OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ********************************************************************** |
| 3 * Copyright (C) 1999-2008, International Business Machines |
| 4 * Corporation and others. All Rights Reserved. |
| 5 ********************************************************************** |
| 6 * Date Name Description |
| 7 * 11/17/99 aliu Creation. |
| 8 ********************************************************************** |
| 9 */ |
| 10 |
| 11 #include "unicode/utypes.h" |
| 12 |
| 13 #if !UCONFIG_NO_TRANSLITERATION |
| 14 |
| 15 #include "unicode/uobject.h" |
| 16 #include "unicode/parseerr.h" |
| 17 #include "unicode/parsepos.h" |
| 18 #include "unicode/putil.h" |
| 19 #include "unicode/uchar.h" |
| 20 #include "unicode/ustring.h" |
| 21 #include "unicode/uniset.h" |
| 22 #include "cstring.h" |
| 23 #include "funcrepl.h" |
| 24 #include "hash.h" |
| 25 #include "quant.h" |
| 26 #include "rbt.h" |
| 27 #include "rbt_data.h" |
| 28 #include "rbt_pars.h" |
| 29 #include "rbt_rule.h" |
| 30 #include "strmatch.h" |
| 31 #include "strrepl.h" |
| 32 #include "unicode/symtable.h" |
| 33 #include "tridpars.h" |
| 34 #include "uvector.h" |
| 35 #include "hash.h" |
| 36 #include "util.h" |
| 37 #include "cmemory.h" |
| 38 #include "uprops.h" |
| 39 #include "putilimp.h" |
| 40 |
| 41 // Operators |
| 42 #define VARIABLE_DEF_OP ((UChar)0x003D) /*=*/ |
| 43 #define FORWARD_RULE_OP ((UChar)0x003E) /*>*/ |
| 44 #define REVERSE_RULE_OP ((UChar)0x003C) /*<*/ |
| 45 #define FWDREV_RULE_OP ((UChar)0x007E) /*~*/ // internal rep of <> op |
| 46 |
| 47 // Other special characters |
| 48 #define QUOTE ((UChar)0x0027) /*'*/ |
| 49 #define ESCAPE ((UChar)0x005C) /*\*/ |
| 50 #define END_OF_RULE ((UChar)0x003B) /*;*/ |
| 51 #define RULE_COMMENT_CHAR ((UChar)0x0023) /*#*/ |
| 52 |
| 53 #define SEGMENT_OPEN ((UChar)0x0028) /*(*/ |
| 54 #define SEGMENT_CLOSE ((UChar)0x0029) /*)*/ |
| 55 #define CONTEXT_ANTE ((UChar)0x007B) /*{*/ |
| 56 #define CONTEXT_POST ((UChar)0x007D) /*}*/ |
| 57 #define CURSOR_POS ((UChar)0x007C) /*|*/ |
| 58 #define CURSOR_OFFSET ((UChar)0x0040) /*@*/ |
| 59 #define ANCHOR_START ((UChar)0x005E) /*^*/ |
| 60 #define KLEENE_STAR ((UChar)0x002A) /***/ |
| 61 #define ONE_OR_MORE ((UChar)0x002B) /*+*/ |
| 62 #define ZERO_OR_ONE ((UChar)0x003F) /*?*/ |
| 63 |
| 64 #define DOT ((UChar)46) /*.*/ |
| 65 |
| 66 static const UChar DOT_SET[] = { // "[^[:Zp:][:Zl:]\r\n$]"; |
| 67 91, 94, 91, 58, 90, 112, 58, 93, 91, 58, 90, |
| 68 108, 58, 93, 92, 114, 92, 110, 36, 93, 0 |
| 69 }; |
| 70 |
| 71 // A function is denoted &Source-Target/Variant(text) |
| 72 #define FUNCTION ((UChar)38) /*&*/ |
| 73 |
| 74 // Aliases for some of the syntax characters. These are provided so |
| 75 // transliteration rules can be expressed in XML without clashing with |
| 76 // XML syntax characters '<', '>', and '&'. |
| 77 #define ALT_REVERSE_RULE_OP ((UChar)0x2190) // Left Arrow |
| 78 #define ALT_FORWARD_RULE_OP ((UChar)0x2192) // Right Arrow |
| 79 #define ALT_FWDREV_RULE_OP ((UChar)0x2194) // Left Right Arrow |
| 80 #define ALT_FUNCTION ((UChar)0x2206) // Increment (~Greek Capital Delta) |
| 81 |
| 82 // Special characters disallowed at the top level |
| 83 static const UChar ILLEGAL_TOP[] = {41,0}; // ")" |
| 84 |
| 85 // Special characters disallowed within a segment |
| 86 static const UChar ILLEGAL_SEG[] = {123,125,124,64,0}; // "{}|@" |
| 87 |
| 88 // Special characters disallowed within a function argument |
| 89 static const UChar ILLEGAL_FUNC[] = {94,40,46,42,43,63,123,125,124,64,0}; // "^(
.*+?{}|@" |
| 90 |
| 91 // By definition, the ANCHOR_END special character is a |
| 92 // trailing SymbolTable.SYMBOL_REF character. |
| 93 // private static final char ANCHOR_END = '$'; |
| 94 |
| 95 static const UChar gOPERATORS[] = { // "=><" |
| 96 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, |
| 97 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, |
| 98 0 |
| 99 }; |
| 100 |
| 101 static const UChar HALF_ENDERS[] = { // "=><;" |
| 102 VARIABLE_DEF_OP, FORWARD_RULE_OP, REVERSE_RULE_OP, |
| 103 ALT_FORWARD_RULE_OP, ALT_REVERSE_RULE_OP, ALT_FWDREV_RULE_OP, |
| 104 END_OF_RULE, |
| 105 0 |
| 106 }; |
| 107 |
| 108 // These are also used in Transliterator::toRules() |
| 109 static const int32_t ID_TOKEN_LEN = 2; |
| 110 static const UChar ID_TOKEN[] = { 0x3A, 0x3A }; // ':', ':' |
| 111 |
| 112 /* |
| 113 commented out until we do real ::BEGIN/::END functionality |
| 114 static const int32_t BEGIN_TOKEN_LEN = 5; |
| 115 static const UChar BEGIN_TOKEN[] = { 0x42, 0x45, 0x47, 0x49, 0x4e }; // 'BEGIN' |
| 116 |
| 117 static const int32_t END_TOKEN_LEN = 3; |
| 118 static const UChar END_TOKEN[] = { 0x45, 0x4e, 0x44 }; // 'END' |
| 119 */ |
| 120 |
| 121 U_NAMESPACE_BEGIN |
| 122 |
| 123 //---------------------------------------------------------------------- |
| 124 // BEGIN ParseData |
| 125 //---------------------------------------------------------------------- |
| 126 |
| 127 /** |
| 128 * This class implements the SymbolTable interface. It is used |
| 129 * during parsing to give UnicodeSet access to variables that |
| 130 * have been defined so far. Note that it uses variablesVector, |
| 131 * _not_ data.setVariables. |
| 132 */ |
| 133 class ParseData : public UMemory, public SymbolTable { |
| 134 public: |
| 135 const TransliterationRuleData* data; // alias |
| 136 |
| 137 const UVector* variablesVector; // alias |
| 138 |
| 139 const Hashtable* variableNames; // alias |
| 140 |
| 141 ParseData(const TransliterationRuleData* data = 0, |
| 142 const UVector* variablesVector = 0, |
| 143 const Hashtable* variableNames = 0); |
| 144 |
| 145 virtual const UnicodeString* lookup(const UnicodeString& s) const; |
| 146 |
| 147 virtual const UnicodeFunctor* lookupMatcher(UChar32 ch) const; |
| 148 |
| 149 virtual UnicodeString parseReference(const UnicodeString& text, |
| 150 ParsePosition& pos, int32_t limit) cons
t; |
| 151 /** |
| 152 * Return true if the given character is a matcher standin or a plain |
| 153 * character (non standin). |
| 154 */ |
| 155 UBool isMatcher(UChar32 ch); |
| 156 |
| 157 /** |
| 158 * Return true if the given character is a replacer standin or a plain |
| 159 * character (non standin). |
| 160 */ |
| 161 UBool isReplacer(UChar32 ch); |
| 162 |
| 163 private: |
| 164 ParseData(const ParseData &other); // forbid copying of this class |
| 165 ParseData &operator=(const ParseData &other); // forbid copying of this clas
s |
| 166 }; |
| 167 |
| 168 ParseData::ParseData(const TransliterationRuleData* d, |
| 169 const UVector* sets, |
| 170 const Hashtable* vNames) : |
| 171 data(d), variablesVector(sets), variableNames(vNames) {} |
| 172 |
| 173 /** |
| 174 * Implement SymbolTable API. |
| 175 */ |
| 176 const UnicodeString* ParseData::lookup(const UnicodeString& name) const { |
| 177 return (const UnicodeString*) variableNames->get(name); |
| 178 } |
| 179 |
| 180 /** |
| 181 * Implement SymbolTable API. |
| 182 */ |
| 183 const UnicodeFunctor* ParseData::lookupMatcher(UChar32 ch) const { |
| 184 // Note that we cannot use data.lookupSet() because the |
| 185 // set array has not been constructed yet. |
| 186 const UnicodeFunctor* set = NULL; |
| 187 int32_t i = ch - data->variablesBase; |
| 188 if (i >= 0 && i < variablesVector->size()) { |
| 189 int32_t i = ch - data->variablesBase; |
| 190 set = (i < variablesVector->size()) ? |
| 191 (UnicodeFunctor*) variablesVector->elementAt(i) : 0; |
| 192 } |
| 193 return set; |
| 194 } |
| 195 |
| 196 /** |
| 197 * Implement SymbolTable API. Parse out a symbol reference |
| 198 * name. |
| 199 */ |
| 200 UnicodeString ParseData::parseReference(const UnicodeString& text, |
| 201 ParsePosition& pos, int32_t limit) const
{ |
| 202 int32_t start = pos.getIndex(); |
| 203 int32_t i = start; |
| 204 UnicodeString result; |
| 205 while (i < limit) { |
| 206 UChar c = text.charAt(i); |
