OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ****************************************************************************** |
| 3 * |
| 4 * Copyright (C) 2001-2009, International Business Machines |
| 5 * Corporation and others. All Rights Reserved. |
| 6 * |
| 7 ****************************************************************************** |
| 8 * file name: utrie.c |
| 9 * encoding: US-ASCII |
| 10 * tab size: 8 (not used) |
| 11 * indentation:4 |
| 12 * |
| 13 * created on: 2001oct20 |
| 14 * created by: Markus W. Scherer |
| 15 * |
| 16 * This is a common implementation of a "folded" trie. |
| 17 * It is a kind of compressed, serializable table of 16- or 32-bit values assoc
iated with |
| 18 * Unicode code points (0..0x10ffff). |
| 19 */ |
| 20 |
| 21 #ifdef UTRIE_DEBUG |
| 22 # include <stdio.h> |
| 23 #endif |
| 24 |
| 25 #include "unicode/utypes.h" |
| 26 #include "cmemory.h" |
| 27 #include "utrie.h" |
| 28 |
| 29 /* miscellaneous ------------------------------------------------------------ */ |
| 30 |
| 31 #undef ABS |
| 32 #define ABS(x) ((x)>=0 ? (x) : -(x)) |
| 33 |
| 34 static U_INLINE UBool |
| 35 equal_uint32(const uint32_t *s, const uint32_t *t, int32_t length) { |
| 36 while(length>0 && *s==*t) { |
| 37 ++s; |
| 38 ++t; |
| 39 --length; |
| 40 } |
| 41 return (UBool)(length==0); |
| 42 } |
| 43 |
| 44 /* Building a trie ----------------------------------------------------------*/ |
| 45 |
| 46 U_CAPI UNewTrie * U_EXPORT2 |
| 47 utrie_open(UNewTrie *fillIn, |
| 48 uint32_t *aliasData, int32_t maxDataLength, |
| 49 uint32_t initialValue, uint32_t leadUnitValue, |
| 50 UBool latin1Linear) { |
| 51 UNewTrie *trie; |
| 52 int32_t i, j; |
| 53 |
| 54 if( maxDataLength<UTRIE_DATA_BLOCK_LENGTH || |
| 55 (latin1Linear && maxDataLength<1024) |
| 56 ) { |
| 57 return NULL; |
| 58 } |
| 59 |
| 60 if(fillIn!=NULL) { |
| 61 trie=fillIn; |
| 62 } else { |
| 63 trie=(UNewTrie *)uprv_malloc(sizeof(UNewTrie)); |
| 64 if(trie==NULL) { |
| 65 return NULL; |
| 66 } |
| 67 } |
| 68 uprv_memset(trie, 0, sizeof(UNewTrie)); |
| 69 trie->isAllocated= (UBool)(fillIn==NULL); |
| 70 |
| 71 if(aliasData!=NULL) { |
| 72 trie->data=aliasData; |
| 73 trie->isDataAllocated=FALSE; |
| 74 } else { |
| 75 trie->data=(uint32_t *)uprv_malloc(maxDataLength*4); |
| 76 if(trie->data==NULL) { |
| 77 uprv_free(trie); |
| 78 return NULL; |
| 79 } |
| 80 trie->isDataAllocated=TRUE; |
| 81 } |
| 82 |
| 83 /* preallocate and reset the first data block (block index 0) */ |
| 84 j=UTRIE_DATA_BLOCK_LENGTH; |
| 85 |
| 86 if(latin1Linear) { |
| 87 /* preallocate and reset the first block (number 0) and Latin-1 (U+0000.
.U+00ff) after that */ |
| 88 /* made sure above that maxDataLength>=1024 */ |
| 89 |
| 90 /* set indexes to point to consecutive data blocks */ |
| 91 i=0; |
| 92 do { |
| 93 /* do this at least for trie->index[0] even if that block is only pa
rtly used for Latin-1 */ |
| 94 trie->index[i++]=j; |
| 95 j+=UTRIE_DATA_BLOCK_LENGTH; |
| 96 } while(i<(256>>UTRIE_SHIFT)); |
| 97 } |
| 98 |
| 99 /* reset the initially allocated blocks to the initial value */ |
| 100 trie->dataLength=j; |
| 101 while(j>0) { |
| 102 trie->data[--j]=initialValue; |
| 103 } |
| 104 |
| 105 trie->leadUnitValue=leadUnitValue; |
| 106 trie->indexLength=UTRIE_MAX_INDEX_LENGTH; |
| 107 trie->dataCapacity=maxDataLength; |
| 108 trie->isLatin1Linear=latin1Linear; |
| 109 trie->isCompacted=FALSE; |
| 110 return trie; |
| 111 } |
| 112 |
| 113 U_CAPI UNewTrie * U_EXPORT2 |
| 114 utrie_clone(UNewTrie *fillIn, const UNewTrie *other, uint32_t *aliasData, int32_
t aliasDataCapacity) { |
| 115 UNewTrie *trie; |
| 116 UBool isDataAllocated; |
| 117 |
| 118 /* do not clone if other is not valid or already compacted */ |
| 119 if(other==NULL || other->data==NULL || other->isCompacted) { |
| 120 return NULL; |
| 121 } |
| 122 |
| 123 /* clone data */ |
| 124 if(aliasData!=NULL && aliasDataCapacity>=other->dataCapacity) { |
| 125 isDataAllocated=FALSE; |
| 126 } else { |
| 127 aliasDataCapacity=other->dataCapacity; |
| 128 aliasData=(uint32_t *)uprv_malloc(other->dataCapacity*4); |
| 129 if(aliasData==NULL) { |
| 130 return NULL; |
| 131 } |
| 132 isDataAllocated=TRUE; |
| 133 } |
| 134 |
| 135 trie=utrie_open(fillIn, aliasData, aliasDataCapacity, |
| 136 other->data[0], other->leadUnitValue, |
| 137 other->isLatin1Linear); |
| 138 if(trie==NULL) { |
| 139 uprv_free(aliasData); |
| 140 } else { |
| 141 uprv_memcpy(trie->index, other->index, sizeof(trie->index)); |
| 142 uprv_memcpy(trie->data, other->data, other->dataLength*4); |
| 143 trie->dataLength=other->dataLength; |
| 144 trie->isDataAllocated=isDataAllocated; |
| 145 } |
| 146 |
| 147 return trie; |
| 148 } |
| 149 |
| 150 U_CAPI void U_EXPORT2 |
| 151 utrie_close(UNewTrie *trie) { |
| 152 if(trie!=NULL) { |
| 153 if(trie->isDataAllocated) { |
| 154 uprv_free(trie->data); |
| 155 trie->data=NULL; |
| 156 } |
| 157 if(trie->isAllocated) { |
| 158 uprv_free(trie); |
| 159 } |
| 160 } |
| 161 } |
| 162 |
| 163 U_CAPI uint32_t * U_EXPORT2 |
| 164 utrie_getData(UNewTrie *trie, int32_t *pLength) { |
