OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ******************************************************************************* |
| 3 * Copyright (C) 1997-2010, International Business Machines Corporation and * |
| 4 * others. All Rights Reserved. * |
| 5 ******************************************************************************* |
| 6 * |
| 7 * File GREGOCAL.CPP |
| 8 * |
| 9 * Modification History: |
| 10 * |
| 11 * Date Name Description |
| 12 * 02/05/97 clhuang Creation. |
| 13 * 03/28/97 aliu Made highly questionable fix to computeFields to |
| 14 * handle DST correctly. |
| 15 * 04/22/97 aliu Cleaned up code drastically. Added monthLength(). |
| 16 * Finished unimplemented parts of computeTime() for |
| 17 * week-based date determination. Removed quetionable |
| 18 * fix and wrote correct fix for computeFields() and |
| 19 * daylight time handling. Rewrote inDaylightTime() |
| 20 * and computeFields() to handle sensitive Daylight to |
| 21 * Standard time transitions correctly. |
| 22 * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to |
| 23 * not cutover. |
| 24 * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated |
| 25 * add() from Java source. |
| 26 * 07/28/98 stephen Sync up with JDK 1.2 |
| 27 * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double. |
| 28 * Fixed bug in roll() |
| 29 * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation. |
| 30 * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD. |
| 31 * {JDK bug 4210209 4209272} |
| 32 * 11/15/99 weiv Added YEAR_WOY and DOW_LOCAL computation |
| 33 * to timeToFields method, updated kMinValues, kMaxValu
es & kLeastMaxValues |
| 34 * 12/09/99 aliu Fixed j81, calculation errors and roll bugs |
| 35 * in year of cutover. |
| 36 * 01/24/2000 aliu Revised computeJulianDay for YEAR YEAR_WOY WOY. |
| 37 ******************************************************************************** |
| 38 */ |
| 39 |
| 40 #include "unicode/utypes.h" |
| 41 #include <float.h> |
| 42 |
| 43 #if !UCONFIG_NO_FORMATTING |
| 44 |
| 45 #include "unicode/gregocal.h" |
| 46 #include "gregoimp.h" |
| 47 #include "umutex.h" |
| 48 #include "uassert.h" |
| 49 |
| 50 // ***************************************************************************** |
| 51 // class GregorianCalendar |
| 52 // ***************************************************************************** |
| 53 |
| 54 /** |
| 55 * Note that the Julian date used here is not a true Julian date, since |
| 56 * it is measured from midnight, not noon. This value is the Julian |
| 57 * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU] |
| 58 */ |
| 59 |
| 60 static const int16_t kNumDays[] |
| 61 = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year |
| 62 static const int16_t kLeapNumDays[] |
| 63 = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year |
| 64 static const int8_t kMonthLength[] |
| 65 = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based |
| 66 static const int8_t kLeapMonthLength[] |
| 67 = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based |
| 68 |
| 69 // setTimeInMillis() limits the Julian day range to +/-7F000000. |
| 70 // This would seem to limit the year range to: |
| 71 // ms=+183882168921600000 jd=7f000000 December 20, 5828963 AD |
| 72 // ms=-184303902528000000 jd=81000000 September 20, 5838270 BC |
| 73 // HOWEVER, CalendarRegressionTest/Test4167060 shows that the actual |
| 74 // range limit on the year field is smaller (~ +/-140000). [alan 3.0] |
| 75 |
| 76 static const int32_t kGregorianCalendarLimits[UCAL_FIELD_COUNT][4] = { |
| 77 // Minimum Greatest Least Maximum |
| 78 // Minimum Maximum |
| 79 { 0, 0, 1, 1}, // ERA |
| 80 { 1, 1, 140742, 144683}, // YEAR |
| 81 { 0, 0, 11, 11}, // MONTH |
| 82 { 1, 1, 52, 53}, // WEEK_OF_YEAR |
| 83 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // WEEK_OF_MONTH |
| 84 { 1, 1, 28, 31}, // DAY_OF_MONTH |
| 85 { 1, 1, 365, 366}, // DAY_OF_YEAR |
| 86 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DAY_OF_WEEK |
| 87 { -1, -1, 4, 5}, // DAY_OF_WEEK_IN_MONTH |
| 88 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // AM_PM |
| 89 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR |
| 90 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // HOUR_OF_DAY |
| 91 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MINUTE |
| 92 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // SECOND |
| 93 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECOND |
| 94 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // ZONE_OFFSET |
| 95 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DST_OFFSET |
| 96 { -140742, -140742, 140742, 144683}, // YEAR_WOY |
| 97 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // DOW_LOCAL |
| 98 { -140742, -140742, 140742, 144683}, // EXTENDED_YEAR |
| 99 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // JULIAN_DAY |
| 100 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // MILLISECONDS_IN_DAY |
| 101 {/*N/A*/-1,/*N/A*/-1,/*N/A*/-1,/*N/A*/-1}, // IS_LEAP_MONTH |
| 102 }; |
| 103 |
| 104 /* |
| 105 * <pre> |
| 106 * Greatest Least |
| 107 * Field name Minimum Minimum Maximum Maximum |
| 108 * ---------- ------- ------- ------- ------- |
| 109 * ERA 0 0 1 1 |
| 110 * YEAR 1 1 140742 144683 |
| 111 * MONTH 0 0 11 11 |
| 112 * WEEK_OF_YEAR 1 1 52 53 |
| 113 * WEEK_OF_MONTH 0 0 4 6 |
| 114 * DAY_OF_MONTH 1 1 28 31 |
| 115 * DAY_OF_YEAR 1 1 365 366 |
| 116 * DAY_OF_WEEK 1 1 7 7 |
| 117 * DAY_OF_WEEK_IN_MONTH -1 -1 4 5 |
| 118 * AM_PM 0 0 1 1 |
| 119 * HOUR 0 0 11 11 |
| 120 * HOUR_OF_DAY 0 0 23 23 |
| 121 * MINUTE 0 0 59 59 |
| 122 * SECOND 0 0 59 59 |
| 123 * MILLISECOND 0 0 999 999 |
| 124 * ZONE_OFFSET -12* -12* 12* 12* |
| 125 * DST_OFFSET 0 0 1* 1* |
| 126 * YEAR_WOY 1 1 140742 144683 |
| 127 * DOW_LOCAL 1 1 7 7 |
| 128 * </pre> |
| 129 * (*) In units of one-hour |
| 130 */ |
| 131 |
| 132 #if defined( U_DEBUG_CALSVC ) || defined (U_DEBUG_CAL) |
| 133 #include <stdio.h> |
| 134 #endif |
| 135 |
| 136 U_NAMESPACE_BEGIN |
| 137 |
| 138 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(GregorianCalendar) |
| 139 |
| 140 // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch. |
| 141 // Note that only Italy and other Catholic countries actually |
| 142 // observed this cutover. Most other countries followed in |
| 143 // the next few centuries, some as late as 1928. [LIU] |
| 144 // in Java, -12219292800000L |
| 145 //const UDate GregorianCalendar::kPapalCutover = -12219292800000L; |
| 146 static const uint32_t kCutoverJulianDay = 2299161; |
| 147 static const UDate kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * U_MILL
IS_PER_DAY; |
| 148 //static const UDate kPapalCutoverJulian = (2299161.0 - kEpochStartAsJulianDay); |
| 149 |
| 150 // ------------------------------------- |
| 151 |
| 152 GregorianCalendar::GregorianCalendar(UErrorCode& status) |
| 153 : Calendar(status), |
| 154 fGregorianCutover(kPapalCutover), |
| 155 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCuto
ver), fGregorianCutoverYear(1582), |
