Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(771)

Side by Side Diff: icu46/source/test/intltest/itrbnf.cpp

Issue 5516007: Check in the pristine copy of ICU 4.6... (Closed) Base URL: svn://chrome-svn/chrome/trunk/deps/third_party/
Patch Set: Created 10 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « icu46/source/test/intltest/itrbnf.h ('k') | icu46/source/test/intltest/itrbnfp.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Property Changes:
Added: svn:eol-style
+ LF
OLDNEW
(Empty)
1 /*
2 *******************************************************************************
3 * Copyright (C) 1996-2010, International Business Machines Corporation and *
4 * others. All Rights Reserved. *
5 *******************************************************************************
6 */
7
8 #include "unicode/utypes.h"
9
10 #if !UCONFIG_NO_FORMATTING
11
12 #include "itrbnf.h"
13
14 #include "unicode/umachine.h"
15
16 #include "unicode/tblcoll.h"
17 #include "unicode/coleitr.h"
18 #include "unicode/ures.h"
19 #include "unicode/ustring.h"
20 #include "unicode/decimfmt.h"
21 #include "unicode/udata.h"
22 #include "testutil.h"
23
24 //#include "llong.h"
25
26 #include <string.h>
27
28 // import com.ibm.text.RuleBasedNumberFormat;
29 // import com.ibm.test.TestFmwk;
30
31 // import java.util.Locale;
32 // import java.text.NumberFormat;
33
34 // current macro not in icu1.8.1
35 #define TESTCASE(id,test) \
36 case id: \
37 name = #test; \
38 if (exec) { \
39 logln(#test "---"); \
40 logln(); \
41 test(); \
42 } \
43 break
44
45 void IntlTestRBNF::runIndexedTest(int32_t index, UBool exec, const char* &name, char* /*par*/)
46 {
47 if (exec) logln("TestSuite RuleBasedNumberFormat");
48 switch (index) {
49 #if U_HAVE_RBNF
50 TESTCASE(0, TestEnglishSpellout);
51 TESTCASE(1, TestOrdinalAbbreviations);
52 TESTCASE(2, TestDurations);
53 TESTCASE(3, TestSpanishSpellout);
54 TESTCASE(4, TestFrenchSpellout);
55 TESTCASE(5, TestSwissFrenchSpellout);
56 TESTCASE(6, TestItalianSpellout);
57 TESTCASE(7, TestGermanSpellout);
58 TESTCASE(8, TestThaiSpellout);
59 TESTCASE(9, TestAPI);
60 TESTCASE(10, TestFractionalRuleSet);
61 TESTCASE(11, TestSwedishSpellout);
62 TESTCASE(12, TestBelgianFrenchSpellout);
63 TESTCASE(13, TestSmallValues);
64 TESTCASE(14, TestLocalizations);
65 TESTCASE(15, TestAllLocales);
66 TESTCASE(16, TestHebrewFraction);
67 TESTCASE(17, TestPortugueseSpellout);
68 TESTCASE(18, TestMultiplierSubstitution);
69 #else
70 TESTCASE(0, TestRBNFDisabled);
71 #endif
72 default:
73 name = "";
74 break;
75 }
76 }
77
78 #if U_HAVE_RBNF
79
80 void IntlTestRBNF::TestHebrewFraction() {
81
82 // this is the expected output for 123.45, with no '<' in it.
83 UChar text1[] = {
84 0x05de, 0x05d0, 0x05d4, 0x0020,
85 0x05e2, 0x05e9, 0x05e8, 0x05d9, 0x05dd, 0x0020,
86 0x05d5, 0x05e9, 0x05dc, 0x05d5, 0x05e9, 0x0020,
87 0x05e0, 0x05e7, 0x05d5, 0x05d3, 0x05d4, 0x0020,
88 0x05d0, 0x05e8, 0x05d1, 0x05e2, 0x0020,
89 0x05d7, 0x05de, 0x05e9, 0x0000,
90 };
91 UChar text2[] = {
92 0x05DE, 0x05D0, 0x05D4, 0x0020,
93 0x05E2, 0x05E9, 0x05E8, 0x05D9, 0x05DD, 0x0020,
94 0x05D5, 0x05E9, 0x05DC, 0x05D5, 0x05E9, 0x0020,
95 0x05E0, 0x05E7, 0x05D5, 0x05D3, 0x05D4, 0x0020,
96 0x05D0, 0x05E4, 0x05E1, 0x0020,
97 0x05D0, 0x05E4, 0x05E1, 0x0020,
98 0x05D0, 0x05E8, 0x05D1, 0x05E2, 0x0020,
99 0x05D7, 0x05DE, 0x05E9, 0x0000,
100 };
101 UErrorCode status = U_ZERO_ERROR;
102 RuleBasedNumberFormat* formatter = new RuleBasedNumberFormat(URBNF_SPELLOUT, "he_IL", status);
103 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
104 errcheckln(status, "Failed in constructing RuleBasedNumberFormat - %s", u_errorName(status));
105 delete formatter;
106 return;
107 }
108 UnicodeString result;
109 Formattable parseResult;
110 ParsePosition pp(0);
111 {
112 UnicodeString expected(text1);
113 formatter->format(123.45, result);
114 if (result != expected) {
115 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\ nbut got: '" + TestUtility::hex(result) + "'");
116 } else {
117 // formatter->parse(result, parseResult, pp);
118 // if (parseResult.getDouble() != 123.45) {
119 // errln("expected 123.45 but got: %g", parseResult.getDouble());
120 // }
121 }
122 }
123 {
124 UnicodeString expected(text2);
125 result.remove();
126 formatter->format(123.0045, result);
127 if (result != expected) {
128 errln((UnicodeString)"expected '" + TestUtility::hex(expected) + "'\ nbut got: '" + TestUtility::hex(result) + "'");
129 } else {
130 pp.setIndex(0);
131 // formatter->parse(result, parseResult, pp);
132 // if (parseResult.getDouble() != 123.0045) {
133 // errln("expected 123.0045 but got: %g", parseResult.getDouble() );
134 // }
135 }
136 }
137 delete formatter;
138 }
139
140 void
141 IntlTestRBNF::TestAPI() {
142 // This test goes through the APIs that were not tested before.
143 // These tests are too small to have separate test classes/functions
144
145 UErrorCode status = U_ZERO_ERROR;
146 RuleBasedNumberFormat* formatter
147 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
148 if (status == U_MISSING_RESOURCE_ERROR || status == U_FILE_ACCESS_ERROR) {
149 dataerrln("Unable to create formatter. - %s", u_errorName(status));
150 delete formatter;
151 return;
152 }
153
154 logln("RBNF API test starting");
155 // test clone
156 {
157 logln("Testing Clone");
158 RuleBasedNumberFormat* rbnfClone = (RuleBasedNumberFormat *)formatter->clone ();
159 if(rbnfClone != NULL) {
160 if(!(*rbnfClone == *formatter)) {
161 errln("Clone should be semantically equivalent to the original!");
162 }
163 delete rbnfClone;
164 } else {
165 errln("Cloning failed!");
166 }
167 }
168
169 // test assignment
170 {
171 logln("Testing assignment operator");
172 RuleBasedNumberFormat assignResult(URBNF_SPELLOUT, Locale("es", "ES", ""), s tatus);
173 assignResult = *formatter;
174 if(!(assignResult == *formatter)) {
175 errln("Assignment result should be semantically equivalent to the original !");
176 }
177 }
178
179 // test rule constructor
180 {
181 logln("Testing rule constructor");
182 LocalUResourceBundlePointer en(ures_open(U_ICUDATA_NAME U_TREE_SEPARATOR_STR ING "rbnf", "en", &status));
183 if(U_FAILURE(status)) {
184 errln("Unable to access resource bundle with data!");
185 } else {
186 int32_t ruleLen = 0;
187 int32_t len = 0;
188 LocalUResourceBundlePointer rbnfRules(ures_getByKey(en.getAlias(), "RBNFRu les", NULL, &status));
189 LocalUResourceBundlePointer ruleSets(ures_getByKey(rbnfRules.getAlias(), " SpelloutRules", NULL, &status));
190 UnicodeString desc;
191 while (ures_hasNext(ruleSets.getAlias())) {
192 const UChar* currentString = ures_getNextString(ruleSets.getAlias(), &len, NULL, &status);
193 ruleLen += len;
194 desc.append(currentString);
195 }
196
197 const UChar *spelloutRules = desc.getTerminatedBuffer();
198
199 if(U_FAILURE(status) || ruleLen == 0 || spelloutRules == NULL) {
200 errln("Unable to access the rules string!");
201 } else {
202 UParseError perror;
203 RuleBasedNumberFormat ruleCtorResult(spelloutRules, Locale::getUS(), per ror, status);
204 if(!(ruleCtorResult == *formatter)) {
205 errln("Formatter constructed from the original rules should be semanti cally equivalent to the original!");
206 }
207
208 // Jitterbug 4452, for coverage
209 RuleBasedNumberFormat nf(spelloutRules, (UnicodeString)"", Locale::getUS (), perror, status);
210 if(!(nf == *formatter)) {
211 errln("Formatter constructed from the original rules should be semanti cally equivalent to the original!");
212 }
213 }
214 }
215 }
216
217 // test getRules
218 {
219 logln("Testing getRules function");
220 UnicodeString rules = formatter->getRules();
221 UParseError perror;
222 RuleBasedNumberFormat fromRulesResult(rules, Locale::getUS(), perror, status );
223
224 if(!(fromRulesResult == *formatter)) {
225 errln("Formatter constructed from rules obtained by getRules should be sem antically equivalent to the original!");
226 }
227 }
228
229
230 {
231 logln("Testing copy constructor");
232 RuleBasedNumberFormat copyCtorResult(*formatter);
233 if(!(copyCtorResult == *formatter)) {
234 errln("Copy constructor result result should be semantically equivalent to the original!");
235 }
236 }
237
238 #if !UCONFIG_NO_COLLATION
239 // test ruleset names
240 {
241 logln("Testing getNumberOfRuleSetNames, getRuleSetName and format using rule set names");
242 int32_t noOfRuleSetNames = formatter->getNumberOfRuleSetNames();
243 if(noOfRuleSetNames == 0) {
244 errln("Number of rule set names should be more than zero");
245 }
246 UnicodeString ruleSetName;
247 int32_t i = 0;
248 int32_t intFormatNum = 34567;
249 double doubleFormatNum = 893411.234;
250 logln("number of rule set names is %i", noOfRuleSetNames);
251 for(i = 0; i < noOfRuleSetNames; i++) {
252 FieldPosition pos1, pos2;
253 UnicodeString intFormatResult, doubleFormatResult;
254 Formattable intParseResult, doubleParseResult;
255
256 ruleSetName = formatter->getRuleSetName(i);
257 log("Rule set name %i is ", i);
258 log(ruleSetName);
259 logln(". Format results are: ");
260 intFormatResult = formatter->format(intFormatNum, ruleSetName, intFormatRe sult, pos1, status);
261 doubleFormatResult = formatter->format(doubleFormatNum, ruleSetName, doubl eFormatResult, pos2, status);
262 if(U_FAILURE(status)) {
263 errln("Format using a rule set failed");
264 break;
265 }
266 logln(intFormatResult);
267 logln(doubleFormatResult);
268 formatter->setLenient(TRUE);
269 formatter->parse(intFormatResult, intParseResult, status);
270 formatter->parse(doubleFormatResult, doubleParseResult, status);
271
272 logln("Parse results for lenient = TRUE, %i, %f", intParseResult.getLong() , doubleParseResult.getDouble());
273
274 formatter->setLenient(FALSE);
275 formatter->parse(intFormatResult, intParseResult, status);
276 formatter->parse(doubleFormatResult, doubleParseResult, status);
277
278 logln("Parse results for lenient = FALSE, %i, %f", intParseResult.getLong( ), doubleParseResult.getDouble());
279
280 if(U_FAILURE(status)) {
281 errln("Error during parsing");
282 }
283
284 intFormatResult = formatter->format(intFormatNum, "BLABLA", intFormatResul t, pos1, status);
285 if(U_SUCCESS(status)) {
286 errln("Using invalid rule set name should have failed");
287 break;
288 }
289 status = U_ZERO_ERROR;
290 doubleFormatResult = formatter->format(doubleFormatNum, "TRUC", doubleForm atResult, pos2, status);
291 if(U_SUCCESS(status)) {
292 errln("Using invalid rule set name should have failed");
293 break;
294 }
295 status = U_ZERO_ERROR;
296 }
297 status = U_ZERO_ERROR;
298 }
299 #endif
300
301 // test API
302 UnicodeString expected("four point five","");
303 logln("Testing format(double)");
304 UnicodeString result;
305 formatter->format(4.5,result);
306 if(result != expected) {
307 errln("Formatted 4.5, expected " + expected + " got " + result);
308 } else {
309 logln("Formatted 4.5, expected " + expected + " got " + result);
310 }
311 result.remove();
312 expected = "four";
313 formatter->format((int32_t)4,result);
314 if(result != expected) {
315 errln("Formatted 4, expected " + expected + " got " + result);
316 } else {
317 logln("Formatted 4, expected " + expected + " got " + result);
318 }
319
320 result.remove();
321 FieldPosition pos;
322 formatter->format((int64_t)4, result, pos, status = U_ZERO_ERROR);
323 if(result != expected) {
324 errln("Formatted 4 int64_t, expected " + expected + " got " + result);
325 } else {
326 logln("Formatted 4 int64_t, expected " + expected + " got " + result);
327 }
328
329 //Jitterbug 4452, for coverage
330 result.remove();
331 FieldPosition pos2;
332 formatter->format((int64_t)4, formatter->getRuleSetName(0), result, pos2, stat us = U_ZERO_ERROR);
333 if(result != expected) {
334 errln("Formatted 4 int64_t, expected " + expected + " got " + result);
335 } else {
336 logln("Formatted 4 int64_t, expected " + expected + " got " + result);
337 }
338
339 // clean up
340 logln("Cleaning up");
341 delete formatter;
342 }
343
344 void IntlTestRBNF::TestFractionalRuleSet()
345 {
346 UnicodeString fracRules(
347 "%main:\n"
348 // this rule formats the number if it's 1 or more. It formats
349 // the integral part using a DecimalFormat ("#,##0" puts
350 // thousands separators in the right places) and the fractional
351 // part using %%frac. If there is no fractional part, it
352 // just shows the integral part.
