OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ******************************************************************************* |
| 3 * |
| 4 * Copyright (C) 2005-2010, International Business Machines |
| 5 * Corporation and others. All Rights Reserved. |
| 6 * |
| 7 ******************************************************************************* |
| 8 * file name: utext.cpp |
| 9 * encoding: US-ASCII |
| 10 * tab size: 8 (not used) |
| 11 * indentation:4 |
| 12 * |
| 13 * created on: 2005apr12 |
| 14 * created by: Markus W. Scherer |
| 15 */ |
| 16 |
| 17 #include "unicode/utypes.h" |
| 18 #include "unicode/ustring.h" |
| 19 #include "unicode/unistr.h" |
| 20 #include "unicode/chariter.h" |
| 21 #include "unicode/utext.h" |
| 22 #include "ustr_imp.h" |
| 23 #include "cmemory.h" |
| 24 #include "cstring.h" |
| 25 #include "uassert.h" |
| 26 #include "putilimp.h" |
| 27 |
| 28 U_NAMESPACE_USE |
| 29 |
| 30 #define I32_FLAG(bitIndex) ((int32_t)1<<(bitIndex)) |
| 31 |
| 32 |
| 33 static UBool |
| 34 utext_access(UText *ut, int64_t index, UBool forward) { |
| 35 return ut->pFuncs->access(ut, index, forward); |
| 36 } |
| 37 |
| 38 |
| 39 |
| 40 U_CAPI UBool U_EXPORT2 |
| 41 utext_moveIndex32(UText *ut, int32_t delta) { |
| 42 UChar32 c; |
| 43 if (delta > 0) { |
| 44 do { |
| 45 if(ut->chunkOffset>=ut->chunkLength && !utext_access(ut, ut->chunkNa
tiveLimit, TRUE)) { |
| 46 return FALSE; |
| 47 } |
| 48 c = ut->chunkContents[ut->chunkOffset]; |
| 49 if (U16_IS_SURROGATE(c)) { |
| 50 c = utext_next32(ut); |
| 51 if (c == U_SENTINEL) { |
| 52 return FALSE; |
| 53 } |
| 54 } else { |
| 55 ut->chunkOffset++; |
| 56 } |
| 57 } while(--delta>0); |
| 58 |
| 59 } else if (delta<0) { |
| 60 do { |
| 61 if(ut->chunkOffset<=0 && !utext_access(ut, ut->chunkNativeStart, FAL
SE)) { |
| 62 return FALSE; |
| 63 } |
| 64 c = ut->chunkContents[ut->chunkOffset-1]; |
| 65 if (U16_IS_SURROGATE(c)) { |
| 66 c = utext_previous32(ut); |
| 67 if (c == U_SENTINEL) { |
| 68 return FALSE; |
| 69 } |
| 70 } else { |
| 71 ut->chunkOffset--; |
| 72 } |
| 73 } while(++delta<0); |
| 74 } |
| 75 |
| 76 return TRUE; |
| 77 } |
| 78 |
| 79 |
| 80 U_CAPI int64_t U_EXPORT2 |
| 81 utext_nativeLength(UText *ut) { |
| 82 return ut->pFuncs->nativeLength(ut); |
| 83 } |
| 84 |
| 85 |
| 86 U_CAPI UBool U_EXPORT2 |
| 87 utext_isLengthExpensive(const UText *ut) { |
| 88 UBool r = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENS
IVE)) != 0; |
| 89 return r; |
| 90 } |
| 91 |
| 92 |
| 93 U_CAPI int64_t U_EXPORT2 |
| 94 utext_getNativeIndex(const UText *ut) { |
| 95 if(ut->chunkOffset <= ut->nativeIndexingLimit) { |
| 96 return ut->chunkNativeStart+ut->chunkOffset; |
| 97 } else { |
| 98 return ut->pFuncs->mapOffsetToNative(ut); |
| 99 } |
| 100 } |
| 101 |
| 102 |
| 103 U_CAPI void U_EXPORT2 |
| 104 utext_setNativeIndex(UText *ut, int64_t index) { |
| 105 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
| 106 // The desired position is outside of the current chunk. |
| 107 // Access the new position. Assume a forward iteration from here, |
| 108 // which will also be optimimum for a single random access. |
| 109 // Reverse iterations may suffer slightly. |
| 110 ut->pFuncs->access(ut, index, TRUE); |
| 111 } else if((int32_t)(index - ut->chunkNativeStart) <= ut->nativeIndexingLimit
) { |
| 112 // utf-16 indexing. |
| 113 ut->chunkOffset=(int32_t)(index-ut->chunkNativeStart); |
| 114 } else { |
| 115 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| 116 } |
| 117 // The convention is that the index must always be on a code point boundary. |
| 118 // Adjust the index position if it is in the middle of a surrogate pair. |
| 119 if (ut->chunkOffset<ut->chunkLength) { |
| 120 UChar c= ut->chunkContents[ut->chunkOffset]; |
| 121 if (UTF16_IS_TRAIL(c)) { |
| 122 if (ut->chunkOffset==0) { |
| 123 ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE); |
| 124 } |
| 125 if (ut->chunkOffset>0) { |
| 126 UChar lead = ut->chunkContents[ut->chunkOffset-1]; |
| 127 if (UTF16_IS_LEAD(lead)) { |
| 128 ut->chunkOffset--; |
| 129 } |
| 130 } |
| 131 } |
| 132 } |
| 133 } |
| 134 |
| 135 |
| 136 |
| 137 U_CAPI int64_t U_EXPORT2 |
| 138 utext_getPreviousNativeIndex(UText *ut) { |
| 139 // |
| 140 // Fast-path the common case. |
| 141 // Common means current position is not at the beginning of a chunk |
| 142 // and the preceding character is not supplementary. |
| 143 // |
| 144 int32_t i = ut->chunkOffset - 1; |
| 145 int64_t result; |
| 146 if (i >= 0) { |
| 147 UChar c = ut->chunkContents[i]; |
| 148 if (U16_IS_TRAIL(c) == FALSE) { |
| 149 if (i <= ut->nativeIndexingLimit) { |
| 150 result = ut->chunkNativeStart + i; |
| 151 } else { |
| 152 ut->chunkOffset = i; |
| 153 result = ut->pFuncs->mapOffsetToNative(ut); |
| 154 ut->chunkOffset++; |
| 155 } |
| 156 return result; |
| 157 } |
| 158 } |
| 159 |
| 160 // If at the start of text, simply return 0. |
| 161 if (ut->chunkOffset==0 && ut->chunkNativeStart==0) { |
| 162 return 0; |
| 163 } |
| 164 |
| 165 // Harder, less common cases. We are at a chunk boundary, or on a surrogate
. |
| 166 // Keep it simple, use other functions to handle the edges. |
| 167 // |
| 168 utext_previous32(ut); |
| 169 result = UTEXT_GETNATIVEINDEX(ut); |
| 170 utext_next32(ut); |
| 171 return result; |
| 172 } |
| 173 |
| 174 |
| 175 // |
| 176 // utext_current32. Get the UChar32 at the current position. |
| 177 // UText iteration position is always on a code point boundar
y, |
| 178 // never on the trail half of a surrogate pair. |
| 179 // |
| 180 U_CAPI UChar32 U_EXPORT2 |
| 181 utext_current32(UText *ut) { |
| 182 UChar32 c; |
| 183 if (ut->chunkOffset==ut->chunkLength) { |
| 184 // Current position is just off the end of the chunk. |
| 185 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| 186 // Off the end of the text. |
| 187 return U_SENTINEL; |
| 188 } |
| 189 } |
| 190 |
| 191 c = ut->chunkContents[ut->chunkOffset]; |
| 192 if (U16_IS_LEAD(c) == FALSE) { |
| 193 // Normal, non-supplementary case. |
| 194 return c; |
| 195 } |
| 196 |
| 197 // |
| 198 // Possible supplementary char. |
| 199 // |
| 200 UChar32 trail = 0; |
| 201 UChar32 supplementaryC = c; |
| 202 if ((ut->chunkOffset+1) < ut->chunkLength) { |
| 203 // The trail surrogate is in the same chunk. |
| 204 trail = ut->chunkContents[ut->chunkOffset+1]; |
| 205 } else { |
| 206 // The trail surrogate is in a different chunk. |
| 207 // Because we must maintain the iteration position, we need to switc
h forward |
| 208 // into the new chunk, get the trail surrogate, then revert the chun
k back to the |
| 209 // original one. |
| 210 // An edge case to be careful of: the entire text may end with an u
npaired |
| 211 // leading surrogate. The attempt to access the trail will fail,
but |
| 212 // the original position before the unpaired lead still needs to
be restored. |
| 213 int64_t nativePosition = ut->chunkNativeLimit; |
| 214 int32_t originalOffset = ut->chunkOffset; |
| 215 if (ut->pFuncs->access(ut, nativePosition, TRUE)) { |
| 216 trail = ut->chunkContents[ut->chunkOffset]; |
| 217 } |
| 218 UBool r = ut->pFuncs->access(ut, nativePosition, FALSE); // reverse ite
ration flag loads preceding chunk |
| 219 U_ASSERT(r==TRUE); |
| 220 ut->chunkOffset = originalOffset; |
| 221 if(!r) { |
| 222 return U_SENTINEL; |
| 223 } |
| 224 } |
| 225 |
| 226 if (U16_IS_TRAIL(trail)) { |
| 227 supplementaryC = U16_GET_SUPPLEMENTARY(c, trail); |
| 228 } |
| 229 return supplementaryC; |
| 230 |
| 231 } |
| 232 |
| 233 |
| 234 U_CAPI UChar32 U_EXPORT2 |
| 235 utext_char32At(UText *ut, int64_t nativeIndex) { |
| 236 UChar32 c = U_SENTINEL; |
| 237 |
| 238 // Fast path the common case. |
| 239 if (nativeIndex>=ut->chunkNativeStart && nativeIndex < ut->chunkNativeStart
+ ut->nativeIndexingLimit) { |
| 240 ut->chunkOffset = (int32_t)(nativeIndex - ut->chunkNativeStart); |
| 241 c = ut->chunkContents[ut->chunkOffset]; |
| 242 if (U16_IS_SURROGATE(c) == FALSE) { |
| 243 return c; |
| 244 } |
| 245 } |
| 246 |
| 247 |
| 248 utext_setNativeIndex(ut, nativeIndex); |
| 249 if (nativeIndex>=ut->chunkNativeStart && ut->chunkOffset<ut->chunkLength) { |
| 250 c = ut->chunkContents[ut->chunkOffset]; |
| 251 if (U16_IS_SURROGATE(c)) { |
| 252 // For surrogates, let current32() deal with the complications |
| 253 // of supplementaries that may span chunk boundaries. |
| 254 c = utext_current32(ut); |
| 255 } |
| 256 } |
| 257 return c; |
| 258 } |
| 259 |
| 260 |
| 261 U_CAPI UChar32 U_EXPORT2 |
| 262 utext_next32(UText *ut) { |
| 263 UChar32 c; |
| 264 |
| 265 if (ut->chunkOffset >= ut->chunkLength) { |
| 266 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| 267 return U_SENTINEL; |
| 268 } |
| 269 } |
| 270 |
| 271 c = ut->chunkContents[ut->chunkOffset++]; |
| 272 if (U16_IS_LEAD(c) == FALSE) { |
| 273 // Normal case, not supplementary. |
| 274 // (A trail surrogate seen here is just returned as is, as a surrogate
value. |
| 275 // It cannot be part of a pair.) |
| 276 return c; |
| 277 } |
| 278 |
| 279 if (ut->chunkOffset >= ut->chunkLength) { |
| 280 if (ut->pFuncs->access(ut, ut->chunkNativeLimit, TRUE) == FALSE) { |
| 281 // c is an unpaired lead surrogate at the end of the text. |
| 282 // return it as it is. |
| 283 return c; |
| 284 } |
| 285 } |
| 286 UChar32 trail = ut->chunkContents[ut->chunkOffset]; |
| 287 if (U16_IS_TRAIL(trail) == FALSE) { |
| 288 // c was an unpaired lead surrogate, not at the end of the text. |
| 289 // return it as it is (unpaired). Iteration position is on the |
| 290 // following character, possibly in the next chunk, where the |
| 291 // trail surrogate would have been if it had existed. |
| 292 return c; |
| 293 } |
| 294 |
| 295 UChar32 supplementary = U16_GET_SUPPLEMENTARY(c, trail); |
| 296 ut->chunkOffset++; // move iteration position over the trail surrogate. |
| 297 return supplementary; |
| 298 } |
| 299 |
| 300 |
| 301 U_CAPI UChar32 U_EXPORT2 |
| 302 utext_previous32(UText *ut) { |
| 303 UChar32 c; |
| 304 |
| 305 if (ut->chunkOffset <= 0) { |
| 306 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
| 307 return U_SENTINEL; |
| 308 } |
| 309 } |
| 310 ut->chunkOffset--; |
| 311 c = ut->chunkContents[ut->chunkOffset]; |
| 312 if (U16_IS_TRAIL(c) == FALSE) { |
| 313 // Normal case, not supplementary. |
| 314 // (A lead surrogate seen here is just returned as is, as a surrogate
value. |
| 315 // It cannot be part of a pair.) |
| 316 return c; |
| 317 } |
| 318 |
| 319 if (ut->chunkOffset <= 0) { |
| 320 if (ut->pFuncs->access(ut, ut->chunkNativeStart, FALSE) == FALSE) { |
| 321 // c is an unpaired trail surrogate at the start of the text. |
| 322 // return it as it is. |
| 323 return c; |
| 324 } |
| 325 } |
| 326 |
| 327 UChar32 lead = ut->chunkContents[ut->chunkOffset-1]; |
| 328 if (U16_IS_LEAD(lead) == FALSE) { |
| 329 // c was an unpaired trail surrogate, not at the end of the text. |
| 330 // return it as it is (unpaired). Iteration position is at c |
| 331 return c; |
| 332 } |
| 333 |
| 334 UChar32 supplementary = U16_GET_SUPPLEMENTARY(lead, c); |
| 335 ut->chunkOffset--; // move iteration position over the lead surrogate. |
| 336 return supplementary; |
| 337 } |
| 338 |
| 339 |
| 340 |
| 341 U_CAPI UChar32 U_EXPORT2 |
| 342 utext_next32From(UText *ut, int64_t index) { |
| 343 UChar32 c = U_SENTINEL; |
| 344 |
| 345 if(index<ut->chunkNativeStart || index>=ut->chunkNativeLimit) { |
| 346 // Desired position is outside of the current chunk. |
| 347 if(!ut->pFuncs->access(ut, index, TRUE)) { |
| 348 // no chunk available here |
| 349 return U_SENTINEL; |
| 350 } |
| 351 } else if (index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit
) { |
| 352 // Desired position is in chunk, with direct 1:1 native to UTF16 indexin
g |
| 353 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| 354 } else { |
| 355 // Desired position is in chunk, with non-UTF16 indexing. |
| 356 ut->chunkOffset = ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| 357 } |
| 358 |
| 359 c = ut->chunkContents[ut->chunkOffset++]; |
| 360 if (U16_IS_SURROGATE(c)) { |
| 361 // Surrogates. Many edge cases. Use other functions that already |
| 362 // deal with the problems. |
| 363 utext_setNativeIndex(ut, index); |
| 364 c = utext_next32(ut); |
| 365 } |
| 366 return c; |
| 367 } |
| 368 |
| 369 |
| 370 U_CAPI UChar32 U_EXPORT2 |
| 371 utext_previous32From(UText *ut, int64_t index) { |
| 372 // |
| 373 // Return the character preceding the specified index. |
| 374 // Leave the iteration position at the start of the character that was retu
rned. |
| 375 // |
| 376 UChar32 cPrev; // The character preceding cCurr, which is what we wil
l return. |
| 377 |
| 378 // Address the chunk containg the position preceding the incoming index |