| 156 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 157 { |
| 158 setTimeInMillis(getNow(), status); |
| 159 } |
| 160 |
| 161 // ------------------------------------- |
| 162 |
| 163 GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status) |
| 164 : Calendar(zone, Locale::getDefault(), status), |
| 165 fGregorianCutover(kPapalCutover), |
| 166 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCuto
ver), fGregorianCutoverYear(1582), |
| 167 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 168 { |
| 169 setTimeInMillis(getNow(), status); |
| 170 } |
| 171 |
| 172 // ------------------------------------- |
| 173 |
| 174 GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status) |
| 175 : Calendar(zone, Locale::getDefault(), status), |
| 176 fGregorianCutover(kPapalCutover), |
| 177 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCuto
ver), fGregorianCutoverYear(1582), |
| 178 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 179 { |
| 180 setTimeInMillis(getNow(), status); |
| 181 } |
| 182 |
| 183 // ------------------------------------- |
| 184 |
| 185 GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status) |
| 186 : Calendar(TimeZone::createDefault(), aLocale, status), |
| 187 fGregorianCutover(kPapalCutover), |
| 188 fCutoverJulianDay(kCutoverJulianDay), fNormalizedGregorianCutover(fGregorianCuto
ver), fGregorianCutoverYear(1582), |
| 189 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 190 { |
| 191 setTimeInMillis(getNow(), status); |
| 192 } |
| 193 |
| 194 // ------------------------------------- |
| 195 |
| 196 GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale, |
| 197 UErrorCode& status) |
| 198 : Calendar(zone, aLocale, status), |
| 199 fGregorianCutover(kPapalCutover), |
| 200 fCutoverJulianDay(kCutoverJulianDay), fNorm
alizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| 201 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 202 { |
| 203 setTimeInMillis(getNow(), status); |
| 204 } |
| 205 |
| 206 // ------------------------------------- |
| 207 |
| 208 GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale
, |
| 209 UErrorCode& status) |
| 210 : Calendar(zone, aLocale, status), |
| 211 fGregorianCutover(kPapalCutover), |
| 212 fCutoverJulianDay(kCutoverJulianDay), fNorm
alizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| 213 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 214 { |
| 215 setTimeInMillis(getNow(), status); |
| 216 } |
| 217 |
| 218 // ------------------------------------- |
| 219 |
| 220 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
| 221 UErrorCode& status) |
| 222 : Calendar(TimeZone::createDefault(), Loc
ale::getDefault(), status), |
| 223 fGregorianCutover(kPapalCutover), |
| 224 fCutoverJulianDay(kCutoverJulianDay), fNorm
alizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| 225 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 226 { |
| 227 set(UCAL_ERA, AD); |
| 228 set(UCAL_YEAR, year); |
| 229 set(UCAL_MONTH, month); |
| 230 set(UCAL_DATE, date); |
| 231 } |
| 232 |
| 233 // ------------------------------------- |
| 234 |
| 235 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
| 236 int32_t hour, int32_t minute, UErrorCode& s
tatus) |
| 237 : Calendar(TimeZone::createDefault(), Loc
ale::getDefault(), status), |
| 238 fGregorianCutover(kPapalCutover), |
| 239 fCutoverJulianDay(kCutoverJulianDay), fNorm
alizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| 240 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 241 { |
| 242 set(UCAL_ERA, AD); |
| 243 set(UCAL_YEAR, year); |
| 244 set(UCAL_MONTH, month); |
| 245 set(UCAL_DATE, date); |
| 246 set(UCAL_HOUR_OF_DAY, hour); |
| 247 set(UCAL_MINUTE, minute); |
| 248 } |
| 249 |
| 250 // ------------------------------------- |
| 251 |
| 252 GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date, |
| 253 int32_t hour, int32_t minute, int32_t secon
d, |
| 254 UErrorCode& status) |
| 255 : Calendar(TimeZone::createDefault(), Loc
ale::getDefault(), status), |
| 256 fGregorianCutover(kPapalCutover), |
| 257 fCutoverJulianDay(kCutoverJulianDay), fNorm
alizedGregorianCutover(fGregorianCutover), fGregorianCutoverYear(1582), |
| 258 fIsGregorian(TRUE), fInvertGregorian(FALSE) |
| 259 { |
| 260 set(UCAL_ERA, AD); |
| 261 set(UCAL_YEAR, year); |
| 262 set(UCAL_MONTH, month); |
| 263 set(UCAL_DATE, date); |
| 264 set(UCAL_HOUR_OF_DAY, hour); |
| 265 set(UCAL_MINUTE, minute); |
| 266 set(UCAL_SECOND, second); |
| 267 } |
| 268 |
| 269 // ------------------------------------- |
| 270 |
| 271 GregorianCalendar::~GregorianCalendar() |
| 272 { |
| 273 } |
| 274 |
| 275 // ------------------------------------- |
| 276 |
| 277 GregorianCalendar::GregorianCalendar(const GregorianCalendar &source) |
| 278 : Calendar(source), |
| 279 fGregorianCutover(source.fGregorianCutover), |
| 280 fCutoverJulianDay(source.fCutoverJulianDay), fNormalizedGregorianCutover(source.
fNormalizedGregorianCutover), fGregorianCutoverYear(source.fGregorianCutoverYear
), |
| 281 fIsGregorian(source.fIsGregorian), fInvertGregorian(source.fInvertGregorian) |
| 282 { |
| 283 } |
| 284 |
| 285 // ------------------------------------- |
| 286 |
| 287 Calendar* GregorianCalendar::clone() const |
| 288 { |
| 289 return new GregorianCalendar(*this); |
| 290 } |
| 291 |
| 292 // ------------------------------------- |
| 293 |
| 294 GregorianCalendar & |
| 295 GregorianCalendar::operator=(const GregorianCalendar &right) |
| 296 { |
| 297 if (this != &right) |
| 298 { |
| 299 Calendar::operator=(right); |
| 300 fGregorianCutover = right.fGregorianCutover; |
| 301 fNormalizedGregorianCutover = right.fNormalizedGregorianCutover; |
| 302 fGregorianCutoverYear = right.fGregorianCutoverYear; |
| 303 fCutoverJulianDay = right.fCutoverJulianDay; |
| 304 } |
| 305 return *this; |
| 306 } |
| 307 |
| 308 // ------------------------------------- |
| 309 |
| 310 UBool GregorianCalendar::isEquivalentTo(const Calendar& other) const |
| 311 { |
| 312 // Calendar override. |
| 313 return Calendar::isEquivalentTo(other) && |
| 314 fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover; |
| 315 } |
| 316 |
| 317 // ------------------------------------- |
| 318 |
| 319 void |
| 320 GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status) |
| 321 { |
| 322 if (U_FAILURE(status)) |
| 323 return; |
| 324 |
| 325 fGregorianCutover = date; |
| 326 |
| 327 // Precompute two internal variables which we use to do the actual |
| 328 // cutover computations. These are the normalized cutover, which is the |
| 329 // midnight at or before the cutover, and the cutover year. The |
| 330 // normalized cutover is in pure date milliseconds; it contains no time |
| 331 // of day or timezone component, and it used to compare against other |
| 332 // pure date values. |
| 333 int32_t cutoverDay = (int32_t)ClockMath::floorDivide(fGregorianCutover, (dou
ble)kOneDay); |
| 334 fNormalizedGregorianCutover = cutoverDay * kOneDay; |
| 335 |
| 336 // Handle the rare case of numeric overflow. If the user specifies a |