| 207 if ((i==start && !u_isIDStart(c)) || !u_isIDPart(c)) { |
| 208 break; |
| 209 } |
| 210 ++i; |
| 211 } |
| 212 if (i == start) { // No valid name chars |
| 213 return result; // Indicate failure with empty string |
| 214 } |
| 215 pos.setIndex(i); |
| 216 text.extractBetween(start, i, result); |
| 217 return result; |
| 218 } |
| 219 |
| 220 UBool ParseData::isMatcher(UChar32 ch) { |
| 221 // Note that we cannot use data.lookup() because the |
| 222 // set array has not been constructed yet. |
| 223 int32_t i = ch - data->variablesBase; |
| 224 if (i >= 0 && i < variablesVector->size()) { |
| 225 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); |
| 226 return f != NULL && f->toMatcher() != NULL; |
| 227 } |
| 228 return TRUE; |
| 229 } |
| 230 |
| 231 /** |
| 232 * Return true if the given character is a replacer standin or a plain |
| 233 * character (non standin). |
| 234 */ |
| 235 UBool ParseData::isReplacer(UChar32 ch) { |
| 236 // Note that we cannot use data.lookup() because the |
| 237 // set array has not been constructed yet. |
| 238 int i = ch - data->variablesBase; |
| 239 if (i >= 0 && i < variablesVector->size()) { |
| 240 UnicodeFunctor *f = (UnicodeFunctor*) variablesVector->elementAt(i); |
| 241 return f != NULL && f->toReplacer() != NULL; |
| 242 } |
| 243 return TRUE; |
| 244 } |
| 245 |
| 246 //---------------------------------------------------------------------- |
| 247 // BEGIN RuleHalf |
| 248 //---------------------------------------------------------------------- |
| 249 |
| 250 /** |
| 251 * A class representing one side of a rule. This class knows how to |
| 252 * parse half of a rule. It is tightly coupled to the method |
| 253 * RuleBasedTransliterator.Parser.parseRule(). |
| 254 */ |
| 255 class RuleHalf : public UMemory { |
| 256 |
| 257 public: |
| 258 |
| 259 UnicodeString text; |
| 260 |
| 261 int32_t cursor; // position of cursor in text |
| 262 int32_t ante; // position of ante context marker '{' in text |
| 263 int32_t post; // position of post context marker '}' in text |
| 264 |
| 265 // Record the offset to the cursor either to the left or to the |
| 266 // right of the key. This is indicated by characters on the output |
| 267 // side that allow the cursor to be positioned arbitrarily within |
| 268 // the matching text. For example, abc{def} > | @@@ xyz; changes |
| 269 // def to xyz and moves the cursor to before abc. Offset characters |
| 270 // must be at the start or end, and they cannot move the cursor past |
| 271 // the ante- or postcontext text. Placeholders are only valid in |
| 272 // output text. The length of the ante and post context is |
| 273 // determined at runtime, because of supplementals and quantifiers. |
| 274 int32_t cursorOffset; // only nonzero on output side |
| 275 |
| 276 // Position of first CURSOR_OFFSET on _right_. This will be -1 |
| 277 // for |@, -2 for |@@, etc., and 1 for @|, 2 for @@|, etc. |
| 278 int32_t cursorOffsetPos; |
| 279 |
| 280 UBool anchorStart; |
| 281 UBool anchorEnd; |
| 282 |
| 283 /** |
| 284 * The segment number from 1..n of the next '(' we see |
| 285 * during parsing; 1-based. |
| 286 */ |
| 287 int32_t nextSegmentNumber; |
| 288 |
| 289 TransliteratorParser& parser; |
| 290 |
| 291 //-------------------------------------------------- |
| 292 // Methods |
| 293 |
| 294 RuleHalf(TransliteratorParser& parser); |
| 295 ~RuleHalf(); |
| 296 |
| 297 int32_t parse(const UnicodeString& rule, int32_t pos, int32_t limit, UErrorC
ode& status); |
| 298 |
| 299 int32_t parseSection(const UnicodeString& rule, int32_t pos, int32_t limit, |
| 300 UnicodeString& buf, |
| 301 const UnicodeString& illegal, |
| 302 UBool isSegment, |
| 303 UErrorCode& status); |
| 304 |
| 305 /** |
| 306 * Remove context. |
| 307 */ |
| 308 void removeContext(); |
| 309 |
| 310 /** |
| 311 * Return true if this half looks like valid output, that is, does not |
| 312 * contain quantifiers or other special input-only elements. |
| 313 */ |
| 314 UBool isValidOutput(TransliteratorParser& parser); |
| 315 |
| 316 /** |
| 317 * Return true if this half looks like valid input, that is, does not |
| 318 * contain functions or other special output-only elements. |
| 319 */ |
| 320 UBool isValidInput(TransliteratorParser& parser); |
| 321 |
| 322 int syntaxError(UErrorCode code, |
| 323 const UnicodeString& rule, |
| 324 int32_t start, |
| 325 UErrorCode& status) { |
| 326 return parser.syntaxError(code, rule, start, status); |
| 327 } |
| 328 |
| 329 private: |
| 330 // Disallowed methods; no impl. |
| 331 RuleHalf(const RuleHalf&); |
| 332 RuleHalf& operator=(const RuleHalf&); |
| 333 }; |
| 334 |
| 335 RuleHalf::RuleHalf(TransliteratorParser& p) : |
| 336 parser(p) |
| 337 { |
| 338 cursor = -1; |
| 339 ante = -1; |
| 340 post = -1; |
| 341 cursorOffset = 0; |
| 342 cursorOffsetPos = 0; |
| 343 anchorStart = anchorEnd = FALSE; |
| 344 nextSegmentNumber = 1; |
| 345 } |
| 346 |
| 347 RuleHalf::~RuleHalf() { |
| 348 } |
| 349 |
| 350 /** |
| 351 * Parse one side of a rule, stopping at either the limit, |
| 352 * the END_OF_RULE character, or an operator. |
| 353 * @return the index after the terminating character, or |
| 354 * if limit was reached, limit |
| 355 */ |
| 356 int32_t RuleHalf::parse(const UnicodeString& rule, int32_t pos, int32_t limit, U
ErrorCode& status) { |
| 357 int32_t start = pos; |
| 358 text.truncate(0); |
| 359 pos = parseSection(rule, pos, limit, text, ILLEGAL_TOP, FALSE, status); |
| 360 |
| 361 if (cursorOffset > 0 && cursor != cursorOffsetPos) { |
| 362 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, status); |
| 363 } |
| 364 |
| 365 return pos; |
| 366 } |
| 367 |
| 368 /** |
| 369 * Parse a section of one side of a rule, stopping at either |
| 370 * the limit, the END_OF_RULE character, an operator, or a |
| 371 * segment close character. This method parses both a |
| 372 * top-level rule half and a segment within such a rule half. |
| 373 * It calls itself recursively to parse segments and nested |
| 374 * segments. |
| 375 * @param buf buffer into which to accumulate the rule pattern |
| 376 * characters, either literal characters from the rule or |
| 377 * standins for UnicodeMatcher objects including segments. |
| 378 * @param illegal the set of special characters that is illegal during |
| 379 * this parse. |
| 380 * @param isSegment if true, then we've already seen a '(' and |
| 381 * pos on entry points right after it. Accumulate everything |
| 382 * up to the closing ')', put it in a segment matcher object, |
| 383 * generate a standin for it, and add the standin to buf. As |
| 384 * a side effect, update the segments vector with a reference |
| 385 * to the segment matcher. This works recursively for nested |
| 386 * segments. If isSegment is false, just accumulate |
| 387 * characters into buf. |
| 388 * @return the index after the terminating character, or |
| 389 * if limit was reached, limit |
| 390 */ |
| 391 int32_t RuleHalf::parseSection(const UnicodeString& rule, int32_t pos, int32_t l
imit, |
| 392 UnicodeString& buf, |
| 393 const UnicodeString& illegal, |
| 394 UBool isSegment, UErrorCode& status) { |
| 395 int32_t start = pos; |
| 396 ParsePosition pp; |
| 397 UnicodeString scratch; |
| 398 UBool done = FALSE; |
| 399 int32_t quoteStart = -1; // Most recent 'single quoted string' |
| 400 int32_t quoteLimit = -1; |
| 401 int32_t varStart = -1; // Most recent $variableReference |
| 402 int32_t varLimit = -1; |
| 403 int32_t bufStart = buf.length(); |
| 404 |
| 405 while (pos < limit && !done) { |
| 406 // Since all syntax characters are in the BMP, fetching |
| 407 // 16-bit code units suffices here. |
| 408 UChar c = rule.charAt(pos++); |
| 409 if (uprv_isRuleWhiteSpace(c)) { |
| 410 // Ignore whitespace. Note that this is not Unicode |
| 411 // spaces, but Java spaces -- a subset, representing |
| 412 // whitespace likely to be seen in code. |
| 413 continue; |
| 414 } |