| 379 // A tricky edge case: |
| 380 // We try to test the requested native index against the chunkNativeStart
to determine |
| 381 // whether the character preceding the one at the index is in the current
chunk. |
| 382 // BUT, this test can fail with UTF-8 (or any other multibyte encoding),
when the |
| 383 // requested index is on something other than the first position of the f
irst char. |
| 384 // |
| 385 if(index<=ut->chunkNativeStart || index>ut->chunkNativeLimit) { |
| 386 // Requested native index is outside of the current chunk. |
| 387 if(!ut->pFuncs->access(ut, index, FALSE)) { |
| 388 // no chunk available here |
| 389 return U_SENTINEL; |
| 390 } |
| 391 } else if(index - ut->chunkNativeStart <= (int64_t)ut->nativeIndexingLimit)
{ |
| 392 // Direct UTF-16 indexing. |
| 393 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| 394 } else { |
| 395 ut->chunkOffset=ut->pFuncs->mapNativeIndexToUTF16(ut, index); |
| 396 if (ut->chunkOffset==0 && !ut->pFuncs->access(ut, index, FALSE)) { |
| 397 // no chunk available here |
| 398 return U_SENTINEL; |
| 399 } |
| 400 } |
| 401 |
| 402 // |
| 403 // Simple case with no surrogates. |
| 404 // |
| 405 ut->chunkOffset--; |
| 406 cPrev = ut->chunkContents[ut->chunkOffset]; |
| 407 |
| 408 if (U16_IS_SURROGATE(cPrev)) { |
| 409 // Possible supplementary. Many edge cases. |
| 410 // Let other functions do the heavy lifting. |
| 411 utext_setNativeIndex(ut, index); |
| 412 cPrev = utext_previous32(ut); |
| 413 } |
| 414 return cPrev; |
| 415 } |
| 416 |
| 417 |
| 418 U_CAPI int32_t U_EXPORT2 |
| 419 utext_extract(UText *ut, |
| 420 int64_t start, int64_t limit, |
| 421 UChar *dest, int32_t destCapacity, |
| 422 UErrorCode *status) { |
| 423 return ut->pFuncs->extract(ut, start, limit, dest, destCapacity
, status); |
| 424 } |
| 425 |
| 426 |
| 427 |
| 428 U_CAPI UBool U_EXPORT2 |
| 429 utext_equals(const UText *a, const UText *b) { |
| 430 if (a==NULL || b==NULL || |
| 431 a->magic != UTEXT_MAGIC || |
| 432 b->magic != UTEXT_MAGIC) { |
| 433 // Null or invalid arguments don't compare equal to anything. |
| 434 return FALSE; |
| 435 } |
| 436 |
| 437 if (a->pFuncs != b->pFuncs) { |
| 438 // Different types of text providers. |
| 439 return FALSE; |
| 440 } |
| 441 |
| 442 if (a->context != b->context) { |
| 443 // Different sources (different strings) |
| 444 return FALSE; |
| 445 } |
| 446 if (utext_getNativeIndex(a) != utext_getNativeIndex(b)) { |
| 447 // Different current position in the string. |
| 448 return FALSE; |
| 449 } |
| 450 |
| 451 return TRUE; |
| 452 } |
| 453 |
| 454 U_CAPI int32_t U_EXPORT2 |
| 455 utext_compare(UText *s1, int32_t length1, |
| 456 UText *s2, int32_t length2) { |
| 457 UChar32 c1 = 0, c2 = 0; |
| 458 |
| 459 if(length1<0 && length2<0) { |
| 460 /* strcmp style, go until end of string */ |
| 461 for(;;) { |
| 462 c1 = UTEXT_NEXT32(s1); |
| 463 c2 = UTEXT_NEXT32(s2); |
| 464 if(c1 != c2) { |
| 465 break; |
| 466 } else if(c1 == U_SENTINEL) { |
| 467 return 0; |
| 468 } |
| 469 } |
| 470 } else { |
| 471 if(length1 < 0) { |
| 472 length1 = INT32_MIN; |
| 473 } else if (length2 < 0) { |
| 474 length2 = INT32_MIN; |
| 475 } |
| 476 |
| 477 /* memcmp/UnicodeString style, both length-specified */ |
| 478 while((length1 > 0 || length1 == INT32_MIN) && (length2 > 0 || length2 =
= INT32_MIN)) { |
| 479 c1 = UTEXT_NEXT32(s1); |
| 480 c2 = UTEXT_NEXT32(s2); |
| 481 |
| 482 if(c1 != c2) { |
| 483 break; |
| 484 } else if(c1 == U_SENTINEL) { |
| 485 return 0; |
| 486 } |
| 487 |
| 488 if (length1 != INT32_MIN) { |
| 489 length1 -= 1; |
| 490 } |
| 491 if (length2 != INT32_MIN) { |
| 492 length2 -= 1; |
| 493 } |
| 494 } |
| 495 |
| 496 if(length1 <= 0 && length1 != INT32_MIN) { |
| 497 if(length2 <= 0) { |
| 498 return 0; |
| 499 } else { |
| 500 return -1; |
| 501 } |
| 502 } else if(length2 <= 0 && length2 != INT32_MIN) { |
| 503 if (length1 <= 0) { |
| 504 return 0; |
| 505 } else { |
| 506 return 1; |
| 507 } |
| 508 } |
| 509 } |
| 510 |
| 511 return (int32_t)c1-(int32_t)c2; |
| 512 } |
| 513 |
| 514 U_CAPI int32_t U_EXPORT2 |
| 515 utext_compareNativeLimit(UText *s1, int64_t limit1, |
| 516 UText *s2, int64_t limit2) { |
| 517 UChar32 c1, c2; |
| 518 |
| 519 if(limit1<0 && limit2<0) { |
| 520 /* strcmp style, go until end of string */ |
| 521 for(;;) { |
| 522 c1 = UTEXT_NEXT32(s1); |
| 523 c2 = UTEXT_NEXT32(s2); |
| 524 if(c1 != c2) { |
| 525 return (int32_t)c1-(int32_t)c2; |
| 526 } else if(c1 == U_SENTINEL) { |
| 527 return 0; |
| 528 } |
| 529 } |
| 530 } else { |
| 531 /* memcmp/UnicodeString style, both length-specified */ |
| 532 int64_t index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); |
| 533 int64_t index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); |
| 534 |
| 535 while((limit1 < 0 || index1 < limit1) && (limit2 < 0 || index2 < limit2)
) { |
| 536 c1 = UTEXT_NEXT32(s1); |
| 537 c2 = UTEXT_NEXT32(s2); |
| 538 |
| 539 if(c1 != c2) { |
| 540 return (int32_t)c1-(int32_t)c2; |
| 541 } else if(c1 == U_SENTINEL) { |
| 542 return 0; |
| 543 } |
| 544 |
| 545 if (limit1 >= 0) { |
| 546 index1 = UTEXT_GETNATIVEINDEX(s1); |
| 547 } |
| 548 if (limit2 >= 0) { |
| 549 index2 = UTEXT_GETNATIVEINDEX(s2); |
| 550 } |
| 551 } |
| 552 |
| 553 if(limit1 >= 0 && index1 >= limit1) { |
| 554 if(index2 >= limit2) { |
| 555 return 0; |
| 556 } else { |
| 557 return -1; |
| 558 } |
| 559 } else { |
| 560 if(index1 >= limit1) { |
| 561 return 0; |
| 562 } else { |
| 563 return 1; |
| 564 } |
| 565 } |
| 566 } |
| 567 } |
| 568 |
| 569 U_CAPI int32_t U_EXPORT2 |
| 570 utext_caseCompare(UText *s1, int32_t length1, |
| 571 UText *s2, int32_t length2, |
| 572 uint32_t options, UErrorCode *pErrorCode) { |
| 573 const UCaseProps *csp; |
| 574 |
| 575 /* case folding variables */ |
| 576 const UChar *p; |
| 577 int32_t length; |
| 578 |
| 579 /* case folding buffers, only use current-level start/limit */ |
| 580 UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; |
| 581 int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; |
| 582 |
| 583 /* current code points */ |
| 584 UChar32 c1, c2; |
| 585 uint8_t cLength1, cLength2; |
| 586 |
| 587 /* argument checking */ |
| 588 if(U_FAILURE(*pErrorCode)) { |
| 589 return 0; |
| 590 } |
| 591 if(s1==NULL || s2==NULL) { |
| 592 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 593 return 0; |
| 594 } |
| 595 |
| 596 csp=ucase_getSingleton(); |
| 597 |
| 598 /* for variable-length strings */ |
| 599 if(length1 < 0) { |
| 600 length1 = INT32_MIN; |
| 601 } |
| 602 if (length2 < 0) { |
| 603 length2 = INT32_MIN; |
| 604 } |
| 605 |
| 606 /* initialize */ |
| 607 foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; |
| 608 |
| 609 /* comparison loop */ |
| 610 while((foldOffset1 < foldLength1 || length1 > 0 || length1 == INT32_MIN) && |
| 611 (foldOffset2 < foldLength2 || length2 > 0 || length2 == INT32_MIN)) { |
| 612 if(foldOffset1 < foldLength1) { |
| 613 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| 614 cLength1 = 0; |
| 615 } else { |
| 616 c1 = UTEXT_NEXT32(s1); |
| 617 if (c1 != U_SENTINEL) { |
| 618 cLength1 = U16_LENGTH(c1); |
| 619 |
| 620 length = ucase_toFullFolding(csp, c1, &p, options); |
| 621 if(length >= 0) { |
| 622 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not c
orrectly handle 0-length folded-case strings |
| 623 u_memcpy(fold1, p, length); |
| 624 foldOffset1 = 0; |
| 625 foldLength1 = length; |
| 626 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| 627 } else { |
| 628 c1 = length; |
| 629 } |
| 630 } |
| 631 } |
| 632 |
| 633 if(length1 != INT32_MIN) { |
| 634 length1 -= 1; |
| 635 } |
| 636 } |
| 637 |
| 638 if(foldOffset2 < foldLength2) { |
| 639 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| 640 cLength2 = 0; |
| 641 } else { |
| 642 c2 = UTEXT_NEXT32(s2); |
| 643 if (c2 != U_SENTINEL) { |
| 644 cLength2 = U16_LENGTH(c2); |
| 645 |
| 646 length = ucase_toFullFolding(csp, c2, &p, options); |
| 647 if(length >= 0) { |
| 648 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not c
orrectly handle 0-length folded-case strings |
| 649 u_memcpy(fold2, p, length); |
| 650 foldOffset2 = 0; |
| 651 foldLength2 = length; |
| 652 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| 653 } else { |
| 654 c2 = length; |
| 655 } |
| 656 } |
| 657 } else if(c1 == U_SENTINEL) { |
| 658 return 0; // end of both strings at once |
| 659 } |
| 660 |
| 661 if(length2 != INT32_MIN) { |
| 662 length2 -= 1; |
| 663 } |
| 664 } |
| 665 |
| 666 if(c1 != c2) { |
| 667 return (int32_t)c1-(int32_t)c2; |
| 668 } |
| 669 } |
| 670 |
| 671 /* By now at least one of the strings is out of characters */ |
| 672 length1 += foldLength1 - foldOffset1; |
| 673 length2 += foldLength2 - foldOffset2; |
| 674 |
| 675 if(length1 <= 0 && length1 != INT32_MIN) { |
| 676 if(length2 <= 0) { |
| 677 return 0; |
| 678 } else { |
| 679 return -1; |
| 680 } |
| 681 } else { |
| 682 if (length1 <= 0) { |
| 683 return 0; |
| 684 } else { |
| 685 return 1; |
| 686 } |
| 687 } |
| 688 } |
| 689 |
| 690 U_CAPI int32_t U_EXPORT2 |
| 691 utext_caseCompareNativeLimit(UText *s1, int64_t limit1, |
| 692 UText *s2, int64_t limit2, |
| 693 uint32_t options, UErrorCode *pErrorCode) { |
| 694 const UCaseProps *csp; |
| 695 |
| 696 /* case folding variables */ |
| 697 const UChar *p; |
| 698 int32_t length; |
| 699 |
| 700 /* case folding buffers, only use current-level start/limit */ |
| 701 UChar fold1[UCASE_MAX_STRING_LENGTH+1], fold2[UCASE_MAX_STRING_LENGTH+1]; |
| 702 int32_t foldOffset1, foldOffset2, foldLength1, foldLength2; |
| 703 |
| 704 /* current code points */ |
| 705 UChar32 c1, c2; |
| 706 |
| 707 /* native indexes into s1 and s2 */ |
| 708 int64_t index1, index2; |
| 709 |
| 710 /* argument checking */ |
| 711 if(U_FAILURE(*pErrorCode)) { |
| 712 return 0; |
| 713 } |
| 714 if(s1==NULL || s2==NULL) { |
| 715 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 716 return 0; |
| 717 } |
| 718 |
| 719 csp=ucase_getSingleton(); |
| 720 |
| 721 /* initialize */ |
| 722 index1 = (limit1 >= 0 ? UTEXT_GETNATIVEINDEX(s1) : 0); |
| 723 index2 = (limit2 >= 0 ? UTEXT_GETNATIVEINDEX(s2) : 0); |
| 724 |
| 725 foldOffset1 = foldOffset2 = foldLength1 = foldLength2 = 0; |
| 726 |
| 727 /* comparison loop */ |
| 728 while((foldOffset1 < foldLength1 || limit1 < 0 || index1 < limit1) && |
| 729 (foldOffset2 < foldLength2 || limit2 < 0 || index2 < limit2)) { |
| 730 if(foldOffset1 < foldLength1) { |
| 731 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| 732 } else { |
| 733 c1 = UTEXT_NEXT32(s1); |
| 734 if (c1 != U_SENTINEL) { |
| 735 length = ucase_toFullFolding(csp, c1, &p, options); |
| 736 if(length >= 0) { |
| 737 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not c
orrectly handle 0-length folded-case strings |
| 738 u_memcpy(fold1, p, length); |
| 739 foldOffset1 = 0; |
| 740 foldLength1 = length; |
| 741 U16_NEXT_UNSAFE(fold1, foldOffset1, c1); |
| 742 } else { |
| 743 c1 = length; |
| 744 } |
| 745 } |
| 746 } |
| 747 |
| 748 if (limit1 >= 0) { |
| 749 index1 = UTEXT_GETNATIVEINDEX(s1); |
| 750 } |
| 751 } |
| 752 |
| 753 if(foldOffset2 < foldLength2) { |
| 754 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| 755 } else { |
| 756 c2 = UTEXT_NEXT32(s2); |
| 757 if (c2 != U_SENTINEL) { |
| 758 length = ucase_toFullFolding(csp, c2, &p, options); |
| 759 if(length >= 0) { |
| 760 if(length <= UCASE_MAX_STRING_LENGTH) { // !!!: Does not c
orrectly handle 0-length folded-case strings |
| 761 u_memcpy(fold2, p, length); |
| 762 foldOffset2 = 0; |
| 763 foldLength2 = length; |
| 764 U16_NEXT_UNSAFE(fold2, foldOffset2, c2); |
| 765 } else { |
| 766 c2 = length; |
| 767 } |
| 768 } |
| 769 } else if(c1 == U_SENTINEL) { |
| 770 return 0; |
| 771 } |
| 772 |
| 773 if (limit2 >= 0) { |
| 774 index2 = UTEXT_GETNATIVEINDEX(s2); |
| 775 } |
| 776 } |
| 777 |
| 778 if(c1 != c2) { |
| 779 return (int32_t)c1-(int32_t)c2; |
| 780 } |
| 781 } |
| 782 |
| 783 /* By now at least one of the strings is out of characters */ |
| 784 index1 -= foldLength1 - foldOffset1; |
| 785 index2 -= foldLength2 - foldOffset2; |
| 786 |
| 787 if(limit1 >= 0 && index1 >= limit1) { |
| 788 if(index2 >= limit2) { |
| 789 return 0; |
| 790 } else { |
| 791 return -1; |
| 792 } |
| 793 } else { |
| 794 if(index1 >= limit1) { |
| 795 return 0; |
| 796 } else { |
| 797 return 1; |
| 798 } |
| 799 } |
| 800 } |
| 801 |
| 802 |
| 803 U_CAPI UBool U_EXPORT2 |
| 804 utext_isWritable(const UText *ut) |
| 805 { |
| 806 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) != 0; |
| 807 return b; |
| 808 } |
| 809 |
| 810 |
| 811 U_CAPI void U_EXPORT2 |
| 812 utext_freeze(UText *ut) { |
| 813 // Zero out the WRITABLE flag. |
| 814 ut->providerProperties &= ~(I32_FLAG(UTEXT_PROVIDER_WRITABLE)); |
| 815 } |