| 337 // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian |
| 338 // calendar, then the epoch day is -106751991168, which when multiplied |
| 339 // by ONE_DAY gives 9223372036794351616 -- the negative value is too |
| 340 // large for 64 bits, and overflows into a positive value. We correct |
| 341 // this by using the next day, which for all intents is semantically |
| 342 // equivalent. |
| 343 if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) { |
| 344 fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay; |
| 345 } |
| 346 |
| 347 // Normalize the year so BC values are represented as 0 and negative |
| 348 // values. |
| 349 GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status); |
| 350 /* test for NULL */ |
| 351 if (cal == 0) { |
| 352 status = U_MEMORY_ALLOCATION_ERROR; |
| 353 return; |
| 354 } |
| 355 if(U_FAILURE(status)) |
| 356 return; |
| 357 cal->setTime(date, status); |
| 358 fGregorianCutoverYear = cal->get(UCAL_YEAR, status); |
| 359 if (cal->get(UCAL_ERA, status) == BC) |
| 360 fGregorianCutoverYear = 1 - fGregorianCutoverYear; |
| 361 fCutoverJulianDay = cutoverDay; |
| 362 delete cal; |
| 363 } |
| 364 |
| 365 |
| 366 void GregorianCalendar::handleComputeFields(int32_t julianDay, UErrorCode& statu
s) { |
| 367 int32_t eyear, month, dayOfMonth, dayOfYear; |
| 368 |
| 369 |
| 370 if(U_FAILURE(status)) { |
| 371 return; |
| 372 } |
| 373 |
| 374 #if defined (U_DEBUG_CAL) |
| 375 fprintf(stderr, "%s:%d: jd%d- (greg's %d)- [cut=%d]\n", |
| 376 __FILE__, __LINE__, julianDay, getGregorianDayOfYear(), fCutoverJulianDa
y); |
| 377 #endif |
| 378 |
| 379 |
| 380 if (julianDay >= fCutoverJulianDay) { |
| 381 month = getGregorianMonth(); |
| 382 dayOfMonth = getGregorianDayOfMonth(); |
| 383 dayOfYear = getGregorianDayOfYear(); |
| 384 eyear = getGregorianYear(); |
| 385 } else { |
| 386 // The Julian epoch day (not the same as Julian Day) |
| 387 // is zero on Saturday December 30, 0 (Gregorian). |
| 388 int32_t julianEpochDay = julianDay - (kJan1_1JulianDay - 2); |
| 389 eyear = (int32_t) ClockMath::floorDivide(4*julianEpochDay + 1464, 1461); |
| 390 |
| 391 // Compute the Julian calendar day number for January 1, eyear |
| 392 int32_t january1 = 365*(eyear-1) + ClockMath::floorDivide(eyear-1, (int3
2_t)4); |
| 393 dayOfYear = (julianEpochDay - january1); // 0-based |
| 394 |
| 395 // Julian leap years occurred historically every 4 years starting |
| 396 // with 8 AD. Before 8 AD the spacing is irregular; every 3 years |
| 397 // from 45 BC to 9 BC, and then none until 8 AD. However, we don't |
| 398 // implement this historical detail; instead, we implement the |
| 399 // computatinally cleaner proleptic calendar, which assumes |
| 400 // consistent 4-year cycles throughout time. |
| 401 UBool isLeap = ((eyear&0x3) == 0); // equiv. to (eyear%4 == 0) |
| 402 |
| 403 // Common Julian/Gregorian calculation |
| 404 int32_t correction = 0; |
| 405 int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1 |
| 406 if (dayOfYear >= march1) { |
| 407 correction = isLeap ? 1 : 2; |
| 408 } |
| 409 month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month |
| 410 dayOfMonth = dayOfYear - (isLeap?kLeapNumDays[month]:kNumDays[month]) +
1; // one-based DOM |
| 411 ++dayOfYear; |
| 412 #if defined (U_DEBUG_CAL) |
| 413 // fprintf(stderr, "%d - %d[%d] + 1\n", dayOfYear, isLeap?kLeapNumDa
ys[month]:kNumDays[month], month ); |
| 414 // fprintf(stderr, "%s:%d: greg's HCF %d -> %d/%d/%d not %d/%
d/%d\n", |
| 415 // __FILE__, __LINE__,julianDay, |
| 416 // eyear,month,dayOfMonth, |
| 417 // getGregorianYear(), getGregorianMonth(), getGregorianDayOfMo
nth() ); |
| 418 fprintf(stderr, "%s:%d: doy %d (greg's %d)- [cut=%d]\n", |
| 419 __FILE__, __LINE__, dayOfYear, getGregorianDayOfYear(), fCutoverJuli
anDay); |
| 420 #endif |
| 421 |
| 422 } |
| 423 |
| 424 // [j81] if we are after the cutover in its year, shift the day of the year |
| 425 if((eyear == fGregorianCutoverYear) && (julianDay >= fCutoverJulianDay)) { |
| 426 //from handleComputeMonthStart |
| 427 int32_t gregShift = Grego::gregorianShift(eyear); |
| 428 #if defined (U_DEBUG_CAL) |
| 429 fprintf(stderr, "%s:%d: gregorian shift %d ::: doy%d => %d [cut=%d]\n"
, |
| 430 __FILE__, __LINE__,gregShift, dayOfYear, dayOfYear+gregShift, fCutov
erJulianDay); |
| 431 #endif |
| 432 dayOfYear += gregShift; |
| 433 } |
| 434 |
| 435 internalSet(UCAL_MONTH, month); |
| 436 internalSet(UCAL_DAY_OF_MONTH, dayOfMonth); |
| 437 internalSet(UCAL_DAY_OF_YEAR, dayOfYear); |
| 438 internalSet(UCAL_EXTENDED_YEAR, eyear); |
| 439 int32_t era = AD; |
| 440 if (eyear < 1) { |
| 441 era = BC; |
| 442 eyear = 1 - eyear; |
| 443 } |
| 444 internalSet(UCAL_ERA, era); |
| 445 internalSet(UCAL_YEAR, eyear); |
| 446 } |
| 447 |
| 448 |
| 449 // ------------------------------------- |
| 450 |
| 451 UDate |
| 452 GregorianCalendar::getGregorianChange() const |
| 453 { |
| 454 return fGregorianCutover; |
| 455 } |
| 456 |
| 457 // ------------------------------------- |
| 458 |
| 459 UBool |
| 460 GregorianCalendar::isLeapYear(int32_t year) const |
| 461 { |
| 462 // MSVC complains bitterly if we try to use Grego::isLeapYear here |
| 463 // NOTE: year&0x3 == year%4 |
| 464 return (year >= fGregorianCutoverYear ? |
| 465 (((year&0x3) == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregori
an |
| 466 ((year&0x3) == 0)); // Julian |
| 467 } |
| 468 |
| 469 // ------------------------------------- |
| 470 |
| 471 int32_t GregorianCalendar::handleComputeJulianDay(UCalendarDateFields bestField)
|
| 472 { |
| 473 fInvertGregorian = FALSE; |
| 474 |
| 475 int32_t jd = Calendar::handleComputeJulianDay(bestField); |
| 476 |
| 477 if((bestField == UCAL_WEEK_OF_YEAR) && // if we are doing WOY calculations,
we are counting relative to Jan 1 *julian* |
| 478 (internalGet(UCAL_EXTENDED_YEAR)==fGregorianCutoverYear) && |
| 479 jd >= fCutoverJulianDay) { |
| 480 fInvertGregorian = TRUE; // So that the Julian Jan 1 will be used i
n handleComputeMonthStart |
| 481 return Calendar::handleComputeJulianDay(bestField); |
| 482 } |
| 483 |
| 484 |
| 485 // The following check handles portions of the cutover year BEFORE the |
| 486 // cutover itself happens. |
| 487 //if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJ
ulianDay)) { */ |
| 488 if ((fIsGregorian==TRUE) != (jd >= fCutoverJulianDay)) { /* cutoverJul
ianDay)) { */ |
| 489 #if defined (U_DEBUG_CAL) |
| 490 fprintf(stderr, "%s:%d: jd [invert] %d\n", |
| 491 __FILE__, __LINE__, jd); |
| 492 #endif |
| 493 fInvertGregorian = TRUE; |
| 494 jd = Calendar::handleComputeJulianDay(bestField); |
| 495 #if defined (U_DEBUG_CAL) |
| 496 fprintf(stderr, "%s:%d: fIsGregorian %s, fInvertGregorian %s - ", |
| 497 __FILE__, __LINE__,fIsGregorian?"T":"F", fInvertGregorian?"T":"F
"); |
| 498 fprintf(stderr, " jd NOW %d\n", |
| 499 jd); |
| 500 #endif |
| 501 } else { |
| 502 #if defined (U_DEBUG_CAL) |
| 503 fprintf(stderr, "%s:%d: jd [==] %d - %sfIsGregorian %sfInvertGregori
an, %d\n", |
| 504 __FILE__, __LINE__, jd, fIsGregorian?"T":"F", fInvertGregorian?"