| 415 if (u_strchr(HALF_ENDERS, c) != NULL) { |
| 416 if (isSegment) { |
| 417 // Unclosed segment |
| 418 return syntaxError(U_UNCLOSED_SEGMENT, rule, start, status); |
| 419 } |
| 420 break; |
| 421 } |
| 422 if (anchorEnd) { |
| 423 // Text after a presumed end anchor is a syntax err |
| 424 return syntaxError(U_MALFORMED_VARIABLE_REFERENCE, rule, start, stat
us); |
| 425 } |
| 426 if (UnicodeSet::resemblesPattern(rule, pos-1)) { |
| 427 pp.setIndex(pos-1); // Backup to opening '[' |
| 428 buf.append(parser.parseSet(rule, pp, status)); |
| 429 if (U_FAILURE(status)) { |
| 430 return syntaxError(U_MALFORMED_SET, rule, start, status); |
| 431 } |
| 432 pos = pp.getIndex(); |
| 433 continue; |
| 434 } |
| 435 // Handle escapes |
| 436 if (c == ESCAPE) { |
| 437 if (pos == limit) { |
| 438 return syntaxError(U_TRAILING_BACKSLASH, rule, start, status); |
| 439 } |
| 440 UChar32 escaped = rule.unescapeAt(pos); // pos is already past '\\' |
| 441 if (escaped == (UChar32) -1) { |
| 442 return syntaxError(U_MALFORMED_UNICODE_ESCAPE, rule, start, stat
us); |
| 443 } |
| 444 if (!parser.checkVariableRange(escaped)) { |
| 445 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status
); |
| 446 } |
| 447 buf.append(escaped); |
| 448 continue; |
| 449 } |
| 450 // Handle quoted matter |
| 451 if (c == QUOTE) { |
| 452 int32_t iq = rule.indexOf(QUOTE, pos); |
| 453 if (iq == pos) { |
| 454 buf.append(c); // Parse [''] outside quotes as ['] |
| 455 ++pos; |
| 456 } else { |
| 457 /* This loop picks up a run of quoted text of the |
| 458 * form 'aaaa' each time through. If this run |
| 459 * hasn't really ended ('aaaa''bbbb') then it keeps |
| 460 * looping, each time adding on a new run. When it |
| 461 * reaches the final quote it breaks. |
| 462 */ |
| 463 quoteStart = buf.length(); |
| 464 for (;;) { |
| 465 if (iq < 0) { |
| 466 return syntaxError(U_UNTERMINATED_QUOTE, rule, start, st
atus); |
| 467 } |
| 468 scratch.truncate(0); |
| 469 rule.extractBetween(pos, iq, scratch); |
| 470 buf.append(scratch); |
| 471 pos = iq+1; |
| 472 if (pos < limit && rule.charAt(pos) == QUOTE) { |
| 473 // Parse [''] inside quotes as ['] |
| 474 iq = rule.indexOf(QUOTE, pos+1); |
| 475 // Continue looping |
| 476 } else { |
| 477 break; |
| 478 } |
| 479 } |
| 480 quoteLimit = buf.length(); |
| 481 |
| 482 for (iq=quoteStart; iq<quoteLimit; ++iq) { |
| 483 if (!parser.checkVariableRange(buf.charAt(iq))) { |
| 484 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start
, status); |
| 485 } |
| 486 } |
| 487 } |
| 488 continue; |
| 489 } |
| 490 |
| 491 if (!parser.checkVariableRange(c)) { |
| 492 return syntaxError(U_VARIABLE_RANGE_OVERLAP, rule, start, status); |
| 493 } |
| 494 |
| 495 if (illegal.indexOf(c) >= 0) { |
| 496 syntaxError(U_ILLEGAL_CHARACTER, rule, start, status); |
| 497 } |
| 498 |
| 499 switch (c) { |
| 500 |
| 501 //------------------------------------------------------ |
| 502 // Elements allowed within and out of segments |
| 503 //------------------------------------------------------ |
| 504 case ANCHOR_START: |
| 505 if (buf.length() == 0 && !anchorStart) { |
| 506 anchorStart = TRUE; |
| 507 } else { |
| 508 return syntaxError(U_MISPLACED_ANCHOR_START, |
| 509 rule, start, status); |
| 510 } |
| 511 break; |
| 512 case SEGMENT_OPEN: |
| 513 { |
| 514 // bufSegStart is the offset in buf to the first |
| 515 // character of the segment we are parsing. |
| 516 int32_t bufSegStart = buf.length(); |
| 517 |
| 518 // Record segment number now, since nextSegmentNumber |
| 519 // will be incremented during the call to parseSection |
| 520 // if there are nested segments. |
| 521 int32_t segmentNumber = nextSegmentNumber++; // 1-based |
| 522 |
| 523 // Parse the segment |
| 524 pos = parseSection(rule, pos, limit, buf, ILLEGAL_SEG, TRUE, sta
tus); |
| 525 |
| 526 // After parsing a segment, the relevant characters are |
| 527 // in buf, starting at offset bufSegStart. Extract them |
| 528 // into a string matcher, and replace them with a |
| 529 // standin for that matcher. |
| 530 StringMatcher* m = |
| 531 new StringMatcher(buf, bufSegStart, buf.length(), |
| 532 segmentNumber, *parser.curData); |
| 533 if (m == NULL) { |
| 534 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, s
tatus); |
| 535 } |
| 536 |
| 537 // Record and associate object and segment number |
| 538 parser.setSegmentObject(segmentNumber, m, status); |
| 539 buf.truncate(bufSegStart); |
| 540 buf.append(parser.getSegmentStandin(segmentNumber, status)); |
| 541 } |
| 542 break; |
| 543 case FUNCTION: |
| 544 case ALT_FUNCTION: |
| 545 { |
| 546 int32_t iref = pos; |
| 547 TransliteratorIDParser::SingleID* single = |
| 548 TransliteratorIDParser::parseFilterID(rule, iref); |
| 549 // The next character MUST be a segment open |
| 550 if (single == NULL || |
| 551 !ICU_Utility::parseChar(rule, iref, SEGMENT_OPEN)) { |
| 552 return syntaxError(U_INVALID_FUNCTION, rule, start, status); |
| 553 } |
| 554 |
| 555 Transliterator *t = single->createInstance(); |
| 556 delete single; |
| 557 if (t == NULL) { |
| 558 return syntaxError(U_INVALID_FUNCTION, rule, start, status); |
| 559 } |
| 560 |
| 561 // bufSegStart is the offset in buf to the first |
| 562 // character of the segment we are parsing. |
| 563 int32_t bufSegStart = buf.length(); |
| 564 |
| 565 // Parse the segment |
| 566 pos = parseSection(rule, iref, limit, buf, ILLEGAL_FUNC, TRUE, s
tatus); |
| 567 |
| 568 // After parsing a segment, the relevant characters are |
| 569 // in buf, starting at offset bufSegStart. |
| 570 UnicodeString output; |
| 571 buf.extractBetween(bufSegStart, buf.length(), output); |
| 572 FunctionReplacer *r = |
| 573 new FunctionReplacer(t, new StringReplacer(output, parser.cu
rData)); |
| 574 if (r == NULL) { |
| 575 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, s
tatus); |
| 576 } |
| 577 |
| 578 // Replace the buffer contents with a stand-in |
| 579 buf.truncate(bufSegStart); |
| 580 buf.append(parser.generateStandInFor(r, status)); |
| 581 } |
| 582 break; |
| 583 case SymbolTable::SYMBOL_REF: |
| 584 // Handle variable references and segment references "$1" .. "$9" |
| 585 { |
| 586 // A variable reference must be followed immediately |
| 587 // by a Unicode identifier start and zero or more |
| 588 // Unicode identifier part characters, or by a digit |
| 589 // 1..9 if it is a segment reference. |
| 590 if (pos == limit) { |
| 591 // A variable ref character at the end acts as |
| 592 // an anchor to the context limit, as in perl. |
| 593 anchorEnd = TRUE; |
| 594 break; |
| 595 } |
| 596 // Parse "$1" "$2" .. "$9" .. (no upper limit) |
| 597 c = rule.charAt(pos); |
| 598 int32_t r = u_digit(c, 10); |
| 599 if (r >= 1 && r <= 9) { |
| 600 r = ICU_Utility::parseNumber(rule, pos, 10); |
| 601 if (r < 0) { |
| 602 return syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, |
| 603 rule, start, status); |
| 604 } |
| 605 buf.append(parser.getSegmentStandin(r, status)); |
| 606 } else { |
| 607 pp.setIndex(pos); |
| 608 UnicodeString name = parser.parseData-> |
| 609 parseReference(rule, pp, limit); |
| 610 if (name.length() == 0) { |
| 611 // This means the '$' was not followed by a |
| 612 // valid name. Try to interpret it as an |
| 613 // end anchor then. If this also doesn't work |
| 614 // (if we see a following character) then signal |
| 615 // an error. |
| 616 anchorEnd = TRUE; |
| 617 break; |
| 618 } |
| 619 pos = pp.getIndex(); |
| 620 // If this is a variable definition statement, |
| 621 // then the LHS variable will be undefined. In |
| 622 // that case appendVariableDef() will append the |
| 623 // special placeholder char variableLimit-1. |
| 624 varStart = buf.length(); |
| 625 parser.appendVariableDef(name, buf, status); |
| 626 varLimit = buf.length(); |
| 627 } |
| 628 } |
| 629 break; |
| 630 case DOT: |
| 631 buf.append(parser.getDotStandIn(status)); |
| 632 break; |
| 633 case KLEENE_STAR: |