| 165 if(trie==NULL || pLength==NULL) { |
| 166 return NULL; |
| 167 } |
| 168 |
| 169 *pLength=trie->dataLength; |
| 170 return trie->data; |
| 171 } |
| 172 |
| 173 static int32_t |
| 174 utrie_allocDataBlock(UNewTrie *trie) { |
| 175 int32_t newBlock, newTop; |
| 176 |
| 177 newBlock=trie->dataLength; |
| 178 newTop=newBlock+UTRIE_DATA_BLOCK_LENGTH; |
| 179 if(newTop>trie->dataCapacity) { |
| 180 /* out of memory in the data array */ |
| 181 return -1; |
| 182 } |
| 183 trie->dataLength=newTop; |
| 184 return newBlock; |
| 185 } |
| 186 |
| 187 /** |
| 188 * No error checking for illegal arguments. |
| 189 * |
| 190 * @return -1 if no new data block available (out of memory in data array) |
| 191 * @internal |
| 192 */ |
| 193 static int32_t |
| 194 utrie_getDataBlock(UNewTrie *trie, UChar32 c) { |
| 195 int32_t indexValue, newBlock; |
| 196 |
| 197 c>>=UTRIE_SHIFT; |
| 198 indexValue=trie->index[c]; |
| 199 if(indexValue>0) { |
| 200 return indexValue; |
| 201 } |
| 202 |
| 203 /* allocate a new data block */ |
| 204 newBlock=utrie_allocDataBlock(trie); |
| 205 if(newBlock<0) { |
| 206 /* out of memory in the data array */ |
| 207 return -1; |
| 208 } |
| 209 trie->index[c]=newBlock; |
| 210 |
| 211 /* copy-on-write for a block from a setRange() */ |
| 212 uprv_memcpy(trie->data+newBlock, trie->data-indexValue, 4*UTRIE_DATA_BLOCK_L
ENGTH); |
| 213 return newBlock; |
| 214 } |
| 215 |
| 216 /** |
| 217 * @return TRUE if the value was successfully set |
| 218 */ |
| 219 U_CAPI UBool U_EXPORT2 |
| 220 utrie_set32(UNewTrie *trie, UChar32 c, uint32_t value) { |
| 221 int32_t block; |
| 222 |
| 223 /* valid, uncompacted trie and valid c? */ |
| 224 if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
| 225 return FALSE; |
| 226 } |
| 227 |
| 228 block=utrie_getDataBlock(trie, c); |
| 229 if(block<0) { |
| 230 return FALSE; |
| 231 } |
| 232 |
| 233 trie->data[block+(c&UTRIE_MASK)]=value; |
| 234 return TRUE; |
| 235 } |
| 236 |
| 237 U_CAPI uint32_t U_EXPORT2 |
| 238 utrie_get32(UNewTrie *trie, UChar32 c, UBool *pInBlockZero) { |
| 239 int32_t block; |
| 240 |
| 241 /* valid, uncompacted trie and valid c? */ |
| 242 if(trie==NULL || trie->isCompacted || (uint32_t)c>0x10ffff) { |
| 243 if(pInBlockZero!=NULL) { |
| 244 *pInBlockZero=TRUE; |
| 245 } |
| 246 return 0; |
| 247 } |
| 248 |
| 249 block=trie->index[c>>UTRIE_SHIFT]; |
| 250 if(pInBlockZero!=NULL) { |
| 251 *pInBlockZero= (UBool)(block==0); |
| 252 } |
| 253 |
| 254 return trie->data[ABS(block)+(c&UTRIE_MASK)]; |
| 255 } |
| 256 |
| 257 /** |
| 258 * @internal |
| 259 */ |
| 260 static void |
| 261 utrie_fillBlock(uint32_t *block, UChar32 start, UChar32 limit, |
| 262 uint32_t value, uint32_t initialValue, UBool overwrite) { |
| 263 uint32_t *pLimit; |
| 264 |
| 265 pLimit=block+limit; |
| 266 block+=start; |
| 267 if(overwrite) { |
| 268 while(block<pLimit) { |
| 269 *block++=value; |
| 270 } |
| 271 } else { |
| 272 while(block<pLimit) { |
| 273 if(*block==initialValue) { |
| 274 *block=value; |
| 275 } |
| 276 ++block; |
| 277 } |
| 278 } |
| 279 } |
| 280 |
| 281 U_CAPI UBool U_EXPORT2 |
| 282 utrie_setRange32(UNewTrie *trie, UChar32 start, UChar32 limit, uint32_t value, U
Bool overwrite) { |
| 283 /* |
| 284 * repeat value in [start..limit[ |
| 285 * mark index values for repeat-data blocks by setting bit 31 of the index v
alues |
| 286 * fill around existing values if any, if(overwrite) |
| 287 */ |
| 288 uint32_t initialValue; |
| 289 int32_t block, rest, repeatBlock; |
| 290 |
| 291 /* valid, uncompacted trie and valid indexes? */ |
| 292 if( trie==NULL || trie->isCompacted || |
| 293 (uint32_t)start>0x10ffff || (uint32_t)limit>0x110000 || start>limit |
| 294 ) { |
| 295 return FALSE; |
| 296 } |
| 297 if(start==limit) { |
| 298 return TRUE; /* nothing to do */ |
| 299 } |
| 300 |
| 301 initialValue=trie->data[0]; |
| 302 if(start&UTRIE_MASK) { |
| 303 UChar32 nextStart; |
| 304 |
| 305 /* set partial block at [start..following block boundary[ */ |
| 306 block=utrie_getDataBlock(trie, start); |
| 307 if(block<0) { |
| 308 return FALSE; |
| 309 } |
| 310 |
| 311 nextStart=(start+UTRIE_DATA_BLOCK_LENGTH)&~UTRIE_MASK; |
| 312 if(nextStart<=limit) { |
| 313 utrie_fillBlock(trie->data+block, start&UTRIE_MASK, UTRIE_DATA_BLOCK
_LENGTH, |
| 314 value, initialValue, overwrite); |
| 315 start=nextStart; |
| 316 } else { |
| 317 utrie_fillBlock(trie->data+block, start&UTRIE_MASK, limit&UTRIE_MASK
, |
| 318 value, initialValue, overwrite); |
| 319 return TRUE; |
| 320 } |
| 321 } |
| 322 |
| 323 /* number of positions in the last, partial block */ |
| 324 rest=limit&UTRIE_MASK; |
| 325 |
| 326 /* round down limit to a block boundary */ |
| 327 limit&=~UTRIE_MASK; |
| 328 |
| 329 /* iterate over all-value blocks */ |
| 330 if(value==initialValue) { |
| 331 repeatBlock=0; |
| 332 } else { |
| 333 repeatBlock=-1; |
| 334 } |
| 335 while(start<limit) { |
| 336 /* get index value */ |
| 337 block=trie->index[start>>UTRIE_SHIFT]; |
| 338 if(block>0) { |
| 339 /* already allocated, fill in value */ |
| 340 utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, value,