T":"F", bestField); |
| 505 #endif |
| 506 } |
| 507 |
| 508 if(fIsGregorian && (internalGet(UCAL_EXTENDED_YEAR) == fGregorianCutover
Year)) { |
| 509 int32_t gregShift = Grego::gregorianShift(internalGet(UCAL_EXTENDED_
YEAR)); |
| 510 if (bestField == UCAL_DAY_OF_YEAR) { |
| 511 #if defined (U_DEBUG_CAL) |
| 512 fprintf(stderr, "%s:%d: [DOY%d] gregorian shift of JD %d += %d\n
", |
| 513 __FILE__, __LINE__, fFields[bestField],jd, gregShift); |
| 514 #endif |
| 515 jd -= gregShift; |
| 516 } else if ( bestField == UCAL_WEEK_OF_MONTH ) { |
| 517 int32_t weekShift = 14; |
| 518 #if defined (U_DEBUG_CAL) |
| 519 fprintf(stderr, "%s:%d: [WOY/WOM] gregorian week shift of %d +=
%d\n", |
| 520 __FILE__, __LINE__, jd, weekShift); |
| 521 #endif |
| 522 jd += weekShift; // shift by weeks for week based fields. |
| 523 } |
| 524 } |
| 525 |
| 526 return jd; |
| 527 } |
| 528 |
| 529 int32_t GregorianCalendar::handleComputeMonthStart(int32_t eyear, int32_t month, |
| 530 |
| 531 UBool /* useMonth */) const |
| 532 { |
| 533 GregorianCalendar *nonConstThis = (GregorianCalendar*)this; // cast away con
st |
| 534 |
| 535 // If the month is out of range, adjust it into range, and |
| 536 // modify the extended year value accordingly. |
| 537 if (month < 0 || month > 11) { |
| 538 eyear += ClockMath::floorDivide(month, 12, month); |
| 539 } |
| 540 |
| 541 UBool isLeap = eyear%4 == 0; |
| 542 int32_t y = eyear-1; |
| 543 int32_t julianDay = 365*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDay
- 3); |
| 544 |
| 545 nonConstThis->fIsGregorian = (eyear >= fGregorianCutoverYear); |
| 546 #if defined (U_DEBUG_CAL) |
| 547 fprintf(stderr, "%s:%d: (hcms%d/%d) fIsGregorian %s, fInvertGregorian %s\n",
|
| 548 __FILE__, __LINE__, eyear,month, fIsGregorian?"T":"F", fInvertGregorian?
"T":"F"); |
| 549 #endif |
| 550 if (fInvertGregorian) { |
| 551 nonConstThis->fIsGregorian = !fIsGregorian; |
| 552 } |
| 553 if (fIsGregorian) { |
| 554 isLeap = isLeap && ((eyear%100 != 0) || (eyear%400 == 0)); |
| 555 // Add 2 because Gregorian calendar starts 2 days after |
| 556 // Julian calendar |
| 557 int32_t gregShift = Grego::gregorianShift(eyear); |
| 558 #if defined (U_DEBUG_CAL) |
| 559 fprintf(stderr, "%s:%d: (hcms%d/%d) gregorian shift of %d += %d\n", |
| 560 __FILE__, __LINE__, eyear, month, julianDay, gregShift); |
| 561 #endif |
| 562 julianDay += gregShift; |
| 563 } |
| 564 |
| 565 // At this point julianDay indicates the day BEFORE the first |
| 566 // day of January 1, <eyear> of either the Julian or Gregorian |
| 567 // calendar. |
| 568 |
| 569 if (month != 0) { |
| 570 julianDay += isLeap?kLeapNumDays[month]:kNumDays[month]; |
| 571 } |
| 572 |
| 573 return julianDay; |
| 574 } |
| 575 |
| 576 int32_t GregorianCalendar::handleGetMonthLength(int32_t extendedYear, int32_t mo
nth) const |
| 577 { |
| 578 // If the month is out of range, adjust it into range, and |
| 579 // modify the extended year value accordingly. |
| 580 if (month < 0 || month > 11) { |
| 581 extendedYear += ClockMath::floorDivide(month, 12, month); |
| 582 } |
| 583 |
| 584 return isLeapYear(extendedYear) ? kLeapMonthLength[month] : kMonthLength[mon
th]; |
| 585 } |
| 586 |
| 587 int32_t GregorianCalendar::handleGetYearLength(int32_t eyear) const { |
| 588 return isLeapYear(eyear) ? 366 : 365; |
| 589 } |
| 590 |
| 591 |
| 592 int32_t |
| 593 GregorianCalendar::monthLength(int32_t month) const |
| 594 { |
| 595 int32_t year = internalGet(UCAL_EXTENDED_YEAR); |
| 596 return handleGetMonthLength(year, month); |
| 597 } |
| 598 |
| 599 // ------------------------------------- |
| 600 |
| 601 int32_t |
| 602 GregorianCalendar::monthLength(int32_t month, int32_t year) const |
| 603 { |
| 604 return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month]; |
| 605 } |
| 606 |
| 607 // ------------------------------------- |
| 608 |
| 609 int32_t |
| 610 GregorianCalendar::yearLength(int32_t year) const |
| 611 { |
| 612 return isLeapYear(year) ? 366 : 365; |
| 613 } |
| 614 |
| 615 // ------------------------------------- |
| 616 |
| 617 int32_t |
| 618 GregorianCalendar::yearLength() const |
| 619 { |
| 620 return isLeapYear(internalGet(UCAL_YEAR)) ? 366 : 365; |
| 621 } |
| 622 |
| 623 // ------------------------------------- |
| 624 |
| 625 /** |
| 626 * After adjustments such as add(MONTH), add(YEAR), we don't want the |
| 627 * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar |
| 628 * 3, we want it to go to Feb 28. Adjustments which might run into this |
| 629 * problem call this method to retain the proper month. |
| 630 */ |
| 631 void |
| 632 GregorianCalendar::pinDayOfMonth() |
| 633 { |
| 634 int32_t monthLen = monthLength(internalGet(UCAL_MONTH)); |
| 635 int32_t dom = internalGet(UCAL_DATE); |
| 636 if(dom > monthLen) |
| 637 set(UCAL_DATE, monthLen); |
| 638 } |
| 639 |
| 640 // ------------------------------------- |
| 641 |
| 642 |
| 643 UBool |
| 644 GregorianCalendar::validateFields() const |
| 645 { |
| 646 for (int32_t field = 0; field < UCAL_FIELD_COUNT; field++) { |
| 647 // Ignore DATE and DAY_OF_YEAR which are handled below |
| 648 if (field != UCAL_DATE && |
| 649 field != UCAL_DAY_OF_YEAR && |
| 650 isSet((UCalendarDateFields)field) && |
| 651 ! boundsCheck(internalGet((UCalendarDateFields)field), (UCalendarDat
eFields)field)) |
| 652 return FALSE; |
| 653 } |
| 654 |
| 655 // Values differ in Least-Maximum and Maximum should be handled |
| 656 // specially. |
| 657 if (isSet(UCAL_DATE)) { |
| 658 int32_t date = internalGet(UCAL_DATE); |
| 659 if (date < getMinimum(UCAL_DATE) || |
| 660 date > monthLength(internalGet(UCAL_MONTH))) { |
| 661 return FALSE; |
| 662 } |
| 663 } |
| 664 |
| 665 if (isSet(UCAL_DAY_OF_YEAR)) { |
| 666 int32_t days = internalGet(UCAL_DAY_OF_YEAR); |
| 667 if (days < 1 || days > yearLength()) { |
| 668 return FALSE; |
| 669 } |
| 670 } |
| 671 |
| 672 // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero. |
| 673 // We've checked against minimum and maximum above already. |
| 674 if (isSet(UCAL_DAY_OF_WEEK_IN_MONTH) && |
| 675 0 == internalGet(UCAL_DAY_OF_WEEK_IN_MONTH)) { |
| 676 return FALSE; |
| 677 } |
| 678 |
| 679 return TRUE; |
| 680 } |
| 681 |
| 682 // ------------------------------------- |
| 683 |
| 684 UBool |
| 685 GregorianCalendar::boundsCheck(int32_t value, UCalendarDateFields field) const |
| 686 { |
| 687 return value >= getMinimum(field) && value <= getMaximum(field); |
| 688 } |
| 689 |
| 690 // ------------------------------------- |
| 691 |
| 692 UDate |
