OLD | NEW |
(Empty) | |
| 1 /************************************************************************ |
| 2 * Copyright (C) 1996-2008, International Business Machines Corporation * |
| 3 * and others. All Rights Reserved. * |
| 4 ************************************************************************ |
| 5 * 2003-nov-07 srl Port from Java |
| 6 */ |
| 7 |
| 8 #include "astro.h" |
| 9 |
| 10 #if !UCONFIG_NO_FORMATTING |
| 11 |
| 12 #include "unicode/calendar.h" |
| 13 #include <math.h> |
| 14 #include <float.h> |
| 15 #include "unicode/putil.h" |
| 16 #include "uhash.h" |
| 17 #include "umutex.h" |
| 18 #include "ucln_in.h" |
| 19 #include "putilimp.h" |
| 20 #include <stdio.h> // for toString() |
| 21 |
| 22 #if defined (PI) |
| 23 #undef PI |
| 24 #endif |
| 25 |
| 26 #ifdef U_DEBUG_ASTRO |
| 27 # include "uresimp.h" // for debugging |
| 28 |
| 29 static void debug_astro_loc(const char *f, int32_t l) |
| 30 { |
| 31 fprintf(stderr, "%s:%d: ", f, l); |
| 32 } |
| 33 |
| 34 static void debug_astro_msg(const char *pat, ...) |
| 35 { |
| 36 va_list ap; |
| 37 va_start(ap, pat); |
| 38 vfprintf(stderr, pat, ap); |
| 39 fflush(stderr); |
| 40 } |
| 41 #include "unicode/datefmt.h" |
| 42 #include "unicode/ustring.h" |
| 43 static const char * debug_astro_date(UDate d) { |
| 44 static char gStrBuf[1024]; |
| 45 static DateFormat *df = NULL; |
| 46 if(df == NULL) { |
| 47 df = DateFormat::createDateTimeInstance(DateFormat::MEDIUM, DateFormat::MEDI
UM, Locale::getUS()); |
| 48 df->adoptTimeZone(TimeZone::getGMT()->clone()); |
| 49 } |
| 50 UnicodeString str; |
| 51 df->format(d,str); |
| 52 u_austrncpy(gStrBuf,str.getTerminatedBuffer(),sizeof(gStrBuf)-1); |
| 53 return gStrBuf; |
| 54 } |
| 55 |
| 56 // must use double parens, i.e.: U_DEBUG_ASTRO_MSG(("four is: %d",4)); |
| 57 #define U_DEBUG_ASTRO_MSG(x) {debug_astro_loc(__FILE__,__LINE__);debug_astro_msg
x;} |
| 58 #else |
| 59 #define U_DEBUG_ASTRO_MSG(x) |
| 60 #endif |
| 61 |
| 62 static inline UBool isINVALID(double d) { |
| 63 return(uprv_isNaN(d)); |
| 64 } |
| 65 |
| 66 static UMTX ccLock = NULL; |
| 67 |
| 68 U_CDECL_BEGIN |
| 69 static UBool calendar_astro_cleanup(void) { |
| 70 umtx_destroy(&ccLock); |
| 71 return TRUE; |
| 72 } |
| 73 U_CDECL_END |
| 74 |
| 75 U_NAMESPACE_BEGIN |
| 76 |
| 77 /** |
| 78 * The number of standard hours in one sidereal day. |
| 79 * Approximately 24.93. |
| 80 * @internal |
| 81 * @deprecated ICU 2.4. This class may be removed or modified. |
| 82 */ |
| 83 #define SIDEREAL_DAY (23.93446960027) |
| 84 |
| 85 /** |
| 86 * The number of sidereal hours in one mean solar day. |
| 87 * Approximately 24.07. |
| 88 * @internal |
| 89 * @deprecated ICU 2.4. This class may be removed or modified. |
| 90 */ |
| 91 #define SOLAR_DAY (24.065709816) |
| 92 |
| 93 /** |
| 94 * The average number of solar days from one new moon to the next. This is the
time |
| 95 * it takes for the moon to return the same ecliptic longitude as the sun. |
| 96 * It is longer than the sidereal month because the sun's longitude increases |
| 97 * during the year due to the revolution of the earth around the sun. |
| 98 * Approximately 29.53. |
| 99 * |
| 100 * @see #SIDEREAL_MONTH |
| 101 * @internal |
| 102 * @deprecated ICU 2.4. This class may be removed or modified. |
| 103 */ |
| 104 const double CalendarAstronomer::SYNODIC_MONTH = 29.530588853; |
| 105 |
| 106 /** |
| 107 * The average number of days it takes |
| 108 * for the moon to return to the same ecliptic longitude relative to the |
| 109 * stellar background. This is referred to as the sidereal month. |
| 110 * It is shorter than the synodic month due to |
| 111 * the revolution of the earth around the sun. |
| 112 * Approximately 27.32. |
| 113 * |
| 114 * @see #SYNODIC_MONTH |
| 115 * @internal |
| 116 * @deprecated ICU 2.4. This class may be removed or modified. |
| 117 */ |
| 118 #define SIDEREAL_MONTH 27.32166 |
| 119 |
| 120 /** |
| 121 * The average number number of days between successive vernal equinoxes. |
| 122 * Due to the precession of the earth's |
| 123 * axis, this is not precisely the same as the sidereal year. |
| 124 * Approximately 365.24 |
| 125 * |
| 126 * @see #SIDEREAL_YEAR |
| 127 * @internal |
| 128 * @deprecated ICU 2.4. This class may be removed or modified. |
| 129 */ |
| 130 #define TROPICAL_YEAR 365.242191 |
| 131 |
| 132 /** |
| 133 * The average number of days it takes |
| 134 * for the sun to return to the same position against the fixed stellar |
| 135 * background. This is the duration of one orbit of the earth about the sun |
| 136 * as it would appear to an outside observer. |
| 137 * Due to the precession of the earth's |
| 138 * axis, this is not precisely the same as the tropical year. |
| 139 * Approximately 365.25. |
| 140 * |
| 141 * @see #TROPICAL_YEAR |
| 142 * @internal |
| 143 * @deprecated ICU 2.4. This class may be removed or modified. |
| 144 */ |
| 145 #define SIDEREAL_YEAR 365.25636 |
| 146 |
| 147 //------------------------------------------------------------------------- |
| 148 // Time-related constants |
| 149 //------------------------------------------------------------------------- |
| 150 |
| 151 /** |
| 152 * The number of milliseconds in one second. |
| 153 * @internal |
| 154 * @deprecated ICU 2.4. This class may be removed or modified. |
| 155 */ |
| 156 #define SECOND_MS U_MILLIS_PER_SECOND |
| 157 |
| 158 /** |
| 159 * The number of milliseconds in one minute. |
| 160 * @internal |
| 161 * @deprecated ICU 2.4. This class may be removed or modified. |
| 162 */ |
| 163 #define MINUTE_MS U_MILLIS_PER_MINUTE |
| 164 |
| 165 /** |
| 166 * The number of milliseconds in one hour. |
| 167 * @internal |
| 168 * @deprecated ICU 2.4. This class may be removed or modified. |
| 169 */ |
| 170 #define HOUR_MS U_MILLIS_PER_HOUR |
| 171 |
| 172 /** |
| 173 * The number of milliseconds in one day. |
| 174 * @internal |
| 175 * @deprecated ICU 2.4. This class may be removed or modified. |
| 176 */ |
| 177 #define DAY_MS U_MILLIS_PER_DAY |
| 178 |
| 179 /** |
| 180 * The start of the julian day numbering scheme used by astronomers, which |
| 181 * is 1/1/4713 BC (Julian), 12:00 GMT. This is given as the number of milliseco
nds |
| 182 * since 1/1/1970 AD (Gregorian), a negative number. |
| 183 * Note that julian day numbers and |
| 184 * the Julian calendar are <em>not</em> the same thing. Also note that |
| 185 * julian days start at <em>noon</em>, not midnight. |
| 186 * @internal |
| 187 * @deprecated ICU 2.4. This class may be removed or modified. |
| 188 */ |
| 189 #define JULIAN_EPOCH_MS -210866760000000.0 |
| 190 |
| 191 |
| 192 /** |
| 193 * Milliseconds value for 0.0 January 2000 AD. |
| 194 */ |
| 195 #define EPOCH_2000_MS 946598400000.0 |
| 196 |
| 197 //------------------------------------------------------------------------- |
| 198 // Assorted private data used for conversions |
| 199 //------------------------------------------------------------------------- |
| 200 |
| 201 // My own copies of these so compilers are more likely to optimize them away |
| 202 const double CalendarAstronomer::PI = 3.14159265358979323846; |
| 203 |
| 204 #define CalendarAstronomer_PI2 (CalendarAstronomer::PI*2.0) |
| 205 #define RAD_HOUR ( 12 / CalendarAstronomer::PI ) // radians -> hours |
| 206 #define DEG_RAD ( CalendarAstronomer::PI / 180 ) // degrees -> radians |
| 207 #define RAD_DEG ( 180 / CalendarAstronomer::PI ) // radians -> degrees |
| 208 |
| 209 /*** |
| 210 * Given 'value', add or subtract 'range' until 0 <= 'value' < range. |
| 211 * The modulus operator. |
| 212 */ |
| 213 inline static double normalize(double value, double range) { |
| 214 return value - range * ClockMath::floorDivide(value, range); |
| 215 } |
| 216 |
| 217 /** |
| 218 * Normalize an angle so that it's in the range 0 - 2pi. |
| 219 * For positive angles this is just (angle % 2pi), but the Java |
| 220 * mod operator doesn't work that way for negative numbers.... |
| 221 */ |
| 222 inline static double norm2PI(double angle) { |
| 223 return normalize(angle, CalendarAstronomer::PI * 2.0); |
| 224 } |
| 225 |
| 226 /** |
| 227 * Normalize an angle into the range -PI - PI |
| 228 */ |
| 229 inline static double normPI(double angle) { |
| 230 return normalize(angle + CalendarAstronomer::PI, CalendarAstronomer::PI * 2.