| 816 |
| 817 |
| 818 U_CAPI UBool U_EXPORT2 |
| 819 utext_hasMetaData(const UText *ut) |
| 820 { |
| 821 UBool b = (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA))
!= 0; |
| 822 return b; |
| 823 } |
| 824 |
| 825 |
| 826 |
| 827 U_CAPI int32_t U_EXPORT2 |
| 828 utext_replace(UText *ut, |
| 829 int64_t nativeStart, int64_t nativeLimit, |
| 830 const UChar *replacementText, int32_t replacementLength, |
| 831 UErrorCode *status) |
| 832 { |
| 833 if (U_FAILURE(*status)) { |
| 834 return 0; |
| 835 } |
| 836 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
| 837 *status = U_NO_WRITE_PERMISSION; |
| 838 return 0; |
| 839 } |
| 840 int32_t i = ut->pFuncs->replace(ut, nativeStart, nativeLimit, replacementTex
t, replacementLength, status); |
| 841 return i; |
| 842 } |
| 843 |
| 844 U_CAPI void U_EXPORT2 |
| 845 utext_copy(UText *ut, |
| 846 int64_t nativeStart, int64_t nativeLimit, |
| 847 int64_t destIndex, |
| 848 UBool move, |
| 849 UErrorCode *status) |
| 850 { |
| 851 if (U_FAILURE(*status)) { |
| 852 return; |
| 853 } |
| 854 if ((ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_WRITABLE)) == 0) { |
| 855 *status = U_NO_WRITE_PERMISSION; |
| 856 return; |
| 857 } |
| 858 ut->pFuncs->copy(ut, nativeStart, nativeLimit, destIndex, move, status); |
| 859 } |
| 860 |
| 861 |
| 862 |
| 863 U_CAPI UText * U_EXPORT2 |
| 864 utext_clone(UText *dest, const UText *src, UBool deep, UBool readOnly, UErrorCod
e *status) { |
| 865 UText *result; |
| 866 result = src->pFuncs->clone(dest, src, deep, status); |
| 867 if (readOnly) { |
| 868 utext_freeze(result); |
| 869 } |
| 870 return result; |
| 871 } |
| 872 |
| 873 |
| 874 |
| 875 //------------------------------------------------------------------------------ |
| 876 // |
| 877 // UText common functions implementation |
| 878 // |
| 879 //------------------------------------------------------------------------------ |
| 880 |
| 881 // |
| 882 // UText.flags bit definitions |
| 883 // |
| 884 enum { |
| 885 UTEXT_HEAP_ALLOCATED = 1, // 1 if ICU has allocated this UText struct
on the heap. |
| 886 // 0 if caller provided storage for the UTe
xt. |
| 887 |
| 888 UTEXT_EXTRA_HEAP_ALLOCATED = 2, // 1 if ICU has allocated extra storage as
a separate |
| 889 // heap block. |
| 890 // 0 if there is no separate allocation. E
ither no extra |
| 891 // storage was requested, or it is appen
ded to the end |
| 892 // of the main UText storage. |
| 893 |
| 894 UTEXT_OPEN = 4 // 1 if this UText is currently open |
| 895 // 0 if this UText is not open. |
| 896 }; |
| 897 |
| 898 |
| 899 // |
| 900 // Extended form of a UText. The purpose is to aid in computing the total size
required |
| 901 // when a provider asks for a UText to be allocated with extra storage. |
| 902 |
| 903 struct ExtendedUText { |
| 904 UText ut; |
| 905 UAlignedMemory extension; |
| 906 }; |
| 907 |
| 908 static const UText emptyText = UTEXT_INITIALIZER; |
| 909 |
| 910 U_CAPI UText * U_EXPORT2 |
| 911 utext_setup(UText *ut, int32_t extraSpace, UErrorCode *status) { |
| 912 if (U_FAILURE(*status)) { |
| 913 return ut; |
| 914 } |
| 915 |
| 916 if (ut == NULL) { |
| 917 // We need to heap-allocate storage for the new UText |
| 918 int32_t spaceRequired = sizeof(UText); |
| 919 if (extraSpace > 0) { |
| 920 spaceRequired = sizeof(ExtendedUText) + extraSpace - sizeof(UAligned
Memory); |
| 921 } |
| 922 ut = (UText *)uprv_malloc(spaceRequired); |
| 923 if (ut == NULL) { |
| 924 *status = U_MEMORY_ALLOCATION_ERROR; |
| 925 return NULL; |
| 926 } else { |
| 927 *ut = emptyText; |
| 928 ut->flags |= UTEXT_HEAP_ALLOCATED; |
| 929 if (spaceRequired>0) { |
| 930 ut->extraSize = extraSpace; |
| 931 ut->pExtra = &((ExtendedUText *)ut)->extension; |
| 932 } |
| 933 } |
| 934 } else { |
| 935 // We have been supplied with an already existing UText. |
| 936 // Verify that it really appears to be a UText. |
| 937 if (ut->magic != UTEXT_MAGIC) { |
| 938 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 939 return ut; |
| 940 } |
| 941 // If the ut is already open and there's a provider supplied close |
| 942 // function, call it. |
| 943 if ((ut->flags & UTEXT_OPEN) && ut->pFuncs->close != NULL) { |
| 944 ut->pFuncs->close(ut); |
| 945 } |
| 946 ut->flags &= ~UTEXT_OPEN; |
| 947 |
| 948 // If extra space was requested by our caller, check whether |
| 949 // sufficient already exists, and allocate new if needed. |
| 950 if (extraSpace > ut->extraSize) { |
| 951 // Need more space. If there is existing separately allocated space
, |
| 952 // delete it first, then allocate new space. |
| 953 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
| 954 uprv_free(ut->pExtra); |
| 955 ut->extraSize = 0; |
| 956 } |
| 957 ut->pExtra = uprv_malloc(extraSpace); |
| 958 if (ut->pExtra == NULL) { |
| 959 *status = U_MEMORY_ALLOCATION_ERROR; |
| 960 } else { |
| 961 ut->extraSize = extraSpace; |
| 962 ut->flags |= UTEXT_EXTRA_HEAP_ALLOCATED; |
| 963 } |
| 964 } |
| 965 } |
| 966 if (U_SUCCESS(*status)) { |
| 967 ut->flags |= UTEXT_OPEN; |
| 968 |
| 969 // Initialize all remaining fields of the UText. |
| 970 // |
| 971 ut->context = NULL; |
| 972 ut->chunkContents = NULL; |
| 973 ut->p = NULL; |
| 974 ut->q = NULL; |
| 975 ut->r = NULL; |
| 976 ut->a = 0; |
| 977 ut->b = 0; |
| 978 ut->c = 0; |
| 979 ut->chunkOffset = 0; |
| 980 ut->chunkLength = 0; |
| 981 ut->chunkNativeStart = 0; |
| 982 ut->chunkNativeLimit = 0; |
| 983 ut->nativeIndexingLimit = 0; |
| 984 ut->providerProperties = 0; |
| 985 ut->privA = 0; |
| 986 ut->privB = 0; |
| 987 ut->privC = 0; |
| 988 ut->privP = NULL; |
| 989 if (ut->pExtra!=NULL && ut->extraSize>0) |
| 990 uprv_memset(ut->pExtra, 0, ut->extraSize); |
| 991 |
| 992 } |
| 993 return ut; |
| 994 } |
| 995 |
| 996 |
| 997 U_CAPI UText * U_EXPORT2 |
| 998 utext_close(UText *ut) { |
| 999 if (ut==NULL || |
| 1000 ut->magic != UTEXT_MAGIC || |
| 1001 (ut->flags & UTEXT_OPEN) == 0) |
| 1002 { |
| 1003 // The supplied ut is not an open UText. |
| 1004 // Do nothing. |
| 1005 return ut; |
| 1006 } |
| 1007 |
| 1008 // If the provider gave us a close function, call it now. |
| 1009 // This will clean up anything allocated specifically by the provider. |
| 1010 if (ut->pFuncs->close != NULL) { |
| 1011 ut->pFuncs->close(ut); |
| 1012 } |
| 1013 ut->flags &= ~UTEXT_OPEN; |
| 1014 |
| 1015 // If we (the framework) allocated the UText or subsidiary storage, |
| 1016 // delete it. |
| 1017 if (ut->flags & UTEXT_EXTRA_HEAP_ALLOCATED) { |
| 1018 uprv_free(ut->pExtra); |
| 1019 ut->pExtra = NULL; |
| 1020 ut->flags &= ~UTEXT_EXTRA_HEAP_ALLOCATED; |
| 1021 ut->extraSize = 0; |
| 1022 } |
| 1023 |
| 1024 // Zero out function table of the closed UText. This is a defensive move, |
| 1025 // inteded to cause applications that inadvertantly use a closed |
| 1026 // utext to crash with null pointer errors. |
| 1027 ut->pFuncs = NULL; |
| 1028 |
| 1029 if (ut->flags & UTEXT_HEAP_ALLOCATED) { |
| 1030 // This UText was allocated by UText setup. We need to free it. |
| 1031 // Clear magic, so we can detect if the user messes up and immediately |
| 1032 // tries to reopen another UText using the deleted storage. |
| 1033 ut->magic = 0; |
| 1034 uprv_free(ut); |
| 1035 ut = NULL; |
| 1036 } |
| 1037 return ut; |
| 1038 } |
| 1039 |
| 1040 |
| 1041 |
| 1042 |
| 1043 // |
| 1044 // invalidateChunk Reset a chunk to have no contents, so that the next call |
| 1045 // to access will cause new data to load. |
| 1046 // This is needed when copy/move/replace operate directly on t
he |
| 1047 // backing text, potentially putting it out of sync with the |
| 1048 // contents in the chunk. |
| 1049 // |
| 1050 static void |
| 1051 invalidateChunk(UText *ut) { |
| 1052 ut->chunkLength = 0; |
| 1053 ut->chunkNativeLimit = 0; |
| 1054 ut->chunkNativeStart = 0; |
| 1055 ut->chunkOffset = 0; |
| 1056 ut->nativeIndexingLimit = 0; |
| 1057 } |
| 1058 |
| 1059 // |
| 1060 // pinIndex Do range pinning on a native index parameter. |
| 1061 // 64 bit pinning is done in place. |
| 1062 // 32 bit truncated result is returned as a convenience for |
| 1063 // use in providers that don't need 64 bits. |
| 1064 static int32_t |
| 1065 pinIndex(int64_t &index, int64_t limit) { |
| 1066 if (index<0) { |
| 1067 index = 0; |
| 1068 } else if (index > limit) { |
| 1069 index = limit; |
| 1070 } |
| 1071 return (int32_t)index; |
| 1072 } |
| 1073 |
| 1074 |
| 1075 U_CDECL_BEGIN |
| 1076 |
| 1077 // |
| 1078 // Pointer relocation function, |
| 1079 // a utility used by shallow clone. |
| 1080 // Adjust a pointer that refers to something within one UText (the source) |
| 1081 // to refer to the same relative offset within a another UText (the target) |
| 1082 // |
| 1083 static void adjustPointer(UText *dest, const void **destPtr, const UText *src) { |
| 1084 // convert all pointers to (char *) so that byte address arithmetic will wor
k. |
| 1085 char *dptr = (char *)*destPtr; |
| 1086 char *dUText = (char *)dest; |
| 1087 char *sUText = (char *)src; |
| 1088 |
| 1089 if (dptr >= (char *)src->pExtra && dptr < ((char*)src->pExtra)+src->extraSiz
e) { |
| 1090 // target ptr was to something within the src UText's pExtra storage. |
| 1091 // relocate it into the target UText's pExtra region. |
| 1092 *destPtr = ((char *)dest->pExtra) + (dptr - (char *)src->pExtra); |
| 1093 } else if (dptr>=sUText && dptr < sUText+src->sizeOfStruct) { |
| 1094 // target ptr was pointing to somewhere within the source UText itself. |
| 1095 // Move it to the same offset within the target UText. |
| 1096 *destPtr = dUText + (dptr-sUText); |
| 1097 } |
| 1098 } |
| 1099 |
| 1100 |
| 1101 // |
| 1102 // Clone. This is a generic copy-the-utext-by-value clone function that can be |
| 1103 // used as-is with some utext types, and as a helper by other clones. |
| 1104 // |
| 1105 static UText * U_CALLCONV |
| 1106 shallowTextClone(UText * dest, const UText * src, UErrorCode * status) { |
| 1107 if (U_FAILURE(*status)) { |
| 1108 return NULL; |
| 1109 } |
| 1110 int32_t srcExtraSize = src->extraSize; |
| 1111 |
| 1112 // |
| 1113 // Use the generic text_setup to allocate storage if required. |
| 1114 // |
| 1115 dest = utext_setup(dest, srcExtraSize, status); |
| 1116 if (U_FAILURE(*status)) { |
| 1117 return dest; |
| 1118 } |
| 1119 |
| 1120 // |
| 1121 // flags (how the UText was allocated) and the pointer to the |
| 1122 // extra storage must retain the values in the cloned utext that |
| 1123 // were set up by utext_setup. Save them separately before |
| 1124 // copying the whole struct. |
| 1125 // |
| 1126 void *destExtra = dest->pExtra; |
| 1127 int32_t flags = dest->flags; |
| 1128 |
| 1129 |
| 1130 // |
| 1131 // Copy the whole UText struct by value. |
| 1132 // Any "Extra" storage is copied also. |
| 1133 // |
| 1134 int sizeToCopy = src->sizeOfStruct; |
| 1135 if (sizeToCopy > dest->sizeOfStruct) { |
| 1136 sizeToCopy = dest->sizeOfStruct; |
| 1137 } |
| 1138 uprv_memcpy(dest, src, sizeToCopy); |
| 1139 dest->pExtra = destExtra; |
| 1140 dest->flags = flags; |
| 1141 if (srcExtraSize > 0) { |
| 1142 uprv_memcpy(dest->pExtra, src->pExtra, srcExtraSize); |
| 1143 } |
| 1144 |
| 1145 // |
| 1146 // Relocate any pointers in the target that refer to the UText itself |
| 1147 // to point to the cloned copy rather than the original source. |
| 1148 // |
| 1149 adjustPointer(dest, &dest->context, src); |
| 1150 adjustPointer(dest, &dest->p, src); |
| 1151 adjustPointer(dest, &dest->q, src); |
| 1152 adjustPointer(dest, &dest->r, src); |
| 1153 adjustPointer(dest, (const void **)&dest->chunkContents, src); |
| 1154 |
| 1155 return dest; |
| 1156 } |
| 1157 |
| 1158 |
| 1159 U_CDECL_END |
| 1160 |
| 1161 |
| 1162 |
| 1163 //------------------------------------------------------------------------------ |
| 1164 // |
| 1165 // UText implementation for UTF-8 char * strings (read-only) |
| 1166 // Limitation: string length must be <= 0x7fffffff in length. |
| 1167 // (length must for in an int32_t variable) |
| 1168 // |
| 1169 // Use of UText data members: |
| 1170 // context pointer to UTF-8 string |
| 1171 // utext.b is the input string length (bytes). |
| 1172 // utext.c Length scanned so far in string |
| 1173 // (for optimizing finding length of zero terminated s
trings.) |
| 1174 // utext.p pointer to the current buffer |
| 1175 // utext.q pointer to the other buffer. |
| 1176 // |
| 1177 //------------------------------------------------------------------------------ |
| 1178 |
| 1179 // Chunk size. |
| 1180 // Must be less than 85, because of byte mapping from UChar indexes to nativ
e indexes. |
| 1181 // Worst case is three native bytes to one UChar. (Supplemenaries are 4 nat
ive bytes |
| 1182 // to two UChars.) |
| 1183 // |
| 1184 enum { UTF8_TEXT_CHUNK_SIZE=32 }; |