| 693 GregorianCalendar::getEpochDay(UErrorCode& status) |
| 694 { |
| 695 complete(status); |
| 696 // Divide by 1000 (convert to seconds) in order to prevent overflow when |
| 697 // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE). |
| 698 double wallSec = internalGetTime()/1000 + (internalGet(UCAL_ZONE_OFFSET) + i
nternalGet(UCAL_DST_OFFSET))/1000; |
| 699 |
| 700 return ClockMath::floorDivide(wallSec, kOneDay/1000.0); |
| 701 } |
| 702 |
| 703 // ------------------------------------- |
| 704 |
| 705 |
| 706 // ------------------------------------- |
| 707 |
| 708 /** |
| 709 * Compute the julian day number of the day BEFORE the first day of |
| 710 * January 1, year 1 of the given calendar. If julianDay == 0, it |
| 711 * specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian |
| 712 * or Gregorian). |
| 713 */ |
| 714 double GregorianCalendar::computeJulianDayOfYear(UBool isGregorian, |
| 715 int32_t year, UBool& isLeap) |
| 716 { |
| 717 isLeap = year%4 == 0; |
| 718 int32_t y = year - 1; |
| 719 double julianDay = 365.0*y + ClockMath::floorDivide(y, 4) + (kJan1_1JulianDa
y - 3); |
| 720 |
| 721 if (isGregorian) { |
| 722 isLeap = isLeap && ((year%100 != 0) || (year%400 == 0)); |
| 723 // Add 2 because Gregorian calendar starts 2 days after Julian calendar |
| 724 julianDay += Grego::gregorianShift(year); |
| 725 } |
| 726 |
| 727 return julianDay; |
| 728 } |
| 729 |
| 730 // /** |
| 731 // * Compute the day of week, relative to the first day of week, from |
| 732 // * 0..6, of the current DOW_LOCAL or DAY_OF_WEEK fields. This is |
| 733 // * equivalent to get(DOW_LOCAL) - 1. |
| 734 // */ |
| 735 // int32_t GregorianCalendar::computeRelativeDOW() const { |
| 736 // int32_t relDow = 0; |
| 737 // if (fStamp[UCAL_DOW_LOCAL] > fStamp[UCAL_DAY_OF_WEEK]) { |
| 738 // relDow = internalGet(UCAL_DOW_LOCAL) - 1; // 1-based |
| 739 // } else if (fStamp[UCAL_DAY_OF_WEEK] != kUnset) { |
| 740 // relDow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); |
| 741 // if (relDow < 0) relDow += 7; |
| 742 // } |
| 743 // return relDow; |
| 744 // } |
| 745 |
| 746 // /** |
| 747 // * Compute the day of week, relative to the first day of week, |
| 748 // * from 0..6 of the given julian day. |
| 749 // */ |
| 750 // int32_t GregorianCalendar::computeRelativeDOW(double julianDay) const { |
| 751 // int32_t relDow = julianDayToDayOfWeek(julianDay) - getFirstDayOfWeek(); |
| 752 // if (relDow < 0) { |
| 753 // relDow += 7; |
| 754 // } |
| 755 // return relDow; |
| 756 // } |
| 757 |
| 758 // /** |
| 759 // * Compute the DOY using the WEEK_OF_YEAR field and the julian day |
| 760 // * of the day BEFORE January 1 of a year (a return value from |
| 761 // * computeJulianDayOfYear). |
| 762 // */ |
| 763 // int32_t GregorianCalendar::computeDOYfromWOY(double julianDayOfYear) const { |
| 764 // // Compute DOY from day of week plus week of year |
| 765 |
| 766 // // Find the day of the week for the first of this year. This |
| 767 // // is zero-based, with 0 being the locale-specific first day of |
| 768 // // the week. Add 1 to get first day of year. |
| 769 // int32_t fdy = computeRelativeDOW(julianDayOfYear + 1); |
| 770 |
| 771 // return |
| 772 // // Compute doy of first (relative) DOW of WOY 1 |
| 773 // (((7 - fdy) < getMinimalDaysInFirstWeek()) |
| 774 // ? (8 - fdy) : (1 - fdy)) |
| 775 |
| 776 // // Adjust for the week number. |
| 777 // + (7 * (internalGet(UCAL_WEEK_OF_YEAR) - 1)) |
| 778 |
| 779 // // Adjust for the DOW |
| 780 // + computeRelativeDOW(); |
| 781 // } |
| 782 |
| 783 // ------------------------------------- |
| 784 |
| 785 double |
| 786 GregorianCalendar::millisToJulianDay(UDate millis) |
| 787 { |
| 788 return (double)kEpochStartAsJulianDay + ClockMath::floorDivide(millis, (doub
le)kOneDay); |
| 789 } |
| 790 |
| 791 // ------------------------------------- |
| 792 |
| 793 UDate |
| 794 GregorianCalendar::julianDayToMillis(double julian) |
| 795 { |
| 796 return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay); |
| 797 } |
| 798 |
| 799 // ------------------------------------- |
| 800 |
| 801 int32_t |
| 802 GregorianCalendar::aggregateStamp(int32_t stamp_a, int32_t stamp_b) |
| 803 { |
| 804 return (((stamp_a != kUnset && stamp_b != kUnset) |
| 805 ? uprv_max(stamp_a, stamp_b) |
| 806 : (int32_t)kUnset)); |
| 807 } |
| 808 |
| 809 // ------------------------------------- |
| 810 |
| 811 /** |
| 812 * Roll a field by a signed amount. |
| 813 * Note: This will be made public later. [LIU] |
| 814 */ |
| 815 |
| 816 void |
| 817 GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status) { |
| 818 roll((UCalendarDateFields) field, amount, status); |
| 819 } |
| 820 |
| 821 void |
| 822 GregorianCalendar::roll(UCalendarDateFields field, int32_t amount, UErrorCode& s
tatus) |
| 823 { |
| 824 if((amount == 0) || U_FAILURE(status)) { |
| 825 return; |
| 826 } |
| 827 |
| 828 // J81 processing. (gregorian cutover) |
| 829 UBool inCutoverMonth = FALSE; |
| 830 int32_t cMonthLen=0; // 'c' for cutover; in days |
| 831 int32_t cDayOfMonth=0; // no discontinuity: [0, cMonthLen) |
| 832 double cMonthStart=0.0; // in ms |
| 833 |
| 834 // Common code - see if we're in the cutover month of the cutover year |
| 835 if(get(UCAL_EXTENDED_YEAR, status) == fGregorianCutoverYear) { |
| 836 switch (field) { |
| 837 case UCAL_DAY_OF_MONTH: |
| 838 case UCAL_WEEK_OF_MONTH: |
| 839 { |
| 840 int32_t max = monthLength(internalGet(UCAL_MONTH)); |
| 841 UDate t = internalGetTime(); |
| 842 // We subtract 1 from the DAY_OF_MONTH to make it zero-based, an
d an |
| 843 // additional 10 if we are after the cutover. Thus the monthStar
t |
| 844 // value will be correct iff we actually are in the cutover mont
h. |
| 845 cDayOfMonth = internalGet(UCAL_DAY_OF_MONTH) - ((t >= fGregorian
Cutover) ? 10 : 0); |
| 846 cMonthStart = t - ((cDayOfMonth - 1) * kOneDay); |
| 847 // A month containing the cutover is 10 days shorter. |
| 848 if ((cMonthStart < fGregorianCutover) && |
| 849 (cMonthStart + (cMonthLen=(max-10))*kOneDay >= fGregorianCut
over)) { |
| 850 inCutoverMonth = TRUE; |
| 851 } |
| 852 } |
| 853 default: |
| 854 ; |
| 855 } |
| 856 } |
| 857 |
| 858 switch (field) { |
| 859 case UCAL_WEEK_OF_YEAR: { |
| 860 // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the |
| 861 // week. Also, rolling the week of the year can have seemingly |
| 862 // strange effects simply because the year of the week of year |
| 863 // may be different from the calendar year. For example, the |