| 634 case ONE_OR_MORE: |
| 635 case ZERO_OR_ONE: |
| 636 // Quantifiers. We handle single characters, quoted strings, |
| 637 // variable references, and segments. |
| 638 // a+ matches aaa |
| 639 // 'foo'+ matches foofoofoo |
| 640 // $v+ matches xyxyxy if $v == xy |
| 641 // (seg)+ matches segsegseg |
| 642 { |
| 643 if (isSegment && buf.length() == bufStart) { |
| 644 // The */+ immediately follows '(' |
| 645 return syntaxError(U_MISPLACED_QUANTIFIER, rule, start, stat
us); |
| 646 } |
| 647 |
| 648 int32_t qstart, qlimit; |
| 649 // The */+ follows an isolated character or quote |
| 650 // or variable reference |
| 651 if (buf.length() == quoteLimit) { |
| 652 // The */+ follows a 'quoted string' |
| 653 qstart = quoteStart; |
| 654 qlimit = quoteLimit; |
| 655 } else if (buf.length() == varLimit) { |
| 656 // The */+ follows a $variableReference |
| 657 qstart = varStart; |
| 658 qlimit = varLimit; |
| 659 } else { |
| 660 // The */+ follows a single character, possibly |
| 661 // a segment standin |
| 662 qstart = buf.length() - 1; |
| 663 qlimit = qstart + 1; |
| 664 } |
| 665 |
| 666 UnicodeFunctor *m = |
| 667 new StringMatcher(buf, qstart, qlimit, 0, *parser.curData); |
| 668 if (m == NULL) { |
| 669 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, s
tatus); |
| 670 } |
| 671 int32_t min = 0; |
| 672 int32_t max = Quantifier::MAX; |
| 673 switch (c) { |
| 674 case ONE_OR_MORE: |
| 675 min = 1; |
| 676 break; |
| 677 case ZERO_OR_ONE: |
| 678 min = 0; |
| 679 max = 1; |
| 680 break; |
| 681 // case KLEENE_STAR: |
| 682 // do nothing -- min, max already set |
| 683 } |
| 684 m = new Quantifier(m, min, max); |
| 685 if (m == NULL) { |
| 686 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, s
tatus); |
| 687 } |
| 688 buf.truncate(qstart); |
| 689 buf.append(parser.generateStandInFor(m, status)); |
| 690 } |
| 691 break; |
| 692 |
| 693 //------------------------------------------------------ |
| 694 // Elements allowed ONLY WITHIN segments |
| 695 //------------------------------------------------------ |
| 696 case SEGMENT_CLOSE: |
| 697 // assert(isSegment); |
| 698 // We're done parsing a segment. |
| 699 done = TRUE; |
| 700 break; |
| 701 |
| 702 //------------------------------------------------------ |
| 703 // Elements allowed ONLY OUTSIDE segments |
| 704 //------------------------------------------------------ |
| 705 case CONTEXT_ANTE: |
| 706 if (ante >= 0) { |
| 707 return syntaxError(U_MULTIPLE_ANTE_CONTEXTS, rule, start, status
); |
| 708 } |
| 709 ante = buf.length(); |
| 710 break; |
| 711 case CONTEXT_POST: |
| 712 if (post >= 0) { |
| 713 return syntaxError(U_MULTIPLE_POST_CONTEXTS, rule, start, status
); |
| 714 } |
| 715 post = buf.length(); |
| 716 break; |
| 717 case CURSOR_POS: |
| 718 if (cursor >= 0) { |
| 719 return syntaxError(U_MULTIPLE_CURSORS, rule, start, status); |
| 720 } |
| 721 cursor = buf.length(); |
| 722 break; |
| 723 case CURSOR_OFFSET: |
| 724 if (cursorOffset < 0) { |
| 725 if (buf.length() > 0) { |
| 726 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, s
tatus); |
| 727 } |
| 728 --cursorOffset; |
| 729 } else if (cursorOffset > 0) { |
| 730 if (buf.length() != cursorOffsetPos || cursor >= 0) { |
| 731 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, s
tatus); |
| 732 } |
| 733 ++cursorOffset; |
| 734 } else { |
| 735 if (cursor == 0 && buf.length() == 0) { |
| 736 cursorOffset = -1; |
| 737 } else if (cursor < 0) { |
| 738 cursorOffsetPos = buf.length(); |
| 739 cursorOffset = 1; |
| 740 } else { |
| 741 return syntaxError(U_MISPLACED_CURSOR_OFFSET, rule, start, s
tatus); |
| 742 } |
| 743 } |
| 744 break; |
| 745 |
| 746 |
| 747 //------------------------------------------------------ |
| 748 // Non-special characters |
| 749 //------------------------------------------------------ |
| 750 default: |
| 751 // Disallow unquoted characters other than [0-9A-Za-z] |
| 752 // in the printable ASCII range. These characters are |
| 753 // reserved for possible future use. |
| 754 if (c >= 0x0021 && c <= 0x007E && |
| 755 !((c >= 0x0030/*'0'*/ && c <= 0x0039/*'9'*/) || |
| 756 (c >= 0x0041/*'A'*/ && c <= 0x005A/*'Z'*/) || |
| 757 (c >= 0x0061/*'a'*/ && c <= 0x007A/*'z'*/))) { |
| 758 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); |
| 759 } |
| 760 buf.append(c); |
| 761 break; |
| 762 } |
| 763 } |
| 764 |
| 765 return pos; |
| 766 } |
| 767 |
| 768 /** |
| 769 * Remove context. |
| 770 */ |
| 771 void RuleHalf::removeContext() { |
| 772 //text = text.substring(ante < 0 ? 0 : ante, |
| 773 // post < 0 ? text.length() : post); |
| 774 if (post >= 0) { |
| 775 text.remove(post); |
| 776 } |
| 777 if (ante >= 0) { |
| 778 text.removeBetween(0, ante); |
| 779 } |
| 780 ante = post = -1; |
| 781 anchorStart = anchorEnd = FALSE; |
| 782 } |
| 783 |
| 784 /** |
| 785 * Return true if this half looks like valid output, that is, does not |
| 786 * contain quantifiers or other special input-only elements. |
| 787 */ |
| 788 UBool RuleHalf::isValidOutput(TransliteratorParser& transParser) { |
| 789 for (int32_t i=0; i<text.length(); ) { |
| 790 UChar32 c = text.char32At(i); |
| 791 i += UTF_CHAR_LENGTH(c); |
| 792 if (!transParser.parseData->isReplacer(c)) { |
| 793 return FALSE; |
| 794 } |
| 795 } |
| 796 return TRUE; |
| 797 } |
| 798 |
| 799 /** |
| 800 * Return true if this half looks like valid input, that is, does not |
| 801 * contain functions or other special output-only elements. |
| 802 */ |
| 803 UBool RuleHalf::isValidInput(TransliteratorParser& transParser) { |
| 804 for (int32_t i=0; i<text.length(); ) { |
| 805 UChar32 c = text.char32At(i); |
| 806 i += UTF_CHAR_LENGTH(c); |
| 807 if (!transParser.parseData->isMatcher(c)) { |
| 808 return FALSE; |
| 809 } |
| 810 } |
| 811 return TRUE; |
| 812 } |
| 813 |
| 814 //---------------------------------------------------------------------- |
| 815 // PUBLIC API |
| 816 //---------------------------------------------------------------------- |
| 817 |
| 818 /** |
| 819 * Constructor. |
| 820 */ |
| 821 TransliteratorParser::TransliteratorParser(UErrorCode &statusReturn) : |
| 822 dataVector(statusReturn), |
| 823 idBlockVector(statusReturn), |
| 824 variablesVector(statusReturn), |
| 825 segmentObjects(statusReturn) |
| 826 { |
| 827 idBlockVector.setDeleter(uhash_deleteUnicodeString); |
| 828 curData = NULL; |
| 829 compoundFilter = NULL; |
| 830 parseData = NULL; |
| 831 variableNames.setValueDeleter(uhash_deleteUnicodeString); |
| 832 } |
| 833 |
| 834 /** |
| 835 * Destructor. |
| 836 */ |
| 837 TransliteratorParser::~TransliteratorParser() { |
| 838 while (!dataVector.isEmpty()) |
| 839 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); |
| 840 delete compoundFilter; |
| 841 delete parseData; |
| 842 while (!variablesVector.isEmpty()) |
| 843 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); |
| 844 } |
| 845 |
| 846 void |
| 847 TransliteratorParser::parse(const UnicodeString& rules, |
| 848 UTransDirection transDirection, |
| 849 UParseError& pe, |
| 850 UErrorCode& ec) { |
| 851 if (U_SUCCESS(ec)) { |
| 852 parseRules(rules, transDirection, ec); |
| 853 pe = parseError; |
| 854 } |
| 855 } |
| 856 |
| 857 /** |
| 858 * Return the compound filter parsed by parse(). Caller owns result. |
| 859 */ |
| 860 UnicodeSet* TransliteratorParser::orphanCompoundFilter() { |
| 861 UnicodeSet* f = compoundFilter; |
| 862 compoundFilter = NULL; |
| 863 return f; |
| 864 } |
| 865 |
| 866 //---------------------------------------------------------------------- |
| 867 // Private implementation |
| 868 //---------------------------------------------------------------------- |
| 869 |
| 870 /** |
| 871 * Parse the given string as a sequence of rules, separated by newline |
| 872 * characters ('\n'), and cause this object to implement those rules. Any |
| 873 * previous rules are discarded. Typically this method is called exactly |