| 1185 |
| 1186 // |
| 1187 // UTF8Buf Two of these structs will be set up in the UText's extra allocated s
pace. |
| 1188 // Each contains the UChar chunk buffer, the to and from native maps, a
nd |
| 1189 // header info. |
| 1190 // |
| 1191 // because backwards iteration fills the buffers starting at the end and |
| 1192 // working towards the front, the filled part of the buffers may not begin |
| 1193 // at the start of the available storage for the buffers. |
| 1194 // |
| 1195 // Buffer size is one bigger than the specified UTF8_TEXT_CHUNK_SIZE to allo
w for |
| 1196 // the last character added being a supplementary, and thus requiring a surr
ogate |
| 1197 // pair. Doing this is simpler than checking for the edge case. |
| 1198 // |
| 1199 |
| 1200 struct UTF8Buf { |
| 1201 int32_t bufNativeStart; // Native index of first ch
ar in UChar buf |
| 1202 int32_t bufNativeLimit; // Native index following l
ast char in buf. |
| 1203 int32_t bufStartIdx; // First filled position in
buf. |
| 1204 int32_t bufLimitIdx; // Limit of filled range in
buf. |
| 1205 int32_t bufNILimit; // Limit of native indexing
part of buf |
| 1206 int32_t toUCharsMapStart; // Native index correspondi
ng to |
| 1207 // mapToUChars[0]. |
| 1208 // Set to bufNativeStart
when filling forwards. |
| 1209 // Set to computed value
when filling backwards. |
| 1210 |
| 1211 UChar buf[UTF8_TEXT_CHUNK_SIZE+4]; // The UChar buffer. Requi
res one extra position beyond the |
| 1212 // the chunk size, to all
ow for surrogate at the end. |
| 1213 // Length must be identic
al to mapToNative array, below, |
| 1214 // because of the way ind
exing works when the array is |
| 1215 // filled backwards durin
g a reverse iteration. Thus, |
| 1216 // the additional extra s
ize. |
| 1217 uint8_t mapToNative[UTF8_TEXT_CHUNK_SIZE+4]; // map UChar index in buf t
o |
| 1218 // native offset from bufN
ativeStart. |
| 1219 // Requires two extra slot
s, |
| 1220 // one for a supplementa
ry starting in the last normal position, |
| 1221 // and one for an entry
for the buffer limit position. |
| 1222 uint8_t mapToUChars[UTF8_TEXT_CHUNK_SIZE*3+6]; // Map native offset from b
ufNativeStart to |
| 1223 // correspoding offset in
filled part of buf. |
| 1224 int32_t align; |
| 1225 }; |
| 1226 |
| 1227 U_CDECL_BEGIN |
| 1228 |
| 1229 // |
| 1230 // utf8TextLength |
| 1231 // |
| 1232 // Get the length of the string. If we don't already know it, |
| 1233 // we'll need to scan for the trailing nul. |
| 1234 // |
| 1235 static int64_t U_CALLCONV |
| 1236 utf8TextLength(UText *ut) { |
| 1237 if (ut->b < 0) { |
| 1238 // Zero terminated string, and we haven't scanned to the end yet. |
| 1239 // Scan it now. |
| 1240 const char *r = (const char *)ut->context + ut->c; |
| 1241 while (*r != 0) { |
| 1242 r++; |
| 1243 } |
| 1244 if ((r - (const char *)ut->context) < 0x7fffffff) { |
| 1245 ut->b = (int32_t)(r - (const char *)ut->context); |
| 1246 } else { |
| 1247 // Actual string was bigger (more than 2 gig) than we |
| 1248 // can handle. Clip it to 2 GB. |
| 1249 ut->b = 0x7fffffff; |
| 1250 } |
| 1251 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 1252 } |
| 1253 return ut->b; |
| 1254 } |
| 1255 |
| 1256 |
| 1257 |
| 1258 |
| 1259 |
| 1260 |
| 1261 static UBool U_CALLCONV |
| 1262 utf8TextAccess(UText *ut, int64_t index, UBool forward) { |
| 1263 // |
| 1264 // Apologies to those who are allergic to goto statements. |
| 1265 // Consider each goto to a labelled block to be the equivalent of |
| 1266 // call the named block as if it were a function(); |
| 1267 // return; |
| 1268 // |
| 1269 const uint8_t *s8=(const uint8_t *)ut->context; |
| 1270 UTF8Buf *u8b = NULL; |
| 1271 int32_t length = ut->b; // Length of original utf-8 |
| 1272 int32_t ix= (int32_t)index; // Requested index, trimmed to 32 bits. |
| 1273 int32_t mapIndex = 0; |
| 1274 if (index<0) { |
| 1275 ix=0; |
| 1276 } else if (index > 0x7fffffff) { |
| 1277 // Strings with 64 bit lengths not supported by this UTF-8 provider. |
| 1278 ix = 0x7fffffff; |
| 1279 } |
| 1280 |
| 1281 // Pin requested index to the string length. |
| 1282 if (ix>length) { |
| 1283 if (length>=0) { |
| 1284 ix=length; |
| 1285 } else if (ix>=ut->c) { |
| 1286 // Zero terminated string, and requested index is beyond |
| 1287 // the region that has already been scanned. |
| 1288 // Scan up to either the end of the string or to the |
| 1289 // requested position, whichever comes first. |
| 1290 while (ut->c<ix && s8[ut->c]!=0) { |
| 1291 ut->c++; |
| 1292 } |
| 1293 // TODO: support for null terminated string length > 32 bits. |
| 1294 if (s8[ut->c] == 0) { |
| 1295 // We just found the actual length of the string. |
| 1296 // Trim the requested index back to that. |
| 1297 ix = ut->c; |
| 1298 ut->b = ut->c; |
| 1299 length = ut->c; |
| 1300 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXP
ENSIVE); |
| 1301 } |
| 1302 } |
| 1303 } |
| 1304 |
| 1305 // |
| 1306 // Dispatch to the appropriate action for a forward iteration request. |
| 1307 // |
| 1308 if (forward) { |
| 1309 if (ix==ut->chunkNativeLimit) { |
| 1310 // Check for normal sequential iteration cases first. |
| 1311 if (ix==length) { |
| 1312 // Just reached end of string |
| 1313 // Don't swap buffers, but do set the |
| 1314 // current buffer position. |
| 1315 ut->chunkOffset = ut->chunkLength; |
| 1316 return FALSE; |
| 1317 } else { |
| 1318 // End of current buffer. |
| 1319 // check whether other buffer already has what we need. |
| 1320 UTF8Buf *altB = (UTF8Buf *)ut->q; |
| 1321 if (ix>=altB->bufNativeStart && ix<altB->bufNativeLimit) { |
| 1322 goto swapBuffers; |
| 1323 } |
| 1324 } |
| 1325 } |
| 1326 |
| 1327 // A random access. Desired index could be in either or niether buf. |
| 1328 // For optimizing the order of testing, first check for the index |
| 1329 // being in the other buffer. This will be the case for uses that |
| 1330 // move back and forth over a fairly limited range |
| 1331 { |
| 1332 u8b = (UTF8Buf *)ut->q; // the alternate buffer |
| 1333 if (ix>=u8b->bufNativeStart && ix<u8b->bufNativeLimit) { |
| 1334 // Requested index is in the other buffer. |
| 1335 goto swapBuffers; |
| 1336 } |
| 1337 if (ix == length) { |
| 1338 // Requested index is end-of-string. |
| 1339 // (this is the case of randomly seeking to the end. |
| 1340 // The case of iterating off the end is handled earlier.) |
| 1341 if (ix == ut->chunkNativeLimit) { |
| 1342 // Current buffer extends up to the end of the string. |
| 1343 // Leave it as the current buffer. |
| 1344 ut->chunkOffset = ut->chunkLength; |
| 1345 return FALSE; |
| 1346 } |
| 1347 if (ix == u8b->bufNativeLimit) { |
| 1348 // Alternate buffer extends to the end of string. |
| 1349 // Swap it in as the current buffer. |
| 1350 goto swapBuffersAndFail; |
| 1351 } |
| 1352 |
| 1353 // Neither existing buffer extends to the end of the string. |
| 1354 goto makeStubBuffer; |
| 1355 } |
| 1356 |
| 1357 if (ix<ut->chunkNativeStart || ix>=ut->chunkNativeLimit) { |
| 1358 // Requested index is in neither buffer. |
| 1359 goto fillForward; |
| 1360 } |
| 1361 |
| 1362 // Requested index is in this buffer. |
| 1363 u8b = (UTF8Buf *)ut->p; // the current buffer |
| 1364 mapIndex = ix - u8b->toUCharsMapStart; |
| 1365 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1366 return TRUE; |
| 1367 |
| 1368 } |
| 1369 } |
| 1370 |
| 1371 |
| 1372 // |
| 1373 // Dispatch to the appropriate action for a |
| 1374 // Backwards Diretion iteration request. |
| 1375 // |
| 1376 if (ix==ut->chunkNativeStart) { |
| 1377 // Check for normal sequential iteration cases first. |
| 1378 if (ix==0) { |
| 1379 // Just reached the start of string |
| 1380 // Don't swap buffers, but do set the |
| 1381 // current buffer position. |
| 1382 ut->chunkOffset = 0; |
| 1383 return FALSE; |
| 1384 } else { |
| 1385 // Start of current buffer. |
| 1386 // check whether other buffer already has what we need. |
| 1387 UTF8Buf *altB = (UTF8Buf *)ut->q; |
| 1388 if (ix>altB->bufNativeStart && ix<=altB->bufNativeLimit) { |
| 1389 goto swapBuffers; |
| 1390 } |
| 1391 } |
| 1392 } |
| 1393 |
| 1394 // A random access. Desired index could be in either or niether buf. |
| 1395 // For optimizing the order of testing, |
| 1396 // Most likely case: in the other buffer. |
| 1397 // Second most likely: in neither buffer. |
| 1398 // Unlikely, but must work: in the current buffer. |
| 1399 u8b = (UTF8Buf *)ut->q; // the alternate buffer |
| 1400 if (ix>u8b->bufNativeStart && ix<=u8b->bufNativeLimit) { |
| 1401 // Requested index is in the other buffer. |
| 1402 goto swapBuffers; |
| 1403 } |
| 1404 // Requested index is start-of-string. |
| 1405 // (this is the case of randomly seeking to the start. |
| 1406 // The case of iterating off the start is handled earlier.) |
| 1407 if (ix==0) { |
| 1408 if (u8b->bufNativeStart==0) { |
| 1409 // Alternate buffer contains the data for the start string. |
| 1410 // Make it be the current buffer. |
| 1411 goto swapBuffersAndFail; |
| 1412 } else { |
| 1413 // Request for data before the start of string, |
| 1414 // neither buffer is usable. |
| 1415 // set up a zero-length buffer. |
| 1416 goto makeStubBuffer; |
| 1417 } |
| 1418 } |
| 1419 |
| 1420 if (ix<=ut->chunkNativeStart || ix>ut->chunkNativeLimit) { |
| 1421 // Requested index is in neither buffer. |
| 1422 goto fillReverse; |
| 1423 } |
| 1424 |
| 1425 // Requested index is in this buffer. |
| 1426 // Set the utf16 buffer index. |
| 1427 u8b = (UTF8Buf *)ut->p; |
| 1428 mapIndex = ix - u8b->toUCharsMapStart; |
| 1429 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1430 if (ut->chunkOffset==0) { |
| 1431 // This occurs when the first character in the text is |
| 1432 // a multi-byte UTF-8 char, and the requested index is to |
| 1433 // one of the trailing bytes. Because there is no preceding , |
| 1434 // character, this access fails. We can't pick up on the |
| 1435 // situation sooner because the requested index is not zero. |
| 1436 return FALSE; |
| 1437 } else { |
| 1438 return TRUE; |
| 1439 } |
| 1440 |
| 1441 |
| 1442 |
| 1443 swapBuffers: |
| 1444 // The alternate buffer (ut->q) has the string data that was requested. |
| 1445 // Swap the primary and alternate buffers, and set the |
| 1446 // chunk index into the new primary buffer. |
| 1447 { |
| 1448 u8b = (UTF8Buf *)ut->q; |
| 1449 ut->q = ut->p; |
| 1450 ut->p = u8b; |
| 1451 ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
| 1452 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| 1453 ut->chunkNativeStart = u8b->bufNativeStart; |
| 1454 ut->chunkNativeLimit = u8b->bufNativeLimit; |
| 1455 ut->nativeIndexingLimit = u8b->bufNILimit; |
| 1456 |
| 1457 // Index into the (now current) chunk |
| 1458 // Use the map to set the chunk index. It's more trouble than it's wort
h |
| 1459 // to check whether native indexing can be used. |
| 1460 U_ASSERT(ix>=u8b->bufNativeStart); |
| 1461 U_ASSERT(ix<=u8b->bufNativeLimit); |
| 1462 mapIndex = ix - u8b->toUCharsMapStart; |
| 1463 U_ASSERT(mapIndex>=0); |
| 1464 U_ASSERT(mapIndex<(int32_t)sizeof(u8b->mapToUChars)); |
| 1465 ut->chunkOffset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1466 |
| 1467 return TRUE; |
| 1468 } |
| 1469 |
| 1470 |
| 1471 swapBuffersAndFail: |
| 1472 // We got a request for either the start or end of the string, |
| 1473 // with iteration continuing in the out-of-bounds direction. |
| 1474 // The alternate buffer already contains the data up to the |
| 1475 // start/end. |
| 1476 // Swap the buffers, then return failure, indicating that we couldn't |
| 1477 // make things correct for continuing the iteration in the requested |
| 1478 // direction. The position & buffer are correct should the |
| 1479 // user decide to iterate in the opposite direction. |
| 1480 u8b = (UTF8Buf *)ut->q; |
| 1481 ut->q = ut->p; |
| 1482 ut->p = u8b; |
| 1483 ut->chunkContents = &u8b->buf[u8b->bufStartIdx]; |
| 1484 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| 1485 ut->chunkNativeStart = u8b->bufNativeStart; |
| 1486 ut->chunkNativeLimit = u8b->bufNativeLimit; |
| 1487 ut->nativeIndexingLimit = u8b->bufNILimit; |
| 1488 |
| 1489 // Index into the (now current) chunk |
| 1490 // For this function (swapBuffersAndFail), the requested index |
| 1491 // will always be at either the start or end of the chunk. |
| 1492 if (ix==u8b->bufNativeLimit) { |
| 1493 ut->chunkOffset = ut->chunkLength; |
| 1494 } else { |
| 1495 ut->chunkOffset = 0; |
| 1496 U_ASSERT(ix == u8b->bufNativeStart); |
| 1497 } |
| 1498 return FALSE; |
| 1499 |
| 1500 makeStubBuffer: |
| 1501 // The user has done a seek/access past the start or end |
| 1502 // of the string. Rather than loading data that is likely |