0) - CalendarAstronomer::PI; |
| 231 } |
| 232 |
| 233 //------------------------------------------------------------------------- |
| 234 // Constructors |
| 235 //------------------------------------------------------------------------- |
| 236 |
| 237 /** |
| 238 * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
| 239 * the current date and time. |
| 240 * @internal |
| 241 * @deprecated ICU 2.4. This class may be removed or modified. |
| 242 */ |
| 243 CalendarAstronomer::CalendarAstronomer(): |
| 244 fTime(Calendar::getNow()), fLongitude(0.0), fLatitude(0.0), fGmtOffset(0.0), m
oonPosition(0,0), moonPositionSet(FALSE) { |
| 245 clearCache(); |
| 246 } |
| 247 |
| 248 /** |
| 249 * Construct a new <code>CalendarAstronomer</code> object that is initialized to |
| 250 * the specified date and time. |
| 251 * @internal |
| 252 * @deprecated ICU 2.4. This class may be removed or modified. |
| 253 */ |
| 254 CalendarAstronomer::CalendarAstronomer(UDate d): fTime(d), fLongitude(0.0), fLat
itude(0.0), fGmtOffset(0.0), moonPosition(0,0), moonPositionSet(FALSE) { |
| 255 clearCache(); |
| 256 } |
| 257 |
| 258 /** |
| 259 * Construct a new <code>CalendarAstronomer</code> object with the given |
| 260 * latitude and longitude. The object's time is set to the current |
| 261 * date and time. |
| 262 * <p> |
| 263 * @param longitude The desired longitude, in <em>degrees</em> east of |
| 264 * the Greenwich meridian. |
| 265 * |
| 266 * @param latitude The desired latitude, in <em>degrees</em>. Positive |
| 267 * values signify North, negative South. |
| 268 * |
| 269 * @see java.util.Date#getTime() |
| 270 * @internal |
| 271 * @deprecated ICU 2.4. This class may be removed or modified. |
| 272 */ |
| 273 CalendarAstronomer::CalendarAstronomer(double longitude, double latitude) : |
| 274 fTime(Calendar::getNow()), moonPosition(0,0), moonPositionSet(FALSE) { |
| 275 fLongitude = normPI(longitude * (double)DEG_RAD); |
| 276 fLatitude = normPI(latitude * (double)DEG_RAD); |
| 277 fGmtOffset = (double)(fLongitude * 24. * (double)HOUR_MS / (double)CalendarAst
ronomer_PI2); |
| 278 clearCache(); |
| 279 } |
| 280 |
| 281 CalendarAstronomer::~CalendarAstronomer() |
| 282 { |
| 283 } |
| 284 |
| 285 //------------------------------------------------------------------------- |
| 286 // Time and date getters and setters |
| 287 //------------------------------------------------------------------------- |
| 288 |
| 289 /** |
| 290 * Set the current date and time of this <code>CalendarAstronomer</code> object.
All |
| 291 * astronomical calculations are performed based on this time setting. |
| 292 * |
| 293 * @param aTime the date and time, expressed as the number of milliseconds since |
| 294 * 1/1/1970 0:00 GMT (Gregorian). |
| 295 * |
| 296 * @see #setDate |
| 297 * @see #getTime |
| 298 * @internal |
| 299 * @deprecated ICU 2.4. This class may be removed or modified. |
| 300 */ |
| 301 void CalendarAstronomer::setTime(UDate aTime) { |
| 302 fTime = aTime; |
| 303 U_DEBUG_ASTRO_MSG(("setTime(%.1lf, %sL)\n", aTime, debug_astro_date(aTime+fG
mtOffset))); |
| 304 clearCache(); |
| 305 } |
| 306 |
| 307 /** |
| 308 * Set the current date and time of this <code>CalendarAstronomer</code> object.
All |
| 309 * astronomical calculations are performed based on this time setting. |
| 310 * |
| 311 * @param jdn the desired time, expressed as a "julian day number", |
| 312 * which is the number of elapsed days since |
| 313 * 1/1/4713 BC (Julian), 12:00 GMT. Note that julian day |
| 314 * numbers start at <em>noon</em>. To get the jdn for |
| 315 * the corresponding midnight, subtract 0.5. |
| 316 * |
| 317 * @see #getJulianDay |
| 318 * @see #JULIAN_EPOCH_MS |
| 319 * @internal |
| 320 * @deprecated ICU 2.4. This class may be removed or modified. |
| 321 */ |
| 322 void CalendarAstronomer::setJulianDay(double jdn) { |
| 323 fTime = (double)(jdn * DAY_MS) + JULIAN_EPOCH_MS; |
| 324 clearCache(); |
| 325 julianDay = jdn; |
| 326 } |
| 327 |
| 328 /** |
| 329 * Get the current time of this <code>CalendarAstronomer</code> object, |
| 330 * represented as the number of milliseconds since |
| 331 * 1/1/1970 AD 0:00 GMT (Gregorian). |
| 332 * |
| 333 * @see #setTime |
| 334 * @see #getDate |
| 335 * @internal |
| 336 * @deprecated ICU 2.4. This class may be removed or modified. |
| 337 */ |
| 338 UDate CalendarAstronomer::getTime() { |
| 339 return fTime; |
| 340 } |
| 341 |
| 342 /** |
| 343 * Get the current time of this <code>CalendarAstronomer</code> object, |
| 344 * expressed as a "julian day number", which is the number of elapsed |
| 345 * days since 1/1/4713 BC (Julian), 12:00 GMT. |
| 346 * |
| 347 * @see #setJulianDay |
| 348 * @see #JULIAN_EPOCH_MS |
| 349 * @internal |
| 350 * @deprecated ICU 2.4. This class may be removed or modified. |
| 351 */ |
| 352 double CalendarAstronomer::getJulianDay() { |
| 353 if (isINVALID(julianDay)) { |
| 354 julianDay = (fTime - (double)JULIAN_EPOCH_MS) / (double)DAY_MS; |
| 355 } |
| 356 return julianDay; |
| 357 } |
| 358 |
| 359 /** |
| 360 * Return this object's time expressed in julian centuries: |
| 361 * the number of centuries after 1/1/1900 AD, 12:00 GMT |
| 362 * |
| 363 * @see #getJulianDay |
| 364 * @internal |
| 365 * @deprecated ICU 2.4. This class may be removed or modified. |
| 366 */ |
| 367 double CalendarAstronomer::getJulianCentury() { |
| 368 if (isINVALID(julianCentury)) { |
| 369 julianCentury = (getJulianDay() - 2415020.0) / 36525.0; |
| 370 } |
| 371 return julianCentury; |
| 372 } |
| 373 |
| 374 /** |
| 375 * Returns the current Greenwich sidereal time, measured in hours |
| 376 * @internal |
| 377 * @deprecated ICU 2.4. This class may be removed or modified. |
| 378 */ |
| 379 double CalendarAstronomer::getGreenwichSidereal() { |
| 380 if (isINVALID(siderealTime)) { |
| 381 // See page 86 of "Practial Astronomy with your Calculator", |
| 382 // by Peter Duffet-Smith, for details on the algorithm. |
| 383 |
| 384 double UT = normalize(fTime/(double)HOUR_MS, 24.); |
| 385 |
| 386 siderealTime = normalize(getSiderealOffset() + UT*1.002737909, 24.); |
| 387 } |
| 388 return siderealTime; |
| 389 } |
| 390 |
| 391 double CalendarAstronomer::getSiderealOffset() { |
| 392 if (isINVALID(siderealT0)) { |
| 393 double JD = uprv_floor(getJulianDay() - 0.5) + 0.5; |
| 394 double S = JD - 2451545.0; |
| 395 double T = S / 36525.0; |
| 396 siderealT0 = normalize(6.697374558 + 2400.051336*T + 0.000025862*T*T, 24
); |
| 397 } |
| 398 return siderealT0; |
| 399 } |
| 400 |
| 401 /** |
| 402 * Returns the current local sidereal time, measured in hours |
| 403 * @internal |
| 404 * @deprecated ICU 2.4. This class may be removed or modified. |
| 405 */ |
| 406 double CalendarAstronomer::getLocalSidereal() { |
| 407 return normalize(getGreenwichSidereal() + (fGmtOffset/(double)HOUR_MS), 24.)