| 874 * once, during construction. |
| 875 * @exception IllegalArgumentException if there is a syntax error in the |
| 876 * rules |
| 877 */ |
| 878 void TransliteratorParser::parseRules(const UnicodeString& rule, |
| 879 UTransDirection theDirection, |
| 880 UErrorCode& status) |
| 881 { |
| 882 // Clear error struct |
| 883 uprv_memset(&parseError, 0, sizeof(parseError)); |
| 884 parseError.line = parseError.offset = -1; |
| 885 |
| 886 UBool parsingIDs = TRUE; |
| 887 int32_t ruleCount = 0; |
| 888 |
| 889 while (!dataVector.isEmpty()) { |
| 890 delete (TransliterationRuleData*)(dataVector.orphanElementAt(0)); |
| 891 } |
| 892 if (U_FAILURE(status)) { |
| 893 return; |
| 894 } |
| 895 |
| 896 idBlockVector.removeAllElements(); |
| 897 curData = NULL; |
| 898 direction = theDirection; |
| 899 ruleCount = 0; |
| 900 |
| 901 delete compoundFilter; |
| 902 compoundFilter = NULL; |
| 903 |
| 904 while (!variablesVector.isEmpty()) { |
| 905 delete (UnicodeFunctor*)variablesVector.orphanElementAt(0); |
| 906 } |
| 907 variableNames.removeAll(); |
| 908 parseData = new ParseData(0, &variablesVector, &variableNames); |
| 909 if (parseData == NULL) { |
| 910 status = U_MEMORY_ALLOCATION_ERROR; |
| 911 return; |
| 912 } |
| 913 |
| 914 dotStandIn = (UChar) -1; |
| 915 |
| 916 UnicodeString *tempstr = NULL; // used for memory allocation error checking |
| 917 UnicodeString str; // scratch |
| 918 UnicodeString idBlockResult; |
| 919 int32_t pos = 0; |
| 920 int32_t limit = rule.length(); |
| 921 |
| 922 // The compound filter offset is an index into idBlockResult. |
| 923 // If it is 0, then the compound filter occurred at the start, |
| 924 // and it is the offset to the _start_ of the compound filter |
| 925 // pattern. Otherwise it is the offset to the _limit_ of the |
| 926 // compound filter pattern within idBlockResult. |
| 927 compoundFilter = NULL; |
| 928 int32_t compoundFilterOffset = -1; |
| 929 |
| 930 while (pos < limit && U_SUCCESS(status)) { |
| 931 UChar c = rule.charAt(pos++); |
| 932 if (uprv_isRuleWhiteSpace(c)) { |
| 933 // Ignore leading whitespace. |
| 934 continue; |
| 935 } |
| 936 // Skip lines starting with the comment character |
| 937 if (c == RULE_COMMENT_CHAR) { |
| 938 pos = rule.indexOf((UChar)0x000A /*\n*/, pos) + 1; |
| 939 if (pos == 0) { |
| 940 break; // No "\n" found; rest of rule is a commnet |
| 941 } |
| 942 continue; // Either fall out or restart with next line |
| 943 } |
| 944 |
| 945 // skip empty rules |
| 946 if (c == END_OF_RULE) |
| 947 continue; |
| 948 |
| 949 // keep track of how many rules we've seen |
| 950 ++ruleCount; |
| 951 |
| 952 // We've found the start of a rule or ID. c is its first |
| 953 // character, and pos points past c. |
| 954 --pos; |
| 955 // Look for an ID token. Must have at least ID_TOKEN_LEN + 1 |
| 956 // chars left. |
| 957 if ((pos + ID_TOKEN_LEN + 1) <= limit && |
| 958 rule.compare(pos, ID_TOKEN_LEN, ID_TOKEN) == 0) { |
| 959 pos += ID_TOKEN_LEN; |
| 960 c = rule.charAt(pos); |
| 961 while (uprv_isRuleWhiteSpace(c) && pos < limit) { |
| 962 ++pos; |
| 963 c = rule.charAt(pos); |
| 964 } |
| 965 |
| 966 int32_t p = pos; |
| 967 |
| 968 if (!parsingIDs) { |
| 969 if (curData != NULL) { |
| 970 if (direction == UTRANS_FORWARD) |
| 971 dataVector.addElement(curData, status); |
| 972 else |
| 973 dataVector.insertElementAt(curData, 0, status); |
| 974 curData = NULL; |
| 975 } |
| 976 parsingIDs = TRUE; |
| 977 } |
| 978 |
| 979 TransliteratorIDParser::SingleID* id = |
| 980 TransliteratorIDParser::parseSingleID(rule, p, direction, status
); |
| 981 if (p != pos && ICU_Utility::parseChar(rule, p, END_OF_RULE)) { |
| 982 // Successful ::ID parse. |
| 983 |
| 984 if (direction == UTRANS_FORWARD) { |
| 985 idBlockResult.append(id->canonID).append(END_OF_RULE); |
| 986 } else { |
| 987 idBlockResult.insert(0, END_OF_RULE); |
| 988 idBlockResult.insert(0, id->canonID); |
| 989 } |
| 990 |
| 991 } else { |
| 992 // Couldn't parse an ID. Try to parse a global filter |
| 993 int32_t withParens = -1; |
| 994 UnicodeSet* f = TransliteratorIDParser::parseGlobalFilter(rule,
p, direction, withParens, NULL); |
| 995 if (f != NULL) { |
| 996 if (ICU_Utility::parseChar(rule, p, END_OF_RULE) |
| 997 && (direction == UTRANS_FORWARD) == (withParens == 0)) |
| 998 { |
| 999 if (compoundFilter != NULL) { |
| 1000 // Multiple compound filters |
| 1001 syntaxError(U_MULTIPLE_COMPOUND_FILTERS, rule, pos,
status); |
| 1002 delete f; |
| 1003 } else { |
| 1004 compoundFilter = f; |
| 1005 compoundFilterOffset = ruleCount; |
| 1006 } |
| 1007 } else { |
| 1008 delete f; |
| 1009 } |
| 1010 } else { |
| 1011 // Invalid ::id |
| 1012 // Can be parsed as neither an ID nor a global filter |
| 1013 syntaxError(U_INVALID_ID, rule, pos, status); |
| 1014 } |
| 1015 } |
| 1016 delete id; |
| 1017 pos = p; |
| 1018 } else { |
| 1019 if (parsingIDs) { |
| 1020 tempstr = new UnicodeString(idBlockResult); |
| 1021 // NULL pointer check |
| 1022 if (tempstr == NULL) { |
| 1023 status = U_MEMORY_ALLOCATION_ERROR; |
| 1024 return; |
| 1025 } |
| 1026 if (direction == UTRANS_FORWARD) |
| 1027 idBlockVector.addElement(tempstr, status); |
| 1028 else |
| 1029 idBlockVector.insertElementAt(tempstr, 0, status); |
| 1030 idBlockResult.remove(); |
| 1031 parsingIDs = FALSE; |
| 1032 curData = new TransliterationRuleData(status); |
| 1033 // NULL pointer check |
| 1034 if (curData == NULL) { |
| 1035 status = U_MEMORY_ALLOCATION_ERROR; |
| 1036 return; |
| 1037 } |
| 1038 parseData->data = curData; |
| 1039 |
| 1040 // By default, rules use part of the private use area |
| 1041 // E000..F8FF for variables and other stand-ins. Currently |
| 1042 // the range F000..F8FF is typically sufficient. The 'use |
| 1043 // variable range' pragma allows rule sets to modify this. |
| 1044 setVariableRange(0xF000, 0xF8FF, status); |
| 1045 } |
| 1046 |
| 1047 if (resemblesPragma(rule, pos, limit)) { |
| 1048 int32_t ppp = parsePragma(rule, pos, limit, status); |
| 1049 if (ppp < 0) { |
| 1050 syntaxError(U_MALFORMED_PRAGMA, rule, pos, status); |
| 1051 } |
| 1052 pos = ppp; |
| 1053 // Parse a rule |
| 1054 } else { |
| 1055 pos = parseRule(rule, pos, limit, status); |
| 1056 } |
| 1057 } |
| 1058 } |
| 1059 |
| 1060 if (parsingIDs && idBlockResult.length() > 0) { |
| 1061 tempstr = new UnicodeString(idBlockResult); |
| 1062 // NULL pointer check |
| 1063 if (tempstr == NULL) { |
| 1064 status = U_MEMORY_ALLOCATION_ERROR; |
| 1065 return; |
| 1066 } |
| 1067 if (direction == UTRANS_FORWARD) |
| 1068 idBlockVector.addElement(tempstr, status); |
| 1069 else |
| 1070 idBlockVector.insertElementAt(tempstr, 0, status); |
| 1071 } |
| 1072 else if (!parsingIDs && curData != NULL) { |
| 1073 if (direction == UTRANS_FORWARD) |
| 1074 dataVector.addElement(curData, status); |
| 1075 else |
| 1076 dataVector.insertElementAt(curData, 0, status); |
| 1077 } |
| 1078 |
| 1079 if (U_SUCCESS(status)) { |
| 1080 // Convert the set vector to an array |
| 1081 int32_t i, dataVectorSize = dataVector.size(); |
| 1082 for (i = 0; i < dataVectorSize; i++) { |
| 1083 TransliterationRuleData* data = (TransliterationRuleData*)dataVector
.elementAt(i); |
| 1084 data->variablesLength = variablesVector.size(); |
| 1085 if (data->variablesLength == 0) { |
| 1086 data->variables = 0; |
| 1087 } else { |
| 1088 data->variables = (UnicodeFunctor**)uprv_malloc(data->variablesL
ength * sizeof(UnicodeFunctor*)); |
| 1089 // NULL pointer check |
| 1090 if (data->variables == NULL) { |
| 1091 status = U_MEMORY_ALLOCATION_ERROR; |
| 1092 return; |
| 1093 } |
| 1094 data->variablesAreOwned = (i == 0); |
| 1095 } |
| 1096 |
| 1097 for (int32_t j = 0; j < data->variablesLength; j++) { |
| 1098 data->variables[j] = |
| 1099 ((UnicodeSet*)variablesVector.elementAt(j)); |
| 1100 } |
| 1101 |
| 1102 data->variableNames.removeAll(); |
| 1103 int32_t pos = -1; |
| 1104 const UHashElement* he = variableNames.nextElement(pos); |