initialValue, overwrite); |
| 341 } else if(trie->data[-block]!=value && (block==0 || overwrite)) { |
| 342 /* set the repeatBlock instead of the current block 0 or range block
*/ |
| 343 if(repeatBlock>=0) { |
| 344 trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
| 345 } else { |
| 346 /* create and set and fill the repeatBlock */ |
| 347 repeatBlock=utrie_getDataBlock(trie, start); |
| 348 if(repeatBlock<0) { |
| 349 return FALSE; |
| 350 } |
| 351 |
| 352 /* set the negative block number to indicate that it is a repeat
block */ |
| 353 trie->index[start>>UTRIE_SHIFT]=-repeatBlock; |
| 354 utrie_fillBlock(trie->data+repeatBlock, 0, UTRIE_DATA_BLOCK_LENG
TH, value, initialValue, TRUE); |
| 355 } |
| 356 } |
| 357 |
| 358 start+=UTRIE_DATA_BLOCK_LENGTH; |
| 359 } |
| 360 |
| 361 if(rest>0) { |
| 362 /* set partial block at [last block boundary..limit[ */ |
| 363 block=utrie_getDataBlock(trie, start); |
| 364 if(block<0) { |
| 365 return FALSE; |
| 366 } |
| 367 |
| 368 utrie_fillBlock(trie->data+block, 0, rest, value, initialValue, overwrit
e); |
| 369 } |
| 370 |
| 371 return TRUE; |
| 372 } |
| 373 |
| 374 static int32_t |
| 375 _findSameIndexBlock(const int32_t *idx, int32_t indexLength, |
| 376 int32_t otherBlock) { |
| 377 int32_t block, i; |
| 378 |
| 379 for(block=UTRIE_BMP_INDEX_LENGTH; block<indexLength; block+=UTRIE_SURROGATE_
BLOCK_COUNT) { |
| 380 for(i=0; i<UTRIE_SURROGATE_BLOCK_COUNT; ++i) { |
| 381 if(idx[block+i]!=idx[otherBlock+i]) { |
| 382 break; |
| 383 } |
| 384 } |
| 385 if(i==UTRIE_SURROGATE_BLOCK_COUNT) { |
| 386 return block; |
| 387 } |
| 388 } |
| 389 return indexLength; |
| 390 } |
| 391 |
| 392 /* |
| 393 * Fold the normalization data for supplementary code points into |
| 394 * a compact area on top of the BMP-part of the trie index, |
| 395 * with the lead surrogates indexing this compact area. |
| 396 * |
| 397 * Duplicate the index values for lead surrogates: |
| 398 * From inside the BMP area, where some may be overridden with folded values, |
| 399 * to just after the BMP area, where they can be retrieved for |
| 400 * code point lookups. |
| 401 */ |
| 402 static void |
| 403 utrie_fold(UNewTrie *trie, UNewTrieGetFoldedValue *getFoldedValue, UErrorCode *p
ErrorCode) { |
| 404 int32_t leadIndexes[UTRIE_SURROGATE_BLOCK_COUNT]; |
| 405 int32_t *idx; |
| 406 uint32_t value; |
| 407 UChar32 c; |
| 408 int32_t indexLength, block; |
| 409 #ifdef UTRIE_DEBUG |
| 410 int countLeadCUWithData=0; |
| 411 #endif |
| 412 |
| 413 idx=trie->index; |
| 414 |
| 415 /* copy the lead surrogate indexes into a temporary array */ |
| 416 uprv_memcpy(leadIndexes, idx+(0xd800>>UTRIE_SHIFT), 4*UTRIE_SURROGATE_BLOCK_
COUNT); |
| 417 |
| 418 /* |
| 419 * set all values for lead surrogate code *units* to leadUnitValue |
| 420 * so that, by default, runtime lookups will find no data for associated |
| 421 * supplementary code points, unless there is data for such code points |
| 422 * which will result in a non-zero folding value below that is set for |
| 423 * the respective lead units |
| 424 * |
| 425 * the above saved the indexes for surrogate code *points* |
| 426 * fill the indexes with simplified code from utrie_setRange32() |
| 427 */ |
| 428 if(trie->leadUnitValue==trie->data[0]) { |
| 429 block=0; /* leadUnitValue==initialValue, use all-initial-value block */ |
| 430 } else { |
| 431 /* create and fill the repeatBlock */ |
| 432 block=utrie_allocDataBlock(trie); |
| 433 if(block<0) { |
| 434 /* data table overflow */ |
| 435 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 436 return; |
| 437 } |
| 438 utrie_fillBlock(trie->data+block, 0, UTRIE_DATA_BLOCK_LENGTH, trie->lead
UnitValue, trie->data[0], TRUE); |
| 439 block=-block; /* negative block number to indicate that it is a repeat b
lock */ |
| 440 } |
| 441 for(c=(0xd800>>UTRIE_SHIFT); c<(0xdc00>>UTRIE_SHIFT); ++c) { |
| 442 trie->index[c]=block; |
| 443 } |
| 444 |
| 445 /* |
| 446 * Fold significant index values into the area just after the BMP indexes. |
| 447 * In case the first lead surrogate has significant data, |
| 448 * its index block must be used first (in which case the folding is a no-op)
. |
| 449 * Later all folded index blocks are moved up one to insert the copied |
| 450 * lead surrogate indexes. |
| 451 */ |
| 452 indexLength=UTRIE_BMP_INDEX_LENGTH; |
| 453 |
| 454 /* search for any index (stage 1) entries for supplementary code points */ |
| 455 for(c=0x10000; c<0x110000;) { |
| 456 if(idx[c>>UTRIE_SHIFT]!=0) { |
| 457 /* there is data, treat the full block for a lead surrogate */ |
| 458 c&=~0x3ff; |
| 459 |
| 460 #ifdef UTRIE_DEBUG |
| 461 ++countLeadCUWithData; |
| 462 /* printf("supplementary data for lead surrogate U+%04lx\n", (long)(
0xd7c0+(c>>10))); */ |
| 463 #endif |
| 464 |
| 465 /* is there an identical index block? */ |
| 466 block=_findSameIndexBlock(idx, indexLength, c>>UTRIE_SHIFT); |
| 467 |
| 468 /* |
| 469 * get a folded value for [c..c+0x400[ and, |
| 470 * if different from the value for the lead surrogate code point, |
| 471 * set it for the lead surrogate code unit |
| 472 */ |