| 1503 // to never be used, just set up a zero-length buffer at |
| 1504 // the position. |
| 1505 u8b = (UTF8Buf *)ut->q; |
| 1506 u8b->bufNativeStart = ix; |
| 1507 u8b->bufNativeLimit = ix; |
| 1508 u8b->bufStartIdx = 0; |
| 1509 u8b->bufLimitIdx = 0; |
| 1510 u8b->bufNILimit = 0; |
| 1511 u8b->toUCharsMapStart = ix; |
| 1512 u8b->mapToNative[0] = 0; |
| 1513 u8b->mapToUChars[0] = 0; |
| 1514 goto swapBuffersAndFail; |
| 1515 |
| 1516 |
| 1517 |
| 1518 fillForward: |
| 1519 { |
| 1520 // Move the incoming index to a code point boundary. |
| 1521 U8_SET_CP_START(s8, 0, ix); |
| 1522 |
| 1523 // Swap the UText buffers. |
| 1524 // We want to fill what was previously the alternate buffer, |
| 1525 // and make what was the current buffer be the new alternate. |
| 1526 UTF8Buf *u8b = (UTF8Buf *)ut->q; |
| 1527 ut->q = ut->p; |
| 1528 ut->p = u8b; |
| 1529 |
| 1530 int32_t strLen = ut->b; |
| 1531 UBool nulTerminated = FALSE; |
| 1532 if (strLen < 0) { |
| 1533 strLen = 0x7fffffff; |
| 1534 nulTerminated = TRUE; |
| 1535 } |
| 1536 |
| 1537 UChar *buf = u8b->buf; |
| 1538 uint8_t *mapToNative = u8b->mapToNative; |
| 1539 uint8_t *mapToUChars = u8b->mapToUChars; |
| 1540 int32_t destIx = 0; |
| 1541 int32_t srcIx = ix; |
| 1542 UBool seenNonAscii = FALSE; |
| 1543 UChar32 c = 0; |
| 1544 |
| 1545 // Fill the chunk buffer and mapping arrays. |
| 1546 while (destIx<UTF8_TEXT_CHUNK_SIZE) { |
| 1547 c = s8[srcIx]; |
| 1548 if (c>0 && c<0x80) { |
| 1549 // Special case ASCII range for speed. |
| 1550 // zero is excluded to simplify bounds checking. |
| 1551 buf[destIx] = (UChar)c; |
| 1552 mapToNative[destIx] = (uint8_t)(srcIx - ix); |
| 1553 mapToUChars[srcIx-ix] = (uint8_t)destIx; |
| 1554 srcIx++; |
| 1555 destIx++; |
| 1556 } else { |
| 1557 // General case, handle everything. |
| 1558 if (seenNonAscii == FALSE) { |
| 1559 seenNonAscii = TRUE; |
| 1560 u8b->bufNILimit = destIx; |
| 1561 } |
| 1562 |
| 1563 int32_t cIx = srcIx; |
| 1564 int32_t dIx = destIx; |
| 1565 int32_t dIxSaved = destIx; |
| 1566 U8_NEXT(s8, srcIx, strLen, c); |
| 1567 if (c==0 && nulTerminated) { |
| 1568 srcIx--; |
| 1569 break; |
| 1570 } |
| 1571 if (c<0) { |
| 1572 // Illegal UTF-8. Replace with sub character. |
| 1573 c = 0x0fffd; |
| 1574 } |
| 1575 |
| 1576 U16_APPEND_UNSAFE(buf, destIx, c); |
| 1577 do { |
| 1578 mapToNative[dIx++] = (uint8_t)(cIx - ix); |
| 1579 } while (dIx < destIx); |
| 1580 |
| 1581 do { |
| 1582 mapToUChars[cIx++ - ix] = (uint8_t)dIxSaved; |
| 1583 } while (cIx < srcIx); |
| 1584 } |
| 1585 if (srcIx>=strLen) { |
| 1586 break; |
| 1587 } |
| 1588 |
| 1589 } |
| 1590 |
| 1591 // store Native <--> Chunk Map entries for the end of the buffer. |
| 1592 // There is no actual character here, but the index position is valid
. |
| 1593 mapToNative[destIx] = (uint8_t)(srcIx - ix); |
| 1594 mapToUChars[srcIx - ix] = (uint8_t)destIx; |
| 1595 |
| 1596 // fill in Buffer descriptor |
| 1597 u8b->bufNativeStart = ix; |
| 1598 u8b->bufNativeLimit = srcIx; |
| 1599 u8b->bufStartIdx = 0; |
| 1600 u8b->bufLimitIdx = destIx; |
| 1601 if (seenNonAscii == FALSE) { |
| 1602 u8b->bufNILimit = destIx; |
| 1603 } |
| 1604 u8b->toUCharsMapStart = u8b->bufNativeStart; |
| 1605 |
| 1606 // Set UText chunk to refer to this buffer. |
| 1607 ut->chunkContents = buf; |
| 1608 ut->chunkOffset = 0; |
| 1609 ut->chunkLength = u8b->bufLimitIdx; |
| 1610 ut->chunkNativeStart = u8b->bufNativeStart; |
| 1611 ut->chunkNativeLimit = u8b->bufNativeLimit; |
| 1612 ut->nativeIndexingLimit = u8b->bufNILimit; |
| 1613 |
| 1614 // For zero terminated strings, keep track of the maximum point |
| 1615 // scanned so far. |
| 1616 if (nulTerminated && srcIx>ut->c) { |
| 1617 ut->c = srcIx; |
| 1618 if (c==0) { |
| 1619 // We scanned to the end. |
| 1620 // Remember the actual length. |
| 1621 ut->b = srcIx; |
| 1622 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXP
ENSIVE); |
| 1623 } |
| 1624 } |
| 1625 return TRUE; |
| 1626 } |
| 1627 |
| 1628 |
| 1629 fillReverse: |
| 1630 { |
| 1631 // Move the incoming index to a code point boundary. |
| 1632 // Can only do this if the incoming index is somewhere in the interior o
f the string. |
| 1633 // If index is at the end, there is no character there to look at. |
| 1634 if (ix != ut->b) { |
| 1635 U8_SET_CP_START(s8, 0, ix); |
| 1636 } |
| 1637 |
| 1638 // Swap the UText buffers. |
| 1639 // We want to fill what was previously the alternate buffer, |
| 1640 // and make what was the current buffer be the new alternate. |
| 1641 UTF8Buf *u8b = (UTF8Buf *)ut->q; |
| 1642 ut->q = ut->p; |
| 1643 ut->p = u8b; |
| 1644 |
| 1645 UChar *buf = u8b->buf; |
| 1646 uint8_t *mapToNative = u8b->mapToNative; |
| 1647 uint8_t *mapToUChars = u8b->mapToUChars; |
| 1648 int32_t toUCharsMapStart = ix - (UTF8_TEXT_CHUNK_SIZE*3 + 1); |
| 1649 int32_t destIx = UTF8_TEXT_CHUNK_SIZE+2; // Start in the overflow reg
ion |
| 1650 // at end of buffer to lea
ve room |
| 1651 // for a surrogate pair at
the |
| 1652 // buffer start. |
| 1653 int32_t srcIx = ix; |
| 1654 int32_t bufNILimit = destIx; |
| 1655 UChar32 c; |
| 1656 |
| 1657 // Map to/from Native Indexes, fill in for the position at the end of |
| 1658 // the buffer. |
| 1659 // |
| 1660 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1661 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
| 1662 |
| 1663 // Fill the chunk buffer |
| 1664 // Work backwards, filling from the end of the buffer towards the front. |
| 1665 // |
| 1666 while (destIx>2 && (srcIx - toUCharsMapStart > 5) && (srcIx > 0)) { |
| 1667 srcIx--; |
| 1668 destIx--; |
| 1669 |
| 1670 // Get last byte of the UTF-8 character |
| 1671 c = s8[srcIx]; |
| 1672 if (c<0x80) { |
| 1673 // Special case ASCII range for speed. |
| 1674 buf[destIx] = (UChar)c; |
| 1675 mapToUChars[srcIx - toUCharsMapStart] = (uint8_t)destIx; |
| 1676 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1677 } else { |
| 1678 // General case, handle everything non-ASCII. |
| 1679 |
| 1680 int32_t sIx = srcIx; // ix of last byte of multi-byte u8
char |
| 1681 |
| 1682 // Get the full character from the UTF8 string. |
| 1683 // use code derived from tbe macros in utf.8 |
| 1684 // Leaves srcIx pointing at the first byte of the UTF-8 char. |
| 1685 // |
| 1686 if (c<=0xbf) { |
| 1687 c=utf8_prevCharSafeBody(s8, 0, &srcIx, c, -1); |
| 1688 // leaves srcIx at first byte of the multi-byte char. |
| 1689 } else { |
| 1690 c=0x0fffd; |
| 1691 } |
| 1692 |
| 1693 // Store the character in UTF-16 buffer. |
| 1694 if (c<0x10000) { |
| 1695 buf[destIx] = (UChar)c; |
| 1696 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1697 } else { |
| 1698 buf[destIx] = U16_TRAIL(c); |
| 1699 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1700 buf[--destIx] = U16_LEAD(c); |
| 1701 mapToNative[destIx] = (uint8_t)(srcIx - toUCharsMapStart); |
| 1702 } |
| 1703 |
| 1704 // Fill in the map from native indexes to UChars buf index. |
| 1705 do { |
| 1706 mapToUChars[sIx-- - toUCharsMapStart] = (uint8_t)destIx; |
| 1707 } while (sIx >= srcIx); |
| 1708 |
| 1709 // Set native indexing limit to be the current position. |
| 1710 // We are processing a non-ascii, non-native-indexing char now
; |
| 1711 // the limit will be here if the rest of the chars to be |
| 1712 // added to this buffer are ascii. |
| 1713 bufNILimit = destIx; |
| 1714 } |
| 1715 } |
| 1716 u8b->bufNativeStart = srcIx; |
| 1717 u8b->bufNativeLimit = ix; |
| 1718 u8b->bufStartIdx = destIx; |
| 1719 u8b->bufLimitIdx = UTF8_TEXT_CHUNK_SIZE+2; |
| 1720 u8b->bufNILimit = bufNILimit - u8b->bufStartIdx; |
| 1721 u8b->toUCharsMapStart = toUCharsMapStart; |
| 1722 |
| 1723 ut->chunkContents = &buf[u8b->bufStartIdx]; |
| 1724 ut->chunkLength = u8b->bufLimitIdx - u8b->bufStartIdx; |
| 1725 ut->chunkOffset = ut->chunkLength; |
| 1726 ut->chunkNativeStart = u8b->bufNativeStart; |
| 1727 ut->chunkNativeLimit = u8b->bufNativeLimit; |
| 1728 ut->nativeIndexingLimit = u8b->bufNILimit; |
| 1729 return TRUE; |
| 1730 } |
| 1731 |
| 1732 } |
| 1733 |
| 1734 |
| 1735 |
| 1736 // |
| 1737 // This is a slightly modified copy of u_strFromUTF8, |
| 1738 // Inserts a Replacement Char rather than failing on invalid UTF-8 |
| 1739 // Removes unnecessary features. |
| 1740 // |
| 1741 static UChar* |
| 1742 utext_strFromUTF8(UChar *dest, |
| 1743 int32_t destCapacity, |
| 1744 int32_t *pDestLength, |
| 1745 const char* src, |
| 1746 int32_t srcLength, // required. NUL terminated not support
ed. |
| 1747 UErrorCode *pErrorCode |
| 1748 ) |
| 1749 { |
| 1750 |
| 1751 UChar *pDest = dest; |
| 1752 UChar *pDestLimit = dest+destCapacity; |
| 1753 UChar32 ch=0; |
| 1754 int32_t index = 0; |
| 1755 int32_t reqLength = 0; |
| 1756 uint8_t* pSrc = (uint8_t*) src; |
| 1757 |
| 1758 |
| 1759 while((index < srcLength)&&(pDest<pDestLimit)){ |
| 1760 ch = pSrc[index++]; |
| 1761 if(ch <=0x7f){ |
| 1762 *pDest++=(UChar)ch; |
| 1763 }else{ |
| 1764 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -1); |
| 1765 if(ch<0){ |
| 1766 ch = 0xfffd; |
| 1767 } |
| 1768 if(U_IS_BMP(ch)){ |
| 1769 *(pDest++)=(UChar)ch; |
| 1770 }else{ |
| 1771 *(pDest++)=UTF16_LEAD(ch); |
| 1772 if(pDest<pDestLimit){ |
| 1773 *(pDest++)=UTF16_TRAIL(ch); |
| 1774 }else{ |
| 1775 reqLength++; |
| 1776 break; |
| 1777 } |
| 1778 } |
| 1779 } |
| 1780 } |
| 1781 /* donot fill the dest buffer just count the UChars needed */ |
| 1782 while(index < srcLength){ |
| 1783 ch = pSrc[index++]; |
| 1784 if(ch <= 0x7f){ |
| 1785 reqLength++; |
| 1786 }else{ |
| 1787 ch=utf8_nextCharSafeBody(pSrc, &index, srcLength, ch, -1); |
| 1788 if(ch<0){ |
| 1789 ch = 0xfffd; |
| 1790 } |
| 1791 reqLength+=U16_LENGTH(ch); |
| 1792 } |
| 1793 } |
| 1794 |
| 1795 reqLength+=(int32_t)(pDest - dest); |
| 1796 |
| 1797 if(pDestLength){ |
| 1798 *pDestLength = reqLength; |
| 1799 } |
| 1800 |
| 1801 /* Terminate the buffer */ |
| 1802 u_terminateUChars(dest,destCapacity,reqLength,pErrorCode); |
| 1803 |
| 1804 return dest; |
| 1805 } |
| 1806 |
| 1807 |
| 1808 |
| 1809 static int32_t U_CALLCONV |
| 1810 utf8TextExtract(UText *ut, |
| 1811 int64_t start, int64_t limit, |
| 1812 UChar *dest, int32_t destCapacity, |
| 1813 UErrorCode *pErrorCode) { |
| 1814 if(U_FAILURE(*pErrorCode)) { |
| 1815 return 0; |
| 1816 } |
| 1817 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| 1818 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 1819 return 0; |
| 1820 } |
| 1821 int32_t length = ut->b; |
| 1822 int32_t start32 = pinIndex(start, length); |
| 1823 int32_t limit32 = pinIndex(limit, length); |
| 1824 |
| 1825 if(start32>limit32) { |
| 1826 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1827 return 0; |
| 1828 } |
| 1829 |
| 1830 |
| 1831 // adjust the incoming indexes to land on code point boundaries if needed. |
| 1832 // adjust by no more than three, because that is the largest number of tr
ail bytes |
| 1833 // in a well formed UTF8 character. |
| 1834 const uint8_t *buf = (const uint8_t *)ut->context; |
| 1835 int i; |
| 1836 if (start32 < ut->chunkNativeLimit) { |
| 1837 for (i=0; i<3; i++) { |
| 1838 if (U8_IS_SINGLE(buf[start32]) || U8_IS_LEAD(buf[start32]) || start3
2==0) { |
| 1839 break; |
| 1840 } |
| 1841 start32--; |
| 1842 } |
| 1843 } |
| 1844 |
| 1845 if (limit32 < ut->chunkNativeLimit) { |
| 1846 for (i=0; i<3; i++) { |
| 1847 if (U8_IS_SINGLE(buf[limit32]) || U8_IS_LEAD(buf[limit32]) || limit3
2==0) { |
| 1848 break; |
| 1849 } |
| 1850 limit32--; |
| 1851 } |
| 1852 } |
| 1853 |
| 1854 // Do the actual extract. |
| 1855 int32_t destLength=0; |
| 1856 utext_strFromUTF8(dest, destCapacity, &destLength, |
| 1857 (const char *)ut->context+start32, limit32-start32, |
| 1858 pErrorCode); |
| 1859 utf8TextAccess(ut, limit32, TRUE); |
| 1860 return destLength; |
| 1861 } |
| 1862 |
| 1863 // |
| 1864 // utf8TextMapOffsetToNative |
| 1865 // |
| 1866 // Map a chunk (UTF-16) offset to a native index. |
| 1867 static int64_t U_CALLCONV |
| 1868 utf8TextMapOffsetToNative(const UText *ut) { |
| 1869 // |
| 1870 UTF8Buf *u8b = (UTF8Buf *)ut->p; |
| 1871 U_ASSERT(ut->chunkOffset>ut->nativeIndexingLimit && ut->chunkOffset<=ut->chu
nkLength); |
| 1872 int32_t nativeOffset = u8b->mapToNative[ut->chunkOffset + u8b->bufStartIdx]
+ u8b->toUCharsMapStart; |
| 1873 U_ASSERT(nativeOffset >= ut->chunkNativeStart && nativeOffset <= ut->chunkNa
tiveLimit); |
| 1874 return nativeOffset; |
| 1875 } |
| 1876 |
| 1877 // |
| 1878 // Map a native index to the corrsponding chunk offset |
| 1879 // |
| 1880 static int32_t U_CALLCONV |
| 1881 utf8TextMapIndexToUTF16(const UText *ut, int64_t index64) { |
| 1882 U_ASSERT(index64 <= 0x7fffffff); |
| 1883 int32_t index = (int32_t)index64; |
| 1884 UTF8Buf *u8b = (UTF8Buf *)ut->p; |
| 1885 U_ASSERT(index>=ut->chunkNativeStart+ut->nativeIndexingLimit); |