; |
| 408 } |
| 409 |
| 410 /** |
| 411 * Converts local sidereal time to Universal Time. |
| 412 * |
| 413 * @param lst The Local Sidereal Time, in hours since sidereal midnight |
| 414 * on this object's current date. |
| 415 * |
| 416 * @return The corresponding Universal Time, in milliseconds since |
| 417 * 1 Jan 1970, GMT. |
| 418 */ |
| 419 double CalendarAstronomer::lstToUT(double lst) { |
| 420 // Convert to local mean time |
| 421 double lt = normalize((lst - getSiderealOffset()) * 0.9972695663, 24); |
| 422 |
| 423 // Then find local midnight on this day |
| 424 double base = (DAY_MS * ClockMath::floorDivide(fTime + fGmtOffset,(double)DA
Y_MS)) - fGmtOffset; |
| 425 |
| 426 //out(" lt =" + lt + " hours"); |
| 427 //out(" base=" + new Date(base)); |
| 428 |
| 429 return base + (long)(lt * HOUR_MS); |
| 430 } |
| 431 |
| 432 |
| 433 //------------------------------------------------------------------------- |
| 434 // Coordinate transformations, all based on the current time of this object |
| 435 //------------------------------------------------------------------------- |
| 436 |
| 437 /** |
| 438 * Convert from ecliptic to equatorial coordinates. |
| 439 * |
| 440 * @param ecliptic A point in the sky in ecliptic coordinates. |
| 441 * @return The corresponding point in equatorial coordinates. |
| 442 * @internal |
| 443 * @deprecated ICU 2.4. This class may be removed or modified. |
| 444 */ |
| 445 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda
rAstronomer::Equatorial& result, const CalendarAstronomer::Ecliptic& ecliptic) |
| 446 { |
| 447 return eclipticToEquatorial(result, ecliptic.longitude, ecliptic.latitude); |
| 448 } |
| 449 |
| 450 /** |
| 451 * Convert from ecliptic to equatorial coordinates. |
| 452 * |
| 453 * @param eclipLong The ecliptic longitude |
| 454 * @param eclipLat The ecliptic latitude |
| 455 * |
| 456 * @return The corresponding point in equatorial coordinates. |
| 457 * @internal |
| 458 * @deprecated ICU 2.4. This class may be removed or modified. |
| 459 */ |
| 460 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda
rAstronomer::Equatorial& result, double eclipLong, double eclipLat) |
| 461 { |
| 462 // See page 42 of "Practial Astronomy with your Calculator", |
| 463 // by Peter Duffet-Smith, for details on the algorithm. |
| 464 |
| 465 double obliq = eclipticObliquity(); |
| 466 double sinE = ::sin(obliq); |
| 467 double cosE = cos(obliq); |
| 468 |
| 469 double sinL = ::sin(eclipLong); |
| 470 double cosL = cos(eclipLong); |
| 471 |
| 472 double sinB = ::sin(eclipLat); |
| 473 double cosB = cos(eclipLat); |
| 474 double tanB = tan(eclipLat); |
| 475 |
| 476 result.set(atan2(sinL*cosE - tanB*sinE, cosL), |
| 477 asin(sinB*cosE + cosB*sinE*sinL) ); |
| 478 return result; |
| 479 } |
| 480 |
| 481 /** |
| 482 * Convert from ecliptic longitude to equatorial coordinates. |
| 483 * |
| 484 * @param eclipLong The ecliptic longitude |
| 485 * |
| 486 * @return The corresponding point in equatorial coordinates. |
| 487 * @internal |
| 488 * @deprecated ICU 2.4. This class may be removed or modified. |
| 489 */ |
| 490 CalendarAstronomer::Equatorial& CalendarAstronomer::eclipticToEquatorial(Calenda
rAstronomer::Equatorial& result, double eclipLong) |
| 491 { |
| 492 return eclipticToEquatorial(result, eclipLong, 0); // TODO: optimize |
| 493 } |
| 494 |
| 495 /** |
| 496 * @internal |
| 497 * @deprecated ICU 2.4. This class may be removed or modified. |
| 498 */ |
| 499 CalendarAstronomer::Horizon& CalendarAstronomer::eclipticToHorizon(CalendarAstro
nomer::Horizon& result, double eclipLong) |
| 500 { |
| 501 Equatorial equatorial; |
| 502 eclipticToEquatorial(equatorial, eclipLong); |
| 503 |
| 504 double H = getLocalSidereal()*CalendarAstronomer::PI/12 - equatorial.ascensi
on; // Hour-angle |
| 505 |
| 506 double sinH = ::sin(H); |
| 507 double cosH = cos(H); |
| 508 double sinD = ::sin(equatorial.declination); |
| 509 double cosD = cos(equatorial.declination); |
| 510 double sinL = ::sin(fLatitude); |
| 511 double cosL = cos(fLatitude); |
| 512 |
| 513 double altitude = asin(sinD*sinL + cosD*cosL*cosH); |
| 514 double azimuth = atan2(-cosD*cosL*sinH, sinD - sinL * ::sin(altitude)); |
| 515 |
| 516 result.set(azimuth, altitude); |
| 517 return result; |
| 518 } |
| 519 |
| 520 |
| 521 //------------------------------------------------------------------------- |
| 522 // The Sun |
| 523 //------------------------------------------------------------------------- |
| 524 |
| 525 // |
| 526 // Parameters of the Sun's orbit as of the epoch Jan 0.0 1990 |
| 527 // Angles are in radians (after multiplying by CalendarAstronomer::PI/180) |
| 528 // |
| 529 #define JD_EPOCH 2447891.5 // Julian day of epoch |
| 530 |
| 531 #define SUN_ETA_G (279.403303 * CalendarAstronomer::PI/180) // Ecliptic longi
tude at epoch |
| 532 #define SUN_OMEGA_G (282.768422 * CalendarAstronomer::PI/180) // Ecliptic longi
tude of perigee |
| 533 #define SUN_E 0.016713 // Eccentricity of orbit |
| 534 //double sunR0 1.495585e8 // Semi-major axis in KM |
| 535 //double sunTheta0 (0.533128 * CalendarAstronomer::PI/180) // Angular diamete
r at R0 |
| 536 |
| 537 // The following three methods, which compute the sun parameters |
| 538 // given above for an arbitrary epoch (whatever time the object is |
| 539 // set to), make only a small difference as compared to using the |
| 540 // above constants. E.g., Sunset times might differ by ~12 |
| 541 // seconds. Furthermore, the eta-g computation is befuddled by |
| 542 // Duffet-Smith's incorrect coefficients (p.86). I've corrected |
| 543 // the first-order coefficient but the others may be off too - no |
| 544 // way of knowing without consulting another source. |
| 545 |
| 546 // /** |
| 547 // * Return the sun's ecliptic longitude at perigee for the current time. |
| 548 // * See Duffett-Smith, p. 86. |
| 549 // * @return radians |
| 550 // */ |
| 551 // private double getSunOmegaG() { |
| 552 // double T = getJulianCentury(); |
| 553 // return (281.2208444 + (1.719175 + 0.000452778*T)*T) * DEG_RAD; |
| 554 // } |
| 555 |
| 556 // /** |
| 557 // * Return the sun's ecliptic longitude for the current time. |
| 558 // * See Duffett-Smith, p. 86. |
| 559 // * @return radians |
| 560 // */ |
| 561 // private double getSunEtaG() { |
| 562 // double T = getJulianCentury(); |
| 563 // //return (279.6966778 + (36000.76892 + 0.0003025*T)*T) * DEG_RAD; |
| 564 // // |
| 565 // // The above line is from Duffett-Smith, and yields manifestly wrong |
| 566 // // results. The below constant is derived empirically to match the |
| 567 // // constant he gives for the 1990 EPOCH. |
| 568 // // |
| 569 // return (279.6966778 + (-0.3262541582718024 + 0.0003025*T)*T) * DEG_RAD; |
| 570 // } |
| 571 |
| 572 // /** |
| 573 // * Return the sun's eccentricity of orbit for the current time. |
| 574 // * See Duffett-Smith, p. 86. |
| 575 // * @return double |
| 576 // */ |
| 577 // private double getSunE() { |
| 578 // double T = getJulianCentury(); |
| 579 // return 0.01675104 - (0.0000418 + 0.000000126*T)*T; |
| 580 // } |
| 581 |
| 582 /** |
| 583 * Find the "true anomaly" (longitude) of an object from |
| 584 * its mean anomaly and the eccentricity of its orbit. This uses |
| 585 * an iterative solution to Kepler's equation. |
| 586 * |
| 587 * @param meanAnomaly The object's longitude calculated as if it were in |
| 588 * a regular, circular orbit, measured in radians |
| 589 * from the point of perigee. |
| 590 * |
| 591 * @param eccentricity The eccentricity of the orbit |
| 592 * |
| 593 * @return The true anomaly (longitude) measured in radians |
| 594 */ |
| 595 static double trueAnomaly(double meanAnomaly, double eccentricity) |
| 596 { |
| 597 // First, solve Kepler's equation iteratively |
| 598 // Duffett-Smith, p.90 |
| 599 double delta; |
| 600 double E = meanAnomaly; |
| 601 do { |
| 602 delta = E - eccentricity * ::sin(E) - meanAnomaly; |
| 603 E = E - delta / (1 - eccentricity * ::cos(E)); |
| 604 } |
| 605 while (uprv_fabs(delta) > 1e-5); // epsilon = 1e-5 rad |
| 606 |
| 607 return 2.0 * ::atan( ::tan(E/2) * ::sqrt( (1+eccentricity) |
| 608 /(1-eccentricity) ) ); |
| 609 } |
| 610 |
| 611 /** |