353 " x.0: <#,##0<[ >%%frac>];\n"
354 // this rule formats the number if it's between 0 and 1. It
355 // shows only the fractional part (0.5 shows up as "1/2," not
356 // "0 1/2")
357 " 0.x: >%%frac>;\n"
358 // the fraction rule set. This works the same way as the one in the
359 // preceding example: We multiply the fractional part of the number
360 // being formatted by each rule's base value and use the rule that
361 // produces the result closest to 0 (or the first rule that produces 0).
362 // Since we only provide rules for the numbers from 2 to 10, we know
363 // we'll get a fraction with a denominator between 2 and 10.
364 // "<0<" causes the numerator of the fraction to be formatted
365 // using numerals
366 "%%frac:\n"
367 " 2: 1/2;\n"
368 " 3: <0</3;\n"
369 " 4: <0</4;\n"
370 " 5: <0</5;\n"
371 " 6: <0</6;\n"
372 " 7: <0</7;\n"
373 " 8: <0</8;\n"
374 " 9: <0</9;\n"
375 " 10: <0</10;\n");
376
377 // mondo hack
378 int len = fracRules.length();
379 int change = 2;
380 for (int i = 0; i < len; ++i) {
381 UChar ch = fracRules.charAt(i);
382 if (ch == '\n') {
383 change = 2; // change ok
384 } else if (ch == ':') {
385 change = 1; // change, but once we hit a non-space char, don't chang e
386 } else if (ch == ' ') {
387 if (change != 0) {
388 fracRules.setCharAt(i, (UChar)0x200e);
389 }
390 } else {
391 if (change == 1) {
392 change = 0;
393 }
394 }
395 }
396
397 UErrorCode status = U_ZERO_ERROR;
398 UParseError perror;
399 RuleBasedNumberFormat formatter(fracRules, Locale::getEnglish(), perror, sta tus);
400 if (U_FAILURE(status)) {
401 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
402 } else {
403 static const char* const testData[][2] = {
404 { "0", "0" },
405 { ".1", "1/10" },
406 { ".11", "1/9" },
407 { ".125", "1/8" },
408 { ".1428", "1/7" },
409 { ".1667", "1/6" },
410 { ".2", "1/5" },
411 { ".25", "1/4" },
412 { ".333", "1/3" },
413 { ".5", "1/2" },
414 { "1.1", "1 1/10" },
415 { "2.11", "2 1/9" },
416 { "3.125", "3 1/8" },
417 { "4.1428", "4 1/7" },
418 { "5.1667", "5 1/6" },
419 { "6.2", "6 1/5" },
420 { "7.25", "7 1/4" },
421 { "8.333", "8 1/3" },
422 { "9.5", "9 1/2" },
423 { ".2222", "2/9" },
424 { ".4444", "4/9" },
425 { ".5555", "5/9" },
426 { "1.2856", "1 2/7" },
427 { NULL, NULL }
428 };
429 doTest(&formatter, testData, FALSE); // exact values aren't parsable from fractions
430 }
431 }
432
433 #if 0
434 #define LLAssert(a) \
435 if (!(a)) errln("FAIL: " #a)
436
437 void IntlTestRBNF::TestLLongConstructors()
438 {
439 logln("Testing constructors");
440
441 // constant (shouldn't really be public)
442 LLAssert(llong(llong::kD32).asDouble() == llong::kD32);
443
444 // internal constructor (shouldn't really be public)
445 LLAssert(llong(0, 1).asDouble() == 1);
446 LLAssert(llong(1, 0).asDouble() == llong::kD32);
447 LLAssert(llong((uint32_t)-1, (uint32_t)-1).asDouble() == -1);
448
449 // public empty constructor
450 LLAssert(llong().asDouble() == 0);
451
452 // public int32_t constructor
453 LLAssert(llong((int32_t)0).asInt() == (int32_t)0);
454 LLAssert(llong((int32_t)1).asInt() == (int32_t)1);
455 LLAssert(llong((int32_t)-1).asInt() == (int32_t)-1);
456 LLAssert(llong((int32_t)0x7fffffff).asInt() == (int32_t)0x7fffffff);
457 LLAssert(llong((int32_t)0xffffffff).asInt() == (int32_t)-1);
458 LLAssert(llong((int32_t)0x80000000).asInt() == (int32_t)0x80000000);
459
460 // public int16_t constructor
461 LLAssert(llong((int16_t)0).asInt() == (int16_t)0);
462 LLAssert(llong((int16_t)1).asInt() == (int16_t)1);
463 LLAssert(llong((int16_t)-1).asInt() == (int16_t)-1);
464 LLAssert(llong((int16_t)0x7fff).asInt() == (int16_t)0x7fff);
465 LLAssert(llong((int16_t)0xffff).asInt() == (int16_t)0xffff);
466 LLAssert(llong((int16_t)0x8000).asInt() == (int16_t)0x8000);
467
468 // public int8_t constructor
469 LLAssert(llong((int8_t)0).asInt() == (int8_t)0);
470 LLAssert(llong((int8_t)1).asInt() == (int8_t)1);
471 LLAssert(llong((int8_t)-1).asInt() == (int8_t)-1);
472 LLAssert(llong((int8_t)0x7f).asInt() == (int8_t)0x7f);
473 LLAssert(llong((int8_t)0xff).asInt() == (int8_t)0xff);
474 LLAssert(llong((int8_t)0x80).asInt() == (int8_t)0x80);
475
476 // public uint16_t constructor
477 LLAssert(llong((uint16_t)0).asUInt() == (uint16_t)0);
478 LLAssert(llong((uint16_t)1).asUInt() == (uint16_t)1);
479 LLAssert(llong((uint16_t)-1).asUInt() == (uint16_t)-1);
480 LLAssert(llong((uint16_t)0x7fff).asUInt() == (uint16_t)0x7fff);
481 LLAssert(llong((uint16_t)0xffff).asUInt() == (uint16_t)0xffff);
482 LLAssert(llong((uint16_t)0x8000).asUInt() == (uint16_t)0x8000);
483
484 // public uint32_t constructor
485 LLAssert(llong((uint32_t)0).asUInt() == (uint32_t)0);
486 LLAssert(llong((uint32_t)1).asUInt() == (uint32_t)1);
487 LLAssert(llong((uint32_t)-1).asUInt() == (uint32_t)-1);
488 LLAssert(llong((uint32_t)0x7fffffff).asUInt() == (uint32_t)0x7fffffff);
489 LLAssert(llong((uint32_t)0xffffffff).asUInt() == (uint32_t)-1);
490 LLAssert(llong((uint32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
491
492 // public double constructor
493 LLAssert(llong((double)0).asDouble() == (double)0);
494 LLAssert(llong((double)1).asDouble() == (double)1);
495 LLAssert(llong((double)0x7fffffff).asDouble() == (double)0x7fffffff);
496 LLAssert(llong((double)0x80000000).asDouble() == (double)0x80000000);
497 LLAssert(llong((double)0x80000001).asDouble() == (double)0x80000001);
498
499 // can't access uprv_maxmantissa, so fake it
500 double maxmantissa = (llong((int32_t)1) << 40).asDouble();
501 LLAssert(llong(maxmantissa).asDouble() == maxmantissa);
502 LLAssert(llong(-maxmantissa).asDouble() == -maxmantissa);
503
504 // copy constructor
505 LLAssert(llong(llong(0, 1)).asDouble() == 1);
506 LLAssert(llong(llong(1, 0)).asDouble() == llong::kD32);
507 LLAssert(llong(llong(-1, (uint32_t)-1)).asDouble() == -1);
508
509 // asInt - test unsigned to signed narrowing conversion
510 LLAssert(llong((uint32_t)-1).asInt() == (int32_t)0x7fffffff);
511 LLAssert(llong(-1, 0).asInt() == (int32_t)0x80000000);
512
513 // asUInt - test signed to unsigned narrowing conversion
514 LLAssert(llong((int32_t)-1).asUInt() == (uint32_t)-1);
515 LLAssert(llong((int32_t)0x80000000).asUInt() == (uint32_t)0x80000000);
516
517 // asDouble already tested
518
519 }
520
521 void IntlTestRBNF::TestLLongSimpleOperators()
522 {
523 logln("Testing simple operators");
524
525 // operator==
526 LLAssert(llong() == llong(0, 0));
527 LLAssert(llong(1,0) == llong(1, 0));
528 LLAssert(llong(0,1) == llong(0, 1));
529
530 // operator!=
531 LLAssert(llong(1,0) != llong(1,1));
532 LLAssert(llong(0,1) != llong(1,1));
533 LLAssert(llong(0xffffffff,0xffffffff) != llong(0x7fffffff, 0xffffffff));
534
535 // unsigned >
536 LLAssert(llong((int32_t)-1).ugt(llong(0x7fffffff, 0xffffffff)));
537
538 // unsigned <
539 LLAssert(llong(0x7fffffff, 0xffffffff).ult(llong((int32_t)-1)));
540
541 // unsigned >=
542 LLAssert(llong((int32_t)-1).uge(llong(0x7fffffff, 0xffffffff)));
543 LLAssert(llong((int32_t)-1).uge(llong((int32_t)-1)));
544
545 // unsigned <=
546 LLAssert(llong(0x7fffffff, 0xffffffff).ule(llong((int32_t)-1)));
547 LLAssert(llong((int32_t)-1).ule(llong((int32_t)-1)));
548
549 // operator>
550 LLAssert(llong(1, 1) > llong(1, 0));
551 LLAssert(llong(0, 0x80000000) > llong(0, 0x7fffffff));
552 LLAssert(llong(0x80000000, 1) > llong(0x80000000, 0));
553 LLAssert(llong(1, 0) > llong(0, 0x7fffffff));
554 LLAssert(llong(1, 0) > llong(0, 0xffffffff));
555 LLAssert(llong(0, 0) > llong(0x80000000, 1));
556
557 // operator<
558 LLAssert(llong(1, 0) < llong(1, 1));
559 LLAssert(llong(0, 0x7fffffff) < llong(0, 0x80000000));
560 LLAssert(llong(0x80000000, 0) < llong(0x80000000, 1));
561 LLAssert(llong(0, 0x7fffffff) < llong(1, 0));
562 LLAssert(llong(0, 0xffffffff) < llong(1, 0));
563 LLAssert(llong(0x80000000, 1) < llong(0, 0));
564
565 // operator>=
566 LLAssert(llong(1, 1) >= llong(1, 0));
567 LLAssert(llong(0, 0x80000000) >= llong(0, 0x7fffffff));
568 LLAssert(llong(0x80000000, 1) >= llong(0x80000000, 0));
569 LLAssert(llong(1, 0) >= llong(0, 0x7fffffff));
570 LLAssert(llong(1, 0) >= llong(0, 0xffffffff));
571 LLAssert(llong(0, 0) >= llong(0x80000000, 1));
572 LLAssert(llong() >= llong(0, 0));
573 LLAssert(llong(1,0) >= llong(1, 0));
574 LLAssert(llong(0,1) >= llong(0, 1));
575
576 // operator<=
577 LLAssert(llong(1, 0) <= llong(1, 1));
578 LLAssert(llong(0, 0x7fffffff) <= llong(0, 0x80000000));
579 LLAssert(llong(0x80000000, 0) <= llong(0x80000000, 1));
580 LLAssert(llong(0, 0x7fffffff) <= llong(1, 0));
581 LLAssert(llong(0, 0xffffffff) <= llong(1, 0));
582 LLAssert(llong(0x80000000, 1) <= llong(0, 0));
583 LLAssert(llong() <= llong(0, 0));
584 LLAssert(llong(1,0) <= llong(1, 0));
585 LLAssert(llong(0,1) <= llong(0, 1));
586
587 // operator==(int32)
588 LLAssert(llong() == (int32_t)0);
589 LLAssert(llong(0,1) == (int32_t)1);
590
591 // operator!=(int32)
592 LLAssert(llong(1,0) != (int32_t)0);
593 LLAssert(llong(0,1) != (int32_t)2);