| 1886 U_ASSERT(index<=ut->chunkNativeLimit); |
| 1887 int32_t mapIndex = index - u8b->toUCharsMapStart; |
| 1888 int32_t offset = u8b->mapToUChars[mapIndex] - u8b->bufStartIdx; |
| 1889 U_ASSERT(offset>=0 && offset<=ut->chunkLength); |
| 1890 return offset; |
| 1891 } |
| 1892 |
| 1893 static UText * U_CALLCONV |
| 1894 utf8TextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) |
| 1895 { |
| 1896 // First do a generic shallow clone. Does everything needed for the UText s
truct itself. |
| 1897 dest = shallowTextClone(dest, src, status); |
| 1898 |
| 1899 // For deep clones, make a copy of the string. |
| 1900 // The copied storage is owned by the newly created clone. |
| 1901 // |
| 1902 // TODO: There is an isssue with using utext_nativeLength(). |
| 1903 // That function is non-const in cases where the input was NUL termin
ated |
| 1904 // and the length has not yet been determined. |
| 1905 // This function (clone()) is const. |
| 1906 // There potentially a thread safety issue lurking here. |
| 1907 // |
| 1908 if (deep && U_SUCCESS(*status)) { |
| 1909 int32_t len = (int32_t)utext_nativeLength((UText *)src); |
| 1910 char *copyStr = (char *)uprv_malloc(len+1); |
| 1911 if (copyStr == NULL) { |
| 1912 *status = U_MEMORY_ALLOCATION_ERROR; |
| 1913 } else { |
| 1914 uprv_memcpy(copyStr, src->context, len+1); |
| 1915 dest->context = copyStr; |
| 1916 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 1917 } |
| 1918 } |
| 1919 return dest; |
| 1920 } |
| 1921 |
| 1922 |
| 1923 static void U_CALLCONV |
| 1924 utf8TextClose(UText *ut) { |
| 1925 // Most of the work of close is done by the generic UText framework close. |
| 1926 // All that needs to be done here is to delete the UTF8 string if the UText |
| 1927 // owns it. This occurs if the UText was created by cloning. |
| 1928 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 1929 char *s = (char *)ut->context; |
| 1930 uprv_free(s); |
| 1931 ut->context = NULL; |
| 1932 } |
| 1933 } |
| 1934 |
| 1935 U_CDECL_END |
| 1936 |
| 1937 |
| 1938 static const struct UTextFuncs utf8Funcs = |
| 1939 { |
| 1940 sizeof(UTextFuncs), |
| 1941 0, 0, 0, // Reserved alignment padding |
| 1942 utf8TextClone, |
| 1943 utf8TextLength, |
| 1944 utf8TextAccess, |
| 1945 utf8TextExtract, |
| 1946 NULL, /* replace*/ |
| 1947 NULL, /* copy */ |
| 1948 utf8TextMapOffsetToNative, |
| 1949 utf8TextMapIndexToUTF16, |
| 1950 utf8TextClose, |
| 1951 NULL, // spare 1 |
| 1952 NULL, // spare 2 |
| 1953 NULL // spare 3 |
| 1954 }; |
| 1955 |
| 1956 |
| 1957 static const char gEmptyString[] = {0}; |
| 1958 |
| 1959 U_CAPI UText * U_EXPORT2 |
| 1960 utext_openUTF8(UText *ut, const char *s, int64_t length, UErrorCode *status) { |
| 1961 if(U_FAILURE(*status)) { |
| 1962 return NULL; |
| 1963 } |
| 1964 if(s==NULL && length==0) { |
| 1965 s = gEmptyString; |
| 1966 } |
| 1967 |
| 1968 if(s==NULL || length<-1 || length>INT32_MAX) { |
| 1969 *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 1970 return NULL; |
| 1971 } |
| 1972 |
| 1973 ut = utext_setup(ut, sizeof(UTF8Buf) * 2, status); |
| 1974 if (U_FAILURE(*status)) { |
| 1975 return ut; |
| 1976 } |
| 1977 |
| 1978 ut->pFuncs = &utf8Funcs; |
| 1979 ut->context = s; |
| 1980 ut->b = (int32_t)length; |
| 1981 ut->c = (int32_t)length; |
| 1982 if (ut->c < 0) { |
| 1983 ut->c = 0; |
| 1984 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 1985 } |
| 1986 ut->p = ut->pExtra; |
| 1987 ut->q = (char *)ut->pExtra + sizeof(UTF8Buf); |
| 1988 return ut; |
| 1989 |
| 1990 } |
| 1991 |
| 1992 |
| 1993 |
| 1994 |
| 1995 |
| 1996 |
| 1997 |
| 1998 |
| 1999 //------------------------------------------------------------------------------ |
| 2000 // |
| 2001 // UText implementation wrapper for Replaceable (read/write) |
| 2002 // |
| 2003 // Use of UText data members: |
| 2004 // context pointer to Replaceable. |
| 2005 // p pointer to Replaceable if it is owned by the UText. |
| 2006 // |
| 2007 //------------------------------------------------------------------------------ |
| 2008 |
| 2009 |
| 2010 |
| 2011 // minimum chunk size for this implementation: 3 |
| 2012 // to allow for possible trimming for code point boundaries |
| 2013 enum { REP_TEXT_CHUNK_SIZE=10 }; |
| 2014 |
| 2015 struct ReplExtra { |
| 2016 /* |
| 2017 * Chunk UChars. |
| 2018 * +1 to simplify filling with surrogate pair at the end. |
| 2019 */ |
| 2020 UChar s[REP_TEXT_CHUNK_SIZE+1]; |
| 2021 }; |
| 2022 |
| 2023 |
| 2024 U_CDECL_BEGIN |
| 2025 |
| 2026 static UText * U_CALLCONV |
| 2027 repTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| 2028 // First do a generic shallow clone. Does everything needed for the UText s
truct itself. |
| 2029 dest = shallowTextClone(dest, src, status); |
| 2030 |
| 2031 // For deep clones, make a copy of the Replaceable. |
| 2032 // The copied Replaceable storage is owned by the newly created UText clone
. |
| 2033 // A non-NULL pointer in UText.p is the signal to the close() function to d
elete |
| 2034 // it. |
| 2035 // |
| 2036 if (deep && U_SUCCESS(*status)) { |
| 2037 const Replaceable *replSrc = (const Replaceable *)src->context; |
| 2038 dest->context = replSrc->clone(); |
| 2039 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 2040 |
| 2041 // with deep clone, the copy is writable, even when the source is not. |
| 2042 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2043 } |
| 2044 return dest; |
| 2045 } |
| 2046 |
| 2047 |
| 2048 static void U_CALLCONV |
| 2049 repTextClose(UText *ut) { |
| 2050 // Most of the work of close is done by the generic UText framework close. |
| 2051 // All that needs to be done here is delete the Replaceable if the UText |
| 2052 // owns it. This occurs if the UText was created by cloning. |
| 2053 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 2054 Replaceable *rep = (Replaceable *)ut->context; |
| 2055 delete rep; |
| 2056 ut->context = NULL; |
| 2057 } |
| 2058 } |
| 2059 |
| 2060 |
| 2061 static int64_t U_CALLCONV |
| 2062 repTextLength(UText *ut) { |
| 2063 const Replaceable *replSrc = (const Replaceable *)ut->context; |
| 2064 int32_t len = replSrc->length(); |
| 2065 return len; |
| 2066 } |
| 2067 |
| 2068 |
| 2069 static UBool U_CALLCONV |
| 2070 repTextAccess(UText *ut, int64_t index, UBool forward) { |
| 2071 const Replaceable *rep=(const Replaceable *)ut->context; |
| 2072 int32_t length=rep->length(); // Full length of the input text (bigger tha
n a chunk) |
| 2073 |
| 2074 // clip the requested index to the limits of the text. |
| 2075 int32_t index32 = pinIndex(index, length); |
| 2076 U_ASSERT(index<=INT32_MAX); |
| 2077 |
| 2078 |
| 2079 /* |
| 2080 * Compute start/limit boundaries around index, for a segment of text |
| 2081 * to be extracted. |
| 2082 * To allow for the possibility that our user gave an index to the trailing |
| 2083 * half of a surrogate pair, we must request one extra preceding UChar when |
| 2084 * going in the forward direction. This will ensure that the buffer has the |
| 2085 * entire code point at the specified index. |
| 2086 */ |
| 2087 if(forward) { |
| 2088 |
| 2089 if (index32>=ut->chunkNativeStart && index32<ut->chunkNativeLimit) { |
| 2090 // Buffer already contains the requested position. |
| 2091 ut->chunkOffset = (int32_t)(index - ut->chunkNativeStart); |
| 2092 return TRUE; |
| 2093 } |
| 2094 if (index32>=length && ut->chunkNativeLimit==length) { |
| 2095 // Request for end of string, and buffer already extends up to it. |
| 2096 // Can't get the data, but don't change the buffer. |
| 2097 ut->chunkOffset = length - (int32_t)ut->chunkNativeStart; |
| 2098 return FALSE; |
| 2099 } |
| 2100 |
| 2101 ut->chunkNativeLimit = index + REP_TEXT_CHUNK_SIZE - 1; |
| 2102 // Going forward, so we want to have the buffer with stuff at and beyond |
| 2103 // the requested index. The -1 gets us one code point before the |
| 2104 // requested index also, to handle the case of the index being on |
| 2105 // a trail surrogate of a surrogate pair. |
| 2106 if(ut->chunkNativeLimit > length) { |
| 2107 ut->chunkNativeLimit = length; |
| 2108 } |
| 2109 // unless buffer ran off end, start is index-1. |
| 2110 ut->chunkNativeStart = ut->chunkNativeLimit - REP_TEXT_CHUNK_SIZE; |
| 2111 if(ut->chunkNativeStart < 0) { |
| 2112 ut->chunkNativeStart = 0; |
| 2113 } |
| 2114 } else { |
| 2115 // Reverse iteration. Fill buffer with data preceding the requested ind
ex. |
| 2116 if (index32>ut->chunkNativeStart && index32<=ut->chunkNativeLimit) { |
| 2117 // Requested position already in buffer. |
| 2118 ut->chunkOffset = index32 - (int32_t)ut->chunkNativeStart; |
| 2119 return TRUE; |
| 2120 } |
| 2121 if (index32==0 && ut->chunkNativeStart==0) { |
| 2122 // Request for start, buffer already begins at start. |
| 2123 // No data, but keep the buffer as is. |
| 2124 ut->chunkOffset = 0; |
| 2125 return FALSE; |
| 2126 } |
| 2127 |
| 2128 // Figure out the bounds of the chunk to extract for reverse iteration. |
| 2129 // Need to worry about chunk not splitting surrogate pairs, and while st
ill |
| 2130 // containing the data we need. |
| 2131 // Fix by requesting a chunk that includes an extra UChar at the end. |
| 2132 // If this turns out to be a lead surrogate, we can lop it off and still
have |
| 2133 // the data we wanted. |
| 2134 ut->chunkNativeStart = index32 + 1 - REP_TEXT_CHUNK_SIZE; |
| 2135 if (ut->chunkNativeStart < 0) { |
| 2136 ut->chunkNativeStart = 0; |
| 2137 } |
| 2138 |
| 2139 ut->chunkNativeLimit = index32 + 1; |
| 2140 if (ut->chunkNativeLimit > length) { |
| 2141 ut->chunkNativeLimit = length; |
| 2142 } |
| 2143 } |
| 2144 |
| 2145 // Extract the new chunk of text from the Replaceable source. |
| 2146 ReplExtra *ex = (ReplExtra *)ut->pExtra; |
| 2147 // UnicodeString with its buffer a writable alias to the chunk buffer |
| 2148 UnicodeString buffer(ex->s, 0 /*buffer length*/, REP_TEXT_CHUNK_SIZE /*buffe
r capacity*/); |
| 2149 rep->extractBetween((int32_t)ut->chunkNativeStart, (int32_t)ut->chunkNativeL
imit, buffer); |
| 2150 |
| 2151 ut->chunkContents = ex->s; |
| 2152 ut->chunkLength = (int32_t)(ut->chunkNativeLimit - ut->chunkNativeStart); |
| 2153 ut->chunkOffset = (int32_t)(index32 - ut->chunkNativeStart); |
| 2154 |
| 2155 // Surrogate pairs from the input text must not span chunk boundaries. |
| 2156 // If end of chunk could be the start of a surrogate, trim it off. |
| 2157 if (ut->chunkNativeLimit < length && |
| 2158 U16_IS_LEAD(ex->s[ut->chunkLength-1])) { |
| 2159 ut->chunkLength--; |
| 2160 ut->chunkNativeLimit--; |
| 2161 if (ut->chunkOffset > ut->chunkLength) { |
| 2162 ut->chunkOffset = ut->chunkLength; |
| 2163 } |
| 2164 } |
| 2165 |
| 2166 // if the first UChar in the chunk could be the trailing half of a surrogate
pair, |
| 2167 // trim it off. |
| 2168 if(ut->chunkNativeStart>0 && U16_IS_TRAIL(ex->s[0])) { |
| 2169 ++(ut->chunkContents); |
| 2170 ++(ut->chunkNativeStart); |
| 2171 --(ut->chunkLength); |
| 2172 --(ut->chunkOffset); |
| 2173 } |
| 2174 |
| 2175 // adjust the index/chunkOffset to a code point boundary |
| 2176 U16_SET_CP_START(ut->chunkContents, 0, ut->chunkOffset); |
| 2177 |
| 2178 // Use fast indexing for get/setNativeIndex() |
| 2179 ut->nativeIndexingLimit = ut->chunkLength; |
| 2180 |
| 2181 return TRUE; |
| 2182 } |
| 2183 |
| 2184 |
| 2185 |
| 2186 static int32_t U_CALLCONV |
| 2187 repTextExtract(UText *ut, |
| 2188 int64_t start, int64_t limit, |
| 2189 UChar *dest, int32_t destCapacity, |
| 2190 UErrorCode *status) { |
| 2191 const Replaceable *rep=(const Replaceable *)ut->context; |
| 2192 int32_t length=rep->length(); |
| 2193 |
| 2194 if(U_FAILURE(*status)) { |
| 2195 return 0; |
| 2196 } |
| 2197 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| 2198 *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 2199 } |
| 2200 if(start>limit) { |
| 2201 *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2202 return 0; |
| 2203 } |
| 2204 |
| 2205 int32_t start32 = pinIndex(start, length); |
| 2206 int32_t limit32 = pinIndex(limit, length); |
| 2207 |
| 2208 // adjust start, limit if they point to trail half of surrogates |
| 2209 if (start32<length && U16_IS_TRAIL(rep->charAt(start32)) && |
| 2210 U_IS_SUPPLEMENTARY(rep->char32At(start32))){ |
| 2211 start32--; |
| 2212 } |
| 2213 if (limit32<length && U16_IS_TRAIL(rep->charAt(limit32)) && |
| 2214 U_IS_SUPPLEMENTARY(rep->char32At(limit32))){ |
| 2215 limit32--; |
| 2216 } |
| 2217 |
| 2218 length=limit32-start32; |
| 2219 if(length>destCapacity) { |
| 2220 limit32 = start32 + destCapacity; |
| 2221 } |
| 2222 UnicodeString buffer(dest, 0, destCapacity); // writable alias |
| 2223 rep->extractBetween(start32, limit32, buffer); |
| 2224 repTextAccess(ut, limit32, TRUE); |
| 2225 |