| 473 value=getFoldedValue(trie, c, block+UTRIE_SURROGATE_BLOCK_COUNT); |
| 474 if(value!=utrie_get32(trie, U16_LEAD(c), NULL)) { |
| 475 if(!utrie_set32(trie, U16_LEAD(c), value)) { |
| 476 /* data table overflow */ |
| 477 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 478 return; |
| 479 } |
| 480 |
| 481 /* if we did not find an identical index block... */ |
| 482 if(block==indexLength) { |
| 483 /* move the actual index (stage 1) entries from the suppleme
ntary position to the new one */ |
| 484 uprv_memmove(idx+indexLength, |
| 485 idx+(c>>UTRIE_SHIFT), |
| 486 4*UTRIE_SURROGATE_BLOCK_COUNT); |
| 487 indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
| 488 } |
| 489 } |
| 490 c+=0x400; |
| 491 } else { |
| 492 c+=UTRIE_DATA_BLOCK_LENGTH; |
| 493 } |
| 494 } |
| 495 #ifdef UTRIE_DEBUG |
| 496 if(countLeadCUWithData>0) { |
| 497 printf("supplementary data for %d lead surrogates\n", countLeadCUWithDat
a); |
| 498 } |
| 499 #endif |
| 500 |
| 501 /* |
| 502 * index array overflow? |
| 503 * This is to guarantee that a folding offset is of the form |
| 504 * UTRIE_BMP_INDEX_LENGTH+n*UTRIE_SURROGATE_BLOCK_COUNT with n=0..1023. |
| 505 * If the index is too large, then n>=1024 and more than 10 bits are necessa
ry. |
| 506 * |
| 507 * In fact, it can only ever become n==1024 with completely unfoldable data
and |
| 508 * the additional block of duplicated values for lead surrogates. |
| 509 */ |
| 510 if(indexLength>=UTRIE_MAX_INDEX_LENGTH) { |
| 511 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 512 return; |
| 513 } |
| 514 |
| 515 /* |
| 516 * make space for the lead surrogate index block and |
| 517 * insert it between the BMP indexes and the folded ones |
| 518 */ |
| 519 uprv_memmove(idx+UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT, |
| 520 idx+UTRIE_BMP_INDEX_LENGTH, |
| 521 4*(indexLength-UTRIE_BMP_INDEX_LENGTH)); |
| 522 uprv_memcpy(idx+UTRIE_BMP_INDEX_LENGTH, |
| 523 leadIndexes, |
| 524 4*UTRIE_SURROGATE_BLOCK_COUNT); |
| 525 indexLength+=UTRIE_SURROGATE_BLOCK_COUNT; |
| 526 |
| 527 #ifdef UTRIE_DEBUG |
| 528 printf("trie index count: BMP %ld all Unicode %ld folded %ld\n", |
| 529 UTRIE_BMP_INDEX_LENGTH, (long)UTRIE_MAX_INDEX_LENGTH, indexLength); |
| 530 #endif |
| 531 |
| 532 trie->indexLength=indexLength; |
| 533 } |
| 534 |
| 535 /* |
| 536 * Set a value in the trie index map to indicate which data block |
| 537 * is referenced and which one is not. |
| 538 * utrie_compact() will remove data blocks that are not used at all. |
| 539 * Set |
| 540 * - 0 if it is used |
| 541 * - -1 if it is not used |
| 542 */ |
| 543 static void |
| 544 _findUnusedBlocks(UNewTrie *trie) { |
| 545 int32_t i; |
| 546 |
| 547 /* fill the entire map with "not used" */ |
| 548 uprv_memset(trie->map, 0xff, (UTRIE_MAX_BUILD_TIME_DATA_LENGTH>>UTRIE_SHIFT)
*4); |
| 549 |
| 550 /* mark each block that _is_ used with 0 */ |
| 551 for(i=0; i<trie->indexLength; ++i) { |
| 552 trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]=0; |
| 553 } |
| 554 |
| 555 /* never move the all-initial-value block 0 */ |
| 556 trie->map[0]=0; |
| 557 } |
| 558 |
| 559 static int32_t |
| 560 _findSameDataBlock(const uint32_t *data, int32_t dataLength, |
| 561 int32_t otherBlock, int32_t step) { |
| 562 int32_t block; |
| 563 |
| 564 /* ensure that we do not even partially get past dataLength */ |
| 565 dataLength-=UTRIE_DATA_BLOCK_LENGTH; |
| 566 |
| 567 for(block=0; block<=dataLength; block+=step) { |
| 568 if(equal_uint32(data+block, data+otherBlock, UTRIE_DATA_BLOCK_LENGTH)) { |
| 569 return block; |
| 570 } |
| 571 } |
| 572 return -1; |
| 573 } |
| 574 |
| 575 /* |
| 576 * Compact a folded build-time trie. |
| 577 * |
| 578 * The compaction |
| 579 * - removes blocks that are identical with earlier ones |
| 580 * - overlaps adjacent blocks as much as possible (if overlap==TRUE) |
| 581 * - moves blocks in steps of the data granularity |
| 582 * - moves and overlaps blocks that overlap with multiple values in the overlap
region |
| 583 * |
| 584 * It does not |
| 585 * - try to move and overlap blocks that are not already adjacent |
| 586 */ |
| 587 static void |
| 588 utrie_compact(UNewTrie *trie, UBool overlap, UErrorCode *pErrorCode) { |
| 589 int32_t i, start, newStart, overlapStart; |
| 590 |
| 591 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| 592 return; |
| 593 } |
| 594 |
| 595 /* valid, uncompacted trie? */ |
| 596 if(trie==NULL) { |
| 597 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 598 return; |
| 599 } |
| 600 if(trie->isCompacted) { |
| 601 return; /* nothing left to do */ |
| 602 } |
| 603 |
| 604 /* compaction */ |
| 605 |
| 606 /* initialize the index map with "block is used/unused" flags */ |
| 607 _findUnusedBlocks(trie); |
| 608 |
| 609 /* if Latin-1 is preallocated and linear, then do not compact Latin-1 data *
/ |
| 610 if(trie->isLatin1Linear && UTRIE_SHIFT<=8) { |
| 611 overlapStart=UTRIE_DATA_BLOCK_LENGTH+256; |
| 612 } else { |
| 613 overlapStart=UTRIE_DATA_BLOCK_LENGTH; |
| 614 } |
| 615 |
| 616 newStart=UTRIE_DATA_BLOCK_LENGTH; |