594 LLAssert(llong(0,0xffffffff) != (int32_t)-1);
595
596 llong negOne(0xffffffff, 0xffffffff);
597
598 // operator>(int32)
599 LLAssert(llong(0, 0x80000000) > (int32_t)0x7fffffff);
600 LLAssert(negOne > (int32_t)-2);
601 LLAssert(llong(1, 0) > (int32_t)0x7fffffff);
602 LLAssert(llong(0, 0) > (int32_t)-1);
603
604 // operator<(int32)
605 LLAssert(llong(0, 0x7ffffffe) < (int32_t)0x7fffffff);
606 LLAssert(llong(0xffffffff, 0xfffffffe) < (int32_t)-1);
607
608 // operator>=(int32)
609 LLAssert(llong(0, 0x80000000) >= (int32_t)0x7fffffff);
610 LLAssert(negOne >= (int32_t)-2);
611 LLAssert(llong(1, 0) >= (int32_t)0x7fffffff);
612 LLAssert(llong(0, 0) >= (int32_t)-1);
613 LLAssert(llong() >= (int32_t)0);
614 LLAssert(llong(0,1) >= (int32_t)1);
615
616 // operator<=(int32)
617 LLAssert(llong(0, 0x7ffffffe) <= (int32_t)0x7fffffff);
618 LLAssert(llong(0xffffffff, 0xfffffffe) <= (int32_t)-1);
619 LLAssert(llong() <= (int32_t)0);
620 LLAssert(llong(0,1) <= (int32_t)1);
621
622 // operator=
623 LLAssert((llong(2,3) = llong((uint32_t)-1)).asUInt() == (uint32_t)-1);
624
625 // operator <<=
626 LLAssert((llong(1, 1) <<= 0) == llong(1, 1));
627 LLAssert((llong(1, 1) <<= 31) == llong(0x80000000, 0x80000000));
628 LLAssert((llong(1, 1) <<= 32) == llong(1, 0));
629 LLAssert((llong(1, 1) <<= 63) == llong(0x80000000, 0));
630 LLAssert((llong(1, 1) <<= 64) == llong(1, 1)); // only lower 6 bits are used
631 LLAssert((llong(1, 1) <<= -1) == llong(0x80000000, 0)); // only lower 6 bits are used
632
633 // operator <<
634 LLAssert((llong((int32_t)1) << 5).asUInt() == 32);
635
636 // operator >>= (sign extended)
637 LLAssert((llong(0x7fffa0a0, 0xbcbcdfdf) >>= 16) == llong(0x7fff,0xa0a0bcbc)) ;
638 LLAssert((llong(0x8000789a, 0xbcde0000) >>= 16) == llong(0xffff8000,0x789abc de));
639 LLAssert((llong(0x80000000, 0) >>= 63) == llong(0xffffffff, 0xffffffff));
640 LLAssert((llong(0x80000000, 0) >>= 47) == llong(0xffffffff, 0xffff0000));
641 LLAssert((llong(0x80000000, 0x80000000) >> 64) == llong(0x80000000, 0x800000 00)); // only lower 6 bits are used
642 LLAssert((llong(0x80000000, 0) >>= -1) == llong(0xffffffff, 0xffffffff)); // only lower 6 bits are used
643
644 // operator >> sign extended)
645 LLAssert((llong(0x8000789a, 0xbcde0000) >> 16) == llong(0xffff8000,0x789abcd e));
646
647 // ushr (right shift without sign extension)
648 LLAssert(llong(0x7fffa0a0, 0xbcbcdfdf).ushr(16) == llong(0x7fff,0xa0a0bcbc)) ;
649 LLAssert(llong(0x8000789a, 0xbcde0000).ushr(16) == llong(0x00008000,0x789abc de));
650 LLAssert(llong(0x80000000, 0).ushr(63) == llong(0, 1));
651 LLAssert(llong(0x80000000, 0).ushr(47) == llong(0, 0x10000));
652 LLAssert(llong(0x80000000, 0x80000000).ushr(64) == llong(0x80000000, 0x80000 000)); // only lower 6 bits are used
653 LLAssert(llong(0x80000000, 0).ushr(-1) == llong(0, 1)); // only lower 6 bits are used
654
655 // operator&(llong)
656 LLAssert((llong(0x55555555, 0x55555555) & llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
657
658 // operator|(llong)
659 LLAssert((llong(0x55555555, 0x55555555) | llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
660
661 // operator^(llong)
662 LLAssert((llong(0x55555555, 0x55555555) ^ llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
663
664 // operator&(uint32)
665 LLAssert((llong(0x55555555, 0x55555555) & (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
666
667 // operator|(uint32)
668 LLAssert((llong(0x55555555, 0x55555555) | (uint32_t)0xffffaaaa) == llong(0x5 5555555, 0xffffffff));
669
670 // operator^(uint32)
671 LLAssert((llong(0x55555555, 0x55555555) ^ (uint32_t)0xffffaaaa) == llong(0x5 5555555, 0xaaaaffff));
672
673 // operator~
674 LLAssert(~llong(0x55555555, 0x55555555) == llong(0xaaaaaaaa, 0xaaaaaaaa));
675
676 // operator&=(llong)
677 LLAssert((llong(0x55555555, 0x55555555) &= llong(0xaaaaffff, 0xffffaaaa)) == llong(0x00005555, 0x55550000));
678
679 // operator|=(llong)
680 LLAssert((llong(0x55555555, 0x55555555) |= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffffff, 0xffffffff));
681
682 // operator^=(llong)
683 LLAssert((llong(0x55555555, 0x55555555) ^= llong(0xaaaaffff, 0xffffaaaa)) == llong(0xffffaaaa, 0xaaaaffff));
684
685 // operator&=(uint32)
686 LLAssert((llong(0x55555555, 0x55555555) &= (uint32_t)0xffffaaaa) == llong(0, 0x55550000));
687
688 // operator|=(uint32)
689 LLAssert((llong(0x55555555, 0x55555555) |= (uint32_t)0xffffaaaa) == llong(0x 55555555, 0xffffffff));
690
691 // operator^=(uint32)
692 LLAssert((llong(0x55555555, 0x55555555) ^= (uint32_t)0xffffaaaa) == llong(0x 55555555, 0xaaaaffff));
693
694 // prefix inc
695 LLAssert(llong(1, 0) == ++llong(0,0xffffffff));
696
697 // prefix dec
698 LLAssert(llong(0,0xffffffff) == --llong(1, 0));
699
700 // postfix inc
701 {
702 llong n(0, 0xffffffff);
703 LLAssert(llong(0, 0xffffffff) == n++);
704 LLAssert(llong(1, 0) == n);
705 }
706
707 // postfix dec
708 {
709 llong n(1, 0);
710 LLAssert(llong(1, 0) == n--);
711 LLAssert(llong(0, 0xffffffff) == n);
712 }
713
714 // unary minus
715 LLAssert(llong(0, 0) == -llong(0, 0));
716 LLAssert(llong(0xffffffff, 0xffffffff) == -llong(0, 1));
717 LLAssert(llong(0, 1) == -llong(0xffffffff, 0xffffffff));
718 LLAssert(llong(0x7fffffff, 0xffffffff) == -llong(0x80000000, 1));
719 LLAssert(llong(0x80000000, 0) == -llong(0x80000000, 0)); // !!! we don't han dle overflow
720
721 // operator-=
722 {
723 llong n;
724 LLAssert((n -= llong(0, 1)) == llong(0xffffffff, 0xffffffff));
725 LLAssert(n == llong(0xffffffff, 0xffffffff));
726
727 n = llong(1, 0);
728 LLAssert((n -= llong(0, 1)) == llong(0, 0xffffffff));
729 LLAssert(n == llong(0, 0xffffffff));
730 }
731
732 // operator-
733 {
734 llong n;
735 LLAssert((n - llong(0, 1)) == llong(0xffffffff, 0xffffffff));
736 LLAssert(n == llong(0, 0));
737
738 n = llong(1, 0);
739 LLAssert((n - llong(0, 1)) == llong(0, 0xffffffff));
740 LLAssert(n == llong(1, 0));
741 }
742
743 // operator+=
744 {
745 llong n(0xffffffff, 0xffffffff);
746 LLAssert((n += llong(0, 1)) == llong(0, 0));
747 LLAssert(n == llong(0, 0));
748
749 n = llong(0, 0xffffffff);
750 LLAssert((n += llong(0, 1)) == llong(1, 0));
751 LLAssert(n == llong(1, 0));
752 }
753
754 // operator+
755 {
756 llong n(0xffffffff, 0xffffffff);
757 LLAssert((n + llong(0, 1)) == llong(0, 0));
758 LLAssert(n == llong(0xffffffff, 0xffffffff));
759
760 n = llong(0, 0xffffffff);
761 LLAssert((n + llong(0, 1)) == llong(1, 0));
762 LLAssert(n == llong(0, 0xffffffff));
763 }
764
765 }
766
767 void IntlTestRBNF::TestLLong()
768 {
769 logln("Starting TestLLong");
770
771 TestLLongConstructors();
772
773 TestLLongSimpleOperators();
774
775 logln("Testing operator*=, operator*");
776
777 // operator*=, operator*
778 // small and large values, positive, &NEGative, zero
779 // also test commutivity
780 {
781 const llong ZERO;
782 const llong ONE(0, 1);
783 const llong NEG_ONE((int32_t)-1);
784 const llong THREE(0, 3);
785 const llong NEG_THREE((int32_t)-3);
786 const llong TWO_TO_16(0, 0x10000);
787 const llong NEG_TWO_TO_16 = -TWO_TO_16;
788 const llong TWO_TO_32(1, 0);
789 const llong NEG_TWO_TO_32 = -TWO_TO_32;
790
791 const llong NINE(0, 9);
792 const llong NEG_NINE = -NINE;
793
794 const llong TWO_TO_16X3(0, 0x00030000);
795 const llong NEG_TWO_TO_16X3 = -TWO_TO_16X3;
796
797 const llong TWO_TO_32X3(3, 0);
798 const llong NEG_TWO_TO_32X3 = -TWO_TO_32X3;
799
800 const llong TWO_TO_48(0x10000, 0);
801 const llong NEG_TWO_TO_48 = -TWO_TO_48;
802
803 const int32_t VALUE_WIDTH = 9;
804 const llong* values[VALUE_WIDTH] = {
805 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO_1 6, &TWO_TO_32, &NEG_TWO_TO_32
806 };
807
808 const llong* answers[VALUE_WIDTH*VALUE_WIDTH] = {
809 &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO, &ZERO,
810 &ZERO, &ONE, &NEG_ONE, &THREE, &NEG_THREE, &TWO_TO_16, &NEG_TWO_TO _16, &TWO_TO_32, &NEG_TWO_TO_32,
811 &ZERO, &NEG_ONE, &ONE, &NEG_THREE, &THREE, &NEG_TWO_TO_16, &TWO_TO_1 6, &NEG_TWO_TO_32, &TWO_TO_32,
812 &ZERO, &THREE, &NEG_THREE, &NINE, &NEG_NINE, &TWO_TO_16X3, &NEG_TWO_ TO_16X3, &TWO_TO_32X3, &NEG_TWO_TO_32X3,
813 &ZERO, &NEG_THREE, &THREE, &NEG_NINE, &NINE, &NEG_TWO_TO_16X3, &TWO_ TO_16X3, &NEG_TWO_TO_32X3, &TWO_TO_32X3,
814 &ZERO, &TWO_TO_16, &NEG_TWO_TO_16, &TWO_TO_16X3, &NEG_TWO_TO_16X3, & TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_48, &NEG_TWO_TO_48,
815 &ZERO, &NEG_TWO_TO_16, &TWO_TO_16, &NEG_TWO_TO_16X3, &TWO_TO_16X3, & NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_48, &TWO_TO_48,
816 &ZERO, &TWO_TO_32, &NEG_TWO_TO_32, &TWO_TO_32X3, &NEG_TWO_TO_32X3, & TWO_TO_48, &NEG_TWO_TO_48, &ZERO, &ZERO,
817 &ZERO, &NEG_TWO_TO_32, &TWO_TO_32, &NEG_TWO_TO_32X3, &TWO_TO_32X3, & NEG_TWO_TO_48, &TWO_TO_48, &ZERO, &ZERO
818 };
819
820 for (int i = 0; i < VALUE_WIDTH; ++i) {
821 for (int j = 0; j < VALUE_WIDTH; ++j) {
822 llong lhs = *values[i];
823 llong rhs = *values[j];
824 llong ans = *answers[i*VALUE_WIDTH + j];
825
826 llong n = lhs;
827