| 2226 return u_terminateUChars(dest, destCapacity, length, status); |
| 2227 } |
| 2228 |
| 2229 static int32_t U_CALLCONV |
| 2230 repTextReplace(UText *ut, |
| 2231 int64_t start, int64_t limit, |
| 2232 const UChar *src, int32_t length, |
| 2233 UErrorCode *status) { |
| 2234 Replaceable *rep=(Replaceable *)ut->context; |
| 2235 int32_t oldLength; |
| 2236 |
| 2237 if(U_FAILURE(*status)) { |
| 2238 return 0; |
| 2239 } |
| 2240 if(src==NULL && length!=0) { |
| 2241 *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 2242 return 0; |
| 2243 } |
| 2244 oldLength=rep->length(); // will subtract from new length |
| 2245 if(start>limit ) { |
| 2246 *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2247 return 0; |
| 2248 } |
| 2249 |
| 2250 int32_t start32 = pinIndex(start, oldLength); |
| 2251 int32_t limit32 = pinIndex(limit, oldLength); |
| 2252 |
| 2253 // Snap start & limit to code point boundaries. |
| 2254 if (start32<oldLength && U16_IS_TRAIL(rep->charAt(start32)) && |
| 2255 start32>0 && U16_IS_LEAD(rep->charAt(start32-1))) |
| 2256 { |
| 2257 start32--; |
| 2258 } |
| 2259 if (limit32<oldLength && U16_IS_LEAD(rep->charAt(limit32-1)) && |
| 2260 U16_IS_TRAIL(rep->charAt(limit32))) |
| 2261 { |
| 2262 limit32++; |
| 2263 } |
| 2264 |
| 2265 // Do the actual replace operation using methods of the Replaceable class |
| 2266 UnicodeString replStr((UBool)(length<0), src, length); // read-only alias |
| 2267 rep->handleReplaceBetween(start32, limit32, replStr); |
| 2268 int32_t newLength = rep->length(); |
| 2269 int32_t lengthDelta = newLength - oldLength; |
| 2270 |
| 2271 // Is the UText chunk buffer OK? |
| 2272 if (ut->chunkNativeLimit > start32) { |
| 2273 // this replace operation may have impacted the current chunk. |
| 2274 // invalidate it, which will force a reload on the next access. |
| 2275 invalidateChunk(ut); |
| 2276 } |
| 2277 |
| 2278 // set the iteration position to the end of the newly inserted replacement t
ext. |
| 2279 int32_t newIndexPos = limit32 + lengthDelta; |
| 2280 repTextAccess(ut, newIndexPos, TRUE); |
| 2281 |
| 2282 return lengthDelta; |
| 2283 } |
| 2284 |
| 2285 |
| 2286 static void U_CALLCONV |
| 2287 repTextCopy(UText *ut, |
| 2288 int64_t start, int64_t limit, |
| 2289 int64_t destIndex, |
| 2290 UBool move, |
| 2291 UErrorCode *status) |
| 2292 { |
| 2293 Replaceable *rep=(Replaceable *)ut->context; |
| 2294 int32_t length=rep->length(); |
| 2295 |
| 2296 if(U_FAILURE(*status)) { |
| 2297 return; |
| 2298 } |
| 2299 if (start>limit || (start<destIndex && destIndex<limit)) |
| 2300 { |
| 2301 *status=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2302 return; |
| 2303 } |
| 2304 |
| 2305 int32_t start32 = pinIndex(start, length); |
| 2306 int32_t limit32 = pinIndex(limit, length); |
| 2307 int32_t destIndex32 = pinIndex(destIndex, length); |
| 2308 |
| 2309 // TODO: snap input parameters to code point boundaries. |
| 2310 |
| 2311 if(move) { |
| 2312 // move: copy to destIndex, then replace original with nothing |
| 2313 int32_t segLength=limit32-start32; |
| 2314 rep->copy(start32, limit32, destIndex32); |
| 2315 if(destIndex32<start32) { |
| 2316 start32+=segLength; |
| 2317 limit32+=segLength; |
| 2318 } |
| 2319 rep->handleReplaceBetween(start32, limit32, UnicodeString()); |
| 2320 } else { |
| 2321 // copy |
| 2322 rep->copy(start32, limit32, destIndex32); |
| 2323 } |
| 2324 |
| 2325 // If the change to the text touched the region in the chunk buffer, |
| 2326 // invalidate the buffer. |
| 2327 int32_t firstAffectedIndex = destIndex32; |
| 2328 if (move && start32<firstAffectedIndex) { |
| 2329 firstAffectedIndex = start32; |
| 2330 } |
| 2331 if (firstAffectedIndex < ut->chunkNativeLimit) { |
| 2332 // changes may have affected range covered by the chunk |
| 2333 invalidateChunk(ut); |
| 2334 } |
| 2335 |
| 2336 // Put iteration position at the newly inserted (moved) block, |
| 2337 int32_t nativeIterIndex = destIndex32 + limit32 - start32; |
| 2338 if (move && destIndex32>start32) { |
| 2339 // moved a block of text towards the end of the string. |
| 2340 nativeIterIndex = destIndex32; |
| 2341 } |
| 2342 |
| 2343 // Set position, reload chunk if needed. |
| 2344 repTextAccess(ut, nativeIterIndex, TRUE); |
| 2345 } |
| 2346 |
| 2347 static const struct UTextFuncs repFuncs = |
| 2348 { |
| 2349 sizeof(UTextFuncs), |
| 2350 0, 0, 0, // Reserved alignment padding |
| 2351 repTextClone, |
| 2352 repTextLength, |
| 2353 repTextAccess, |
| 2354 repTextExtract, |
| 2355 repTextReplace, |
| 2356 repTextCopy, |
| 2357 NULL, // MapOffsetToNative, |
| 2358 NULL, // MapIndexToUTF16, |
| 2359 repTextClose, |
| 2360 NULL, // spare 1 |
| 2361 NULL, // spare 2 |
| 2362 NULL // spare 3 |
| 2363 }; |
| 2364 |
| 2365 |
| 2366 U_CAPI UText * U_EXPORT2 |
| 2367 utext_openReplaceable(UText *ut, Replaceable *rep, UErrorCode *status) |
| 2368 { |
| 2369 if(U_FAILURE(*status)) { |
| 2370 return NULL; |
| 2371 } |
| 2372 if(rep==NULL) { |
| 2373 *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 2374 return NULL; |
| 2375 } |
| 2376 ut = utext_setup(ut, sizeof(ReplExtra), status); |
| 2377 |
| 2378 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2379 if(rep->hasMetaData()) { |
| 2380 ut->providerProperties |=I32_FLAG(UTEXT_PROVIDER_HAS_META_DATA); |
| 2381 } |
| 2382 |
| 2383 ut->pFuncs = &repFuncs; |
| 2384 ut->context = rep; |
| 2385 return ut; |
| 2386 } |
| 2387 |
| 2388 U_CDECL_END |
| 2389 |
| 2390 |
| 2391 |
| 2392 |
| 2393 |
| 2394 |
| 2395 |
| 2396 |
| 2397 //------------------------------------------------------------------------------ |
| 2398 // |
| 2399 // UText implementation for UnicodeString (read/write) and |
| 2400 // for const UnicodeString (read only) |
| 2401 // (same implementation, only the flags are different) |
| 2402 // |
| 2403 // Use of UText data members: |
| 2404 // context pointer to UnicodeString |
| 2405 // p pointer to UnicodeString IF this UText owns the string |
| 2406 // and it must be deleted on close(). NULL otherwise. |
| 2407 // |
| 2408 //------------------------------------------------------------------------------ |
| 2409 |
| 2410 U_CDECL_BEGIN |
| 2411 |
| 2412 |
| 2413 static UText * U_CALLCONV |
| 2414 unistrTextClone(UText *dest, const UText *src, UBool deep, UErrorCode *status) { |
| 2415 // First do a generic shallow clone. Does everything needed for the UText s
truct itself. |
| 2416 dest = shallowTextClone(dest, src, status); |
| 2417 |
| 2418 // For deep clones, make a copy of the UnicodeSring. |
| 2419 // The copied UnicodeString storage is owned by the newly created UText clo
ne. |
| 2420 // A non-NULL pointer in UText.p is the signal to the close() function to d
elete |
| 2421 // the UText. |
| 2422 // |
| 2423 if (deep && U_SUCCESS(*status)) { |
| 2424 const UnicodeString *srcString = (const UnicodeString *)src->context; |
| 2425 dest->context = new UnicodeString(*srcString); |
| 2426 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 2427 |
| 2428 // with deep clone, the copy is writable, even when the source is not. |
| 2429 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2430 } |
| 2431 return dest; |
| 2432 } |
| 2433 |
| 2434 static void U_CALLCONV |
| 2435 unistrTextClose(UText *ut) { |
| 2436 // Most of the work of close is done by the generic UText framework close. |
| 2437 // All that needs to be done here is delete the UnicodeString if the UText |
| 2438 // owns it. This occurs if the UText was created by cloning. |
| 2439 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 2440 UnicodeString *str = (UnicodeString *)ut->context; |
| 2441 delete str; |
| 2442 ut->context = NULL; |
| 2443 } |
| 2444 } |
| 2445 |
| 2446 |
| 2447 static int64_t U_CALLCONV |
| 2448 unistrTextLength(UText *t) { |
| 2449 return ((const UnicodeString *)t->context)->length(); |
| 2450 } |
| 2451 |
| 2452 |
| 2453 static UBool U_CALLCONV |
| 2454 unistrTextAccess(UText *ut, int64_t index, UBool forward) { |
| 2455 int32_t length = ut->chunkLength; |
| 2456 ut->chunkOffset = pinIndex(index, length); |
| 2457 |
| 2458 // Check whether request is at the start or end |
| 2459 UBool retVal = (forward && index<length) || (!forward && index>0); |
| 2460 return retVal; |
| 2461 } |
| 2462 |
| 2463 |
| 2464 |
| 2465 static int32_t U_CALLCONV |
| 2466 unistrTextExtract(UText *t, |
| 2467 int64_t start, int64_t limit, |
| 2468 UChar *dest, int32_t destCapacity, |
| 2469 UErrorCode *pErrorCode) { |
| 2470 const UnicodeString *us=(const UnicodeString *)t->context; |
| 2471 int32_t length=us->length(); |
| 2472 |
| 2473 if(U_FAILURE(*pErrorCode)) { |
| 2474 return 0; |
| 2475 } |
| 2476 if(destCapacity<0 || (dest==NULL && destCapacity>0)) { |
| 2477 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 2478 } |
| 2479 if(start<0 || start>limit) { |
| 2480 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2481 return 0; |
| 2482 } |
| 2483 |
| 2484 int32_t start32 = start<length ? us->getChar32Start((int32_t)start) : length
; |
| 2485 int32_t limit32 = limit<length ? us->getChar32Start((int32_t)limit) : length
; |
| 2486 |
| 2487 length=limit32-start32; |
| 2488 if (destCapacity>0 && dest!=NULL) { |
| 2489 int32_t trimmedLength = length; |
| 2490 if(trimmedLength>destCapacity) { |
| 2491 trimmedLength=destCapacity; |
| 2492 } |
| 2493 us->extract(start32, trimmedLength, dest); |
| 2494 t->chunkOffset = start32+trimmedLength; |
| 2495 } else { |
| 2496 t->chunkOffset = start32; |
| 2497 } |
| 2498 u_terminateUChars(dest, destCapacity, length, pErrorCode); |
| 2499 return length; |
| 2500 } |
| 2501 |
| 2502 static int32_t U_CALLCONV |
| 2503 unistrTextReplace(UText *ut, |
| 2504 int64_t start, int64_t limit, |
| 2505 const UChar *src, int32_t length, |
| 2506 UErrorCode *pErrorCode) { |
| 2507 UnicodeString *us=(UnicodeString *)ut->context; |
| 2508 int32_t oldLength; |
| 2509 |
| 2510 if(U_FAILURE(*pErrorCode)) { |
| 2511 return 0; |
| 2512 } |
| 2513 if(src==NULL && length!=0) { |
| 2514 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 2515 } |
| 2516 if(start>limit) { |
| 2517 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2518 return 0; |
| 2519 } |
| 2520 oldLength=us->length(); |
| 2521 int32_t start32 = pinIndex(start, oldLength); |
| 2522 int32_t limit32 = pinIndex(limit, oldLength); |
| 2523 if (start32 < oldLength) { |
| 2524 start32 = us->getChar32Start(start32); |
| 2525 } |
| 2526 if (limit32 < oldLength) { |
| 2527 limit32 = us->getChar32Start(limit32); |
| 2528 } |
| 2529 |
| 2530 // replace |
| 2531 us->replace(start32, limit32-start32, src, length); |
| 2532 int32_t newLength = us->length(); |
| 2533 |
| 2534 // Update the chunk description. |
| 2535 ut->chunkContents = us->getBuffer(); |
| 2536 ut->chunkLength = newLength; |
| 2537 ut->chunkNativeLimit = newLength; |
| 2538 ut->nativeIndexingLimit = newLength; |
| 2539 |
| 2540 // Set iteration position to the point just following the newly inserted tex
t. |
| 2541 int32_t lengthDelta = newLength - oldLength; |
| 2542 ut->chunkOffset = limit32 + lengthDelta; |
| 2543 |
| 2544 return lengthDelta; |
| 2545 } |
| 2546 |
| 2547 static void U_CALLCONV |
| 2548 unistrTextCopy(UText *ut, |
| 2549 int64_t start, int64_t limit, |
| 2550 int64_t destIndex, |
| 2551 UBool move, |
| 2552 UErrorCode *pErrorCode) { |
| 2553 UnicodeString *us=(UnicodeString *)ut->context; |
| 2554 int32_t length=us->length(); |
| 2555 |
| 2556 if(U_FAILURE(*pErrorCode)) { |
| 2557 return; |
| 2558 } |
| 2559 int32_t start32 = pinIndex(start, length); |
| 2560 int32_t limit32 = pinIndex(limit, length); |
| 2561 int32_t destIndex32 = pinIndex(destIndex, length); |
| 2562 |
| 2563 if( start32>limit32 || (start32<destIndex32 && destIndex32<limit32)) { |
| 2564 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2565 return; |
| 2566 } |
| 2567 |
| 2568 if(move) { |
| 2569 // move: copy to destIndex, then replace original with nothing |
| 2570 int32_t segLength=limit32-start32; |
| 2571 us->copy(start32, limit32, destIndex32); |
| 2572 if(destIndex32<start32) { |
| 2573 start32+=segLength; |
| 2574 } |
| 2575 us->replace(start32, segLength, NULL, 0); |
| 2576 } else { |
| 2577 // copy |
| 2578 us->copy(start32, limit32, destIndex32); |
| 2579 } |
| 2580 |
| 2581 // update chunk description, set iteration position. |
| 2582 ut->chunkContents = us->getBuffer(); |
| 2583 if (move==FALSE) { |
| 2584 // copy operation, string length grows |
| 2585 ut->chunkLength += limit32-start32; |
| 2586 ut->chunkNativeLimit = ut->chunkLength; |
| 2587 ut->nativeIndexingLimit = ut->chunkLength; |
| 2588 } |
| 2589 |
| 2590 // Iteration position to end of the newly inserted text. |
| 2591 ut->chunkOffset = destIndex32+limit32-start32; |
| 2592 if (move && destIndex32>start32) { |
| 2593 ut->chunkOffset = destIndex32; |