| 617 for(start=newStart; start<trie->dataLength;) { |
| 618 /* |
| 619 * start: index of first entry of current block |
| 620 * newStart: index where the current block is to be moved |
| 621 * (right after current end of already-compacted data) |
| 622 */ |
| 623 |
| 624 /* skip blocks that are not used */ |
| 625 if(trie->map[start>>UTRIE_SHIFT]<0) { |
| 626 /* advance start to the next block */ |
| 627 start+=UTRIE_DATA_BLOCK_LENGTH; |
| 628 |
| 629 /* leave newStart with the previous block! */ |
| 630 continue; |
| 631 } |
| 632 |
| 633 /* search for an identical block */ |
| 634 if( start>=overlapStart && |
| 635 (i=_findSameDataBlock(trie->data, newStart, start, |
| 636 overlap ? UTRIE_DATA_GRANULARITY : UTRIE_DATA_BLOCK_
LENGTH)) |
| 637 >=0 |
| 638 ) { |
| 639 /* found an identical block, set the other block's index value for t
he current block */ |
| 640 trie->map[start>>UTRIE_SHIFT]=i; |
| 641 |
| 642 /* advance start to the next block */ |
| 643 start+=UTRIE_DATA_BLOCK_LENGTH; |
| 644 |
| 645 /* leave newStart with the previous block! */ |
| 646 continue; |
| 647 } |
| 648 |
| 649 /* see if the beginning of this block can be overlapped with the end of
the previous block */ |
| 650 if(overlap && start>=overlapStart) { |
| 651 /* look for maximum overlap (modulo granularity) with the previous,
adjacent block */ |
| 652 for(i=UTRIE_DATA_BLOCK_LENGTH-UTRIE_DATA_GRANULARITY; |
| 653 i>0 && !equal_uint32(trie->data+(newStart-i), trie->data+start,
i); |
| 654 i-=UTRIE_DATA_GRANULARITY) {} |
| 655 } else { |
| 656 i=0; |
| 657 } |
| 658 |
| 659 if(i>0) { |
| 660 /* some overlap */ |
| 661 trie->map[start>>UTRIE_SHIFT]=newStart-i; |
| 662 |
| 663 /* move the non-overlapping indexes to their new positions */ |
| 664 start+=i; |
| 665 for(i=UTRIE_DATA_BLOCK_LENGTH-i; i>0; --i) { |
| 666 trie->data[newStart++]=trie->data[start++]; |
| 667 } |
| 668 } else if(newStart<start) { |
| 669 /* no overlap, just move the indexes to their new positions */ |
| 670 trie->map[start>>UTRIE_SHIFT]=newStart; |
| 671 for(i=UTRIE_DATA_BLOCK_LENGTH; i>0; --i) { |
| 672 trie->data[newStart++]=trie->data[start++]; |
| 673 } |
| 674 } else /* no overlap && newStart==start */ { |
| 675 trie->map[start>>UTRIE_SHIFT]=start; |
| 676 newStart+=UTRIE_DATA_BLOCK_LENGTH; |
| 677 start=newStart; |
| 678 } |
| 679 } |
| 680 |
| 681 /* now adjust the index (stage 1) table */ |
| 682 for(i=0; i<trie->indexLength; ++i) { |
| 683 trie->index[i]=trie->map[ABS(trie->index[i])>>UTRIE_SHIFT]; |
| 684 } |
| 685 |
| 686 #ifdef UTRIE_DEBUG |
| 687 /* we saved some space */ |
| 688 printf("compacting trie: count of 32-bit words %lu->%lu\n", |
| 689 (long)trie->dataLength, (long)newStart); |
| 690 #endif |
| 691 |
| 692 trie->dataLength=newStart; |
| 693 } |
| 694 |
| 695 /* serialization ------------------------------------------------------------ */ |
| 696 |
| 697 /* |
| 698 * Default function for the folding value: |
| 699 * Just store the offset (16 bits) if there is any non-initial-value entry. |
| 700 * |
| 701 * The offset parameter is never 0. |
| 702 * Returning the offset itself is safe for UTRIE_SHIFT>=5 because |
| 703 * for UTRIE_SHIFT==5 the maximum index length is UTRIE_MAX_INDEX_LENGTH==0x8800 |
| 704 * which fits into 16-bit trie values; |
| 705 * for higher UTRIE_SHIFT, UTRIE_MAX_INDEX_LENGTH decreases. |
| 706 * |
| 707 * Theoretically, it would be safer for all possible UTRIE_SHIFT including |
| 708 * those of 4 and lower to return offset>>UTRIE_SURROGATE_BLOCK_BITS |
| 709 * which would always result in a value of 0x40..0x43f |
| 710 * (start/end 1k blocks of supplementary Unicode code points). |
| 711 * However, this would be uglier, and would not work for some existing |
| 712 * binary data file formats. |
| 713 * |
| 714 * Also, we do not plan to change UTRIE_SHIFT because it would change binary |
| 715 * data file formats, and we would probably not make it smaller because of |
| 716 * the then even larger BMP index length even for empty tries. |
| 717 */ |
| 718 static uint32_t U_CALLCONV |
| 719 defaultGetFoldedValue(UNewTrie *trie, UChar32 start, int32_t offset) { |
| 720 uint32_t value, initialValue; |
| 721 UChar32 limit; |
| 722 UBool inBlockZero; |
| 723 |
| 724 initialValue=trie->data[0]; |
| 725 limit=start+0x400; |
| 726 while(start<limit) { |
| 727 value=utrie_get32(trie, start, &inBlockZero); |
| 728 if(inBlockZero) { |
| 729 start+=UTRIE_DATA_BLOCK_LENGTH; |
| 730 } else if(value!=initialValue) { |
| 731 return (uint32_t)offset; |
| 732 } else { |
| 733 ++start; |
| 734 } |
| 735 } |
| 736 return 0; |
| 737 } |
| 738 |
| 739 U_CAPI int32_t U_EXPORT2 |
| 740 utrie_serialize(UNewTrie *trie, void *dt, int32_t capacity, |
| 741 UNewTrieGetFoldedValue *getFoldedValue, |
| 742 UBool reduceTo16Bits, |
| 743 UErrorCode *pErrorCode) { |
| 744 UTrieHeader *header; |
| 745 uint32_t *p; |
| 746 uint16_t *dest16; |
| 747 int32_t i, length; |
| 748 uint8_t* data = NULL; |
| 749 |
| 750 /* argument check */ |
| 751 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| 752 return 0; |
| 753 } |
| 754 |
| 755 if(trie==NULL || capacity<0 || (capacity>0 && dt==NULL)) { |
