OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ****************************************************************************** |
| 3 * Copyright (C) 1999-2010, International Business Machines Corporation and * |
| 4 * others. All Rights Reserved. * |
| 5 ****************************************************************************** |
| 6 * Date Name Description |
| 7 * 10/22/99 alan Creation. |
| 8 ********************************************************************** |
| 9 */ |
| 10 |
| 11 #include "uvectr32.h" |
| 12 #include "cmemory.h" |
| 13 #include "putilimp.h" |
| 14 |
| 15 U_NAMESPACE_BEGIN |
| 16 |
| 17 #define DEFAULT_CAPACITY 8 |
| 18 |
| 19 /* |
| 20 * Constants for hinting whether a key is an integer |
| 21 * or a pointer. If a hint bit is zero, then the associated |
| 22 * token is assumed to be an integer. This is needed for iSeries |
| 23 */ |
| 24 |
| 25 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(UVector32) |
| 26 |
| 27 UVector32::UVector32(UErrorCode &status) : |
| 28 count(0), |
| 29 capacity(0), |
| 30 maxCapacity(0), |
| 31 elements(NULL) |
| 32 { |
| 33 _init(DEFAULT_CAPACITY, status); |
| 34 } |
| 35 |
| 36 UVector32::UVector32(int32_t initialCapacity, UErrorCode &status) : |
| 37 count(0), |
| 38 capacity(0), |
| 39 maxCapacity(0), |
| 40 elements(0) |
| 41 { |
| 42 _init(initialCapacity, status); |
| 43 } |
| 44 |
| 45 |
| 46 |
| 47 void UVector32::_init(int32_t initialCapacity, UErrorCode &status) { |
| 48 // Fix bogus initialCapacity values; avoid malloc(0) |
| 49 if (initialCapacity < 1) { |
| 50 initialCapacity = DEFAULT_CAPACITY; |
| 51 } |
| 52 if (maxCapacity>0 && maxCapacity<initialCapacity) { |
| 53 initialCapacity = maxCapacity; |
| 54 } |
| 55 if (initialCapacity > (int32_t)(INT32_MAX / sizeof(int32_t))) { |
| 56 initialCapacity = uprv_min(DEFAULT_CAPACITY, maxCapacity); |
| 57 } |
| 58 elements = (int32_t *)uprv_malloc(sizeof(int32_t)*initialCapacity); |
| 59 if (elements == 0) { |
| 60 status = U_MEMORY_ALLOCATION_ERROR; |
| 61 } else { |
| 62 capacity = initialCapacity; |
| 63 } |
| 64 } |
| 65 |
| 66 UVector32::~UVector32() { |
| 67 uprv_free(elements); |
| 68 elements = 0; |
| 69 } |
| 70 |
| 71 /** |
| 72 * Assign this object to another (make this a copy of 'other'). |
| 73 */ |
| 74 void UVector32::assign(const UVector32& other, UErrorCode &ec) { |
| 75 if (ensureCapacity(other.count, ec)) { |
| 76 setSize(other.count); |
| 77 for (int32_t i=0; i<other.count; ++i) { |
| 78 elements[i] = other.elements[i]; |
| 79 } |
| 80 } |
| 81 } |
| 82 |
| 83 |
| 84 UBool UVector32::operator==(const UVector32& other) { |
| 85 int32_t i; |
| 86 if (count != other.count) return FALSE; |
| 87 for (i=0; i<count; ++i) { |
| 88 if (elements[i] != other.elements[i]) { |
| 89 return FALSE; |
| 90 } |
| 91 } |
| 92 return TRUE; |
| 93 } |
| 94 |
| 95 |
| 96 void UVector32::setElementAt(int32_t elem, int32_t index) { |
| 97 if (0 <= index && index < count) { |
| 98 elements[index] = elem; |
| 99 } |
| 100 /* else index out of range */ |
| 101 } |
| 102 |
| 103 void UVector32::insertElementAt(int32_t elem, int32_t index, UErrorCode &status)
{ |
| 104 // must have 0 <= index <= count |
| 105 if (0 <= index && index <= count && ensureCapacity(count + 1, status)) { |