| 1105 while (he != NULL) { |
| 1106 UnicodeString* tempus = (UnicodeString*)(((UnicodeString*)(he->v
alue.pointer))->clone()); |
| 1107 if (tempus == NULL) { |
| 1108 status = U_MEMORY_ALLOCATION_ERROR; |
| 1109 return; |
| 1110 } |
| 1111 data->variableNames.put(*((UnicodeString*)(he->key.pointer)), |
| 1112 tempus, status); |
| 1113 he = variableNames.nextElement(pos); |
| 1114 } |
| 1115 } |
| 1116 variablesVector.removeAllElements(); // keeps them from getting delete
d when we succeed |
| 1117 |
| 1118 // Index the rules |
| 1119 if (compoundFilter != NULL) { |
| 1120 if ((direction == UTRANS_FORWARD && compoundFilterOffset != 1) || |
| 1121 (direction == UTRANS_REVERSE && compoundFilterOffset != ruleCoun
t)) { |
| 1122 status = U_MISPLACED_COMPOUND_FILTER; |
| 1123 } |
| 1124 } |
| 1125 |
| 1126 for (i = 0; i < dataVectorSize; i++) { |
| 1127 TransliterationRuleData* data = (TransliterationRuleData*)dataVector
.elementAt(i); |
| 1128 data->ruleSet.freeze(parseError, status); |
| 1129 } |
| 1130 if (idBlockVector.size() == 1 && ((UnicodeString*)idBlockVector.elementA
t(0))->isEmpty()) { |
| 1131 idBlockVector.removeElementAt(0); |
| 1132 } |
| 1133 } |
| 1134 } |
| 1135 |
| 1136 /** |
| 1137 * Set the variable range to [start, end] (inclusive). |
| 1138 */ |
| 1139 void TransliteratorParser::setVariableRange(int32_t start, int32_t end, UErrorCo
de& status) { |
| 1140 if (start > end || start < 0 || end > 0xFFFF) { |
| 1141 status = U_MALFORMED_PRAGMA; |
| 1142 return; |
| 1143 } |
| 1144 |
| 1145 curData->variablesBase = (UChar) start; |
| 1146 if (dataVector.size() == 0) { |
| 1147 variableNext = (UChar) start; |
| 1148 variableLimit = (UChar) (end + 1); |
| 1149 } |
| 1150 } |
| 1151 |
| 1152 /** |
| 1153 * Assert that the given character is NOT within the variable range. |
| 1154 * If it is, return FALSE. This is neccesary to ensure that the |
| 1155 * variable range does not overlap characters used in a rule. |
| 1156 */ |
| 1157 UBool TransliteratorParser::checkVariableRange(UChar32 ch) const { |
| 1158 return !(ch >= curData->variablesBase && ch < variableLimit); |
| 1159 } |
| 1160 |
| 1161 /** |
| 1162 * Set the maximum backup to 'backup', in response to a pragma |
| 1163 * statement. |
| 1164 */ |
| 1165 void TransliteratorParser::pragmaMaximumBackup(int32_t /*backup*/) { |
| 1166 //TODO Finish |
| 1167 } |
| 1168 |
| 1169 /** |
| 1170 * Begin normalizing all rules using the given mode, in response |
| 1171 * to a pragma statement. |
| 1172 */ |
| 1173 void TransliteratorParser::pragmaNormalizeRules(UNormalizationMode /*mode*/) { |
| 1174 //TODO Finish |
| 1175 } |
| 1176 |
| 1177 static const UChar PRAGMA_USE[] = {0x75,0x73,0x65,0x20,0}; // "use " |
| 1178 |
| 1179 static const UChar PRAGMA_VARIABLE_RANGE[] = {0x7E,0x76,0x61,0x72,0x69,0x61,0x62
,0x6C,0x65,0x20,0x72,0x61,0x6E,0x67,0x65,0x20,0x23,0x20,0x23,0x7E,0x3B,0}; // "~
variable range # #~;" |
| 1180 |
| 1181 static const UChar PRAGMA_MAXIMUM_BACKUP[] = {0x7E,0x6D,0x61,0x78,0x69,0x6D,0x75
,0x6D,0x20,0x62,0x61,0x63,0x6B,0x75,0x70,0x20,0x23,0x7E,0x3B,0}; // "~maximum ba
ckup #~;" |
| 1182 |
| 1183 static const UChar PRAGMA_NFD_RULES[] = {0x7E,0x6E,0x66,0x64,0x20,0x72,0x75,0x6C
,0x65,0x73,0x7E,0x3B,0}; // "~nfd rules~;" |
| 1184 |
| 1185 static const UChar PRAGMA_NFC_RULES[] = {0x7E,0x6E,0x66,0x63,0x20,0x72,0x75,0x6C
,0x65,0x73,0x7E,0x3B,0}; // "~nfc rules~;" |
| 1186 |
| 1187 /** |
| 1188 * Return true if the given rule looks like a pragma. |
| 1189 * @param pos offset to the first non-whitespace character |
| 1190 * of the rule. |
| 1191 * @param limit pointer past the last character of the rule. |
| 1192 */ |
| 1193 UBool TransliteratorParser::resemblesPragma(const UnicodeString& rule, int32_t p
os, int32_t limit) { |
| 1194 // Must start with /use\s/i |
| 1195 return ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_USE, NULL) >= 0; |
| 1196 } |
| 1197 |
| 1198 /** |
| 1199 * Parse a pragma. This method assumes resemblesPragma() has |
| 1200 * already returned true. |
| 1201 * @param pos offset to the first non-whitespace character |
| 1202 * of the rule. |
| 1203 * @param limit pointer past the last character of the rule. |
| 1204 * @return the position index after the final ';' of the pragma, |
| 1205 * or -1 on failure. |
| 1206 */ |
| 1207 int32_t TransliteratorParser::parsePragma(const UnicodeString& rule, int32_t pos
, int32_t limit, UErrorCode& status) { |
| 1208 int32_t array[2]; |
| 1209 |
| 1210 // resemblesPragma() has already returned true, so we |
| 1211 // know that pos points to /use\s/i; we can skip 4 characters |
| 1212 // immediately |
| 1213 pos += 4; |
| 1214 |
| 1215 // Here are the pragmas we recognize: |
| 1216 // use variable range 0xE000 0xEFFF; |
| 1217 // use maximum backup 16; |
| 1218 // use nfd rules; |
| 1219 // use nfc rules; |
| 1220 int p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_VARIABLE_RANGE, a
rray); |
| 1221 if (p >= 0) { |
| 1222 setVariableRange(array[0], array[1], status); |
| 1223 return p; |
| 1224 } |
| 1225 |
| 1226 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_MAXIMUM_BACKUP, array
); |
| 1227 if (p >= 0) { |
| 1228 pragmaMaximumBackup(array[0]); |
| 1229 return p; |
| 1230 } |
| 1231 |
| 1232 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFD_RULES, NULL); |
| 1233 if (p >= 0) { |
| 1234 pragmaNormalizeRules(UNORM_NFD); |
| 1235 return p; |
| 1236 } |
| 1237 |
| 1238 p = ICU_Utility::parsePattern(rule, pos, limit, PRAGMA_NFC_RULES, NULL); |
| 1239 if (p >= 0) { |
| 1240 pragmaNormalizeRules(UNORM_NFC); |
| 1241 return p; |
| 1242 } |
| 1243 |
| 1244 // Syntax error: unable to parse pragma |
| 1245 return -1; |
| 1246 } |
| 1247 |
| 1248 /** |
| 1249 * MAIN PARSER. Parse the next rule in the given rule string, starting |
| 1250 * at pos. Return the index after the last character parsed. Do not |
| 1251 * parse characters at or after limit. |
| 1252 * |
| 1253 * Important: The character at pos must be a non-whitespace character |
| 1254 * that is not the comment character. |
| 1255 * |
| 1256 * This method handles quoting, escaping, and whitespace removal. It |
| 1257 * parses the end-of-rule character. It recognizes context and cursor |
| 1258 * indicators. Once it does a lexical breakdown of the rule at pos, it |
| 1259 * creates a rule object and adds it to our rule list. |
| 1260 */ |
| 1261 int32_t TransliteratorParser::parseRule(const UnicodeString& rule, int32_t pos,
int32_t limit, UErrorCode& status) { |
| 1262 // Locate the left side, operator, and right side |
| 1263 int32_t start = pos; |
| 1264 UChar op = 0; |
| 1265 int32_t i; |
| 1266 |
| 1267 // Set up segments data |
| 1268 segmentStandins.truncate(0); |
| 1269 segmentObjects.removeAllElements(); |
| 1270 |
| 1271 // Use pointers to automatics to make swapping possible. |
| 1272 RuleHalf _left(*this), _right(*this); |
| 1273 RuleHalf* left = &_left; |
| 1274 RuleHalf* right = &_right; |
| 1275 |
| 1276 undefinedVariableName.remove(); |
| 1277 pos = left->parse(rule, pos, limit, status); |
| 1278 if (U_FAILURE(status)) { |
| 1279 return start; |
| 1280 } |
| 1281 |
| 1282 if (pos == limit || u_strchr(gOPERATORS, (op = rule.charAt(--pos))) == NULL)
{ |
| 1283 return syntaxError(U_MISSING_OPERATOR, rule, start, status); |
| 1284 } |
| 1285 ++pos; |
| 1286 |
| 1287 // Found an operator char. Check for forward-reverse operator. |
| 1288 if (op == REVERSE_RULE_OP && |
| 1289 (pos < limit && rule.charAt(pos) == FORWARD_RULE_OP)) { |
| 1290 ++pos; |
| 1291 op = FWDREV_RULE_OP; |
| 1292 } |
| 1293 |
| 1294 // Translate alternate op characters. |
| 1295 switch (op) { |
| 1296 case ALT_FORWARD_RULE_OP: |
| 1297 op = FORWARD_RULE_OP; |
| 1298 break; |
| 1299 case ALT_REVERSE_RULE_OP: |
| 1300 op = REVERSE_RULE_OP; |
| 1301 break; |
| 1302 case ALT_FWDREV_RULE_OP: |
| 1303 op = FWDREV_RULE_OP; |
| 1304 break; |
| 1305 } |
| 1306 |
| 1307 pos = right->parse(rule, pos, limit, status); |