| 612 * The longitude of the sun at the time specified by this object. |
| 613 * The longitude is measured in radians along the ecliptic |
| 614 * from the "first point of Aries," the point at which the ecliptic |
| 615 * crosses the earth's equatorial plane at the vernal equinox. |
| 616 * <p> |
| 617 * Currently, this method uses an approximation of the two-body Kepler's |
| 618 * equation for the earth and the sun. It does not take into account the |
| 619 * perturbations caused by the other planets, the moon, etc. |
| 620 * @internal |
| 621 * @deprecated ICU 2.4. This class may be removed or modified. |
| 622 */ |
| 623 double CalendarAstronomer::getSunLongitude() |
| 624 { |
| 625 // See page 86 of "Practial Astronomy with your Calculator", |
| 626 // by Peter Duffet-Smith, for details on the algorithm. |
| 627 |
| 628 if (isINVALID(sunLongitude)) { |
| 629 getSunLongitude(getJulianDay(), sunLongitude, meanAnomalySun); |
| 630 } |
| 631 return sunLongitude; |
| 632 } |
| 633 |
| 634 /** |
| 635 * TODO Make this public when the entire class is package-private. |
| 636 */ |
| 637 /*public*/ void CalendarAstronomer::getSunLongitude(double jDay, double &longitu
de, double &meanAnomaly) |
| 638 { |
| 639 // See page 86 of "Practial Astronomy with your Calculator", |
| 640 // by Peter Duffet-Smith, for details on the algorithm. |
| 641 |
| 642 double day = jDay - JD_EPOCH; // Days since epoch |
| 643 |
| 644 // Find the angular distance the sun in a fictitious |
| 645 // circular orbit has travelled since the epoch. |
| 646 double epochAngle = norm2PI(CalendarAstronomer_PI2/TROPICAL_YEAR*day); |
| 647 |
| 648 // The epoch wasn't at the sun's perigee; find the angular distance |
| 649 // since perigee, which is called the "mean anomaly" |
| 650 meanAnomaly = norm2PI(epochAngle + SUN_ETA_G - SUN_OMEGA_G); |
| 651 |
| 652 // Now find the "true anomaly", e.g. the real solar longitude |
| 653 // by solving Kepler's equation for an elliptical orbit |
| 654 // NOTE: The 3rd ed. of the book lists omega_g and eta_g in different |
| 655 // equations; omega_g is to be correct. |
| 656 longitude = norm2PI(trueAnomaly(meanAnomaly, SUN_E) + SUN_OMEGA_G); |
| 657 } |
| 658 |
| 659 /** |
| 660 * The position of the sun at this object's current date and time, |
| 661 * in equatorial coordinates. |
| 662 * @internal |
| 663 * @deprecated ICU 2.4. This class may be removed or modified. |
| 664 */ |
| 665 CalendarAstronomer::Equatorial& CalendarAstronomer::getSunPosition(CalendarAstro
nomer::Equatorial& result) { |
| 666 return eclipticToEquatorial(result, getSunLongitude(), 0); |
| 667 } |
| 668 |
| 669 |
| 670 /** |
| 671 * Constant representing the vernal equinox. |
| 672 * For use with {@link #getSunTime getSunTime}. |
| 673 * Note: In this case, "vernal" refers to the northern hemisphere's seasons. |
| 674 * @internal |
| 675 * @deprecated ICU 2.4. This class may be removed or modified. |
| 676 */ |
| 677 /*double CalendarAstronomer::VERNAL_EQUINOX() { |
| 678 return 0; |
| 679 }*/ |
| 680 |
| 681 /** |
| 682 * Constant representing the summer solstice. |
| 683 * For use with {@link #getSunTime getSunTime}. |
| 684 * Note: In this case, "summer" refers to the northern hemisphere's seasons. |
| 685 * @internal |
| 686 * @deprecated ICU 2.4. This class may be removed or modified. |
| 687 */ |
| 688 double CalendarAstronomer::SUMMER_SOLSTICE() { |
| 689 return (CalendarAstronomer::PI/2); |
| 690 } |
| 691 |
| 692 /** |
| 693 * Constant representing the autumnal equinox. |
| 694 * For use with {@link #getSunTime getSunTime}. |
| 695 * Note: In this case, "autumn" refers to the northern hemisphere's seasons. |
| 696 * @internal |
| 697 * @deprecated ICU 2.4. This class may be removed or modified. |
| 698 */ |
| 699 /*double CalendarAstronomer::AUTUMN_EQUINOX() { |
| 700 return (CalendarAstronomer::PI); |
| 701 }*/ |
| 702 |
| 703 /** |
| 704 * Constant representing the winter solstice. |
| 705 * For use with {@link #getSunTime getSunTime}. |
| 706 * Note: In this case, "winter" refers to the northern hemisphere's seasons. |
| 707 * @internal |
| 708 * @deprecated ICU 2.4. This class may be removed or modified. |
| 709 */ |
| 710 double CalendarAstronomer::WINTER_SOLSTICE() { |
| 711 return ((CalendarAstronomer::PI*3)/2); |
| 712 } |
| 713 |
| 714 CalendarAstronomer::AngleFunc::~AngleFunc() {} |
| 715 |
| 716 /** |
| 717 * Find the next time at which the sun's ecliptic longitude will have |
| 718 * the desired value. |
| 719 * @internal |
| 720 * @deprecated ICU 2.4. This class may be removed or modified. |
| 721 */ |
| 722 class SunTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
| 723 public: |
| 724 virtual double eval(CalendarAstronomer& a) { return a.getSunLongitude(); } |
| 725 }; |
| 726 |
| 727 UDate CalendarAstronomer::getSunTime(double desired, UBool next) |
| 728 { |
| 729 SunTimeAngleFunc func; |
| 730 return timeOfAngle( func, |
| 731 desired, |
| 732 TROPICAL_YEAR, |
| 733 MINUTE_MS, |
| 734 next); |
| 735 } |
| 736 |
| 737 CalendarAstronomer::CoordFunc::~CoordFunc() {} |
| 738 |
| 739 class RiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
| 740 public: |
| 741 virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer
&a) { a.getSunPosition(result); } |
| 742 }; |
| 743 |
| 744 UDate CalendarAstronomer::getSunRiseSet(UBool rise) |
| 745 { |
| 746 UDate t0 = fTime; |
| 747 |
| 748 // Make a rough guess: 6am or 6pm local time on the current day |
| 749 double noon = ClockMath::floorDivide(fTime + fGmtOffset, (double)DAY_MS)*DAY
_MS - fGmtOffset + (12*HOUR_MS); |
| 750 |
| 751 U_DEBUG_ASTRO_MSG(("Noon=%.2lf, %sL, gmtoff %.2lf\n", noon, debug_astro_date
(noon+fGmtOffset), fGmtOffset)); |
| 752 setTime(noon + ((rise ? -6 : 6) * HOUR_MS)); |
| 753 U_DEBUG_ASTRO_MSG(("added %.2lf ms as a guess,\n", ((rise ? -6. : 6.) * HOUR
_MS))); |
| 754 |
| 755 RiseSetCoordFunc func; |
| 756 double t = riseOrSet(func, |
| 757 rise, |
| 758 .533 * DEG_RAD, // Angular Diameter |
| 759 34. /60.0 * DEG_RAD, // Refraction correction |
| 760 MINUTE_MS / 12.); // Desired accuracy |
| 761 |
| 762 setTime(t0); |
| 763 return t; |
| 764 } |
| 765 |
| 766 // Commented out - currently unused. ICU 2.6, Alan |
| 767 // //------------------------------------------------------------------------
- |
| 768 // // Alternate Sun Rise/Set |
| 769 // // See Duffett-Smith p.93 |
| 770 // //------------------------------------------------------------------------
- |
| 771 // |
| 772 // // This yields worse results (as compared to USNO data) than getSunRiseSet
(). |
| 773 // /** |
| 774 // * TODO Make this when the entire class is package-private. |
| 775 // */ |
| 776 // /*public*/ long getSunRiseSet2(boolean rise) { |
| 777 // // 1. Calculate coordinates of the sun's center for midnight |
| 778 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
| 779 // double[] sl = getSunLongitude(jd);// double lambda1 = sl[0]; |
| 780 // Equatorial pos1 = eclipticToEquatorial(lambda1, 0); |
| 781 // |
| 782 // // 2. Add ... to lambda to get position 24 hours later |
| 783 // double lambda2 = lambda1 + 0.985647*DEG_RAD; |
| 784 // Equatorial pos2 = eclipticToEquatorial(lambda2, 0); |
| 785 // |
| 786 // // 3. Calculate LSTs of rising and setting for these two positions |
| 787 // double tanL = ::tan(fLatitude); |
| 788 // double H = ::acos(-tanL * ::tan(pos1.declination)); |
| 789 // double lst1r = (CalendarAstronomer_PI2 + pos1.ascension - H) * 24 / Ca
lendarAstronomer_PI2; |
| 790 // double lst1s = (pos1.ascension + H) * 24 / CalendarAstronomer_PI2; |
| 791 // H = ::acos(-tanL * ::tan(pos2.declination)); |
| 792 // double lst2r = (CalendarAstronomer_PI2-H + pos2.ascension ) * 24 / Cal
endarAstronomer_PI2; |
| 793 // double lst2s = (H + pos2.ascension ) * 24 / CalendarAstronomer_PI2; |
| 794 // if (lst1r > 24) lst1r -= 24; |
| 795 // if (lst1s > 24) lst1s -= 24; |
| 796 // if (lst2r > 24) lst2r -= 24; |
| 797 // if (lst2s > 24) lst2s -= 24; |
| 798 // |
| 799 // // 4. Convert LSTs to GSTs. If GST1 > GST2, add 24 to GST2. |
| 800 // double gst1r = lstToGst(lst1r); |
| 801 // double gst1s = lstToGst(lst1s); |
| 802 // double gst2r = lstToGst(lst2r); |
| 803 // double gst2s = lstToGst(lst2s); |