828 LLAssert((n *= rhs) == ans);
829 LLAssert(n == ans);
830
831 n = lhs;
832 LLAssert((n * rhs) == ans);
833 LLAssert(n == lhs);
834 }
835 }
836 }
837
838 logln("Testing operator/=, operator/");
839 // operator/=, operator/
840 // test num = 0, div = 0, pos/neg, > 2^32, div > num
841 {
842 const llong ZERO;
843 const llong ONE(0, 1);
844 const llong NEG_ONE = -ONE;
845 const llong MAX(0x7fffffff, 0xffffffff);
846 const llong MIN(0x80000000, 0);
847 const llong TWO(0, 2);
848 const llong NEG_TWO = -TWO;
849 const llong FIVE(0, 5);
850 const llong NEG_FIVE = -FIVE;
851 const llong TWO_TO_32(1, 0);
852 const llong NEG_TWO_TO_32 = -TWO_TO_32;
853 const llong TWO_TO_32d5 = llong(TWO_TO_32.asDouble()/5.0);
854 const llong NEG_TWO_TO_32d5 = -TWO_TO_32d5;
855 const llong TWO_TO_32X5 = TWO_TO_32 * FIVE;
856 const llong NEG_TWO_TO_32X5 = -TWO_TO_32X5;
857
858 const llong* tuples[] = { // lhs, rhs, ans
859 &ZERO, &ZERO, &ZERO,
860 &ONE, &ZERO,&MAX,
861 &NEG_ONE, &ZERO, &MIN,
862 &ONE, &ONE, &ONE,
863 &ONE, &NEG_ONE, &NEG_ONE,
864 &NEG_ONE, &ONE, &NEG_ONE,
865 &NEG_ONE, &NEG_ONE, &ONE,
866 &FIVE, &TWO, &TWO,
867 &FIVE, &NEG_TWO, &NEG_TWO,
868 &NEG_FIVE, &TWO, &NEG_TWO,
869 &NEG_FIVE, &NEG_TWO, &TWO,
870 &TWO, &FIVE, &ZERO,
871 &TWO, &NEG_FIVE, &ZERO,
872 &NEG_TWO, &FIVE, &ZERO,
873 &NEG_TWO, &NEG_FIVE, &ZERO,
874 &TWO_TO_32, &TWO_TO_32, &ONE,
875 &TWO_TO_32, &NEG_TWO_TO_32, &NEG_ONE,
876 &NEG_TWO_TO_32, &TWO_TO_32, &NEG_ONE,
877 &NEG_TWO_TO_32, &NEG_TWO_TO_32, &ONE,
878 &TWO_TO_32, &FIVE, &TWO_TO_32d5,
879 &TWO_TO_32, &NEG_FIVE, &NEG_TWO_TO_32d5,
880 &NEG_TWO_TO_32, &FIVE, &NEG_TWO_TO_32d5,
881 &NEG_TWO_TO_32, &NEG_FIVE, &TWO_TO_32d5,
882 &TWO_TO_32X5, &FIVE, &TWO_TO_32,
883 &TWO_TO_32X5, &NEG_FIVE, &NEG_TWO_TO_32,
884 &NEG_TWO_TO_32X5, &FIVE, &NEG_TWO_TO_32,
885 &NEG_TWO_TO_32X5, &NEG_FIVE, &TWO_TO_32,
886 &TWO_TO_32X5, &TWO_TO_32, &FIVE,
887 &TWO_TO_32X5, &NEG_TWO_TO_32, &NEG_FIVE,
888 &NEG_TWO_TO_32X5, &NEG_TWO_TO_32, &FIVE,
889 &NEG_TWO_TO_32X5, &TWO_TO_32, &NEG_FIVE
890 };
891 const int TUPLE_WIDTH = 3;
892 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WI DTH;
893 for (int i = 0; i < TUPLE_COUNT; ++i) {
894 const llong lhs = *tuples[i*TUPLE_WIDTH+0];
895 const llong rhs = *tuples[i*TUPLE_WIDTH+1];
896 const llong ans = *tuples[i*TUPLE_WIDTH+2];
897
898 llong n = lhs;
899 if (!((n /= rhs) == ans)) {
900 errln("fail: (n /= rhs) == ans");
901 }
902 LLAssert(n == ans);
903
904 n = lhs;
905 LLAssert((n / rhs) == ans);
906 LLAssert(n == lhs);
907 }
908 }
909
910 logln("Testing operator%%=, operator%%");
911 //operator%=, operator%
912 {
913 const llong ZERO;
914 const llong ONE(0, 1);
915 const llong TWO(0, 2);
916 const llong THREE(0,3);
917 const llong FOUR(0, 4);
918 const llong FIVE(0, 5);
919 const llong SIX(0, 6);
920
921 const llong NEG_ONE = -ONE;
922 const llong NEG_TWO = -TWO;
923 const llong NEG_THREE = -THREE;
924 const llong NEG_FOUR = -FOUR;
925 const llong NEG_FIVE = -FIVE;
926 const llong NEG_SIX = -SIX;
927
928 const llong NINETY_NINE(0, 99);
929 const llong HUNDRED(0, 100);
930 const llong HUNDRED_ONE(0, 101);
931
932 const llong BIG(0x12345678, 0x9abcdef0);
933 const llong BIG_FIVE(BIG * FIVE);
934 const llong BIG_FIVEm1 = BIG_FIVE - ONE;
935 const llong BIG_FIVEp1 = BIG_FIVE + ONE;
936
937 const llong* tuples[] = {
938 &ZERO, &FIVE, &ZERO,
939 &ONE, &FIVE, &ONE,
940 &TWO, &FIVE, &TWO,
941 &THREE, &FIVE, &THREE,
942 &FOUR, &FIVE, &FOUR,
943 &FIVE, &FIVE, &ZERO,
944 &SIX, &FIVE, &ONE,
945 &ZERO, &NEG_FIVE, &ZERO,
946 &ONE, &NEG_FIVE, &ONE,
947 &TWO, &NEG_FIVE, &TWO,
948 &THREE, &NEG_FIVE, &THREE,
949 &FOUR, &NEG_FIVE, &FOUR,
950 &FIVE, &NEG_FIVE, &ZERO,
951 &SIX, &NEG_FIVE, &ONE,
952 &NEG_ONE, &FIVE, &NEG_ONE,
953 &NEG_TWO, &FIVE, &NEG_TWO,
954 &NEG_THREE, &FIVE, &NEG_THREE,
955 &NEG_FOUR, &FIVE, &NEG_FOUR,
956 &NEG_FIVE, &FIVE, &ZERO,
957 &NEG_SIX, &FIVE, &NEG_ONE,
958 &NEG_ONE, &NEG_FIVE, &NEG_ONE,
959 &NEG_TWO, &NEG_FIVE, &NEG_TWO,
960 &NEG_THREE, &NEG_FIVE, &NEG_THREE,
961 &NEG_FOUR, &NEG_FIVE, &NEG_FOUR,
962 &NEG_FIVE, &NEG_FIVE, &ZERO,
963 &NEG_SIX, &NEG_FIVE, &NEG_ONE,
964 &NINETY_NINE, &FIVE, &FOUR,
965 &HUNDRED, &FIVE, &ZERO,
966 &HUNDRED_ONE, &FIVE, &ONE,
967 &BIG_FIVEm1, &FIVE, &FOUR,
968 &BIG_FIVE, &FIVE, &ZERO,
969 &BIG_FIVEp1, &FIVE, &ONE
970 };
971 const int TUPLE_WIDTH = 3;
972 const int TUPLE_COUNT = (int)(sizeof(tuples)/sizeof(tuples[0]))/TUPLE_WI DTH;
973 for (int i = 0; i < TUPLE_COUNT; ++i) {
974 const llong lhs = *tuples[i*TUPLE_WIDTH+0];
975 const llong rhs = *tuples[i*TUPLE_WIDTH+1];
976 const llong ans = *tuples[i*TUPLE_WIDTH+2];
977
978 llong n = lhs;
979 if (!((n %= rhs) == ans)) {
980 errln("fail: (n %= rhs) == ans");
981 }
982 LLAssert(n == ans);
983
984 n = lhs;
985 LLAssert((n % rhs) == ans);
986 LLAssert(n == lhs);
987 }
988 }
989
990 logln("Testing pow");
991 // pow
992 LLAssert(llong(0, 0).pow(0) == llong(0, 0));
993 LLAssert(llong(0, 0).pow(2) == llong(0, 0));
994 LLAssert(llong(0, 2).pow(0) == llong(0, 1));
995 LLAssert(llong(0, 2).pow(2) == llong(0, 4));
996 LLAssert(llong(0, 2).pow(32) == llong(1, 0));
997 LLAssert(llong(0, 5).pow(10) == llong((double)5.0 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5));
998
999 // absolute value
1000 {
1001 const llong n(0xffffffff,0xffffffff);
1002 LLAssert(n.abs() == llong(0, 1));
1003 }
1004
1005 #ifdef RBNF_DEBUG
1006 logln("Testing atoll");
1007 // atoll
1008 const char empty[] = "";
1009 const char zero[] = "0";
1010 const char neg_one[] = "-1";
1011 const char neg_12345[] = "-12345";
1012 const char big1[] = "123456789abcdef0";
1013 const char big2[] = "fFfFfFfFfFfFfFfF";
1014 LLAssert(llong::atoll(empty) == llong(0, 0));
1015 LLAssert(llong::atoll(zero) == llong(0, 0));
1016 LLAssert(llong::atoll(neg_one) == llong(0xffffffff, 0xffffffff));
1017 LLAssert(llong::atoll(neg_12345) == -llong(0, 12345));
1018 LLAssert(llong::atoll(big1, 16) == llong(0x12345678, 0x9abcdef0));
1019 LLAssert(llong::atoll(big2, 16) == llong(0xffffffff, 0xffffffff));
1020 #endif
1021
1022 // u_atoll
1023 const UChar uempty[] = { 0 };
1024 const UChar uzero[] = { 0x30, 0 };
1025 const UChar uneg_one[] = { 0x2d, 0x31, 0 };
1026 const UChar uneg_12345[] = { 0x2d, 0x31, 0x32, 0x33, 0x34, 0x35, 0 };
1027 const UChar ubig1[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39 , 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x30, 0 };
1028 const UChar ubig2[] = { 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0x66 , 0x46, 0x66, 0x46, 0x66, 0x46, 0x66, 0x46, 0 };
1029 LLAssert(llong::utoll(uempty) == llong(0, 0));
1030 LLAssert(llong::utoll(uzero) == llong(0, 0));
1031 LLAssert(llong::utoll(uneg_one) == llong(0xffffffff, 0xffffffff));
1032 LLAssert(llong::utoll(uneg_12345) == -llong(0, 12345));
1033 LLAssert(llong::utoll(ubig1, 16) == llong(0x12345678, 0x9abcdef0));
1034 LLAssert(llong::utoll(ubig2, 16) == llong(0xffffffff, 0xffffffff));
1035
1036 #ifdef RBNF_DEBUG
1037 logln("Testing lltoa");
1038 // lltoa
1039 {
1040 char buf[64]; // ascii
1041 LLAssert((llong(0, 0).lltoa(buf, (uint32_t)sizeof(buf)) == 1) && (strcmp (buf, zero) == 0));
1042 LLAssert((llong(0xffffffff, 0xffffffff).lltoa(buf, (uint32_t)sizeof(buf) ) == 2) && (strcmp(buf, neg_one) == 0));
1043 LLAssert(((-llong(0, 12345)).lltoa(buf, (uint32_t)sizeof(buf)) == 6) && (strcmp(buf, neg_12345) == 0));
1044 LLAssert((llong(0x12345678, 0x9abcdef0).lltoa(buf, (uint32_t)sizeof(buf) , 16) == 16) && (strcmp(buf, big1) == 0));
1045 }
1046 #endif
1047
1048 logln("Testing u_lltoa");
1049 // u_lltoa
1050 {
1051 UChar buf[64];
1052 LLAssert((llong(0, 0).lltou(buf, (uint32_t)sizeof(buf)) == 1) && (u_strc mp(buf, uzero) == 0));
1053 LLAssert((llong(0xffffffff, 0xffffffff).lltou(buf, (uint32_t)sizeof(buf) ) == 2) && (u_strcmp(buf, uneg_one) == 0));
1054 LLAssert(((-llong(0, 12345)).lltou(buf, (uint32_t)sizeof(buf)) == 6) && (u_strcmp(buf, uneg_12345) == 0));
1055 LLAssert((llong(0x12345678, 0x9abcdef0).lltou(buf, (uint32_t)sizeof(buf) , 16) == 16) && (u_strcmp(buf, ubig1) == 0));
1056 }
1057 }
1058
1059 /* if 0 */
1060 #endif
1061
1062 void
1063 IntlTestRBNF::TestEnglishSpellout()
1064 {
1065 UErrorCode status = U_ZERO_ERROR;
1066 RuleBasedNumberFormat* formatter
1067 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getUS(), status);
1068 if (U_FAILURE(status)) {
1069 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1070 } else {
1071 static const char* const testData[][2] = {
1072 { "1", "one" },
1073 { "2", "two" },
1074 { "15", "fifteen" },
1075 { "20", "twenty" },
1076 { "23", "twenty-three" },
1077 { "73", "seventy-three" },
1078 { "88", "eighty-eight" },
1079 { "100", "one hundred" },
1080 { "106", "one hundred six" },
1081 { "127", "one hundred twenty-seven" },
1082 { "200", "two hundred" },
1083 { "579", "five hundred seventy-nine" },
1084 { "1,000", "one thousand" },
1085 { "2,000", "two thousand" },
1086 { "3,004", "three thousand four" },
1087 { "4,567", "four thousand five hundred sixty-seven" },