| 1308 if (U_FAILURE(status)) { |
| 1309 return start; |
| 1310 } |
| 1311 |
| 1312 if (pos < limit) { |
| 1313 if (rule.charAt(--pos) == END_OF_RULE) { |
| 1314 ++pos; |
| 1315 } else { |
| 1316 // RuleHalf parser must have terminated at an operator |
| 1317 return syntaxError(U_UNQUOTED_SPECIAL, rule, start, status); |
| 1318 } |
| 1319 } |
| 1320 |
| 1321 if (op == VARIABLE_DEF_OP) { |
| 1322 // LHS is the name. RHS is a single character, either a literal |
| 1323 // or a set (already parsed). If RHS is longer than one |
| 1324 // character, it is either a multi-character string, or multiple |
| 1325 // sets, or a mixture of chars and sets -- syntax error. |
| 1326 |
| 1327 // We expect to see a single undefined variable (the one being |
| 1328 // defined). |
| 1329 if (undefinedVariableName.length() == 0) { |
| 1330 // "Missing '$' or duplicate definition" |
| 1331 return syntaxError(U_BAD_VARIABLE_DEFINITION, rule, start, status); |
| 1332 } |
| 1333 if (left->text.length() != 1 || left->text.charAt(0) != variableLimit) { |
| 1334 // "Malformed LHS" |
| 1335 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, sta
tus); |
| 1336 } |
| 1337 if (left->anchorStart || left->anchorEnd || |
| 1338 right->anchorStart || right->anchorEnd) { |
| 1339 return syntaxError(U_MALFORMED_VARIABLE_DEFINITION, rule, start, sta
tus); |
| 1340 } |
| 1341 // We allow anything on the right, including an empty string. |
| 1342 UnicodeString* value = new UnicodeString(right->text); |
| 1343 // NULL pointer check |
| 1344 if (value == NULL) { |
| 1345 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 1346 } |
| 1347 variableNames.put(undefinedVariableName, value, status); |
| 1348 ++variableLimit; |
| 1349 return pos; |
| 1350 } |
| 1351 |
| 1352 // If this is not a variable definition rule, we shouldn't have |
| 1353 // any undefined variable names. |
| 1354 if (undefinedVariableName.length() != 0) { |
| 1355 return syntaxError(// "Undefined variable $" + undefinedVariableName, |
| 1356 U_UNDEFINED_VARIABLE, |
| 1357 rule, start, status); |
| 1358 } |
| 1359 |
| 1360 // Verify segments |
| 1361 if (segmentStandins.length() > segmentObjects.size()) { |
| 1362 syntaxError(U_UNDEFINED_SEGMENT_REFERENCE, rule, start, status); |
| 1363 } |
| 1364 for (i=0; i<segmentStandins.length(); ++i) { |
| 1365 if (segmentStandins.charAt(i) == 0) { |
| 1366 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); /
/ will never happen |
| 1367 } |
| 1368 } |
| 1369 for (i=0; i<segmentObjects.size(); ++i) { |
| 1370 if (segmentObjects.elementAt(i) == NULL) { |
| 1371 syntaxError(U_INTERNAL_TRANSLITERATOR_ERROR, rule, start, status); /
/ will never happen |
| 1372 } |
| 1373 } |
| 1374 |
| 1375 // If the direction we want doesn't match the rule |
| 1376 // direction, do nothing. |
| 1377 if (op != FWDREV_RULE_OP && |
| 1378 ((direction == UTRANS_FORWARD) != (op == FORWARD_RULE_OP))) { |
| 1379 return pos; |
| 1380 } |
| 1381 |
| 1382 // Transform the rule into a forward rule by swapping the |
| 1383 // sides if necessary. |
| 1384 if (direction == UTRANS_REVERSE) { |
| 1385 left = &_right; |
| 1386 right = &_left; |
| 1387 } |
| 1388 |
| 1389 // Remove non-applicable elements in forward-reverse |
| 1390 // rules. Bidirectional rules ignore elements that do not |
| 1391 // apply. |
| 1392 if (op == FWDREV_RULE_OP) { |
| 1393 right->removeContext(); |
| 1394 left->cursor = -1; |
| 1395 left->cursorOffset = 0; |
| 1396 } |
| 1397 |
| 1398 // Normalize context |
| 1399 if (left->ante < 0) { |
| 1400 left->ante = 0; |
| 1401 } |
| 1402 if (left->post < 0) { |
| 1403 left->post = left->text.length(); |
| 1404 } |
| 1405 |
| 1406 // Context is only allowed on the input side. Cursors are only |
| 1407 // allowed on the output side. Segment delimiters can only appear |
| 1408 // on the left, and references on the right. Cursor offset |
| 1409 // cannot appear without an explicit cursor. Cursor offset |
| 1410 // cannot place the cursor outside the limits of the context. |
| 1411 // Anchors are only allowed on the input side. |
| 1412 if (right->ante >= 0 || right->post >= 0 || left->cursor >= 0 || |
| 1413 (right->cursorOffset != 0 && right->cursor < 0) || |
| 1414 // - The following two checks were used to ensure that the |
| 1415 // - the cursor offset stayed within the ante- or postcontext. |
| 1416 // - However, with the addition of quantifiers, we have to |
| 1417 // - allow arbitrary cursor offsets and do runtime checking. |
| 1418 //(right->cursorOffset > (left->text.length() - left->post)) || |
| 1419 //(-right->cursorOffset > left->ante) || |
| 1420 right->anchorStart || right->anchorEnd || |
| 1421 !left->isValidInput(*this) || !right->isValidOutput(*this) || |
| 1422 left->ante > left->post) { |
| 1423 |
| 1424 return syntaxError(U_MALFORMED_RULE, rule, start, status); |
| 1425 } |
| 1426 |
| 1427 // Flatten segment objects vector to an array |
| 1428 UnicodeFunctor** segmentsArray = NULL; |
| 1429 if (segmentObjects.size() > 0) { |
| 1430 segmentsArray = (UnicodeFunctor **)uprv_malloc(segmentObjects.size() * s
izeof(UnicodeFunctor *)); |
| 1431 // Null pointer check |
| 1432 if (segmentsArray == NULL) { |
| 1433 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 1434 } |
| 1435 segmentObjects.toArray((void**) segmentsArray); |
| 1436 } |
| 1437 TransliterationRule* temptr = new TransliterationRule( |
| 1438 left->text, left->ante, left->post, |
| 1439 right->text, right->cursor, right->cursorOffset, |
| 1440 segmentsArray, |
| 1441 segmentObjects.size(), |
| 1442 left->anchorStart, left->anchorEnd, |
| 1443 curData, |
| 1444 status); |
| 1445 //Null pointer check |
| 1446 if (temptr == NULL) { |
| 1447 uprv_free(segmentsArray); |
| 1448 return syntaxError(U_MEMORY_ALLOCATION_ERROR, rule, start, status); |
| 1449 } |
| 1450 |
| 1451 curData->ruleSet.addRule(temptr, status); |
| 1452 |
| 1453 return pos; |
| 1454 } |
| 1455 |
| 1456 /** |
| 1457 * Called by main parser upon syntax error. Search the rule string |
| 1458 * for the probable end of the rule. Of course, if the error is that |
| 1459 * the end of rule marker is missing, then the rule end will not be found. |
| 1460 * In any case the rule start will be correctly reported. |
| 1461 * @param msg error description |
| 1462 * @param rule pattern string |
| 1463 * @param start position of first character of current rule |
| 1464 */ |
| 1465 int32_t TransliteratorParser::syntaxError(UErrorCode parseErrorCode, |
| 1466 const UnicodeString& rule, |
| 1467 int32_t pos, |
| 1468 UErrorCode& status) |
| 1469 { |
| 1470 parseError.offset = pos; |
| 1471 parseError.line = 0 ; /* we are not using line numbers */ |
| 1472 |
| 1473 // for pre-context |
| 1474 const int32_t LEN = U_PARSE_CONTEXT_LEN - 1; |
| 1475 int32_t start = uprv_max(pos - LEN, 0); |
| 1476 int32_t stop = pos; |
| 1477 |
| 1478 rule.extract(start,stop-start,parseError.preContext); |
| 1479 //null terminate the buffer |
| 1480 parseError.preContext[stop-start] = 0; |
| 1481 |
| 1482 //for post-context |
| 1483 start = pos; |
| 1484 stop = uprv_min(pos + LEN, rule.length()); |
| 1485 |
| 1486 rule.extract(start,stop-start,parseError.postContext); |
| 1487 //null terminate the buffer |
| 1488 parseError.postContext[stop-start]= 0; |
| 1489 |
| 1490 status = (UErrorCode)parseErrorCode; |
| 1491 return pos; |
| 1492 |
| 1493 } |
| 1494 |
| 1495 /** |
| 1496 * Parse a UnicodeSet out, store it, and return the stand-in character |
| 1497 * used to represent it. |
| 1498 */ |
| 1499 UChar TransliteratorParser::parseSet(const UnicodeString& rule, |
| 1500 ParsePosition& pos, |
| 1501 UErrorCode& status) { |
| 1502 UnicodeSet* set = new UnicodeSet(rule, pos, USET_IGNORE_SPACE, parseData, st
atus); |
| 1503 // Null pointer check |
| 1504 if (set == NULL) { |
| 1505 status = U_MEMORY_ALLOCATION_ERROR; |
| 1506 return (UChar)0x0000; // Return empty character with error. |
| 1507 } |