| 804 // if (gst1r > gst2r) gst2r += 24; |
| 805 // if (gst1s > gst2s) gst2s += 24; |
| 806 // |
| 807 // // 5. Calculate GST at 0h UT of this date |
| 808 // double t00 = utToGst(0); |
| 809 // |
| 810 // // 6. Calculate GST at 0h on the observer's longitude |
| 811 // double offset = ::round(fLongitude*12/PI); // p.95 step 6; he _rounds_
to nearest 15 deg. |
| 812 // double t00p = t00 - offset*1.002737909; |
| 813 // if (t00p < 0) t00p += 24; // do NOT normalize |
| 814 // |
| 815 // // 7. Adjust |
| 816 // if (gst1r < t00p) { |
| 817 // gst1r += 24; |
| 818 // gst2r += 24; |
| 819 // } |
| 820 // if (gst1s < t00p) { |
| 821 // gst1s += 24; |
| 822 // gst2s += 24; |
| 823 // } |
| 824 // |
| 825 // // 8. |
| 826 // double gstr = (24.07*gst1r-t00*(gst2r-gst1r))/(24.07+gst1r-gst2r); |
| 827 // double gsts = (24.07*gst1s-t00*(gst2s-gst1s))/(24.07+gst1s-gst2s); |
| 828 // |
| 829 // // 9. Correct for parallax, refraction, and sun's diameter |
| 830 // double dec = (pos1.declination + pos2.declination) / 2; |
| 831 // double psi = ::acos(sin(fLatitude) / cos(dec)); |
| 832 // double x = 0.830725 * DEG_RAD; // parallax+refraction+diameter |
| 833 // double y = ::asin(sin(x) / ::sin(psi)) * RAD_DEG; |
| 834 // double delta_t = 240 * y / cos(dec) / 3600; // hours |
| 835 // |
| 836 // // 10. Add correction to GSTs, subtract from GSTr |
| 837 // gstr -= delta_t; |
| 838 // gsts += delta_t; |
| 839 // |
| 840 // // 11. Convert GST to UT and then to local civil time |
| 841 // double ut = gstToUt(rise ? gstr : gsts); |
| 842 // //System.out.println((rise?"rise=":"set=") + ut + ", delta_t=" + delta
_t); |
| 843 // long midnight = DAY_MS * (time / DAY_MS); // Find UT midnight on this
day |
| 844 // return midnight + (long) (ut * 3600000); |
| 845 // } |
| 846 |
| 847 // Commented out - currently unused. ICU 2.6, Alan |
| 848 // /** |
| 849 // * Convert local sidereal time to Greenwich sidereal time. |
| 850 // * Section 15. Duffett-Smith p.21 |
| 851 // * @param lst in hours (0..24) |
| 852 // * @return GST in hours (0..24) |
| 853 // */ |
| 854 // double lstToGst(double lst) { |
| 855 // double delta = fLongitude * 24 / CalendarAstronomer_PI2; |
| 856 // return normalize(lst - delta, 24); |
| 857 // } |
| 858 |
| 859 // Commented out - currently unused. ICU 2.6, Alan |
| 860 // /** |
| 861 // * Convert UT to GST on this date. |
| 862 // * Section 12. Duffett-Smith p.17 |
| 863 // * @param ut in hours |
| 864 // * @return GST in hours |
| 865 // */ |
| 866 // double utToGst(double ut) { |
| 867 // return normalize(getT0() + ut*1.002737909, 24); |
| 868 // } |
| 869 |
| 870 // Commented out - currently unused. ICU 2.6, Alan |
| 871 // /** |
| 872 // * Convert GST to UT on this date. |
| 873 // * Section 13. Duffett-Smith p.18 |
| 874 // * @param gst in hours |
| 875 // * @return UT in hours |
| 876 // */ |
| 877 // double gstToUt(double gst) { |
| 878 // return normalize(gst - getT0(), 24) * 0.9972695663; |
| 879 // } |
| 880 |
| 881 // Commented out - currently unused. ICU 2.6, Alan |
| 882 // double getT0() { |
| 883 // // Common computation for UT <=> GST |
| 884 // |
| 885 // // Find JD for 0h UT |
| 886 // double jd = uprv_floor(getJulianDay() - 0.5) + 0.5; |
| 887 // |
| 888 // double s = jd - 2451545.0; |
| 889 // double t = s / 36525.0; |
| 890 // double t0 = 6.697374558 + (2400.051336 + 0.000025862*t)*t; |
| 891 // return t0; |
| 892 // } |
| 893 |
| 894 // Commented out - currently unused. ICU 2.6, Alan |
| 895 // //------------------------------------------------------------------------
- |
| 896 // // Alternate Sun Rise/Set |
| 897 // // See sci.astro FAQ |
| 898 // // http://www.faqs.org/faqs/astronomy/faq/part3/section-5.html |
| 899 // //------------------------------------------------------------------------
- |
| 900 // |
| 901 // // Note: This method appears to produce inferior accuracy as |
| 902 // // compared to getSunRiseSet(). |
| 903 // |
| 904 // /** |
| 905 // * TODO Make this when the entire class is package-private. |
| 906 // */ |
| 907 // /*public*/ long getSunRiseSet3(boolean rise) { |
| 908 // |
| 909 // // Compute day number for 0.0 Jan 2000 epoch |
| 910 // double d = (double)(time - EPOCH_2000_MS) / DAY_MS; |
| 911 // |
| 912 // // Now compute the Local Sidereal Time, LST: |
| 913 // // |
| 914 // double LST = 98.9818 + 0.985647352 * d + /*UT*15 + long*/ |
| 915 // fLongitude*RAD_DEG; |
| 916 // // |
| 917 // // (east long. positive). Note that LST is here expressed in degrees, |
| 918 // // where 15 degrees corresponds to one hour. Since LST really is an a
ngle, |
| 919 // // it's convenient to use one unit---degrees---throughout. |
| 920 // |
| 921 // // COMPUTING THE SUN'S POSITION |
| 922 // // ---------------------------- |
| 923 // // |
| 924 // // To be able to compute the Sun's rise/set times, you need to be able
to |
| 925 // // compute the Sun's position at any time. First compute the "day |
| 926 // // number" d as outlined above, for the desired moment. Next compute: |
| 927 // // |
| 928 // double oblecl = 23.4393 - 3.563E-7 * d; |
| 929 // // |
| 930 // double w = 282.9404 + 4.70935E-5 * d; |
| 931 // double M = 356.0470 + 0.9856002585 * d; |
| 932 // double e = 0.016709 - 1.151E-9 * d; |
| 933 // // |
| 934 // // This is the obliquity of the ecliptic, plus some of the elements of |
| 935 // // the Sun's apparent orbit (i.e., really the Earth's orbit): w = |
| 936 // // argument of perihelion, M = mean anomaly, e = eccentricity. |
| 937 // // Semi-major axis is here assumed to be exactly 1.0 (while not strict
ly |
| 938 // // true, this is still an accurate approximation). Next compute E, th
e |
| 939 // // eccentric anomaly: |
| 940 // // |
| 941 // double E = M + e*(180/PI) * ::sin(M*DEG_RAD) * ( 1.0 + e*cos(M*DEG_RAD
) ); |
| 942 // // |
| 943 // // where E and M are in degrees. This is it---no further iterations a
re |
| 944 // // needed because we know e has a sufficiently small value. Next comp
ute |
| 945 // // the true anomaly, v, and the distance, r: |
| 946 // // |
| 947 // /* r * cos(v) = */ double A = cos(E*DEG_RAD) - e; |
| 948 // /* r * ::sin(v) = */ double B = ::sqrt(1 - e*e) * ::sin(E*DEG
_RAD); |
| 949 // // |
| 950 // // and |
| 951 // // |
| 952 // // r = sqrt( A*A + B*B ) |
| 953 // double v = ::atan2( B, A )*RAD_DEG; |
| 954 // // |
| 955 // // The Sun's true longitude, slon, can now be computed: |
| 956 // // |
| 957 // double slon = v + w; |
| 958 // // |
| 959 // // Since the Sun is always at the ecliptic (or at least very very clos
e to |
| 960 // // it), we can use simplified formulae to convert slon (the Sun's ecli
ptic |
| 961 // // longitude) to sRA and sDec (the Sun's RA and Dec): |
| 962 // // |
| 963 // // ::sin(slon) * cos(oblecl) |
| 964 // // tan(sRA) = ------------------------- |
| 965 // // cos(slon) |
| 966 // // |
| 967 // // ::sin(sDec) = ::sin(oblecl) * ::sin(slon) |
| 968 // // |
| 969 // // As was the case when computing az, the Azimuth, if possible use an |
| 970 // // atan2() function to compute sRA. |
| 971 // |
| 972 // double sRA = ::atan2(sin(slon*DEG_RAD) * cos(oblecl*DEG_RAD), cos(slon
*DEG_RAD))*RAD_DEG; |
| 973 // |
| 974 // double sin_sDec = ::sin(oblecl*DEG_RAD) * ::sin(slon*DEG_RAD); |
| 975 // double sDec = ::asin(sin_sDec)*RAD_DEG; |
| 976 // |
| 977 // // COMPUTING RISE AND SET TIMES |
| 978 // // ---------------------------- |
| 979 // // |
| 980 // // To compute when an object rises or sets, you must compute when it |
| 981 // // passes the meridian and the HA of rise/set. Then the rise time is |
| 982 // // the meridian time minus HA for rise/set, and the set time is the |
| 983 // // meridian time plus the HA for rise/set. |
| 984 // // |
| 985 // // To find the meridian time, compute the Local Sidereal Time at 0h lo
cal |
| 986 // // time (or 0h UT if you prefer to work in UT) as outlined above---nam
e |
| 987 // // that quantity LST0. The Meridian Time, MT, will now be: |
| 988 // // |
| 989 // // MT = RA - LST0 |
| 990 // double MT = normalize(sRA - LST, 360); |
| 991 // // |
| 992 // // where "RA" is the object's Right Ascension (in degrees!). If negat
ive, |
| 993 // // add 360 deg to MT. If the object is the Sun, leave the time as it
