData->countToUFallbacks; |
| 1504 |
| 1505 header.offsetToUCodeUnits= |
| 1506 headerLength*4+ |
| 1507 mbcsData->ucm->states.countStates*1024+ |
| 1508 mbcsData->countToUFallbacks*sizeof(_MBCSToUFallback); |
| 1509 header.offsetFromUTable= |
| 1510 header.offsetToUCodeUnits+ |
| 1511 mbcsData->ucm->states.countToUCodeUnits*2; |
| 1512 header.offsetFromUBytes= |
| 1513 header.offsetFromUTable+ |
| 1514 stage1Top*2+ |
| 1515 stage2Length; |
| 1516 header.fromUBytesLength=mbcsData->stage3Top; |
| 1517 |
| 1518 top=header.offsetFromUBytes+stageUTF8Length*2; |
| 1519 if(!(header.options&MBCS_OPT_NO_FROM_U)) { |
| 1520 top+=header.fromUBytesLength; |
| 1521 } |
| 1522 |
| 1523 header.flags=(uint8_t)(mbcsData->ucm->states.outputType); |
| 1524 |
| 1525 if(tableType&TABLE_EXT) { |
| 1526 if(top>0xffffff) { |
| 1527 fprintf(stderr, "error: offset 0x%lx to extension table exceeds 0xff
ffff\n", (long)top); |
| 1528 return 0; |
| 1529 } |
| 1530 |
| 1531 header.flags|=top<<8; |
| 1532 } |
| 1533 |
| 1534 /* write the MBCS data */ |
| 1535 udata_writeBlock(pData, &header, headerLength*4); |
| 1536 udata_writeBlock(pData, mbcsData->ucm->states.stateTable, header.countStates
*1024); |
| 1537 udata_writeBlock(pData, mbcsData->toUFallbacks, mbcsData->countToUFallbacks*
sizeof(_MBCSToUFallback)); |
| 1538 udata_writeBlock(pData, mbcsData->unicodeCodeUnits, mbcsData->ucm->states.co
untToUCodeUnits*2); |
| 1539 udata_writeBlock(pData, mbcsData->stage1, stage1Top*2); |
| 1540 if(mbcsData->ucm->states.maxCharLength==1) { |
| 1541 udata_writeBlock(pData, mbcsData->stage2Single+stage2Start, stage2Length
); |
| 1542 } else { |
| 1543 udata_writeBlock(pData, mbcsData->stage2+stage2Start, stage2Length); |
| 1544 } |
| 1545 if(!(header.options&MBCS_OPT_NO_FROM_U)) { |
| 1546 udata_writeBlock(pData, mbcsData->fromUBytes, mbcsData->stage3Top); |
| 1547 } |
| 1548 |
| 1549 if(stageUTF8Length>0) { |
| 1550 udata_writeBlock(pData, mbcsData->stageUTF8, stageUTF8Length*2); |
| 1551 } |
| 1552 |
| 1553 /* return the number of bytes that should have been written */ |
| 1554 return top; |
| 1555 } |
OLD | NEW |