1088 { "15,943", "fifteen thousand nine hundred forty-three" },
1089 { "2,345,678", "two million three hundred forty-five thousand six hu ndred seventy-eight" },
1090 { "-36", "minus thirty-six" },
1091 { "234.567", "two hundred thirty-four point five six seven" },
1092 { NULL, NULL}
1093 };
1094
1095 doTest(formatter, testData, TRUE);
1096
1097 #if !UCONFIG_NO_COLLATION
1098 formatter->setLenient(TRUE);
1099 static const char* lpTestData[][2] = {
1100 { "fifty-7", "57" },
1101 { " fifty-7", "57" },
1102 { " fifty-7", "57" },
1103 { "2 thousand six HUNDRED fifty-7", "2,657" },
1104 { "fifteen hundred and zero", "1,500" },
1105 { "FOurhundred thiRTY six", "436" },
1106 { NULL, NULL}
1107 };
1108 doLenientParseTest(formatter, lpTestData);
1109 #endif
1110 }
1111 delete formatter;
1112 }
1113
1114 void
1115 IntlTestRBNF::TestOrdinalAbbreviations()
1116 {
1117 UErrorCode status = U_ZERO_ERROR;
1118 RuleBasedNumberFormat* formatter
1119 = new RuleBasedNumberFormat(URBNF_ORDINAL, Locale::getUS(), status);
1120
1121 if (U_FAILURE(status)) {
1122 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1123 } else {
1124 static const char* const testData[][2] = {
1125 { "1", "1\\u02e2\\u1d57" },
1126 { "2", "2\\u207f\\u1d48" },
1127 { "3", "3\\u02b3\\u1d48" },
1128 { "4", "4\\u1d57\\u02b0" },
1129 { "7", "7\\u1d57\\u02b0" },
1130 { "10", "10\\u1d57\\u02b0" },
1131 { "11", "11\\u1d57\\u02b0" },
1132 { "13", "13\\u1d57\\u02b0" },
1133 { "20", "20\\u1d57\\u02b0" },
1134 { "21", "21\\u02e2\\u1d57" },
1135 { "22", "22\\u207f\\u1d48" },
1136 { "23", "23\\u02b3\\u1d48" },
1137 { "24", "24\\u1d57\\u02b0" },
1138 { "33", "33\\u02b3\\u1d48" },
1139 { "102", "102\\u207f\\u1d48" },
1140 { "312", "312\\u1d57\\u02b0" },
1141 { "12,345", "12,345\\u1d57\\u02b0" },
1142 { NULL, NULL}
1143 };
1144
1145 doTest(formatter, testData, FALSE);
1146 }
1147 delete formatter;
1148 }
1149
1150 void
1151 IntlTestRBNF::TestDurations()
1152 {
1153 UErrorCode status = U_ZERO_ERROR;
1154 RuleBasedNumberFormat* formatter
1155 = new RuleBasedNumberFormat(URBNF_DURATION, Locale::getUS(), status);
1156
1157 if (U_FAILURE(status)) {
1158 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1159 } else {
1160 static const char* const testData[][2] = {
1161 { "3,600", "1:00:00" }, //move me and I fail
1162 { "0", "0 sec." },
1163 { "1", "1 sec." },
1164 { "24", "24 sec." },
1165 { "60", "1:00" },
1166 { "73", "1:13" },
1167 { "145", "2:25" },
1168 { "666", "11:06" },
1169 // { "3,600", "1:00:00" },
1170 { "3,740", "1:02:20" },
1171 { "10,293", "2:51:33" },
1172 { NULL, NULL}
1173 };
1174
1175 doTest(formatter, testData, TRUE);
1176
1177 #if !UCONFIG_NO_COLLATION
1178 formatter->setLenient(TRUE);
1179 static const char* lpTestData[][2] = {
1180 { "2-51-33", "10,293" },
1181 { NULL, NULL}
1182 };
1183 doLenientParseTest(formatter, lpTestData);
1184 #endif
1185 }
1186 delete formatter;
1187 }
1188
1189 void
1190 IntlTestRBNF::TestSpanishSpellout()
1191 {
1192 UErrorCode status = U_ZERO_ERROR;
1193 RuleBasedNumberFormat* formatter
1194 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("es", "ES", ""), stat us);
1195
1196 if (U_FAILURE(status)) {
1197 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1198 } else {
1199 static const char* const testData[][2] = {
1200 { "1", "uno" },
1201 { "6", "seis" },
1202 { "16", "diecis\\u00e9is" },
1203 { "20", "veinte" },
1204 { "24", "veinticuatro" },
1205 { "26", "veintis\\u00e9is" },
1206 { "73", "setenta y tres" },
1207 { "88", "ochenta y ocho" },
1208 { "100", "cien" },
1209 { "106", "ciento seis" },
1210 { "127", "ciento veintisiete" },
1211 { "200", "doscientos" },
1212 { "579", "quinientos setenta y nueve" },
1213 { "1,000", "mil" },
1214 { "2,000", "dos mil" },
1215 { "3,004", "tres mil cuatro" },
1216 { "4,567", "cuatro mil quinientos sesenta y siete" },
1217 { "15,943", "quince mil novecientos cuarenta y tres" },
1218 { "2,345,678", "dos millones trescientos cuarenta y cinco mil seisci entos setenta y ocho"},
1219 { "-36", "menos treinta y seis" },
1220 { "234.567", "doscientos treinta y cuatro coma cinco seis siete" },
1221 { NULL, NULL}
1222 };
1223
1224 doTest(formatter, testData, TRUE);
1225 }
1226 delete formatter;
1227 }
1228
1229 void
1230 IntlTestRBNF::TestFrenchSpellout()
1231 {
1232 UErrorCode status = U_ZERO_ERROR;
1233 RuleBasedNumberFormat* formatter
1234 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getFrance(), status) ;
1235
1236 if (U_FAILURE(status)) {
1237 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1238 } else {
1239 static const char* const testData[][2] = {
1240 { "1", "un" },
1241 { "15", "quinze" },
1242 { "20", "vingt" },
1243 { "21", "vingt-et-un" },
1244 { "23", "vingt-trois" },
1245 { "62", "soixante-deux" },
1246 { "70", "soixante-dix" },
1247 { "71", "soixante-et-onze" },
1248 { "73", "soixante-treize" },
1249 { "80", "quatre-vingts" },
1250 { "88", "quatre-vingt-huit" },
1251 { "100", "cent" },
1252 { "106", "cent-six" },
1253 { "127", "cent-vingt-sept" },
1254 { "200", "deux-cents" },
1255 { "579", "cinq-cent-soixante-dix-neuf" },
1256 { "1,000", "mille" },
1257 { "1,123", "mille-cent-vingt-trois" },
1258 { "1,594", "mille-cinq-cent-quatre-vingt-quatorze" },
1259 { "2,000", "deux-mille" },
1260 { "3,004", "trois-mille-quatre" },
1261 { "4,567", "quatre-mille-cinq-cent-soixante-sept" },
1262 { "15,943", "quinze-mille-neuf-cent-quarante-trois" },
1263 { "2,345,678", "deux millions trois-cent-quarante-cinq-mille-six-cen t-soixante-dix-huit" },
1264 { "-36", "moins trente-six" },
1265 { "234.567", "deux-cent-trente-quatre virgule cinq six sept" },
1266 { NULL, NULL}
1267 };
1268
1269 doTest(formatter, testData, TRUE);
1270
1271 #if !UCONFIG_NO_COLLATION
1272 formatter->setLenient(TRUE);
1273 static const char* lpTestData[][2] = {
1274 { "trente-et-un", "31" },
1275 { "un cent quatre vingt dix huit", "198" },
1276 { NULL, NULL}
1277 };
1278 doLenientParseTest(formatter, lpTestData);
1279 #endif
1280 }
1281 delete formatter;
1282 }
1283
1284 static const char* const swissFrenchTestData[][2] = {
1285 { "1", "un" },
1286 { "15", "quinze" },
1287 { "20", "vingt" },
1288 { "21", "vingt-et-un" },
1289 { "23", "vingt-trois" },
1290 { "62", "soixante-deux" },
1291 { "70", "septante" },
1292 { "71", "septante-et-un" },
1293 { "73", "septante-trois" },
1294 { "80", "huitante" },
1295 { "88", "huitante-huit" },
1296 { "100", "cent" },
1297 { "106", "cent-six" },
1298 { "127", "cent-vingt-sept" },
1299 { "200", "deux-cents" },
1300 { "579", "cinq-cent-septante-neuf" },
1301 { "1,000", "mille" },
1302 { "1,123", "mille-cent-vingt-trois" },
1303 { "1,594", "mille-cinq-cent-nonante-quatre" },
1304 { "2,000", "deux-mille" },
1305 { "3,004", "trois-mille-quatre" },
1306 { "4,567", "quatre-mille-cinq-cent-soixante-sept" },
1307 { "15,943", "quinze-mille-neuf-cent-quarante-trois" },
1308 { "2,345,678", "deux millions trois-cent-quarante-cinq-mille-six-cent-septan te-huit" },
1309 { "-36", "moins trente-six" },
1310 { "234.567", "deux-cent-trente-quatre virgule cinq six sept" },
1311 { NULL, NULL}
1312 };
1313
1314 void
1315 IntlTestRBNF::TestSwissFrenchSpellout()
1316 {
1317 UErrorCode status = U_ZERO_ERROR;
1318 RuleBasedNumberFormat* formatter
1319 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "CH", ""), stat us);
1320
1321 if (U_FAILURE(status)) {
1322 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1323 } else {
1324 doTest(formatter, swissFrenchTestData, TRUE);
1325 }
1326 delete formatter;
1327 }
1328
1329 static const char* const belgianFrenchTestData[][2] = {
1330 { "1", "un" },
1331 { "15", "quinze" },
1332 { "20", "vingt" },
1333 { "21", "vingt-et-un" },
1334 { "23", "vingt-trois" },
1335 { "62", "soixante-deux" },
1336 { "70", "septante" },
1337 { "71", "septante-et-un" },
1338 { "73", "septante-trois" },
1339 { "80", "quatre-vingts" },
1340 { "88", "quatre-vingt-huit" },
1341 { "90", "nonante" },
1342 { "91", "nonante-et-un" },
1343 { "95", "nonante-cinq" },
1344 { "100", "cent" },
1345 { "106", "cent-six" },
1346 { "127", "cent-vingt-sept" },
1347 { "200", "deux-cents" },
1348 { "579", "cinq-cent-septante-neuf" },
1349 { "1,000", "mille" },
1350 { "1,123", "mille-cent-vingt-trois" },
1351 { "1,594", "mille-cinq-cent-nonante-quatre" },
1352 { "2,000", "deux-mille" },
1353 { "3,004", "trois-mille-quatre" },
1354 { "4,567", "quatre-mille-cinq-cent-soixante-sept" },
1355 { "15,943", "quinze-mille-neuf-cent-quarante-trois" },
1356 { "2,345,678", "deux millions trois-cent-quarante-cinq-mille-six-cent-septan te-huit" },
1357 { "-36", "moins trente-six" },
1358 { "234.567", "deux-cent-trente-quatre virgule cinq six sept" },
1359 { NULL, NULL}
1360 };
1361
1362
1363 void
1364 IntlTestRBNF::TestBelgianFrenchSpellout()
1365 {
1366 UErrorCode status = U_ZERO_ERROR;
1367 RuleBasedNumberFormat* formatter
1368 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("fr", "BE", ""), stat us);
1369