is, |
| 994 // // but if it's stellar, multiply MT by 365.2422/366.2422, to convert f
rom |
| 995 // // sidereal to solar time. Now, compute HA for rise/set, name that |
| 996 // // quantity HA0: |
| 997 // // |
| 998 // // ::sin(h0) - ::sin(lat) * ::sin(Dec) |
| 999 // // cos(HA0) = --------------------------------- |
| 1000 // // cos(lat) * cos(Dec) |
| 1001 // // |
| 1002 // // where h0 is the altitude selected to represent rise/set. For a pur
ely |
| 1003 // // mathematical horizon, set h0 = 0 and simplify to: |
| 1004 // // |
| 1005 // // cos(HA0) = - tan(lat) * tan(Dec) |
| 1006 // // |
| 1007 // // If you want to account for refraction on the atmosphere, set h0 = -
35/60 |
| 1008 // // degrees (-35 arc minutes), and if you want to compute the rise/set
times |
| 1009 // // for the Sun's upper limb, set h0 = -50/60 (-50 arc minutes). |
| 1010 // // |
| 1011 // double h0 = -50/60 * DEG_RAD; |
| 1012 // |
| 1013 // double HA0 = ::acos( |
| 1014 // (sin(h0) - ::sin(fLatitude) * sin_sDec) / |
| 1015 // (cos(fLatitude) * cos(sDec*DEG_RAD)))*RAD_DEG; |
| 1016 // |
| 1017 // // When HA0 has been computed, leave it as it is for the Sun but multi
ply |
| 1018 // // by 365.2422/366.2422 for stellar objects, to convert from sidereal
to |
| 1019 // // solar time. Finally compute: |
| 1020 // // |
| 1021 // // Rise time = MT - HA0 |
| 1022 // // Set time = MT + HA0 |
| 1023 // // |
| 1024 // // convert the times from degrees to hours by dividing by 15. |
| 1025 // // |
| 1026 // // If you'd like to check that your calculations are accurate or just |
| 1027 // // need a quick result, check the USNO's Sun or Moon Rise/Set Table, |
| 1028 // // <URL:http://aa.usno.navy.mil/AA/data/docs/RS_OneYear.html>. |
| 1029 // |
| 1030 // double result = MT + (rise ? -HA0 : HA0); // in degrees |
| 1031 // |
| 1032 // // Find UT midnight on this day |
| 1033 // long midnight = DAY_MS * (time / DAY_MS); |
| 1034 // |
| 1035 // return midnight + (long) (result * 3600000 / 15); |
| 1036 // } |
| 1037 |
| 1038 //------------------------------------------------------------------------- |
| 1039 // The Moon |
| 1040 //------------------------------------------------------------------------- |
| 1041 |
| 1042 #define moonL0 (318.351648 * CalendarAstronomer::PI/180 ) // Mean long. at ep
och |
| 1043 #define moonP0 ( 36.340410 * CalendarAstronomer::PI/180 ) // Mean long. of per
igee |
| 1044 #define moonN0 ( 318.510107 * CalendarAstronomer::PI/180 ) // Mean long. of no
de |
| 1045 #define moonI ( 5.145366 * CalendarAstronomer::PI/180 ) // Inclination of o
rbit |
| 1046 #define moonE ( 0.054900 ) // Eccentricity of orbit |
| 1047 |
| 1048 // These aren't used right now |
| 1049 #define moonA ( 3.84401e5 ) // semi-major axis (km) |
| 1050 #define moonT0 ( 0.5181 * CalendarAstronomer::PI/180 ) // Angular size at
distance A |
| 1051 #define moonPi ( 0.9507 * CalendarAstronomer::PI/180 ) // Parallax at dist
ance A |
| 1052 |
| 1053 /** |
| 1054 * The position of the moon at the time set on this |
| 1055 * object, in equatorial coordinates. |
| 1056 * @internal |
| 1057 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1058 */ |
| 1059 const CalendarAstronomer::Equatorial& CalendarAstronomer::getMoonPosition() |
| 1060 { |
| 1061 // |
| 1062 // See page 142 of "Practial Astronomy with your Calculator", |
| 1063 // by Peter Duffet-Smith, for details on the algorithm. |
| 1064 // |
| 1065 if (moonPositionSet == FALSE) { |
| 1066 // Calculate the solar longitude. Has the side effect of |
| 1067 // filling in "meanAnomalySun" as well. |
| 1068 getSunLongitude(); |
| 1069 |
| 1070 // |
| 1071 // Find the # of days since the epoch of our orbital parameters. |
| 1072 // TODO: Convert the time of day portion into ephemeris time |
| 1073 // |
| 1074 double day = getJulianDay() - JD_EPOCH; // Days since epoch |
| 1075 |
| 1076 // Calculate the mean longitude and anomaly of the moon, based on |
| 1077 // a circular orbit. Similar to the corresponding solar calculation. |
| 1078 double meanLongitude = norm2PI(13.1763966*PI/180*day + moonL0); |
| 1079 meanAnomalyMoon = norm2PI(meanLongitude - 0.1114041*PI/180 * day - moonP
0); |
| 1080 |
| 1081 // |
| 1082 // Calculate the following corrections: |
| 1083 // Evection: the sun's gravity affects the moon's eccentricity |
| 1084 // Annual Eqn: variation in the effect due to earth-sun distance |
| 1085 // A3: correction factor (for ???) |
| 1086 // |
| 1087 double evection = 1.2739*PI/180 * ::sin(2 * (meanLongitude - sunLongitud
e) |
| 1088 - meanAnomalyMoon); |
| 1089 double annual = 0.1858*PI/180 * ::sin(meanAnomalySun); |
| 1090 double a3 = 0.3700*PI/180 * ::sin(meanAnomalySun); |
| 1091 |
| 1092 meanAnomalyMoon += evection - annual - a3; |
| 1093 |
| 1094 // |
| 1095 // More correction factors: |
| 1096 // center equation of the center correction |
| 1097 // a4 yet another error correction (???) |
| 1098 // |
| 1099 // TODO: Skip the equation of the center correction and solve Kepler's e
qn? |
| 1100 // |
| 1101 double center = 6.2886*PI/180 * ::sin(meanAnomalyMoon); |
| 1102 double a4 = 0.2140*PI/180 * ::sin(2 * meanAnomalyMoon); |
| 1103 |
| 1104 // Now find the moon's corrected longitude |
| 1105 moonLongitude = meanLongitude + evection + center - annual + a4; |
| 1106 |
| 1107 // |
| 1108 // And finally, find the variation, caused by the fact that the sun's |
| 1109 // gravitational pull on the moon varies depending on which side of |
| 1110 // the earth the moon is on |
| 1111 // |
| 1112 double variation = 0.6583*CalendarAstronomer::PI/180 * ::sin(2*(moonLong
itude - sunLongitude)); |
| 1113 |
| 1114 moonLongitude += variation; |
| 1115 |
| 1116 // |
| 1117 // What we've calculated so far is the moon's longitude in the plane |
| 1118 // of its own orbit. Now map to the ecliptic to get the latitude |
| 1119 // and longitude. First we need to find the longitude of the ascending |
| 1120 // node, the position on the ecliptic where it is crossed by the moon's |
| 1121 // orbit as it crosses from the southern to the northern hemisphere. |
| 1122 // |
| 1123 double nodeLongitude = norm2PI(moonN0 - 0.0529539*PI/180 * day); |
| 1124 |
| 1125 nodeLongitude -= 0.16*PI/180 * ::sin(meanAnomalySun); |
| 1126 |
| 1127 double y = ::sin(moonLongitude - nodeLongitude); |
| 1128 double x = cos(moonLongitude - nodeLongitude); |
| 1129 |
| 1130 moonEclipLong = ::atan2(y*cos(moonI), x) + nodeLongitude; |
| 1131 double moonEclipLat = ::asin(y * ::sin(moonI)); |
| 1132 |
| 1133 eclipticToEquatorial(moonPosition, moonEclipLong, moonEclipLat); |
| 1134 moonPositionSet = TRUE; |
| 1135 } |
| 1136 return moonPosition; |
| 1137 } |
| 1138 |
| 1139 /** |
| 1140 * The "age" of the moon at the time specified in this object. |
| 1141 * This is really the angle between the |
| 1142 * current ecliptic longitudes of the sun and the moon, |
| 1143 * measured in radians. |
| 1144 * |
| 1145 * @see #getMoonPhase |
| 1146 * @internal |
| 1147 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1148 */ |
| 1149 double CalendarAstronomer::getMoonAge() { |
| 1150 // See page 147 of "Practial Astronomy with your Calculator", |
| 1151 // by Peter Duffet-Smith, for details on the algorithm. |
| 1152 // |
| 1153 // Force the moon's position to be calculated. We're going to use |
| 1154 // some the intermediate results cached during that calculation. |
| 1155 // |
| 1156 getMoonPosition(); |
| 1157 |
| 1158 return norm2PI(moonEclipLong - sunLongitude); |
| 1159 } |
| 1160 |
| 1161 /** |
| 1162 * Calculate the phase of the moon at the time set in this object. |
| 1163 * The returned phase is a <code>double</code> in the range |
| 1164 * <code>0 <= phase < 1</code>, interpreted as follows: |
| 1165 * <ul> |
| 1166 * <li>0.00: New moon |
| 1167 * <li>0.25: First quarter |
| 1168 * <li>0.50: Full moon |
| 1169 * <li>0.75: Last quarter |
| 1170 * </ul> |
| 1171 * |
| 1172 * @see #getMoonAge |
| 1173 * @internal |
| 1174 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1175 */ |
| 1176 double CalendarAstronomer::getMoonPhase() { |
| 1177 // See page 147 of "Practial Astronomy with your Calculator", |
| 1178 // by Peter Duffet-Smith, for details on the algorithm. |