| 864 // date Dec 28, 1997 is the first day of week 1 of 1998 (if |
| 865 // weeks start on Sunday and the minimal days in first week is |
| 866 // <= 3). |
| 867 int32_t woy = get(UCAL_WEEK_OF_YEAR, status); |
| 868 // Get the ISO year, which matches the week of year. This |
| 869 // may be one year before or after the calendar year. |
| 870 int32_t isoYear = get(UCAL_YEAR_WOY, status); |
| 871 int32_t isoDoy = internalGet(UCAL_DAY_OF_YEAR); |
| 872 if (internalGet(UCAL_MONTH) == UCAL_JANUARY) { |
| 873 if (woy >= 52) { |
| 874 isoDoy += handleGetYearLength(isoYear); |
| 875 } |
| 876 } else { |
| 877 if (woy == 1) { |
| 878 isoDoy -= handleGetYearLength(isoYear - 1); |
| 879 } |
| 880 } |
| 881 woy += amount; |
| 882 // Do fast checks to avoid unnecessary computation: |
| 883 if (woy < 1 || woy > 52) { |
| 884 // Determine the last week of the ISO year. |
| 885 // We do this using the standard formula we use |
| 886 // everywhere in this file. If we can see that the |
| 887 // days at the end of the year are going to fall into |
| 888 // week 1 of the next year, we drop the last week by |
| 889 // subtracting 7 from the last day of the year. |
| 890 int32_t lastDoy = handleGetYearLength(isoYear); |
| 891 int32_t lastRelDow = (lastDoy - isoDoy + internalGet(UCAL_DAY_OF_WEE
K) - |
| 892 getFirstDayOfWeek()) % 7; |
| 893 if (lastRelDow < 0) lastRelDow += 7; |
| 894 if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek()) lastDoy -= 7; |
| 895 int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1); |
| 896 woy = ((woy + lastWoy - 1) % lastWoy) + 1; |
| 897 } |
| 898 set(UCAL_WEEK_OF_YEAR, woy); |
| 899 set(UCAL_YEAR_WOY,isoYear); |
| 900 return; |
| 901 } |
| 902 |
| 903 case UCAL_DAY_OF_MONTH: |
| 904 if( !inCutoverMonth ) { |
| 905 Calendar::roll(field, amount, status); |
| 906 return; |
| 907 } else { |
| 908 // [j81] 1582 special case for DOM |
| 909 // The default computation works except when the current month |
| 910 // contains the Gregorian cutover. We handle this special case |
| 911 // here. [j81 - aliu] |
| 912 double monthLen = cMonthLen * kOneDay; |
| 913 double msIntoMonth = uprv_fmod(internalGetTime() - cMonthStart + |
| 914 amount * kOneDay, monthLen); |
| 915 if (msIntoMonth < 0) { |
| 916 msIntoMonth += monthLen; |
| 917 } |
| 918 #if defined (U_DEBUG_CAL) |
| 919 fprintf(stderr, "%s:%d: roll DOM %d -> %.0lf ms \n", |
| 920 __FILE__, __LINE__,amount, cMonthLen, cMonthStart+msIntoMonth); |
| 921 #endif |
| 922 setTimeInMillis(cMonthStart + msIntoMonth, status); |
| 923 return; |
| 924 } |
| 925 |
| 926 case UCAL_WEEK_OF_MONTH: |
| 927 if( !inCutoverMonth ) { |
| 928 Calendar::roll(field, amount, status); |
| 929 return; |
| 930 } else { |
| 931 #if defined (U_DEBUG_CAL) |
| 932 fprintf(stderr, "%s:%d: roll WOM %d ??????????????????? \n", |
| 933 __FILE__, __LINE__,amount); |
| 934 #endif |
| 935 // NOTE: following copied from the old |
| 936 // GregorianCalendar::roll( WEEK_OF_MONTH ) code |
| 937 |
| 938 // This is tricky, because during the roll we may have to shift |
| 939 // to a different day of the week. For example: |
| 940 |
| 941 // s m t w r f s |
| 942 // 1 2 3 4 5 |
| 943 // 6 7 8 9 10 11 12 |
| 944 |
| 945 // When rolling from the 6th or 7th back one week, we go to the |
| 946 // 1st (assuming that the first partial week counts). The same |
| 947 // thing happens at the end of the month. |
| 948 |
| 949 // The other tricky thing is that we have to figure out whether |
| 950 // the first partial week actually counts or not, based on the |
| 951 // minimal first days in the week. And we have to use the |
| 952 // correct first day of the week to delineate the week |
| 953 // boundaries. |
| 954 |
| 955 // Here's our algorithm. First, we find the real boundaries of |
| 956 // the month. Then we discard the first partial week if it |
| 957 // doesn't count in this locale. Then we fill in the ends with |
| 958 // phantom days, so that the first partial week and the last |
| 959 // partial week are full weeks. We then have a nice square |
| 960 // block of weeks. We do the usual rolling within this block, |
| 961 // as is done elsewhere in this method. If we wind up on one of |
| 962 // the phantom days that we added, we recognize this and pin to |
| 963 // the first or the last day of the month. Easy, eh? |
| 964 |
| 965 // Another wrinkle: To fix jitterbug 81, we have to make all this |
| 966 // work in the oddball month containing the Gregorian cutover. |
| 967 // This month is 10 days shorter than usual, and also contains |
| 968 // a discontinuity in the days; e.g., the default cutover month |
| 969 // is Oct 1582, and goes from day of month 4 to day of month 15. |
| 970 |
| 971 // Normalize the DAY_OF_WEEK so that 0 is the first day of the week |
| 972 // in this locale. We have dow in 0..6. |
| 973 int32_t dow = internalGet(UCAL_DAY_OF_WEEK) - getFirstDayOfWeek(); |
| 974 if (dow < 0) |
| 975 dow += 7; |
| 976 |
| 977 // Find the day of month, compensating for cutover discontinuity. |
| 978 int32_t dom = cDayOfMonth; |
| 979 |
| 980 // Find the day of the week (normalized for locale) for the first |
| 981 // of the month. |
| 982 int32_t fdm = (dow - dom + 1) % 7; |
| 983 if (fdm < 0) |
| 984 fdm += 7; |
| 985 |
| 986 // Get the first day of the first full week of the month, |
| 987 // including phantom days, if any. Figure out if the first week |
| 988 // counts or not; if it counts, then fill in phantom days. If |
| 989 // not, advance to the first real full week (skip the partial week). |
| 990 int32_t start; |
| 991 if ((7 - fdm) < getMinimalDaysInFirstWeek()) |
| 992 start = 8 - fdm; // Skip the first partial week |
| 993 else |
| 994 start = 1 - fdm; // This may be zero or negative |
| 995 |
| 996 // Get the day of the week (normalized for locale) for the last |
| 997 // day of the month. |
| 998 int32_t monthLen = cMonthLen; |
| 999 int32_t ldm = (monthLen - dom + dow) % 7; |
| 1000 // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here. |
| 1001 |
| 1002 // Get the limit day for the blocked-off rectangular month; that |
| 1003 // is, the day which is one past the last day of the month, |
| 1004 // after the month has already been filled in with phantom days |
| 1005 // to fill out the last week. This day has a normalized DOW of 0. |
| 1006 int32_t limit = monthLen + 7 - ldm; |
| 1007 |
| 1008 // Now roll between start and (limit - 1). |
| 1009 int32_t gap = limit - start; |
| 1010 int32_t newDom = (dom + amount*7 - start) % gap; |
| 1011 if (newDom < 0) |