| 756 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 757 return 0; |
| 758 } |
| 759 if(getFoldedValue==NULL) { |
| 760 getFoldedValue=defaultGetFoldedValue; |
| 761 } |
| 762 |
| 763 data = (uint8_t*)dt; |
| 764 /* fold and compact if necessary, also checks that indexLength is within lim
its */ |
| 765 if(!trie->isCompacted) { |
| 766 /* compact once without overlap to improve folding */ |
| 767 utrie_compact(trie, FALSE, pErrorCode); |
| 768 |
| 769 /* fold the supplementary part of the index array */ |
| 770 utrie_fold(trie, getFoldedValue, pErrorCode); |
| 771 |
| 772 /* compact again with overlap for minimum data array length */ |
| 773 utrie_compact(trie, TRUE, pErrorCode); |
| 774 |
| 775 trie->isCompacted=TRUE; |
| 776 if(U_FAILURE(*pErrorCode)) { |
| 777 return 0; |
| 778 } |
| 779 } |
| 780 |
| 781 /* is dataLength within limits? */ |
| 782 if( (reduceTo16Bits ? (trie->dataLength+trie->indexLength) : trie->dataLengt
h) >= UTRIE_MAX_DATA_LENGTH) { |
| 783 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 784 } |
| 785 |
| 786 length=sizeof(UTrieHeader)+2*trie->indexLength; |
| 787 if(reduceTo16Bits) { |
| 788 length+=2*trie->dataLength; |
| 789 } else { |
| 790 length+=4*trie->dataLength; |
| 791 } |
| 792 |
| 793 if(length>capacity) { |
| 794 return length; /* preflighting */ |
| 795 } |
| 796 |
| 797 #ifdef UTRIE_DEBUG |
| 798 printf("**UTrieLengths(serialize)** index:%6ld data:%6ld serialized:%6ld\n
", |
| 799 (long)trie->indexLength, (long)trie->dataLength, (long)length); |
| 800 #endif |
| 801 |
| 802 /* set the header fields */ |
| 803 header=(UTrieHeader *)data; |
| 804 data+=sizeof(UTrieHeader); |
| 805 |
| 806 header->signature=0x54726965; /* "Trie" */ |
| 807 header->options=UTRIE_SHIFT | (UTRIE_INDEX_SHIFT<<UTRIE_OPTIONS_INDEX_SHIFT)
; |
| 808 |
| 809 if(!reduceTo16Bits) { |
| 810 header->options|=UTRIE_OPTIONS_DATA_IS_32_BIT; |
| 811 } |
| 812 if(trie->isLatin1Linear) { |
| 813 header->options|=UTRIE_OPTIONS_LATIN1_IS_LINEAR; |
| 814 } |
| 815 |
| 816 header->indexLength=trie->indexLength; |
| 817 header->dataLength=trie->dataLength; |
| 818 |
| 819 /* write the index (stage 1) array and the 16/32-bit data (stage 2) array */ |
| 820 if(reduceTo16Bits) { |
| 821 /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT, after a
dding indexLength */ |
| 822 p=(uint32_t *)trie->index; |
| 823 dest16=(uint16_t *)data; |
| 824 for(i=trie->indexLength; i>0; --i) { |
| 825 *dest16++=(uint16_t)((*p++ + trie->indexLength)>>UTRIE_INDEX_SHIFT); |
| 826 } |
| 827 |
| 828 /* write 16-bit data values */ |
| 829 p=trie->data; |
| 830 for(i=trie->dataLength; i>0; --i) { |
| 831 *dest16++=(uint16_t)*p++; |
| 832 } |
| 833 } else { |
| 834 /* write 16-bit index values shifted right by UTRIE_INDEX_SHIFT */ |
| 835 p=(uint32_t *)trie->index; |
| 836 dest16=(uint16_t *)data; |
| 837 for(i=trie->indexLength; i>0; --i) { |
| 838 *dest16++=(uint16_t)(*p++ >> UTRIE_INDEX_SHIFT); |
| 839 } |
| 840 |
| 841 /* write 32-bit data values */ |
| 842 uprv_memcpy(dest16, trie->data, 4*trie->dataLength); |
| 843 } |
| 844 |
| 845 return length; |
| 846 } |
| 847 |
| 848 /* inverse to defaultGetFoldedValue() */ |
| 849 U_CAPI int32_t U_EXPORT2 |
| 850 utrie_defaultGetFoldingOffset(uint32_t data) { |
| 851 return (int32_t)data; |
| 852 } |
| 853 |
| 854 U_CAPI int32_t U_EXPORT2 |
| 855 utrie_unserialize(UTrie *trie, const void *data, int32_t length, UErrorCode *pEr
rorCode) { |
| 856 const UTrieHeader *header; |
| 857 const uint16_t *p16; |
| 858 uint32_t options; |
| 859 |
| 860 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| 861 return -1; |
| 862 } |
| 863 |
| 864 /* enough data for a trie header? */ |
| 865 if(length<sizeof(UTrieHeader)) { |
| 866 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 867 return -1; |
| 868 } |
| 869 |
| 870 /* check the signature */ |
| 871 header=(const UTrieHeader *)data; |
| 872 if(header->signature!=0x54726965) { |
| 873 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 874 return -1; |
| 875 } |
| 876 |
| 877 /* get the options and check the shift values */ |
| 878 options=header->options; |
| 879 if( (options&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_SHIFT || |
| 880 ((options>>UTRIE_OPTIONS_INDEX_SHIFT)&UTRIE_OPTIONS_SHIFT_MASK)!=UTRIE_I
NDEX_SHIFT |
| 881 ) { |
| 882 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 883 return -1; |
| 884 } |
| 885 trie->isLatin1Linear= (UBool)((options&UTRIE_OPTIONS_LATIN1_IS_LINEAR)!=0); |
| 886 |
| 887 /* get the length values */ |
| 888 trie->indexLength=header->indexLength; |
| 889 trie->dataLength=header->dataLength; |
| 890 |
| 891 length-=(int32_t)sizeof(UTrieHeader); |
| 892 |
| 893 /* enough data for the index? */ |
| 894 if(length<2*trie->indexLength) { |
| 895 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 896 return -1; |
| 897 } |
| 898 p16=(const uint16_t *)(header+1); |
| 899 trie->index=p16; |
| 900 p16+=trie->indexLength; |
| 901 length-=2*trie->indexLength; |
| 902 |
| 903 /* get the data */ |
| 904 if(options&UTRIE_OPTIONS_DATA_IS_32_BIT) { |
| 905 if(length<4*trie->dataLength) { |