| 1179 return 0.5 * (1 - cos(getMoonAge())); |
| 1180 } |
| 1181 |
| 1182 /** |
| 1183 * Constant representing a new moon. |
| 1184 * For use with {@link #getMoonTime getMoonTime} |
| 1185 * @internal |
| 1186 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1187 */ |
| 1188 const CalendarAstronomer::MoonAge CalendarAstronomer::NEW_MOON() { |
| 1189 return CalendarAstronomer::MoonAge(0); |
| 1190 } |
| 1191 |
| 1192 /** |
| 1193 * Constant representing the moon's first quarter. |
| 1194 * For use with {@link #getMoonTime getMoonTime} |
| 1195 * @internal |
| 1196 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1197 */ |
| 1198 /*const CalendarAstronomer::MoonAge CalendarAstronomer::FIRST_QUARTER() { |
| 1199 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI/2); |
| 1200 }*/ |
| 1201 |
| 1202 /** |
| 1203 * Constant representing a full moon. |
| 1204 * For use with {@link #getMoonTime getMoonTime} |
| 1205 * @internal |
| 1206 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1207 */ |
| 1208 const CalendarAstronomer::MoonAge CalendarAstronomer::FULL_MOON() { |
| 1209 return CalendarAstronomer::MoonAge(CalendarAstronomer::PI); |
| 1210 } |
| 1211 /** |
| 1212 * Constant representing the moon's last quarter. |
| 1213 * For use with {@link #getMoonTime getMoonTime} |
| 1214 * @internal |
| 1215 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1216 */ |
| 1217 |
| 1218 class MoonTimeAngleFunc : public CalendarAstronomer::AngleFunc { |
| 1219 public: |
| 1220 virtual double eval(CalendarAstronomer&a) { return a.getMoonAge(); } |
| 1221 }; |
| 1222 |
| 1223 /*const CalendarAstronomer::MoonAge CalendarAstronomer::LAST_QUARTER() { |
| 1224 return CalendarAstronomer::MoonAge((CalendarAstronomer::PI*3)/2); |
| 1225 }*/ |
| 1226 |
| 1227 /** |
| 1228 * Find the next or previous time at which the Moon's ecliptic |
| 1229 * longitude will have the desired value. |
| 1230 * <p> |
| 1231 * @param desired The desired longitude. |
| 1232 * @param next <tt>true</tt> if the next occurrance of the phase |
| 1233 * is desired, <tt>false</tt> for the previous occurrance. |
| 1234 * @internal |
| 1235 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1236 */ |
| 1237 UDate CalendarAstronomer::getMoonTime(double desired, UBool next) |
| 1238 { |
| 1239 MoonTimeAngleFunc func; |
| 1240 return timeOfAngle( func, |
| 1241 desired, |
| 1242 SYNODIC_MONTH, |
| 1243 MINUTE_MS, |
| 1244 next); |
| 1245 } |
| 1246 |
| 1247 /** |
| 1248 * Find the next or previous time at which the moon will be in the |
| 1249 * desired phase. |
| 1250 * <p> |
| 1251 * @param desired The desired phase of the moon. |
| 1252 * @param next <tt>true</tt> if the next occurrance of the phase |
| 1253 * is desired, <tt>false</tt> for the previous occurrance. |
| 1254 * @internal |
| 1255 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1256 */ |
| 1257 UDate CalendarAstronomer::getMoonTime(const CalendarAstronomer::MoonAge& desired
, UBool next) { |
| 1258 return getMoonTime(desired.value, next); |
| 1259 } |
| 1260 |
| 1261 class MoonRiseSetCoordFunc : public CalendarAstronomer::CoordFunc { |
| 1262 public: |
| 1263 virtual void eval(CalendarAstronomer::Equatorial& result, CalendarAstronomer
&a) { result = a.getMoonPosition(); } |
| 1264 }; |
| 1265 |
| 1266 /** |
| 1267 * Returns the time (GMT) of sunrise or sunset on the local date to which |
| 1268 * this calendar is currently set. |
| 1269 * @internal |
| 1270 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1271 */ |
| 1272 UDate CalendarAstronomer::getMoonRiseSet(UBool rise) |
| 1273 { |
| 1274 MoonRiseSetCoordFunc func; |
| 1275 return riseOrSet(func, |
| 1276 rise, |
| 1277 .533 * DEG_RAD, // Angular Diameter |
| 1278 34 /60.0 * DEG_RAD, // Refraction correction |
| 1279 MINUTE_MS); // Desired accuracy |
| 1280 } |
| 1281 |
| 1282 //------------------------------------------------------------------------- |
| 1283 // Interpolation methods for finding the time at which a given event occurs |
| 1284 //------------------------------------------------------------------------- |
| 1285 |
| 1286 UDate CalendarAstronomer::timeOfAngle(AngleFunc& func, double desired, |
| 1287 double periodDays, double epsilon, UBool n
ext) |
| 1288 { |
| 1289 // Find the value of the function at the current time |
| 1290 double lastAngle = func.eval(*this); |
| 1291 |
| 1292 // Find out how far we are from the desired angle |
| 1293 double deltaAngle = norm2PI(desired - lastAngle) ; |
| 1294 |
| 1295 // Using the average period, estimate the next (or previous) time at |
| 1296 // which the desired angle occurs. |
| 1297 double deltaT = (deltaAngle + (next ? 0.0 : - CalendarAstronomer_PI2 )) * (
periodDays*DAY_MS) / CalendarAstronomer_PI2; |
| 1298 |
| 1299 double lastDeltaT = deltaT; // Liu |
| 1300 UDate startTime = fTime; // Liu |
| 1301 |
| 1302 setTime(fTime + uprv_ceil(deltaT)); |
| 1303 |
| 1304 // Now iterate until we get the error below epsilon. Throughout |
| 1305 // this loop we use normPI to get values in the range -Pi to Pi, |
| 1306 // since we're using them as correction factors rather than absolute angles. |
| 1307 do { |
| 1308 // Evaluate the function at the time we've estimated |
| 1309 double angle = func.eval(*this); |
| 1310 |
| 1311 // Find the # of milliseconds per radian at this point on the curve |
| 1312 double factor = uprv_fabs(deltaT / normPI(angle-lastAngle)); |
| 1313 |
| 1314 // Correct the time estimate based on how far off the angle is |
| 1315 deltaT = normPI(desired - angle) * factor; |
| 1316 |
| 1317 // HACK: |
| 1318 // |
| 1319 // If abs(deltaT) begins to diverge we need to quit this loop. |
| 1320 // This only appears to happen when attempting to locate, for |
| 1321 // example, a new moon on the day of the new moon. E.g.: |
| 1322 // |
| 1323 // This result is correct: |
| 1324 // newMoon(7508(Mon Jul 23 00:00:00 CST 1990,false))= |
| 1325 // Sun Jul 22 10:57:41 CST 1990 |
| 1326 // |
| 1327 // But attempting to make the same call a day earlier causes deltaT |
| 1328 // to diverge: |
| 1329 // CalendarAstronomer.timeOfAngle() diverging: 1.348508727575625E9 -> |
| 1330 // 1.3649828540224032E9 |
| 1331 // newMoon(7507(Sun Jul 22 00:00:00 CST 1990,false))= |
| 1332 // Sun Jul 08 13:56:15 CST 1990 |
| 1333 // |
| 1334 // As a temporary solution, we catch this specific condition and |
| 1335 // adjust our start time by one eighth period days (either forward |
| 1336 // or backward) and try again. |
| 1337 // Liu 11/9/00 |
| 1338 if (uprv_fabs(deltaT) > uprv_fabs(lastDeltaT)) { |
| 1339 double delta = uprv_ceil (periodDays * DAY_MS / 8.0); |
| 1340 setTime(startTime + (next ? delta : -delta)); |
| 1341 return timeOfAngle(func, desired, periodDays, epsilon, next); |
| 1342 } |
| 1343 |
| 1344 lastDeltaT = deltaT; |
| 1345 lastAngle = angle; |
| 1346 |
| 1347 setTime(fTime + uprv_ceil(deltaT)); |
| 1348 } |
| 1349 while (uprv_fabs(deltaT) > epsilon); |
| 1350 |
| 1351 return fTime; |
| 1352 } |
| 1353 |
| 1354 UDate CalendarAstronomer::riseOrSet(CoordFunc& func, UBool rise, |
| 1355 double diameter, double refraction, |
| 1356 double epsilon) |
| 1357 { |
| 1358 Equatorial pos; |
| 1359 double tanL = ::tan(fLatitude); |
| 1360 double deltaT = 0; |
| 1361 int32_t count = 0; |
| 1362 |
| 1363 // |
| 1364 // Calculate the object's position at the current time, then use that |
| 1365 // position to calculate the time of rising or setting. The position |
| 1366 // will be different at that time, so iterate until the error is allowable. |
| 1367 // |
| 1368 U_DEBUG_ASTRO_MSG(("setup rise=%s, dia=%.3lf, ref=%.3lf, eps=%.3lf\n", |
| 1369 rise?"T":"F", diameter, refraction, epsilon)); |
| 1370 do { |
| 1371 // See "Practical Astronomy With Your Calculator, section 33. |
| 1372 func.eval(pos, *this); |
| 1373 double angle = ::acos(-tanL * ::tan(pos.declination)); |
| 1374 double lst = ((rise ? CalendarAstronomer_PI2-angle : angle) + pos.ascens
ion ) * 24 / CalendarAstronomer_PI2; |
| 1375 |
| 1376 // Convert from LST to Universal Time. |
| 1377 UDate newTime = lstToUT( lst ); |
| 1378 |
| 1379 deltaT = newTime - fTime; |
| 1380 setTime(newTime); |
| 1381 U_DEBUG_ASTRO_MSG(("%d] dT=%.3lf, angle=%.3lf, lst=%.3lf, A=%.3lf/D=%.