1370 if (U_FAILURE(status)) {
1371 errcheckln(status, "rbnf status: 0x%x (%s)\n", status, u_errorName(statu s));
1372 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1373 } else {
1374 // Belgian french should match Swiss french.
1375 doTest(formatter, belgianFrenchTestData, TRUE);
1376 }
1377 delete formatter;
1378 }
1379
1380 void
1381 IntlTestRBNF::TestItalianSpellout()
1382 {
1383 UErrorCode status = U_ZERO_ERROR;
1384 RuleBasedNumberFormat* formatter
1385 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getItalian(), status );
1386
1387 if (U_FAILURE(status)) {
1388 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1389 } else {
1390 static const char* const testData[][2] = {
1391 { "1", "uno" },
1392 { "15", "quindici" },
1393 { "20", "venti" },
1394 { "23", "venti\\u00ADtr\\u00E9" },
1395 { "73", "settanta\\u00ADtr\\u00E9" },
1396 { "88", "ottant\\u00ADotto" },
1397 { "100", "cento" },
1398 { "101", "cent\\u00ADuno" },
1399 { "103", "cento\\u00ADtr\\u00E9" },
1400 { "106", "cento\\u00ADsei" },
1401 { "108", "cent\\u00ADotto" },
1402 { "127", "cento\\u00ADventi\\u00ADsette" },
1403 { "181", "cent\\u00ADottant\\u00ADuno" },
1404 { "200", "due\\u00ADcento" },
1405 { "579", "cinque\\u00ADcento\\u00ADsettanta\\u00ADnove" },
1406 { "1,000", "mille" },
1407 { "2,000", "due\\u00ADmila" },
1408 { "3,004", "tre\\u00ADmila\\u00ADquattro" },
1409 { "4,567", "quattro\\u00ADmila\\u00ADcinque\\u00ADcento\\u00ADsessan ta\\u00ADsette" },
1410 { "15,943", "quindici\\u00ADmila\\u00ADnove\\u00ADcento\\u00ADquaran ta\\u00ADtr\\u00E9" },
1411 { "-36", "meno trenta\\u00ADsei" },
1412 { "234.567", "due\\u00ADcento\\u00ADtrenta\\u00ADquattro virgola cin que sei sette" },
1413 { NULL, NULL}
1414 };
1415
1416 doTest(formatter, testData, TRUE);
1417 }
1418 delete formatter;
1419 }
1420
1421 void
1422 IntlTestRBNF::TestPortugueseSpellout()
1423 {
1424 UErrorCode status = U_ZERO_ERROR;
1425 RuleBasedNumberFormat* formatter
1426 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("pt","BR",""), status );
1427
1428 if (U_FAILURE(status)) {
1429 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1430 } else {
1431 static const char* const testData[][2] = {
1432 { "1", "um" },
1433 { "15", "quinze" },
1434 { "20", "vinte" },
1435 { "23", "vinte e tr\\u00EAs" },
1436 { "73", "setenta e tr\\u00EAs" },
1437 { "88", "oitenta e oito" },
1438 { "100", "cem" },
1439 { "106", "cento e seis" },
1440 { "108", "cento e oito" },
1441 { "127", "cento e vinte e sete" },
1442 { "181", "cento e oitenta e um" },
1443 { "200", "duzcentos" },
1444 { "579", "quinhentos e setenta e nove" },
1445 { "1,000", "mil" },
1446 { "2,000", "dois mil" },
1447 { "3,004", "tr\\u00EAs mil e quatro" },
1448 { "4,567", "quatro mil e quinhentos e sessenta e sete" },
1449 { "15,943", "quinze mil e novecentos e quarenta e tr\\u00EAs" },
1450 { "-36", "menos trinta e seis" },
1451 { "234.567", "duzcentos e trinta e quatro v\\u00EDrgula cinco seis s ete" },
1452 { NULL, NULL}
1453 };
1454
1455 doTest(formatter, testData, TRUE);
1456 }
1457 delete formatter;
1458 }
1459 void
1460 IntlTestRBNF::TestGermanSpellout()
1461 {
1462 UErrorCode status = U_ZERO_ERROR;
1463 RuleBasedNumberFormat* formatter
1464 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale::getGermany(), status );
1465
1466 if (U_FAILURE(status)) {
1467 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1468 } else {
1469 static const char* const testData[][2] = {
1470 { "1", "eins" },
1471 { "15", "f\\u00fcnfzehn" },
1472 { "20", "zwanzig" },
1473 { "23", "drei\\u00ADund\\u00ADzwanzig" },
1474 { "73", "drei\\u00ADund\\u00ADsiebzig" },
1475 { "88", "acht\\u00ADund\\u00ADachtzig" },
1476 { "100", "ein\\u00ADhundert" },
1477 { "106", "ein\\u00ADhundert\\u00ADsechs" },
1478 { "127", "ein\\u00ADhundert\\u00ADsieben\\u00ADund\\u00ADzwanzig" },
1479 { "200", "zwei\\u00ADhundert" },
1480 { "579", "f\\u00fcnf\\u00ADhundert\\u00ADneun\\u00ADund\\u00ADsiebzi g" },
1481 { "1,000", "ein\\u00ADtausend" },
1482 { "2,000", "zwei\\u00ADtausend" },
1483 { "3,004", "drei\\u00ADtausend\\u00ADvier" },
1484 { "4,567", "vier\\u00ADtausend\\u00ADf\\u00fcnf\\u00ADhundert\\u00AD sieben\\u00ADund\\u00ADsechzig" },
1485 { "15,943", "f\\u00fcnfzehn\\u00ADtausend\\u00ADneun\\u00ADhundert\\ u00ADdrei\\u00ADund\\u00ADvierzig" },
1486 { "2,345,678", "zwei Millionen drei\\u00ADhundert\\u00ADf\\u00fcnf\\ u00ADund\\u00ADvierzig\\u00ADtausend\\u00ADsechs\\u00ADhundert\\u00ADacht\\u00AD und\\u00ADsiebzig" },
1487 { NULL, NULL}
1488 };
1489
1490 doTest(formatter, testData, TRUE);
1491
1492 #if !UCONFIG_NO_COLLATION
1493 formatter->setLenient(TRUE);
1494 static const char* lpTestData[][2] = {
1495 { "ein Tausend sechs Hundert fuenfunddreissig", "1,635" },
1496 { NULL, NULL}
1497 };
1498 doLenientParseTest(formatter, lpTestData);
1499 #endif
1500 }
1501 delete formatter;
1502 }
1503
1504 void
1505 IntlTestRBNF::TestThaiSpellout()
1506 {
1507 UErrorCode status = U_ZERO_ERROR;
1508 RuleBasedNumberFormat* formatter
1509 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("th"), status);
1510
1511 if (U_FAILURE(status)) {
1512 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1513 } else {
1514 static const char* const testData[][2] = {
1515 { "0", "\\u0e28\\u0e39\\u0e19\\u0e22\\u0e4c" },
1516 { "1", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
1517 { "10", "\\u0e2a\\u0e34\\u0e1a" },
1518 { "11", "\\u0e2a\\u0e34\\u0e1a\\u200b\\u0e40\\u0e2d\\u0e47\\u0e14" } ,
1519 { "21", "\\u0e22\\u0e35\\u0e48\\u200b\\u0e2a\\u0e34\\u0e1a\\u200b\\u 0e40\\u0e2d\\u0e47\\u0e14" },
1520 { "101", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e23\\u0e49\\ u0e2d\\u0e22\\u200b\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07" },
1521 { "1.234", "\\u0e2b\\u0e19\\u0e36\\u0e48\\u0e07\\u200b\\u0e08\\u0e38 \\u0e14\\u200b\\u0e2a\\u0e2d\\u0e07\\u0e2a\\u0e32\\u0e21\\u0e2a\\u0e35\\u0e48" } ,
1522 { NULL, NULL}
1523 };
1524
1525 doTest(formatter, testData, TRUE);
1526 }
1527 delete formatter;
1528 }
1529
1530 void
1531 IntlTestRBNF::TestSwedishSpellout()
1532 {
1533 UErrorCode status = U_ZERO_ERROR;
1534 RuleBasedNumberFormat* formatter
1535 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("sv"), status);
1536
1537 if (U_FAILURE(status)) {
1538 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1539 } else {
1540 static const char* testDataDefault[][2] = {
1541 { "101", "ett\\u00adhundra\\u00adett" },
1542 { "123", "ett\\u00adhundra\\u00adtjugo\\u00adtre" },
1543 { "1,001", "et\\u00adtusen ett" },
1544 { "1,100", "et\\u00adtusen ett\\u00adhundra" },
1545 { "1,101", "et\\u00adtusen ett\\u00adhundra\\u00adett" },
1546 { "1,234", "et\\u00adtusen tv\\u00e5\\u00adhundra\\u00adtrettio\\u00 adfyra" },
1547 { "10,001", "tio\\u00adtusen ett" },
1548 { "11,000", "elva\\u00adtusen" },
1549 { "12,000", "tolv\\u00adtusen" },
1550 { "20,000", "tjugo\\u00adtusen" },
1551 { "21,000", "tjugo\\u00adet\\u00adtusen" },
1552 { "21,001", "tjugo\\u00adet\\u00adtusen ett" },
1553 { "200,000", "tv\\u00e5\\u00adhundra\\u00adtusen" },
1554 { "201,000", "tv\\u00e5\\u00adhundra\\u00adet\\u00adtusen" },
1555 { "200,200", "tv\\u00e5\\u00adhundra\\u00adtusen tv\\u00e5\\u00adhun dra" },
1556 { "2,002,000", "tv\\u00e5 miljoner tv\\u00e5\\u00adtusen" },
1557 { "12,345,678", "tolv miljoner tre\\u00adhundra\\u00adfyrtio\\u00adf em\\u00adtusen sex\\u00adhundra\\u00adsjuttio\\u00ad\\u00e5tta" },
1558 { "123,456.789", "ett\\u00adhundra\\u00adtjugo\\u00adtre\\u00adtusen fyra\\u00adhundra\\u00adfemtio\\u00adsex komma sju \\u00e5tta nio" },
1559 { "-12,345.678", "minus tolv\\u00adtusen tre\\u00adhundra\\u00adfyrt io\\u00adfem komma sex sju \\u00e5tta" },
1560 { NULL, NULL }
1561 };
1562 doTest(formatter, testDataDefault, TRUE);
1563
1564 static const char* testDataNeutrum[][2] = {
1565 { "101", "ett\\u00adhundra\\u00aden" },
1566 { "1,001", "ettusen en" },
1567 { "1,101", "ettusen ett\\u00adhundra\\u00aden" },
1568 { "10,001", "tio\\u00adtusen en" },
1569 { "21,001", "tjugo\\u00aden\\u00adtusen en" },
1570 { NULL, NULL }
1571 };
1572
1573 formatter->setDefaultRuleSet("%spellout-cardinal-neutre", status);
1574 if (U_SUCCESS(status)) {
1575 logln(" testing spellout-cardinal-neutre rules");
1576 doTest(formatter, testDataNeutrum, TRUE);
1577 }
1578 else {
1579 errln("Can't test spellout-cardinal-neutre rules");
1580 }
1581
1582 static const char* testDataYear[][2] = {
1583 { "101", "ett\\u00adhundra\\u00adett" },
1584 { "900", "nio\\u00adhundra" },
1585 { "1,001", "et\\u00adtusen ett" },
1586 { "1,100", "elva\\u00adhundra" },
1587 { "1,101", "elva\\u00adhundra\\u00adett" },
1588 { "1,234", "tolv\\u00adhundra\\u00adtrettio\\u00adfyra" },
1589 { "2,001", "tjugo\\u00adhundra\\u00adett" },
1590 { "10,001", "tio\\u00adtusen ett" },
1591 { NULL, NULL }
1592 };
1593
1594 formatter->setDefaultRuleSet("%spellout-numbering-year", status);
1595 if (U_SUCCESS(status)) {
1596 logln("testing year rules");