| 1012 newDom += gap; |
| 1013 newDom += start; |
| 1014 |
| 1015 // Finally, pin to the real start and end of the month. |
| 1016 if (newDom < 1) |
| 1017 newDom = 1; |
| 1018 if (newDom > monthLen) |
| 1019 newDom = monthLen; |
| 1020 |
| 1021 // Set the DAY_OF_MONTH. We rely on the fact that this field |
| 1022 // takes precedence over everything else (since all other fields |
| 1023 // are also set at this point). If this fact changes (if the |
| 1024 // disambiguation algorithm changes) then we will have to unset |
| 1025 // the appropriate fields here so that DAY_OF_MONTH is attended |
| 1026 // to. |
| 1027 |
| 1028 // If we are in the cutover month, manipulate ms directly. Don't do |
| 1029 // this in general because it doesn't work across DST boundaries |
| 1030 // (details, details). This takes care of the discontinuity. |
| 1031 setTimeInMillis(cMonthStart + (newDom-1)*kOneDay, status);
|
| 1032 return; |
| 1033 } |
| 1034 |
| 1035 default: |
| 1036 Calendar::roll(field, amount, status); |
| 1037 return; |
| 1038 } |
| 1039 } |
| 1040 |
| 1041 // ------------------------------------- |
| 1042 |
| 1043 |
| 1044 /** |
| 1045 * Return the minimum value that this field could have, given the current date. |
| 1046 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMi
nimum(). |
| 1047 * @param field the time field. |
| 1048 * @return the minimum value that this field could have, given the curren
t date. |
| 1049 * @deprecated ICU 2.6. Use getActualMinimum(UCalendarDateFields field) instead. |
| 1050 */ |
| 1051 int32_t GregorianCalendar::getActualMinimum(EDateFields field) const |
| 1052 { |
| 1053 return getMinimum((UCalendarDateFields)field); |
| 1054 } |
| 1055 |
| 1056 int32_t GregorianCalendar::getActualMinimum(EDateFields field, UErrorCode& /* st
atus */) const |
| 1057 { |
| 1058 return getMinimum((UCalendarDateFields)field); |
| 1059 } |
| 1060 |
| 1061 /** |
| 1062 * Return the minimum value that this field could have, given the current date. |
| 1063 * For the Gregorian calendar, this is the same as getMinimum() and getGreatestMi
nimum(). |
| 1064 * @param field the time field. |
| 1065 * @return the minimum value that this field could have, given the curren
t date. |
| 1066 * @draft ICU 2.6. |
| 1067 */ |
| 1068 int32_t GregorianCalendar::getActualMinimum(UCalendarDateFields field, UErrorCod
e& /* status */) const |
| 1069 { |
| 1070 return getMinimum(field); |
| 1071 } |
| 1072 |
| 1073 |
| 1074 // ------------------------------------ |
| 1075 |
| 1076 /** |
| 1077 * Old year limits were least max 292269054, max 292278994. |
| 1078 */ |
| 1079 |
| 1080 /** |
| 1081 * @stable ICU 2.0 |
| 1082 */ |
| 1083 int32_t GregorianCalendar::handleGetLimit(UCalendarDateFields field, ELimitType
limitType) const { |
| 1084 return kGregorianCalendarLimits[field][limitType]; |
| 1085 } |
| 1086 |
| 1087 /** |
| 1088 * Return the maximum value that this field could have, given the current date. |
| 1089 * For example, with the date "Feb 3, 1997" and the DAY_OF_MONTH field, the actua
l |
| 1090 * maximum would be 28; for "Feb 3, 1996" it s 29. Similarly for a Hebrew calend
ar, |
| 1091 * for some years the actual maximum for MONTH is 12, and for others 13. |
| 1092 * @stable ICU 2.0 |
| 1093 */ |
| 1094 int32_t GregorianCalendar::getActualMaximum(UCalendarDateFields field, UErrorCod
e& status) const |
| 1095 { |
| 1096 /* It is a known limitation that the code here (and in getActualMinimum) |
| 1097 * won't behave properly at the extreme limits of GregorianCalendar's |
| 1098 * representable range (except for the code that handles the YEAR |
| 1099 * field). That's because the ends of the representable range are at |
| 1100 * odd spots in the year. For calendars with the default Gregorian |
| 1101 * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun |
| 1102 * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT |
| 1103 * zones. As a result, if the calendar is set to Aug 1 292278994 AD, |
| 1104 * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar |
| 1105 * 31 in that year, the actual maximum month might be Jul, whereas is |
| 1106 * the date is Mar 15, the actual maximum might be Aug -- depending on |
| 1107 * the precise semantics that are desired. Similar considerations |
| 1108 * affect all fields. Nonetheless, this effect is sufficiently arcane |
| 1109 * that we permit it, rather than complicating the code to handle such |
| 1110 * intricacies. - liu 8/20/98 |
| 1111 |
| 1112 * UPDATE: No longer true, since we have pulled in the limit values on |
| 1113 * the year. - Liu 11/6/00 */ |
| 1114 |
| 1115 switch (field) { |
| 1116 |
| 1117 case UCAL_YEAR: |
| 1118 /* The year computation is no different, in principle, from the |
| 1119 * others, however, the range of possible maxima is large. In |
| 1120 * addition, the way we know we've exceeded the range is different. |
| 1121 * For these reasons, we use the special case code below to handle |
| 1122 * this field. |
| 1123 * |
| 1124 * The actual maxima for YEAR depend on the type of calendar: |
| 1125 * |
| 1126 * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD |
| 1127 * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD |
| 1128 * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD |
| 1129 * |
| 1130 * We know we've exceeded the maximum when either the month, date, |
| 1131 * time, or era changes in response to setting the year. We don't |
| 1132 * check for month, date, and time here because the year and era are |
| 1133 * sufficient to detect an invalid year setting. NOTE: If code is |
| 1134 * added to check the month and date in the future for some reason, |
| 1135 * Feb 29 must be allowed to shift to Mar 1 when setting the year. |
| 1136 */ |
| 1137 { |
| 1138 if(U_FAILURE(status)) return 0; |
| 1139 Calendar *cal = clone(); |
| 1140 if(!cal) { |
| 1141 status = U_MEMORY_ALLOCATION_ERROR; |
| 1142 return 0; |
| 1143 } |
| 1144 |
| 1145 cal->setLenient(TRUE); |
| 1146 |
| 1147 int32_t era = cal->get(UCAL_ERA, status); |
| 1148 UDate d = cal->getTime(status); |
| 1149 |
| 1150 /* Perform a binary search, with the invariant that lowGood is a |
| 1151 * valid year, and highBad is an out of range year. |
| 1152 */ |
| 1153 int32_t lowGood = kGregorianCalendarLimits[UCAL_YEAR][1]; |
| 1154 int32_t highBad = kGregorianCalendarLimits[UCAL_YEAR][2]+1; |
| 1155 while ((lowGood + 1) < highBad) { |
| 1156 int32_t y = (lowGood + highBad) / 2; |
| 1157 cal->set(UCAL_YEAR, y); |
| 1158 if (cal->get(UCAL_YEAR, status) == y && cal->get(UCAL_ERA, statu