3lf\n", |
| 1382 count, deltaT, angle, lst, pos.ascension, pos.declination)); |
| 1383 } |
| 1384 while (++ count < 5 && uprv_fabs(deltaT) > epsilon); |
| 1385 |
| 1386 // Calculate the correction due to refraction and the object's angular diame
ter |
| 1387 double cosD = ::cos(pos.declination); |
| 1388 double psi = ::acos(sin(fLatitude) / cosD); |
| 1389 double x = diameter / 2 + refraction; |
| 1390 double y = ::asin(sin(x) / ::sin(psi)); |
| 1391 long delta = (long)((240 * y * RAD_DEG / cosD)*SECOND_MS); |
| 1392 |
| 1393 return fTime + (rise ? -delta : delta); |
| 1394 } |
| 1395
/** |
| 1396 * Return the obliquity of the ecliptic (the angle between the ecliptic |
| 1397 * and the earth's equator) at the current time. This varies due to |
| 1398 * the precession of the earth's axis. |
| 1399 * |
| 1400 * @return the obliquity of the ecliptic relative to the equator, |
| 1401 * measured in radians. |
| 1402 */ |
| 1403 double CalendarAstronomer::eclipticObliquity() { |
| 1404 if (isINVALID(eclipObliquity)) { |
| 1405 const double epoch = 2451545.0; // 2000 AD, January 1.5 |
| 1406 |
| 1407 double T = (getJulianDay() - epoch) / 36525; |
| 1408 |
| 1409 eclipObliquity = 23.439292 |
| 1410 - 46.815/3600 * T |
| 1411 - 0.0006/3600 * T*T |
| 1412 + 0.00181/3600 * T*T*T; |
| 1413 |
| 1414 eclipObliquity *= DEG_RAD; |
| 1415 } |
| 1416 return eclipObliquity; |
| 1417 } |
| 1418 |
| 1419 |
| 1420 //------------------------------------------------------------------------- |
| 1421 // Private data |
| 1422 //------------------------------------------------------------------------- |
| 1423 void CalendarAstronomer::clearCache() { |
| 1424 const double INVALID = uprv_getNaN(); |
| 1425 |
| 1426 julianDay = INVALID; |
| 1427 julianCentury = INVALID; |
| 1428 sunLongitude = INVALID; |
| 1429 meanAnomalySun = INVALID; |
| 1430 moonLongitude = INVALID; |
| 1431 moonEclipLong = INVALID; |
| 1432 meanAnomalyMoon = INVALID; |
| 1433 eclipObliquity = INVALID; |
| 1434 siderealTime = INVALID; |
| 1435 siderealT0 = INVALID; |
| 1436 moonPositionSet = FALSE; |
| 1437 } |
| 1438 |
| 1439 //private static void out(String s) { |
| 1440 // System.out.println(s); |
| 1441 //} |
| 1442 |
| 1443 //private static String deg(double rad) { |
| 1444 // return Double.toString(rad * RAD_DEG); |
| 1445 //} |
| 1446 |
| 1447 //private static String hours(long ms) { |
| 1448 // return Double.toString((double)ms / HOUR_MS) + " hours"; |
| 1449 //} |
| 1450 |
| 1451 /** |
| 1452 * @internal |
| 1453 * @deprecated ICU 2.4. This class may be removed or modified. |
| 1454 */ |
| 1455 /*UDate CalendarAstronomer::local(UDate localMillis) { |
| 1456 // TODO - srl ? |
| 1457 TimeZone *tz = TimeZone::createDefault(); |
| 1458 int32_t rawOffset; |
| 1459 int32_t dstOffset; |
| 1460 UErrorCode status = U_ZERO_ERROR; |
| 1461 tz->getOffset(localMillis, TRUE, rawOffset, dstOffset, status); |
| 1462 delete tz; |
| 1463 return localMillis - rawOffset; |
| 1464 }*/ |
| 1465 |
| 1466 // Debugging functions |
| 1467 UnicodeString CalendarAstronomer::Ecliptic::toString() const |
| 1468 { |
| 1469 #ifdef U_DEBUG_ASTRO |
| 1470 char tmp[800]; |
| 1471 sprintf(tmp, "[%.5f,%.5f]", longitude*RAD_DEG, latitude*RAD_DEG); |
| 1472 return UnicodeString(tmp, ""); |
| 1473 #else |
| 1474 return UnicodeString(); |
| 1475 #endif |
| 1476 } |
| 1477 |
| 1478 UnicodeString CalendarAstronomer::Equatorial::toString() const |
| 1479 { |
| 1480 #ifdef U_DEBUG_ASTRO |
| 1481 char tmp[400]; |
| 1482 sprintf(tmp, "%f,%f", |
| 1483 (ascension*RAD_DEG), (declination*RAD_DEG)); |
| 1484 return UnicodeString(tmp, ""); |
| 1485 #else |
| 1486 return UnicodeString(); |
| 1487 #endif |
| 1488 } |
| 1489 |
| 1490 UnicodeString CalendarAstronomer::Horizon::toString() const |
| 1491 { |
| 1492 #ifdef U_DEBUG_ASTRO |
| 1493 char tmp[800]; |
| 1494 sprintf(tmp, "[%.5f,%.5f]", altitude*RAD_DEG, azimuth*RAD_DEG); |
| 1495 return UnicodeString(tmp, ""); |
| 1496 #else |
| 1497 return UnicodeString(); |
| 1498 #endif |
| 1499 } |
| 1500 |
| 1501 |
| 1502 // static private String radToHms(double angle) { |
| 1503 // int hrs = (int) (angle*RAD_HOUR); |
| 1504 // int min = (int)((angle*RAD_HOUR - hrs) * 60); |
| 1505 // int sec = (int)((angle*RAD_HOUR - hrs - min/60.0) * 3600); |
| 1506 |
| 1507 // return Integer.toString(hrs) + "h" + min + "m" + sec + "s"; |
| 1508 // } |
| 1509 |
| 1510 // static private String radToDms(double angle) { |
| 1511 // int deg = (int) (angle*RAD_DEG); |
| 1512 // int min = (int)((angle*RAD_DEG - deg) * 60); |
| 1513 // int sec = (int)((angle*RAD_DEG - deg - min/60.0) * 3600); |
| 1514 |
| 1515 // return Integer.toString(deg) + "\u00b0" + min + "'" + sec + "\""; |
| 1516 // } |
| 1517 |
| 1518 // =============== Calendar Cache ================ |
| 1519 |
| 1520 void CalendarCache::createCache(CalendarCache** cache, UErrorCode& status) { |
| 1521 ucln_i18n_registerCleanup(UCLN_I18N_ASTRO_CALENDAR, calendar_astro_cleanup); |
| 1522 if(cache == NULL) { |
| 1523 status = U_MEMORY_ALLOCATION_ERROR; |
| 1524 } else { |
| 1525 *cache = new CalendarCache(32, status); |
| 1526 if(U_FAILURE(status)) { |
| 1527 delete *cache; |
| 1528 *cache = NULL; |
| 1529 } |
| 1530 } |
| 1531 } |
| 1532 |
| 1533 int32_t CalendarCache::get(CalendarCache** cache, int32_t key, UErrorCode &statu
s) { |
| 1534 int32_t res; |
| 1535 |
| 1536 if(U_FAILURE(status)) { |
| 1537 return 0; |
| 1538 } |
| 1539 umtx_lock(&ccLock); |
| 1540 |
| 1541 if(*cache == NULL) { |
| 1542 createCache(cache, status); |
| 1543 if(U_FAILURE(status)) { |
| 1544 umtx_unlock(&ccLock); |
| 1545 return 0; |
| 1546 } |
| 1547 } |
| 1548 |
| 1549 res = uhash_igeti((*cache)->fTable, key); |
| 1550 U_DEBUG_ASTRO_MSG(("%p: GET: [%d] == %d\n", (*cache)->fTable, key, res)); |
| 1551 |
| 1552 umtx_unlock(&ccLock); |
| 1553 return res; |
| 1554 } |
| 1555 |
| 1556 void CalendarCache::put(CalendarCache** cache, int32_t key, int32_t value, UErro
rCode &status) { |
| 1557 if(U_FAILURE(status)) { |
| 1558 return; |
| 1559 } |
| 1560 umtx_lock(&ccLock); |
| 1561 |
| 1562 if(*cache == NULL) { |
| 1563 createCache(cache, status); |
| 1564 if(U_FAILURE(status)) { |
| 1565 umtx_unlock(&ccLock); |
| 1566 return; |
| 1567 } |
| 1568 } |
| 1569 |
| 1570 uhash_iputi((*cache)->fTable, key, value, &status); |
| 1571 U_DEBUG_ASTRO_MSG(("%p: PUT: [%d] := %d\n", (*cache)->fTable, key, value)); |
| 1572 |
| 1573 umtx_unlock(&ccLock); |
| 1574 } |
| 1575 |
| 1576 CalendarCache::CalendarCache(int32_t size, UErrorCode &status) { |
| 1577 fTable = uhash_openSize(uhash_hashLong, uhash_compareLong, NULL, size, &stat
us); |
| 1578 U_DEBUG_ASTRO_MSG(("%p: Opening.\n", fTable)); |
| 1579 } |
| 1580 |
| 1581 CalendarCache::~CalendarCache() { |
| 1582 if(fTable != NULL) { |
| 1583 U_DEBUG_ASTRO_MSG(("%p: Closing.\n", fTable)); |
| 1584 uhash_close(fTable); |
| 1585 } |
| 1586 } |
| 1587 |
| 1588 U_NAMESPACE_END |
| 1589 |
| 1590 #endif // !UCONFIG_NO_FORMATTING |
OLD | NEW |