| 906 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 907 return -1; |
| 908 } |
| 909 trie->data32=(const uint32_t *)p16; |
| 910 trie->initialValue=trie->data32[0]; |
| 911 length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+4*trie->dataLeng
th; |
| 912 } else { |
| 913 if(length<2*trie->dataLength) { |
| 914 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 915 return -1; |
| 916 } |
| 917 |
| 918 /* the "data16" data is used via the index pointer */ |
| 919 trie->data32=NULL; |
| 920 trie->initialValue=trie->index[trie->indexLength]; |
| 921 length=(int32_t)sizeof(UTrieHeader)+2*trie->indexLength+2*trie->dataLeng
th; |
| 922 } |
| 923 |
| 924 trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
| 925 |
| 926 return length; |
| 927 } |
| 928 |
| 929 U_CAPI int32_t U_EXPORT2 |
| 930 utrie_unserializeDummy(UTrie *trie, |
| 931 void *data, int32_t length, |
| 932 uint32_t initialValue, uint32_t leadUnitValue, |
| 933 UBool make16BitTrie, |
| 934 UErrorCode *pErrorCode) { |
| 935 uint16_t *p16; |
| 936 int32_t actualLength, latin1Length, i, limit; |
| 937 uint16_t block; |
| 938 |
| 939 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| 940 return -1; |
| 941 } |
| 942 |
| 943 /* calculate the actual size of the dummy trie data */ |
| 944 |
| 945 /* max(Latin-1, block 0) */ |
| 946 latin1Length= UTRIE_SHIFT<=8 ? 256 : UTRIE_DATA_BLOCK_LENGTH; |
| 947 |
| 948 trie->indexLength=UTRIE_BMP_INDEX_LENGTH+UTRIE_SURROGATE_BLOCK_COUNT; |
| 949 trie->dataLength=latin1Length; |
| 950 if(leadUnitValue!=initialValue) { |
| 951 trie->dataLength+=UTRIE_DATA_BLOCK_LENGTH; |
| 952 } |
| 953 |
| 954 actualLength=trie->indexLength*2; |
| 955 if(make16BitTrie) { |
| 956 actualLength+=trie->dataLength*2; |
| 957 } else { |
| 958 actualLength+=trie->dataLength*4; |
| 959 } |
| 960 |
| 961 /* enough space for the dummy trie? */ |
| 962 if(length<actualLength) { |
| 963 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 964 return actualLength; |
| 965 } |
| 966 |
| 967 trie->isLatin1Linear=TRUE; |
| 968 trie->initialValue=initialValue; |
| 969 |
| 970 /* fill the index and data arrays */ |
| 971 p16=(uint16_t *)data; |
| 972 trie->index=p16; |
| 973 |
| 974 if(make16BitTrie) { |
| 975 /* indexes to block 0 */ |
| 976 block=(uint16_t)(trie->indexLength>>UTRIE_INDEX_SHIFT); |
| 977 limit=trie->indexLength; |
| 978 for(i=0; i<limit; ++i) { |
| 979 p16[i]=block; |
| 980 } |
| 981 |
| 982 if(leadUnitValue!=initialValue) { |
| 983 /* indexes for lead surrogate code units to the block after Latin-1
*/ |
| 984 block+=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
| 985 i=0xd800>>UTRIE_SHIFT; |
| 986 limit=0xdc00>>UTRIE_SHIFT; |
| 987 for(; i<limit; ++i) { |
| 988 p16[i]=block; |
| 989 } |
| 990 } |
| 991 |
| 992 trie->data32=NULL; |
| 993 |
| 994 /* Latin-1 data */ |
| 995 p16+=trie->indexLength; |
| 996 for(i=0; i<latin1Length; ++i) { |
| 997 p16[i]=(uint16_t)initialValue; |
| 998 } |
| 999 |
| 1000 /* data for lead surrogate code units */ |
| 1001 if(leadUnitValue!=initialValue) { |
| 1002 limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
| 1003 for(/* i=latin1Length */; i<limit; ++i) { |
| 1004 p16[i]=(uint16_t)leadUnitValue; |
| 1005 } |
| 1006 } |
| 1007 } else { |
| 1008 uint32_t *p32; |
| 1009 |
| 1010 /* indexes to block 0 */ |
| 1011 uprv_memset(p16, 0, trie->indexLength*2); |
| 1012 |
| 1013 if(leadUnitValue!=initialValue) { |
| 1014 /* indexes for lead surrogate code units to the block after Latin-1
*/ |
| 1015 block=(uint16_t)(latin1Length>>UTRIE_INDEX_SHIFT); |
| 1016 i=0xd800>>UTRIE_SHIFT; |
| 1017 limit=0xdc00>>UTRIE_SHIFT; |
| 1018 for(; i<limit; ++i) { |
| 1019 p16[i]=block; |
| 1020 } |
| 1021 } |
| 1022 |
| 1023 trie->data32=p32=(uint32_t *)(p16+trie->indexLength); |
| 1024 |
| 1025 /* Latin-1 data */ |
| 1026 for(i=0; i<latin1Length; ++i) { |
| 1027 p32[i]=initialValue; |
| 1028 } |
| 1029 |
| 1030 /* data for lead surrogate code units */ |
| 1031 if(leadUnitValue!=initialValue) { |
| 1032 limit=latin1Length+UTRIE_DATA_BLOCK_LENGTH; |
| 1033 for(/* i=latin1Length */; i<limit; ++i) { |
| 1034 p32[i]=leadUnitValue; |
| 1035 } |
| 1036 } |
| 1037 } |
| 1038 |
| 1039 trie->getFoldingOffset=utrie_defaultGetFoldingOffset; |
| 1040 |
| 1041 return actualLength; |
| 1042 } |
| 1043 |
| 1044 /* enumeration -------------------------------------------------------------- */ |
| 1045 |
| 1046 /* default UTrieEnumValue() returns the input value itself */ |
| 1047 static uint32_t U_CALLCONV |
| 1048 enumSameValue(const void *context, uint32_t value) { |
| 1049 return value; |
| 1050 } |
| 1051 |
| 1052 /** |
| 1053 * Enumerate all ranges of code points with the same relevant values. |
| 1054 * The values are transformed from the raw trie entries by the enumValue functio
n. |
| 1055 */ |
| 1056 U_CAPI void U_EXPORT2 |
| 1057 utrie_enum(const UTrie *trie, |
| 1058 UTrieEnumValue *enumValue, UTrieEnumRange *enumRange, const void *con
text) { |
| 1059 const uint32_t *data32; |
| 1060 const uint16_t *idx; |
| 1061 |
| 1062 uint32_t value, prevValue, initialValue; |