| 106 for (int32_t i=count; i>index; --i) { |
| 107 elements[i] = elements[i-1]; |
| 108 } |
| 109 elements[index] = elem; |
| 110 ++count; |
| 111 } |
| 112 /* else index out of range */ |
| 113 } |
| 114 |
| 115 UBool UVector32::containsAll(const UVector32& other) const { |
| 116 for (int32_t i=0; i<other.size(); ++i) { |
| 117 if (indexOf(other.elements[i]) < 0) { |
| 118 return FALSE; |
| 119 } |
| 120 } |
| 121 return TRUE; |
| 122 } |
| 123 |
| 124 UBool UVector32::containsNone(const UVector32& other) const { |
| 125 for (int32_t i=0; i<other.size(); ++i) { |
| 126 if (indexOf(other.elements[i]) >= 0) { |
| 127 return FALSE; |
| 128 } |
| 129 } |
| 130 return TRUE; |
| 131 } |
| 132 |
| 133 UBool UVector32::removeAll(const UVector32& other) { |
| 134 UBool changed = FALSE; |
| 135 for (int32_t i=0; i<other.size(); ++i) { |
| 136 int32_t j = indexOf(other.elements[i]); |
| 137 if (j >= 0) { |
| 138 removeElementAt(j); |
| 139 changed = TRUE; |
| 140 } |
| 141 } |
| 142 return changed; |
| 143 } |
| 144 |
| 145 UBool UVector32::retainAll(const UVector32& other) { |
| 146 UBool changed = FALSE; |
| 147 for (int32_t j=size()-1; j>=0; --j) { |
| 148 int32_t i = other.indexOf(elements[j]); |
| 149 if (i < 0) { |
| 150 removeElementAt(j); |
| 151 changed = TRUE; |
| 152 } |
| 153 } |
| 154 return changed; |
| 155 } |
| 156 |
| 157 void UVector32::removeElementAt(int32_t index) { |
| 158 if (index >= 0) { |
| 159 for (int32_t i=index; i<count-1; ++i) { |
| 160 elements[i] = elements[i+1]; |
| 161 } |
| 162 --count; |
| 163 } |
| 164 } |
| 165 |
| 166 void UVector32::removeAllElements(void) { |
| 167 count = 0; |
| 168 } |
| 169 |
| 170 UBool UVector32::equals(const UVector32 &other) const { |
| 171 int i; |
| 172 |
| 173 if (this->count != other.count) { |
| 174 return FALSE; |
| 175 } |
| 176 for (i=0; i<count; i++) { |
| 177 if (elements[i] != other.elements[i]) { |
| 178 return FALSE; |
| 179 } |
| 180 } |
| 181 return TRUE; |
| 182 } |
| 183 |
| 184 |
| 185 |
| 186 |
| 187 int32_t UVector32::indexOf(int32_t key, int32_t startIndex) const { |
| 188 int32_t i; |
| 189 for (i=startIndex; i<count; ++i) { |
| 190 if (key == elements[i]) { |
| 191 return i; |
| 192 } |
| 193 } |
| 194 return -1; |
| 195 } |
| 196 |
| 197 |
| 198 UBool UVector32::expandCapacity(int32_t minimumCapacity, UErrorCode &status) { |
| 199 if (minimumCapacity < 0) { |
| 200 status = U_ILLEGAL_ARGUMENT_ERROR; |
| 201 return FALSE; |
| 202 } |
| 203 if (capacity >= minimumCapacity) { |
| 204 return TRUE; |
| 205 } |
| 206 if (maxCapacity>0 && minimumCapacity>maxCapacity) { |
| 207 status = U_BUFFER_OVERFLOW_ERROR; |
| 208 return FALSE; |
| 209 } |
| 210 if (capacity > (INT32_MAX - 1) / 2) { // integer overflow check |
| 211 status = U_ILLEGAL_ARGUMENT_ERROR; |
| 212 return FALSE; |
| 213 } |
| 214 int32_t newCap = capacity * 2; |
| 215 if (newCap < minimumCapacity) { |
| 216 newCap = minimumCapacity; |
| 217 } |
| 218 if (maxCapacity > 0 && newCap > maxCapacity) { |
| 219 newCap = maxCapacity; |
| 220 } |
| 221 if (newCap > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow
check |
| 222 // We keep the original memory contents on bad minimumCapacity/maxCapaci
ty. |
| 223 status = U_ILLEGAL_ARGUMENT_ERROR; |
| 224 return FALSE; |
| 225 } |