1597 doTest(formatter, testDataYear, TRUE);
1598 }
1599 else {
1600 errln("Can't test year rules");
1601 }
1602
1603 }
1604 delete formatter;
1605 }
1606
1607 void
1608 IntlTestRBNF::TestSmallValues()
1609 {
1610 UErrorCode status = U_ZERO_ERROR;
1611 RuleBasedNumberFormat* formatter
1612 = new RuleBasedNumberFormat(URBNF_SPELLOUT, Locale("en_US"), status);
1613
1614 if (U_FAILURE(status)) {
1615 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1616 } else {
1617 static const char* const testDataDefault[][2] = {
1618 { "0.001", "zero point zero zero one" },
1619 { "0.0001", "zero point zero zero zero one" },
1620 { "0.00001", "zero point zero zero zero zero one" },
1621 { "0.000001", "zero point zero zero zero zero zero one" },
1622 { "0.0000001", "zero point zero zero zero zero zero zero one" },
1623 { "0.00000001", "zero point zero zero zero zero zero zero zero one" },
1624 { "0.000000001", "zero point zero zero zero zero zero zero zero zero one " },
1625 { "0.0000000001", "zero point zero zero zero zero zero zero zero zero ze ro one" },
1626 { "0.00000000001", "zero point zero zero zero zero zero zero zero zero z ero zero one" },
1627 { "0.000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero one" },
1628 { "0.0000000000001", "zero point zero zero zero zero zero zero zero zero zero zero zero zero one" },
1629 { "0.00000000000001", "zero point zero zero zero zero zero zero zero zer o zero zero zero zero zero one" },
1630 { "0.000000000000001", "zero point zero zero zero zero zero zero zero ze ro zero zero zero zero zero zero one" },
1631 { "10,000,000.001", "ten million point zero zero one" },
1632 { "10,000,000.0001", "ten million point zero zero zero one" },
1633 { "10,000,000.00001", "ten million point zero zero zero zero one" },
1634 { "10,000,000.000001", "ten million point zero zero zero zero zero one" },
1635 { "10,000,000.0000001", "ten million point zero zero zero zero zero zero one" },
1636 // { "10,000,000.00000001", "ten million point zero zero zero zero zero z ero zero one" },
1637 // { "10,000,000.000000002", "ten million point zero zero zero zero zero zero zero zero two" },
1638 { "10,000,000", "ten million" },
1639 // { "1,234,567,890.0987654", "one billion, two hundred and thirty-four m illion, five hundred and sixty-seven thousand, eight hundred and ninety point ze ro nine eight seven six five four" },
1640 // { "123,456,789.9876543", "one hundred and twenty-three million, four h undred and fifty-six thousand, seven hundred and eighty-nine point nine eight se ven six five four three" },
1641 // { "12,345,678.87654321", "twelve million, three hundred and forty-five thousand, six hundred and seventy-eight point eight seven six five four three t wo one" },
1642 { "1,234,567.7654321", "one million two hundred thirty-four thousand fiv e hundred sixty-seven point seven six five four three two one" },
1643 { "123,456.654321", "one hundred twenty-three thousand four hundred fift y-six point six five four three two one" },
1644 { "12,345.54321", "twelve thousand three hundred forty-five point five f our three two one" },
1645 { "1,234.4321", "one thousand two hundred thirty-four point four three t wo one" },
1646 { "123.321", "one hundred twenty-three point three two one" },
1647 { "0.0000000011754944", "zero point zero zero zero zero zero zero zero z ero one one seven five four nine four four" },
1648 { "0.000001175494351", "zero point zero zero zero zero zero one one seve n five four nine four three five one" },
1649 { NULL, NULL }
1650 };
1651
1652 doTest(formatter, testDataDefault, TRUE);
1653
1654 delete formatter;
1655 }
1656 }
1657
1658 void
1659 IntlTestRBNF::TestLocalizations(void)
1660 {
1661 int i;
1662 UnicodeString rules("%main:0:no;1:some;100:a lot;1000:tons;\n"
1663 "%other:0:nada;1:yah, some;100:plenty;1000:more'n you'll ever need");
1664
1665 UErrorCode status = U_ZERO_ERROR;
1666 UParseError perror;
1667 RuleBasedNumberFormat formatter(rules, perror, status);
1668 if (U_FAILURE(status)) {
1669 errcheckln(status, "FAIL: could not construct formatter - %s", u_errorNa me(status));
1670 } else {
1671 {
1672 static const char* const testData[][2] = {
1673 { "0", "nada" },
1674 { "5", "yah, some" },
1675 { "423", "plenty" },
1676 { "12345", "more'n you'll ever need" },
1677 { NULL, NULL }
1678 };
1679 doTest(&formatter, testData, FALSE);
1680 }
1681
1682 {
1683 UnicodeString loc("<<%main, %other>,<en, Main, Other>,<fr, leMain, l eOther>,<de, 'das Main', 'etwas anderes'>>");
1684 static const char* const testData[][2] = {
1685 { "0", "no" },
1686 { "5", "some" },
1687 { "423", "a lot" },
1688 { "12345", "tons" },
1689 { NULL, NULL }
1690 };
1691 RuleBasedNumberFormat formatter0(rules, loc, perror, status);
1692 if (U_FAILURE(status)) {
1693 errln("failed to build second formatter");
1694 } else {
1695 doTest(&formatter0, testData, FALSE);
1696
1697 {
1698 // exercise localization info
1699 Locale locale0("en__VALLEY@turkey=gobblegobble");
1700 Locale locale1("de_DE_FOO");
1701 Locale locale2("ja_JP");
1702 UnicodeString name = formatter0.getRuleSetName(0);
1703 if ( formatter0.getRuleSetDisplayName(0, locale0) == "Main"
1704 && formatter0.getRuleSetDisplayName(0, locale1) == "das Ma in"
1705 && formatter0.getRuleSetDisplayName(0, locale2) == "%main"
1706 && formatter0.getRuleSetDisplayName(name, locale0) == "Mai n"
1707 && formatter0.getRuleSetDisplayName(name, locale1) == "das Main"
1708 && formatter0.getRuleSetDisplayName(name, locale2) == "%ma in"){
1709 logln("getRuleSetDisplayName tested");
1710 }else {
1711 errln("failed to getRuleSetDisplayName");
1712 }
1713 }
1714
1715 for (i = 0; i < formatter0.getNumberOfRuleSetDisplayNameLocales( ); ++i) {
1716 Locale locale = formatter0.getRuleSetDisplayNameLocale(i, st atus);
1717 if (U_SUCCESS(status)) {
1718 for (int j = 0; j < formatter0.getNumberOfRuleSetNames() ; ++j) {
1719 UnicodeString name = formatter0.getRuleSetName(j);
1720 UnicodeString lname = formatter0.getRuleSetDisplayNa me(j, locale);
1721 UnicodeString msg = locale.getName();
1722 msg.append(": ");
1723 msg.append(name);
1724 msg.append(" = ");
1725 msg.append(lname);
1726 logln(msg);
1727 }
1728 }
1729 }
1730 }
1731 }
1732
1733 {
1734 static const char* goodLocs[] = {
1735 "", // zero-length ok, same as providing no localization data
1736 "<<>>", // no public rule sets ok
1737 "<<%main>>", // no localizations ok
1738 "<<%main,>,<en, Main,>>", // comma before close angle ok
1739 "<<%main>,<en, ',<>\" '>>", // quotes everything until next quot e
1740 "<<%main>,<'en', \"it's ok\">>", // double quotes work too
1741 " \n <\n <\n %main\n >\n , \t <\t en\t , \tfoo \t\t > \ n\n > \n ", // rule whitespace ok
1742 };
1743 int32_t goodLocsLen = sizeof(goodLocs)/sizeof(goodLocs[0]);
1744
1745 static const char* badLocs[] = {
1746 " ", // non-zero length
1747 "<>", // empty array
1748 "<", // unclosed outer array
1749 "<<", // unclosed inner array
1750 "<<,>>", // unexpected comma
1751 "<<''>>", // empty string
1752 " x<<%main>>", // first non space char not open angle bracket
1753 "<%main>", // missing inner array
1754 "<<%main %other>>", // elements missing separating commma (space s must be quoted)
1755 "<<%main><en, Main>>", // arrays missing separating comma
1756 "<<%main>,<en, main, foo>>", // too many elements in locale data
1757 "<<%main>,<en>>", // too few elements in locale data
1758 "<<<%main>>>", // unexpected open angle
1759 "<<%main<>>>", // unexpected open angle
1760 "<<%main, %other>,<en,,>>", // implicit empty strings
1761 "<<%main>,<en,''>>", // empty string
1762 "<<%main>, < en, '>>", // unterminated quote
1763 "<<%main>, < en, \"<>>", // unterminated quote
1764 "<<%main\">>", // quote in string
1765 "<<%main'>>", // quote in string
1766 "<<%main<>>", // open angle in string
1767 "<<%main>> x", // extra non-space text at end
1768
1769 };
1770 int32_t badLocsLen = sizeof(badLocs)/sizeof(badLocs[0]);
1771
1772 for (i = 0; i < goodLocsLen; ++i) {
1773 logln("[%d] '%s'", i, goodLocs[i]);
1774 UErrorCode status = U_ZERO_ERROR;
1775 UnicodeString loc(goodLocs[i]);
1776 RuleBasedNumberFormat fmt(rules, loc, perror, status);
1777 if (U_FAILURE(status)) {
1778 errln("Failed parse of good localization string: '%s'", good Locs[i]);
1779 }
1780 }
1781
1782 for (i = 0; i < badLocsLen; ++i) {
1783 logln("[%d] '%s'", i, badLocs[i]);
1784 UErrorCode status = U_ZERO_ERROR;
1785 UnicodeString loc(badLocs[i]);
1786 RuleBasedNumberFormat fmt(rules, loc, perror, status);
1787 if (U_SUCCESS(status)) {
1788 errln("Successful parse of bad localization string: '%s'", b adLocs[i]);
1789 }
1790 }
1791 }
1792 }
1793 }
1794
1795 void
1796 IntlTestRBNF::TestAllLocales()
1797 {
1798 const char* names[] = {
1799 " (spellout) ",
1800 " (ordinal) ",
1801 " (duration) "
1802 };
1803 double numbers[] = {45.678, 1, 2, 10, 11, 100, 110, 200, 1000, 1111, -1111};
1804
1805 // RBNF parse is extremely slow when lenient option is enabled.