| 1063 UChar32 c, prev; |
| 1064 int32_t l, i, j, block, prevBlock, nullBlock, offset; |
| 1065 |
| 1066 /* check arguments */ |
| 1067 if(trie==NULL || trie->index==NULL || enumRange==NULL) { |
| 1068 return; |
| 1069 } |
| 1070 if(enumValue==NULL) { |
| 1071 enumValue=enumSameValue; |
| 1072 } |
| 1073 |
| 1074 idx=trie->index; |
| 1075 data32=trie->data32; |
| 1076 |
| 1077 /* get the enumeration value that corresponds to an initial-value trie data
entry */ |
| 1078 initialValue=enumValue(context, trie->initialValue); |
| 1079 |
| 1080 if(data32==NULL) { |
| 1081 nullBlock=trie->indexLength; |
| 1082 } else { |
| 1083 nullBlock=0; |
| 1084 } |
| 1085 |
| 1086 /* set variables for previous range */ |
| 1087 prevBlock=nullBlock; |
| 1088 prev=0; |
| 1089 prevValue=initialValue; |
| 1090 |
| 1091 /* enumerate BMP - the main loop enumerates data blocks */ |
| 1092 for(i=0, c=0; c<=0xffff; ++i) { |
| 1093 if(c==0xd800) { |
| 1094 /* skip lead surrogate code _units_, go to lead surr. code _points_
*/ |
| 1095 i=UTRIE_BMP_INDEX_LENGTH; |
| 1096 } else if(c==0xdc00) { |
| 1097 /* go back to regular BMP code points */ |
| 1098 i=c>>UTRIE_SHIFT; |
| 1099 } |
| 1100 |
| 1101 block=idx[i]<<UTRIE_INDEX_SHIFT; |
| 1102 if(block==prevBlock) { |
| 1103 /* the block is the same as the previous one, and filled with value
*/ |
| 1104 c+=UTRIE_DATA_BLOCK_LENGTH; |
| 1105 } else if(block==nullBlock) { |
| 1106 /* this is the all-initial-value block */ |
| 1107 if(prevValue!=initialValue) { |
| 1108 if(prev<c) { |
| 1109 if(!enumRange(context, prev, c, prevValue)) { |
| 1110 return; |
| 1111 } |
| 1112 } |
| 1113 prevBlock=nullBlock; |
| 1114 prev=c; |
| 1115 prevValue=initialValue; |
| 1116 } |
| 1117 c+=UTRIE_DATA_BLOCK_LENGTH; |
| 1118 } else { |
| 1119 prevBlock=block; |
| 1120 for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
| 1121 value=enumValue(context, data32!=NULL ? data32[block+j] : idx[bl
ock+j]); |
| 1122 if(value!=prevValue) { |
| 1123 if(prev<c) { |
| 1124 if(!enumRange(context, prev, c, prevValue)) { |
| 1125 return; |
| 1126 } |
| 1127 } |
| 1128 if(j>0) { |
| 1129 /* the block is not filled with all the same value */ |
| 1130 prevBlock=-1; |
| 1131 } |
| 1132 prev=c; |
| 1133 prevValue=value; |
| 1134 } |
| 1135 ++c; |
| 1136 } |
| 1137 } |
| 1138 } |
| 1139 |
| 1140 /* enumerate supplementary code points */ |
| 1141 for(l=0xd800; l<0xdc00;) { |
| 1142 /* lead surrogate access */ |
| 1143 offset=idx[l>>UTRIE_SHIFT]<<UTRIE_INDEX_SHIFT; |
| 1144 if(offset==nullBlock) { |
| 1145 /* no entries for a whole block of lead surrogates */ |
| 1146 if(prevValue!=initialValue) { |
| 1147 if(prev<c) { |
| 1148 if(!enumRange(context, prev, c, prevValue)) { |
| 1149 return; |
| 1150 } |
| 1151 } |
| 1152 prevBlock=nullBlock; |
| 1153 prev=c; |
| 1154 prevValue=initialValue; |
| 1155 } |
| 1156 |
| 1157 l+=UTRIE_DATA_BLOCK_LENGTH; |
| 1158 c+=UTRIE_DATA_BLOCK_LENGTH<<10; |
| 1159 continue; |
| 1160 } |
| 1161 |
| 1162 value= data32!=NULL ? data32[offset+(l&UTRIE_MASK)] : idx[offset+(l&UTRI
E_MASK)]; |
| 1163 |
| 1164 /* enumerate trail surrogates for this lead surrogate */ |
| 1165 offset=trie->getFoldingOffset(value); |
| 1166 if(offset<=0) { |
| 1167 /* no data for this lead surrogate */ |
| 1168 if(prevValue!=initialValue) { |
| 1169 if(prev<c) { |
| 1170 if(!enumRange(context, prev, c, prevValue)) { |
| 1171 return; |
| 1172 } |
| 1173 } |
| 1174 prevBlock=nullBlock; |
| 1175 prev=c; |
| 1176 prevValue=initialValue; |
| 1177 } |
| 1178 |
| 1179 /* nothing else to do for the supplementary code points for this lea
d surrogate */ |
| 1180 c+=0x400; |
| 1181 } else { |
| 1182 /* enumerate code points for this lead surrogate */ |
| 1183 i=offset; |
| 1184 offset+=UTRIE_SURROGATE_BLOCK_COUNT; |
| 1185 do { |
| 1186 /* copy of most of the body of the BMP loop */ |
| 1187 block=idx[i]<<UTRIE_INDEX_SHIFT; |
| 1188 if(block==prevBlock) { |
| 1189 /* the block is the same as the previous one, and filled wit
h value */ |
| 1190 c+=UTRIE_DATA_BLOCK_LENGTH; |
| 1191 } else if(block==nullBlock) { |
| 1192 /* this is the all-initial-value block */ |
| 1193 if(prevValue!=initialValue) { |
| 1194 if(prev<c) { |
| 1195 if(!enumRange(context, prev, c, prevValue)) { |
| 1196 return; |
| 1197 } |
| 1198 } |
| 1199 prevBlock=nullBlock; |
| 1200 prev=c; |
| 1201 prevValue=initialValue; |
| 1202 } |
| 1203 c+=UTRIE_DATA_BLOCK_LENGTH; |
| 1204 } else { |
| 1205 prevBlock=block; |
| 1206 for(j=0; j<UTRIE_DATA_BLOCK_LENGTH; ++j) { |
| 1207 value=enumValue(context, data32!=NULL ? data32[block+j]
: idx[block+j]); |
| 1208 if(value!=prevValue) { |
| 1209 if(prev<c) { |
| 1210 if(!enumRange(context, prev, c, prevValue)) { |
| 1211 return; |
| 1212 } |
| 1213 } |
| 1214 if(j>0) { |
| 1215 /* the block is not filled with all the same val
ue */ |
| 1216 prevBlock=-1; |
| 1217 } |
| 1218 prev=c; |
| 1219 prevValue=value; |
| 1220 } |
| 1221 ++c; |
| 1222 } |
| 1223 } |
| 1224 } while(++i<offset); |
| 1225 } |
| 1226 |
| 1227 ++l; |
| 1228 } |
| 1229 |
| 1230 /* deliver last range */ |
| 1231 enumRange(context, prev, c, prevValue); |
| 1232 } |
OLD | NEW |