| 226 int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*newCap
); |
| 227 if (newElems == NULL) { |
| 228 // We keep the original contents on the memory failure on realloc. |
| 229 status = U_MEMORY_ALLOCATION_ERROR; |
| 230 return FALSE; |
| 231 } |
| 232 elements = newElems; |
| 233 capacity = newCap; |
| 234 return TRUE; |
| 235 } |
| 236 |
| 237 void UVector32::setMaxCapacity(int32_t limit) { |
| 238 U_ASSERT(limit >= 0); |
| 239 if (limit < 0) { |
| 240 limit = 0; |
| 241 } |
| 242 if (limit > (int32_t)(INT32_MAX / sizeof(int32_t))) { // integer overflow c
heck for realloc |
| 243 // Something is very wrong, don't realloc, leave capacity and maxCapaci
ty unchanged |
| 244 return; |
| 245 } |
| 246 maxCapacity = limit; |
| 247 if (capacity <= maxCapacity || maxCapacity == 0) { |
| 248 // Current capacity is within the new limit. |
| 249 return; |
| 250 } |
| 251 |
| 252 // New maximum capacity is smaller than the current size. |
| 253 // Realloc the storage to the new, smaller size. |
| 254 int32_t* newElems = (int32_t *)uprv_realloc(elements, sizeof(int32_t)*maxCap
acity); |
| 255 if (newElems == NULL) { |
| 256 // Realloc to smaller failed. |
| 257 // Just keep what we had. No need to call it a failure. |
| 258 return; |
| 259 } |
| 260 elements = newElems; |
| 261 capacity = maxCapacity; |
| 262 if (count > capacity) { |
| 263 count = capacity; |
| 264 } |
| 265 } |
| 266 |
| 267 /** |
| 268 * Change the size of this vector as follows: If newSize is smaller, |
| 269 * then truncate the array, possibly deleting held elements for i >= |
| 270 * newSize. If newSize is larger, grow the array, filling in new |
| 271 * slots with NULL. |
| 272 */ |
| 273 void UVector32::setSize(int32_t newSize) { |
| 274 int32_t i; |
| 275 if (newSize < 0) { |
| 276 return; |
| 277 } |
| 278 if (newSize > count) { |
| 279 UErrorCode ec = U_ZERO_ERROR; |
| 280 if (!ensureCapacity(newSize, ec)) { |
| 281 return; |
| 282 } |
| 283 for (i=count; i<newSize; ++i) { |
| 284 elements[i] = 0; |
| 285 } |
| 286 } |
| 287 count = newSize; |
| 288 } |
| 289 |
| 290 |
| 291 |
| 292 |
| 293 /** |
| 294 * Insert the given integer into this vector at its sorted position |
| 295 * as defined by 'compare'. The current elements are assumed to |
| 296 * be sorted already. |
| 297 */ |
| 298 void UVector32::sortedInsert(int32_t tok, UErrorCode& ec) { |
| 299 // Perform a binary search for the location to insert tok at. Tok |
| 300 // will be inserted between two elements a and b such that a <= |
| 301 // tok && tok < b, where there is a 'virtual' elements[-1] always |
| 302 // less than tok and a 'virtual' elements[count] always greater |
| 303 // than tok. |
| 304 int32_t min = 0, max = count; |
| 305 while (min != max) { |
| 306 int32_t probe = (min + max) / 2; |
| 307 //int8_t c = (*compare)(elements[probe], tok); |
| 308 //if (c > 0) { |
| 309 if (elements[probe] > tok) { |
| 310 max = probe; |
| 311 } else { |
| 312 // assert(c <= 0); |
| 313 min = probe + 1; |
| 314 } |
| 315 } |
| 316 if (ensureCapacity(count + 1, ec)) { |
| 317 for (int32_t i=count; i>min; --i) { |
| 318 elements[i] = elements[i-1]; |
| 319 } |
| 320 elements[min] = tok; |
| 321 ++count; |
| 322 } |
| 323 } |
| 324 |
| 325 |
| 326 |
| 327 |
| 328 |
| 329 U_NAMESPACE_END |
| 330 |
OLD | NEW |