s) == era) { |
| 1159 lowGood = y; |
| 1160 } else { |
| 1161 highBad = y; |
| 1162 cal->setTime(d, status); // Restore original fields |
| 1163 } |
| 1164 } |
| 1165 |
| 1166 delete cal; |
| 1167 return lowGood; |
| 1168 } |
| 1169 |
| 1170 default: |
| 1171 return Calendar::getActualMaximum(field,status); |
| 1172 } |
| 1173 } |
| 1174 |
| 1175 |
| 1176 int32_t GregorianCalendar::handleGetExtendedYear() { |
| 1177 // the year to return |
| 1178 int32_t year = kEpochYear; |
| 1179 |
| 1180 // year field to use |
| 1181 int32_t yearField = UCAL_EXTENDED_YEAR; |
| 1182 |
| 1183 // There are three separate fields which could be used to |
| 1184 // derive the proper year. Use the one most recently set. |
| 1185 if (fStamp[yearField] < fStamp[UCAL_YEAR]) |
| 1186 yearField = UCAL_YEAR; |
| 1187 if (fStamp[yearField] < fStamp[UCAL_YEAR_WOY]) |
| 1188 yearField = UCAL_YEAR_WOY; |
| 1189 |
| 1190 // based on the "best" year field, get the year |
| 1191 switch(yearField) { |
| 1192 case UCAL_EXTENDED_YEAR: |
| 1193 year = internalGet(UCAL_EXTENDED_YEAR, kEpochYear); |
| 1194 break; |
| 1195 |
| 1196 case UCAL_YEAR: |
| 1197 { |
| 1198 // The year defaults to the epoch start, the era to AD |
| 1199 int32_t era = internalGet(UCAL_ERA, AD); |
| 1200 if (era == BC) { |
| 1201 year = 1 - internalGet(UCAL_YEAR, 1); // Convert to extended yea
r |
| 1202 } else { |
| 1203 year = internalGet(UCAL_YEAR, kEpochYear); |
| 1204 } |
| 1205 } |
| 1206 break; |
| 1207 |
| 1208 case UCAL_YEAR_WOY: |
| 1209 year = handleGetExtendedYearFromWeekFields(internalGet(UCAL_YEAR_WOY), i
nternalGet(UCAL_WEEK_OF_YEAR)); |
| 1210 #if defined (U_DEBUG_CAL) |
| 1211 // if(internalGet(UCAL_YEAR_WOY) != year) { |
| 1212 fprintf(stderr, "%s:%d: hGEYFWF[%d,%d] -> %d\n", |
| 1213 __FILE__, __LINE__,internalGet(UCAL_YEAR_WOY),internalGet(UCAL_WEEK_
OF_YEAR),year); |
| 1214 //} |
| 1215 #endif |
| 1216 break; |
| 1217 |
| 1218 default: |
| 1219 year = kEpochYear; |
| 1220 } |
| 1221 return year; |
| 1222 } |
| 1223 |
| 1224 int32_t GregorianCalendar::handleGetExtendedYearFromWeekFields(int32_t yearWoy,
int32_t woy) |
| 1225 { |
| 1226 // convert year to extended form |
| 1227 int32_t era = internalGet(UCAL_ERA, AD); |
| 1228 if(era == BC) { |
| 1229 yearWoy = 1 - yearWoy; |
| 1230 } |
| 1231 return Calendar::handleGetExtendedYearFromWeekFields(yearWoy, woy); |
| 1232 } |
| 1233 |
| 1234 |
| 1235 // ------------------------------------- |
| 1236 |
| 1237 UBool |
| 1238 GregorianCalendar::inDaylightTime(UErrorCode& status) const |
| 1239 { |
| 1240 if (U_FAILURE(status) || !getTimeZone().useDaylightTime()) |
| 1241 return FALSE; |
| 1242 |
| 1243 // Force an update of the state of the Calendar. |
| 1244 ((GregorianCalendar*)this)->complete(status); // cast away const |
| 1245 |
| 1246 return (UBool)(U_SUCCESS(status) ? (internalGet(UCAL_DST_OFFSET) != 0) : FAL
SE); |
| 1247 } |
| 1248 |
| 1249 // ------------------------------------- |
| 1250 |
| 1251 /** |
| 1252 * Return the ERA. We need a special method for this because the |
| 1253 * default ERA is AD, but a zero (unset) ERA is BC. |
| 1254 */ |
| 1255 int32_t |
| 1256 GregorianCalendar::internalGetEra() const { |
| 1257 return isSet(UCAL_ERA) ? internalGet(UCAL_ERA) : (int32_t)AD; |
| 1258 } |
| 1259 |
| 1260 const char * |
| 1261 GregorianCalendar::getType() const { |
| 1262 //static const char kGregorianType = "gregorian"; |
| 1263 |
| 1264 return "gregorian"; |
| 1265 } |
| 1266 |
| 1267 const UDate GregorianCalendar::fgSystemDefaultCentury = DBL_MIN; |
| 1268 const int32_t GregorianCalendar::fgSystemDefaultCenturyYear = -1; |
| 1269 |
| 1270 UDate GregorianCalendar::fgSystemDefaultCenturyStart = DBL_MIN; |
| 1271 int32_t GregorianCalendar::fgSystemDefaultCenturyStartYear = -1; |
| 1272 |
| 1273 |
| 1274 UBool GregorianCalendar::haveDefaultCentury() const |
| 1275 { |
| 1276 return TRUE; |
| 1277 } |
| 1278 |
| 1279 UDate GregorianCalendar::defaultCenturyStart() const |
| 1280 { |
| 1281 return internalGetDefaultCenturyStart(); |
| 1282 } |
| 1283 |
| 1284 int32_t GregorianCalendar::defaultCenturyStartYear() const |
| 1285 { |
| 1286 return internalGetDefaultCenturyStartYear(); |
| 1287 } |
| 1288 |
| 1289 UDate |
| 1290 GregorianCalendar::internalGetDefaultCenturyStart() const |
| 1291 { |
| 1292 // lazy-evaluate systemDefaultCenturyStart |
| 1293 UBool needsUpdate; |
| 1294 UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), ne
edsUpdate); |
| 1295 |
| 1296 if (needsUpdate) { |
| 1297 initializeSystemDefaultCentury(); |
| 1298 } |
| 1299 |
| 1300 // use defaultCenturyStart unless it's the flag value; |
| 1301 // then use systemDefaultCenturyStart |
| 1302 |
| 1303 return fgSystemDefaultCenturyStart; |
| 1304 } |
| 1305 |
| 1306 int32_t |
| 1307 GregorianCalendar::internalGetDefaultCenturyStartYear() const |
| 1308 { |
| 1309 // lazy-evaluate systemDefaultCenturyStartYear |
| 1310 UBool needsUpdate; |
| 1311 UMTX_CHECK(NULL, (fgSystemDefaultCenturyStart == fgSystemDefaultCentury), ne
edsUpdate); |
| 1312 |
| 1313 if (needsUpdate) { |
| 1314 initializeSystemDefaultCentury(); |
| 1315 } |
| 1316 |
| 1317 // use defaultCenturyStart unless it's the flag value; |
| 1318 // then use systemDefaultCenturyStartYear |
| 1319 |
| 1320 return fgSystemDefaultCenturyStartYear; |
| 1321 } |
| 1322 |
| 1323 void |
| 1324 GregorianCalendar::initializeSystemDefaultCentury() |
| 1325 { |
| 1326 // initialize systemDefaultCentury and systemDefaultCenturyYear based |
| 1327 // on the current time. They'll be set to 80 years before |
| 1328 // the current time. |
| 1329 UErrorCode status = U_ZERO_ERROR; |
| 1330 Calendar *calendar = new GregorianCalendar(status); |
| 1331 if (calendar != NULL && U_SUCCESS(status)) |
| 1332 { |
| 1333 calendar->setTime(Calendar::getNow(), status); |
| 1334 calendar->add(UCAL_YEAR, -80, status); |
| 1335 |
| 1336 UDate newStart = calendar->getTime(status); |
| 1337 int32_t newYear = calendar->get(UCAL_YEAR, status); |
| 1338 umtx_lock(NULL); |
| 1339 if (fgSystemDefaultCenturyStart == fgSystemDefaultCentury) |
| 1340 { |
| 1341 fgSystemDefaultCenturyStartYear = newYear; |
| 1342 fgSystemDefaultCenturyStart = newStart; |
| 1343 } |
| 1344 umtx_unlock(NULL); |
| 1345 delete calendar; |
| 1346 } |
| 1347 // We have no recourse upon failure unless we want to propagate the failure |
| 1348 // out. |
| 1349 } |
| 1350 |
| 1351 |
| 1352 U_NAMESPACE_END |
| 1353 |
| 1354 #endif /* #if !UCONFIG_NO_FORMATTING */ |
| 1355 |
| 1356 //eof |
OLD | NEW |