1806 // For non-exhaustive mode, we only test a few locales.
1807 const char* parseLocales[] = {"en_US", "nl_NL", "be", NULL};
1808
1809
1810 int32_t count = 0;
1811 const Locale* locales = Locale::getAvailableLocales(count);
1812 for (int i = 0; i < count; ++i) {
1813 const Locale* loc = &locales[i];
1814 UBool testParse = TRUE;
1815 if (quick) {
1816 testParse = FALSE;
1817 for (int k = 0; parseLocales[k] != NULL; k++) {
1818 if (strcmp(loc->getLanguage(), parseLocales[k]) == 0) {
1819 testParse = TRUE;
1820 break;
1821 }
1822 }
1823 }
1824
1825 for (int j = 0; j < 3; ++j) {
1826 UErrorCode status = U_ZERO_ERROR;
1827 RuleBasedNumberFormat* f = new RuleBasedNumberFormat((URBNFRuleSetTa g)j, *loc, status);
1828 if (U_FAILURE(status)) {
1829 errln(UnicodeString(loc->getName()) + names[j]
1830 + "ERROR could not instantiate -> " + u_errorName(status));
1831 continue;
1832 }
1833 #if !UCONFIG_NO_COLLATION
1834 for (unsigned int numidx = 0; numidx < sizeof(numbers)/sizeof(double ); numidx++) {
1835 double n = numbers[numidx];
1836 UnicodeString str;
1837 f->format(n, str);
1838
1839 logln(UnicodeString(loc->getName()) + names[j]
1840 + "success: " + n + " -> " + str);
1841
1842 if (testParse) {
1843 // We do not validate the result in this test case,
1844 // because there are cases which do not round trip by design .
1845 Formattable num;
1846
1847 // regular parse
1848 status = U_ZERO_ERROR;
1849 f->setLenient(FALSE);
1850 f->parse(str, num, status);
1851 if (U_FAILURE(status)) {
1852 //TODO: We need to fix parse problems - see #6895 / #689 6
1853 if (status == U_INVALID_FORMAT_ERROR) {
1854 logln(UnicodeString(loc->getName()) + names[j]
1855 + "WARNING could not parse '" + str + "' -> " + u_errorName(status));
1856 } else {
1857 errln(UnicodeString(loc->getName()) + names[j]
1858 + "ERROR could not parse '" + str + "' -> " + u_ errorName(status));
1859 }
1860 }
1861 // lenient parse
1862 status = U_ZERO_ERROR;
1863 f->setLenient(TRUE);
1864 f->parse(str, num, status);
1865 if (U_FAILURE(status)) {
1866 //TODO: We need to fix parse problems - see #6895 / #689 6
1867 if (status == U_INVALID_FORMAT_ERROR) {
1868 logln(UnicodeString(loc->getName()) + names[j]
1869 + "WARNING could not parse(lenient) '" + str + " ' -> " + u_errorName(status));
1870 } else {
1871 errln(UnicodeString(loc->getName()) + names[j]
1872 + "ERROR could not parse(lenient) '" + str + "' -> " + u_errorName(status));
1873 }
1874 }
1875 }
1876 }
1877 #endif
1878 delete f;
1879 }
1880 }
1881 }
1882
1883 void
1884 IntlTestRBNF::TestMultiplierSubstitution(void) {
1885 UnicodeString rules("=#,##0=;1,000,000: <##0.###< million;");
1886 UErrorCode status = U_ZERO_ERROR;
1887 UParseError parse_error;
1888 RuleBasedNumberFormat *rbnf =
1889 new RuleBasedNumberFormat(rules, Locale::getUS(), parse_error, status);
1890 if (U_SUCCESS(status)) {
1891 UnicodeString res;
1892 FieldPosition pos;
1893 double n = 1234000.0;
1894 rbnf->format(n, res, pos);
1895 delete rbnf;
1896
1897 UnicodeString expected = UNICODE_STRING_SIMPLE("1.234 million");
1898 if (expected != res) {
1899 UnicodeString msg = "Expected: ";
1900 msg.append(expected);
1901 msg.append(" but got ");
1902 msg.append(res);
1903 errln(msg);
1904 }
1905 }
1906 }
1907
1908 void
1909 IntlTestRBNF::doTest(RuleBasedNumberFormat* formatter, const char* const testDat a[][2], UBool testParsing)
1910 {
1911 // man, error reporting would be easier with printf-style syntax for unicode s tring and formattable
1912
1913 UErrorCode status = U_ZERO_ERROR;
1914 DecimalFormatSymbols dfs("en", status);
1915 // NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), stat us);
1916 DecimalFormat decFmt("#,###.################", dfs, status);
1917 if (U_FAILURE(status)) {
1918 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorNa me(status));
1919 } else {
1920 for (int i = 0; testData[i][0]; ++i) {
1921 const char* numString = testData[i][0];
1922 const char* expectedWords = testData[i][1];
1923
1924 log("[%i] %s = ", i, numString);
1925 Formattable expectedNumber;
1926 decFmt.parse(numString, expectedNumber, status);
1927 if (U_FAILURE(status)) {
1928 errln("FAIL: decFmt could not parse %s", numString);
1929 break;
1930 } else {
1931 UnicodeString actualString;
1932 FieldPosition pos;
1933 formatter->format(expectedNumber, actualString/* , pos*/, status );
1934 if (U_FAILURE(status)) {
1935 UnicodeString msg = "Fail: formatter could not format ";
1936 decFmt.format(expectedNumber, msg, status);
1937 errln(msg);
1938 break;
1939 } else {
1940 UnicodeString expectedString = UnicodeString(expectedWords, -1, US_INV).unescape();
1941 if (actualString != expectedString) {
1942 UnicodeString msg = "FAIL: check failed for ";
1943 decFmt.format(expectedNumber, msg, status);
1944 msg.append(", expected ");
1945 msg.append(expectedString);
1946 msg.append(" but got ");
1947 msg.append(actualString);
1948 errln(msg);
1949 break;
1950 } else {
1951 logln(actualString);
1952 if (testParsing) {
1953 Formattable parsedNumber;
1954 formatter->parse(actualString, parsedNumber, status) ;
1955 if (U_FAILURE(status)) {
1956 UnicodeString msg = "FAIL: formatter could not p arse ";
1957 msg.append(actualString);
1958 msg.append(" status code: " );
1959 msg.append(u_errorName(status));
1960 errln(msg);
1961 break;
1962 } else {
1963 if (parsedNumber != expectedNumber) {
1964 UnicodeString msg = "FAIL: parse failed for ";
1965 msg.append(actualString);
1966 msg.append(", expected ");
1967 decFmt.format(expectedNumber, msg, status);
1968 msg.append(", but got ");
1969 decFmt.format(parsedNumber, msg, status);
1970 errln(msg);
1971 break;
1972 }
1973 }
1974 }
1975 }
1976 }
1977 }
1978 }
1979 }
1980 }
1981
1982 void
1983 IntlTestRBNF::doLenientParseTest(RuleBasedNumberFormat* formatter, const char* t estData[][2])
1984 {
1985 UErrorCode status = U_ZERO_ERROR;
1986 NumberFormat* decFmt = NumberFormat::createInstance(Locale::getUS(), status) ;
1987 if (U_FAILURE(status)) {
1988 errcheckln(status, "FAIL: could not create NumberFormat - %s", u_errorNa me(status));
1989 } else {
1990 for (int i = 0; testData[i][0]; ++i) {
1991 const char* spelledNumber = testData[i][0]; // spelled-out number
1992 const char* asciiUSNumber = testData[i][1]; // number as ascii digit s formatted for US locale
1993
1994 UnicodeString spelledNumberString = UnicodeString(spelledNumber).une scape();
1995 Formattable actualNumber;
1996 formatter->parse(spelledNumberString, actualNumber, status);
1997 if (U_FAILURE(status)) {
1998 UnicodeString msg = "FAIL: formatter could not parse ";
1999 msg.append(spelledNumberString);
2000 errln(msg);
2001 break;
2002 } else {
2003 // I changed the logic of this test somewhat from Java-- instead of comparing the
2004 // strings, I compare the Formattables. Hmmm, but the Formattab les don't compare,
2005 // so change it back.
2006
2007 UnicodeString asciiUSNumberString = asciiUSNumber;
2008 Formattable expectedNumber;
2009 decFmt->parse(asciiUSNumberString, expectedNumber, status);
2010 if (U_FAILURE(status)) {
2011 UnicodeString msg = "FAIL: decFmt could not parse ";
2012 msg.append(asciiUSNumberString);
2013 errln(msg);
2014 break;
2015 } else {
2016 UnicodeString actualNumberString;
2017 UnicodeString expectedNumberString;
2018 decFmt->format(actualNumber, actualNumberString, status);
2019 decFmt->format(expectedNumber, expectedNumberString, status) ;
2020 if (actualNumberString != expectedNumberString) {
2021 UnicodeString msg = "FAIL: parsing";
2022 msg.append(asciiUSNumberString);
2023 msg.append("\n");
2024 msg.append(" lenient parse failed for ");
2025 msg.append(spelledNumberString);
2026 msg.append(", expected ");
2027 msg.append(expectedNumberString);
2028 msg.append(", but got ");
2029 msg.append(actualNumberString);
2030 errln(msg);
2031 break;
2032 }
2033 }
2034 }
2035 }
2036 delete decFmt;
2037 }
2038 }
2039
2040 /* U_HAVE_RBNF */
2041 #else
2042
2043 void
2044 IntlTestRBNF::TestRBNFDisabled() {
2045 errln("*** RBNF currently disabled on this platform ***\n");
2046 }
2047
2048 /* U_HAVE_RBNF */
2049 #endif
2050
2051 #endif /* #if !UCONFIG_NO_FORMATTING */
OLDNEW
« no previous file with comments | « icu46/source/test/intltest/itrbnf.h ('k') | icu46/source/test/intltest/itrbnfp.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698