| 1508 set->compact(); |
| 1509 return generateStandInFor(set, status); |
| 1510 } |
| 1511 |
| 1512 /** |
| 1513 * Generate and return a stand-in for a new UnicodeFunctor. Store |
| 1514 * the matcher (adopt it). |
| 1515 */ |
| 1516 UChar TransliteratorParser::generateStandInFor(UnicodeFunctor* adopted, UErrorCo
de& status) { |
| 1517 // assert(obj != null); |
| 1518 |
| 1519 // Look up previous stand-in, if any. This is a short list |
| 1520 // (typical n is 0, 1, or 2); linear search is optimal. |
| 1521 for (int32_t i=0; i<variablesVector.size(); ++i) { |
| 1522 if (variablesVector.elementAt(i) == adopted) { // [sic] pointer comparis
on |
| 1523 return (UChar) (curData->variablesBase + i); |
| 1524 } |
| 1525 } |
| 1526 |
| 1527 if (variableNext >= variableLimit) { |
| 1528 delete adopted; |
| 1529 status = U_VARIABLE_RANGE_EXHAUSTED; |
| 1530 return 0; |
| 1531 } |
| 1532 variablesVector.addElement(adopted, status); |
| 1533 return variableNext++; |
| 1534 } |
| 1535 |
| 1536 /** |
| 1537 * Return the standin for segment seg (1-based). |
| 1538 */ |
| 1539 UChar TransliteratorParser::getSegmentStandin(int32_t seg, UErrorCode& status) { |
| 1540 // Special character used to indicate an empty spot |
| 1541 UChar empty = curData->variablesBase - 1; |
| 1542 while (segmentStandins.length() < seg) { |
| 1543 segmentStandins.append(empty); |
| 1544 } |
| 1545 UChar c = segmentStandins.charAt(seg-1); |
| 1546 if (c == empty) { |
| 1547 if (variableNext >= variableLimit) { |
| 1548 status = U_VARIABLE_RANGE_EXHAUSTED; |
| 1549 return 0; |
| 1550 } |
| 1551 c = variableNext++; |
| 1552 // Set a placeholder in the master variables vector that will be |
| 1553 // filled in later by setSegmentObject(). We know that we will get |
| 1554 // called first because setSegmentObject() will call us. |
| 1555 variablesVector.addElement((void*) NULL, status); |
| 1556 segmentStandins.setCharAt(seg-1, c); |
| 1557 } |
| 1558 return c; |
| 1559 } |
| 1560 |
| 1561 /** |
| 1562 * Set the object for segment seg (1-based). |
| 1563 */ |
| 1564 void TransliteratorParser::setSegmentObject(int32_t seg, StringMatcher* adopted,
UErrorCode& status) { |
| 1565 // Since we call parseSection() recursively, nested |
| 1566 // segments will result in segment i+1 getting parsed |
| 1567 // and stored before segment i; be careful with the |
| 1568 // vector handling here. |
| 1569 if (segmentObjects.size() < seg) { |
| 1570 segmentObjects.setSize(seg, status); |
| 1571 } |
| 1572 int32_t index = getSegmentStandin(seg, status) - curData->variablesBase; |
| 1573 if (segmentObjects.elementAt(seg-1) != NULL || |
| 1574 variablesVector.elementAt(index) != NULL) { |
| 1575 // should never happen |
| 1576 status = U_INTERNAL_TRANSLITERATOR_ERROR; |
| 1577 return; |
| 1578 } |
| 1579 segmentObjects.setElementAt(adopted, seg-1); |
| 1580 variablesVector.setElementAt(adopted, index); |
| 1581 } |
| 1582 |
| 1583 /** |
| 1584 * Return the stand-in for the dot set. It is allocated the first |
| 1585 * time and reused thereafter. |
| 1586 */ |
| 1587 UChar TransliteratorParser::getDotStandIn(UErrorCode& status) { |
| 1588 if (dotStandIn == (UChar) -1) { |
| 1589 UnicodeSet* tempus = new UnicodeSet(DOT_SET, status); |
| 1590 // Null pointer check. |
| 1591 if (tempus == NULL) { |
| 1592 status = U_MEMORY_ALLOCATION_ERROR; |
| 1593 return (UChar)0x0000; |
| 1594 } |
| 1595 dotStandIn = generateStandInFor(tempus, status); |
| 1596 } |
| 1597 return dotStandIn; |
| 1598 } |
| 1599 |
| 1600 /** |
| 1601 * Append the value of the given variable name to the given |
| 1602 * UnicodeString. |
| 1603 */ |
| 1604 void TransliteratorParser::appendVariableDef(const UnicodeString& name, |
| 1605 UnicodeString& buf, |
| 1606 UErrorCode& status) { |
| 1607 const UnicodeString* s = (const UnicodeString*) variableNames.get(name); |
| 1608 if (s == NULL) { |
| 1609 // We allow one undefined variable so that variable definition |
| 1610 // statements work. For the first undefined variable we return |
| 1611 // the special placeholder variableLimit-1, and save the variable |
| 1612 // name. |
| 1613 if (undefinedVariableName.length() == 0) { |
| 1614 undefinedVariableName = name; |
| 1615 if (variableNext >= variableLimit) { |
| 1616 // throw new RuntimeException("Private use variables exhausted")
; |
| 1617 status = U_ILLEGAL_ARGUMENT_ERROR; |
| 1618 return; |
| 1619 } |
| 1620 buf.append((UChar) --variableLimit); |
| 1621 } else { |
| 1622 //throw new IllegalArgumentException("Undefined variable $" |
| 1623 // + name); |
| 1624 status = U_ILLEGAL_ARGUMENT_ERROR; |
| 1625 return; |
| 1626 } |
| 1627 } else { |
| 1628 buf.append(*s); |
| 1629 } |
| 1630 } |
| 1631 |
| 1632 /** |
| 1633 * Glue method to get around access restrictions in C++. |
| 1634 */ |
| 1635 /*Transliterator* TransliteratorParser::createBasicInstance(const UnicodeString&
id, const UnicodeString* canonID) { |
| 1636 return Transliterator::createBasicInstance(id, canonID); |
| 1637 }*/ |
| 1638 |
| 1639 U_NAMESPACE_END |
| 1640 |
| 1641 U_CAPI int32_t |
| 1642 utrans_stripRules(const UChar *source, int32_t sourceLen, UChar *target, UErrorC
ode *status) { |
| 1643 U_NAMESPACE_USE |
| 1644 |
| 1645 //const UChar *sourceStart = source; |
| 1646 const UChar *targetStart = target; |
| 1647 const UChar *sourceLimit = source+sourceLen; |
| 1648 UChar *targetLimit = target+sourceLen; |
| 1649 UChar32 c = 0; |
| 1650 UBool quoted = FALSE; |
| 1651 int32_t index; |
| 1652 |
| 1653 uprv_memset(target, 0, sourceLen*U_SIZEOF_UCHAR); |
| 1654 |
| 1655 /* read the rules into the buffer */ |
| 1656 while (source < sourceLimit) |
| 1657 { |
| 1658 index=0; |
| 1659 U16_NEXT_UNSAFE(source, index, c); |
| 1660 source+=index; |
| 1661 if(c == QUOTE) { |
| 1662 quoted = (UBool)!quoted; |
| 1663 } |
| 1664 else if (!quoted) { |
| 1665 if (c == RULE_COMMENT_CHAR) { |
| 1666 /* skip comments and all preceding spaces */ |
| 1667 while (targetStart < target && *(target - 1) == 0x0020) { |
| 1668 target--; |
| 1669 } |
| 1670 do { |
| 1671 c = *(source++); |
| 1672 } |
| 1673 while (c != CR && c != LF); |
| 1674 } |
| 1675 else if (c == ESCAPE) { |
| 1676 UChar32 c2 = *source; |
| 1677 if (c2 == CR || c2 == LF) { |
| 1678 /* A backslash at the end of a line. */ |
| 1679 /* Since we're stripping lines, ignore the backslash. */ |
| 1680 source++; |
| 1681 continue; |
| 1682 } |
| 1683 if (c2 == 0x0075 && source+5 < sourceLimit) { /* \u seen. \U isn
't unescaped. */ |
| 1684 int32_t escapeOffset = 0; |
| 1685 UnicodeString escapedStr(source, 5); |
| 1686 c2 = escapedStr.unescapeAt(escapeOffset); |
| 1687 |
| 1688 if (c2 == (UChar32)0xFFFFFFFF || escapeOffset == 0) |
| 1689 { |
| 1690 *status = U_PARSE_ERROR; |
| 1691 return 0; |
| 1692 } |
| 1693 if (!uprv_isRuleWhiteSpace(c2) && !u_iscntrl(c2) && !u_ispun
ct(c2)) { |
| 1694 /* It was escaped for a reason. Write what it was suppos
e to be. */ |
| 1695 source+=5; |
| 1696 c = c2; |
| 1697 } |
| 1698 } |
| 1699 else if (c2 == QUOTE) { |
| 1700 /* \' seen. Make sure we don't do anything when we see it ag
ain. */ |
| 1701 quoted = (UBool)!quoted; |
| 1702 } |
| 1703 } |
| 1704 } |
| 1705 if (c == CR || c == LF) |
| 1706 { |
| 1707 /* ignore spaces carriage returns, and all leading spaces on the nex
t line. |
| 1708 * and line feed unless in the form \uXXXX |
| 1709 */ |
| 1710 quoted = FALSE; |
| 1711 while (source < sourceLimit) { |
| 1712 c = *(source); |
| 1713 if (c != CR && c != LF && c != 0x0020) { |
| 1714 break; |
| 1715 } |
| 1716 source++; |
| 1717 } |
| 1718 continue; |
| 1719 } |
| 1720 |
| 1721 /* Append UChar * after dissembling if c > 0xffff*/ |
| 1722 index=0; |
| 1723 U16_APPEND_UNSAFE(target, index, c); |
| 1724 target+=index; |
| 1725 } |
| 1726 if (target < targetLimit) { |
| 1727 *target = 0; |
| 1728 } |
| 1729 return (int32_t)(target-targetStart); |
| 1730 } |
| 1731 |
| 1732 #endif /* #if !UCONFIG_NO_TRANSLITERATION */ |
OLD | NEW |