| 2594 } |
| 2595 |
| 2596 } |
| 2597 |
| 2598 static const struct UTextFuncs unistrFuncs = |
| 2599 { |
| 2600 sizeof(UTextFuncs), |
| 2601 0, 0, 0, // Reserved alignment padding |
| 2602 unistrTextClone, |
| 2603 unistrTextLength, |
| 2604 unistrTextAccess, |
| 2605 unistrTextExtract, |
| 2606 unistrTextReplace, |
| 2607 unistrTextCopy, |
| 2608 NULL, // MapOffsetToNative, |
| 2609 NULL, // MapIndexToUTF16, |
| 2610 unistrTextClose, |
| 2611 NULL, // spare 1 |
| 2612 NULL, // spare 2 |
| 2613 NULL // spare 3 |
| 2614 }; |
| 2615 |
| 2616 |
| 2617 |
| 2618 U_CDECL_END |
| 2619 |
| 2620 |
| 2621 U_CAPI UText * U_EXPORT2 |
| 2622 utext_openUnicodeString(UText *ut, UnicodeString *s, UErrorCode *status) { |
| 2623 // TODO: use openConstUnicodeString, then add in the differences. |
| 2624 // |
| 2625 ut = utext_setup(ut, 0, status); |
| 2626 if (U_SUCCESS(*status)) { |
| 2627 ut->pFuncs = &unistrFuncs; |
| 2628 ut->context = s; |
| 2629 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS)| |
| 2630 I32_FLAG(UTEXT_PROVIDER_WRITABLE); |
| 2631 |
| 2632 ut->chunkContents = s->getBuffer(); |
| 2633 ut->chunkLength = s->length(); |
| 2634 ut->chunkNativeStart = 0; |
| 2635 ut->chunkNativeLimit = ut->chunkLength; |
| 2636 ut->nativeIndexingLimit = ut->chunkLength; |
| 2637 } |
| 2638 return ut; |
| 2639 } |
| 2640 |
| 2641 |
| 2642 |
| 2643 U_CAPI UText * U_EXPORT2 |
| 2644 utext_openConstUnicodeString(UText *ut, const UnicodeString *s, UErrorCode *stat
us) { |
| 2645 ut = utext_setup(ut, 0, status); |
| 2646 // note: use the standard (writable) function table for UnicodeString. |
| 2647 // The flag settings disable writing, so having the functions in |
| 2648 // the table is harmless. |
| 2649 if (U_SUCCESS(*status)) { |
| 2650 ut->pFuncs = &unistrFuncs; |
| 2651 ut->context = s; |
| 2652 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
| 2653 ut->chunkContents = s->getBuffer(); |
| 2654 ut->chunkLength = s->length(); |
| 2655 ut->chunkNativeStart = 0; |
| 2656 ut->chunkNativeLimit = ut->chunkLength; |
| 2657 ut->nativeIndexingLimit = ut->chunkLength; |
| 2658 } |
| 2659 return ut; |
| 2660 } |
| 2661 |
| 2662 //------------------------------------------------------------------------------ |
| 2663 // |
| 2664 // UText implementation for const UChar * strings |
| 2665 // |
| 2666 // Use of UText data members: |
| 2667 // context pointer to UnicodeString |
| 2668 // a length. -1 if not yet known. |
| 2669 // |
| 2670 // TODO: support 64 bit lengths. |
| 2671 // |
| 2672 //------------------------------------------------------------------------------ |
| 2673 |
| 2674 U_CDECL_BEGIN |
| 2675 |
| 2676 |
| 2677 static UText * U_CALLCONV |
| 2678 ucstrTextClone(UText *dest, const UText * src, UBool deep, UErrorCode * status)
{ |
| 2679 // First do a generic shallow clone. |
| 2680 dest = shallowTextClone(dest, src, status); |
| 2681 |
| 2682 // For deep clones, make a copy of the string. |
| 2683 // The copied storage is owned by the newly created clone. |
| 2684 // A non-NULL pointer in UText.p is the signal to the close() function to d
elete |
| 2685 // it. |
| 2686 // |
| 2687 if (deep && U_SUCCESS(*status)) { |
| 2688 U_ASSERT(utext_nativeLength(dest) < INT32_MAX); |
| 2689 int32_t len = (int32_t)utext_nativeLength(dest); |
| 2690 |
| 2691 // The cloned string IS going to be NUL terminated, whether or not the o
riginal was. |
| 2692 const UChar *srcStr = (const UChar *)src->context; |
| 2693 UChar *copyStr = (UChar *)uprv_malloc((len+1) * sizeof(UChar)); |
| 2694 if (copyStr == NULL) { |
| 2695 *status = U_MEMORY_ALLOCATION_ERROR; |
| 2696 } else { |
| 2697 int64_t i; |
| 2698 for (i=0; i<len; i++) { |
| 2699 copyStr[i] = srcStr[i]; |
| 2700 } |
| 2701 copyStr[len] = 0; |
| 2702 dest->context = copyStr; |
| 2703 dest->providerProperties |= I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT); |
| 2704 } |
| 2705 } |
| 2706 return dest; |
| 2707 } |
| 2708 |
| 2709 |
| 2710 static void U_CALLCONV |
| 2711 ucstrTextClose(UText *ut) { |
| 2712 // Most of the work of close is done by the generic UText framework close. |
| 2713 // All that needs to be done here is delete the string if the UText |
| 2714 // owns it. This occurs if the UText was created by cloning. |
| 2715 if (ut->providerProperties & I32_FLAG(UTEXT_PROVIDER_OWNS_TEXT)) { |
| 2716 UChar *s = (UChar *)ut->context; |
| 2717 uprv_free(s); |
| 2718 ut->context = NULL; |
| 2719 } |
| 2720 } |
| 2721 |
| 2722 |
| 2723 |
| 2724 static int64_t U_CALLCONV |
| 2725 ucstrTextLength(UText *ut) { |
| 2726 if (ut->a < 0) { |
| 2727 // null terminated, we don't yet know the length. Scan for it. |
| 2728 // Access is not convenient for doing this |
| 2729 // because the current interation postion can't be changed. |
| 2730 const UChar *str = (const UChar *)ut->context; |
| 2731 for (;;) { |
| 2732 if (str[ut->chunkNativeLimit] == 0) { |
| 2733 break; |
| 2734 } |
| 2735 ut->chunkNativeLimit++; |
| 2736 } |
| 2737 ut->a = ut->chunkNativeLimit; |
| 2738 ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
| 2739 ut->nativeIndexingLimit = ut->chunkLength; |
| 2740 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIVE); |
| 2741 } |
| 2742 return ut->a; |
| 2743 } |
| 2744 |
| 2745 |
| 2746 static UBool U_CALLCONV |
| 2747 ucstrTextAccess(UText *ut, int64_t index, UBool forward) { |
| 2748 const UChar *str = (const UChar *)ut->context; |
| 2749 |
| 2750 // pin the requested index to the bounds of the string, |
| 2751 // and set current iteration position. |
| 2752 if (index<0) { |
| 2753 index = 0; |
| 2754 } else if (index < ut->chunkNativeLimit) { |
| 2755 // The request data is within the chunk as it is known so far. |
| 2756 // Put index on a code point boundary. |
| 2757 U16_SET_CP_START(str, 0, index); |
| 2758 } else if (ut->a >= 0) { |
| 2759 // We know the length of this string, and the user is requesting somethi
ng |
| 2760 // at or beyond the length. Pin the requested index to the length. |
| 2761 index = ut->a; |
| 2762 } else { |
| 2763 // Null terminated string, length not yet known, and the requested index |
| 2764 // is beyond where we have scanned so far. |
| 2765 // Scan to 32 UChars beyond the requested index. The strategy here is |
| 2766 // to avoid fully scanning a long string when the caller only wants to |
| 2767 // see a few characters at its beginning. |
| 2768 int32_t scanLimit = (int32_t)index + 32; |
| 2769 if ((index + 32)>INT32_MAX || (index + 32)<0 ) { // note: int64 expres
sion |
| 2770 scanLimit = INT32_MAX; |
| 2771 } |
| 2772 |
| 2773 int32_t chunkLimit = (int32_t)ut->chunkNativeLimit; |
| 2774 for (; chunkLimit<scanLimit; chunkLimit++) { |
| 2775 if (str[chunkLimit] == 0) { |
| 2776 // We found the end of the string. Remember it, pin the request
ed index to it, |
| 2777 // and bail out of here. |
| 2778 ut->a = chunkLimit; |
| 2779 ut->chunkLength = chunkLimit; |
| 2780 ut->nativeIndexingLimit = chunkLimit; |
| 2781 if (index >= chunkLimit) { |
| 2782 index = chunkLimit; |
| 2783 } else { |
| 2784 U16_SET_CP_START(str, 0, index); |
| 2785 } |
| 2786 |
| 2787 ut->chunkNativeLimit = chunkLimit; |
| 2788 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXP
ENSIVE); |
| 2789 goto breakout; |
| 2790 } |
| 2791 } |
| 2792 // We scanned through the next batch of UChars without finding the end. |
| 2793 U16_SET_CP_START(str, 0, index); |
| 2794 if (chunkLimit == INT32_MAX) { |
| 2795 // Scanned to the limit of a 32 bit length. |
| 2796 // Forceably trim the overlength string back so length fits in int32 |
| 2797 // TODO: add support for 64 bit strings. |
| 2798 ut->a = chunkLimit; |
| 2799 ut->chunkLength = chunkLimit; |
| 2800 ut->nativeIndexingLimit = chunkLimit; |
| 2801 if (index > chunkLimit) { |
| 2802 index = chunkLimit; |
| 2803 } |
| 2804 ut->chunkNativeLimit = chunkLimit; |
| 2805 ut->providerProperties &= ~I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSI
VE); |
| 2806 } else { |
| 2807 // The endpoint of a chunk must not be left in the middle of a surro
gate pair. |
| 2808 // If the current end is on a lead surrogate, back the end up by one
. |
| 2809 // It doesn't matter if the end char happens to be an unpaired surro
gate, |
| 2810 // and it's simpler not to worry about it. |
| 2811 if (U16_IS_LEAD(str[chunkLimit-1])) { |
| 2812 --chunkLimit; |
| 2813 } |
| 2814 // Null-terminated chunk with end still unknown. |
| 2815 // Update the chunk length to reflect what has been scanned thus far
. |
| 2816 // That the full length is still unknown is (still) flagged by |
| 2817 // ut->a being < 0. |
| 2818 ut->chunkNativeLimit = chunkLimit; |
| 2819 ut->nativeIndexingLimit = chunkLimit; |
| 2820 ut->chunkLength = chunkLimit; |
| 2821 } |
| 2822 |
| 2823 } |
| 2824 breakout: |
| 2825 U_ASSERT(index<=INT32_MAX); |
| 2826 ut->chunkOffset = (int32_t)index; |
| 2827 |
| 2828 // Check whether request is at the start or end |
| 2829 UBool retVal = (forward && index<ut->chunkNativeLimit) || (!forward && index
>0); |
| 2830 return retVal; |
| 2831 } |
| 2832 |
| 2833 |
| 2834 |
| 2835 static int32_t U_CALLCONV |
| 2836 ucstrTextExtract(UText *ut, |
| 2837 int64_t start, int64_t limit, |
| 2838 UChar *dest, int32_t destCapacity, |
| 2839 UErrorCode *pErrorCode) |
| 2840 { |
| 2841 if(U_FAILURE(*pErrorCode)) { |
| 2842 return 0; |
| 2843 } |
| 2844 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
| 2845 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 2846 return 0; |
| 2847 } |
| 2848 |
| 2849 const UChar *s=(const UChar *)ut->context; |
| 2850 int32_t si, di; |
| 2851 |
| 2852 int32_t start32; |
| 2853 int32_t limit32; |
| 2854 |
| 2855 // Access the start. Does two things we need: |
| 2856 // Pins 'start' to the length of the string, if it came in out-of-bounds. |
| 2857 // Snaps 'start' to the beginning of a code point. |
| 2858 ucstrTextAccess(ut, start, TRUE); |
| 2859 U_ASSERT(start <= INT32_MAX); |
| 2860 start32 = (int32_t)start; |
| 2861 |
| 2862 int32_t strLength=(int32_t)ut->a; |
| 2863 if (strLength >= 0) { |
| 2864 limit32 = pinIndex(limit, strLength); |
| 2865 } else { |
| 2866 limit32 = pinIndex(limit, INT32_MAX); |
| 2867 } |
| 2868 |
| 2869 di = 0; |
| 2870 for (si=start32; si<limit32; si++) { |
| 2871 if (strLength<0 && s[si]==0) { |
| 2872 // Just hit the end of a null-terminated string. |
| 2873 ut->a = si; // set string length for this UText |
| 2874 ut->chunkNativeLimit = si; |
| 2875 ut->chunkLength = si; |
| 2876 ut->nativeIndexingLimit = si; |
| 2877 strLength = si; |
| 2878 break; |
| 2879 } |
| 2880 if (di<destCapacity) { |
| 2881 // only store if there is space. |
| 2882 dest[di] = s[si]; |
| 2883 } else { |
| 2884 if (strLength>=0) { |
| 2885 // We have filled the destination buffer, and the string length
is known. |
| 2886 // Cut the loop short. There is no need to scan string termina
tion. |
| 2887 di = limit32 - start32; |
| 2888 si = limit32; |
| 2889 break; |
| 2890 } |
| 2891 } |
| 2892 di++; |
| 2893 } |
| 2894 |
| 2895 // If the limit index points to a lead surrogate of a pair, |
| 2896 // add the corresponding trail surrogate to the destination. |
| 2897 if (si>0 && U16_IS_LEAD(s[si-1]) && |
| 2898 ((si<strLength || strLength<0) && U16_IS_TRAIL(s[si]))) |
| 2899 { |
| 2900 if (di<destCapacity) { |
| 2901 // store only if there is space in the output buffer. |
| 2902 dest[di++] = s[si++]; |
| 2903 } |
| 2904 } |
| 2905 |
| 2906 // Put iteration position at the point just following the extracted text |
| 2907 ut->chunkOffset = uprv_min(strLength, start32 + destCapacity); |
| 2908 |
| 2909 // Add a terminating NUL if space in the buffer permits, |
| 2910 // and set the error status as required. |
| 2911 u_terminateUChars(dest, destCapacity, di, pErrorCode); |
| 2912 return di; |
| 2913 } |
| 2914 |
| 2915 static const struct UTextFuncs ucstrFuncs = |
| 2916 { |
| 2917 sizeof(UTextFuncs), |
| 2918 0, 0, 0, // Reserved alignment padding |
| 2919 ucstrTextClone, |
| 2920 ucstrTextLength, |
| 2921 ucstrTextAccess, |
| 2922 ucstrTextExtract, |
| 2923 NULL, // Replace |
| 2924 NULL, // Copy |
| 2925 NULL, // MapOffsetToNative, |
| 2926 NULL, // MapIndexToUTF16, |
| 2927 ucstrTextClose, |
| 2928 NULL, // spare 1 |
| 2929 NULL, // spare 2 |
| 2930 NULL, // spare 3 |
| 2931 }; |
| 2932 |
| 2933 U_CDECL_END |
| 2934 |
| 2935 static const UChar gEmptyUString[] = {0}; |
| 2936 |
| 2937 U_CAPI UText * U_EXPORT2 |
| 2938 utext_openUChars(UText *ut, const UChar *s, int64_t length, UErrorCode *status)
{ |
| 2939 if (U_FAILURE(*status)) { |
| 2940 return NULL; |
| 2941 } |
| 2942 if(s==NULL && length==0) { |
| 2943 s = gEmptyUString; |
| 2944 } |
| 2945 if (s==NULL || length < -1 || length>INT32_MAX) { |
| 2946 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 2947 return NULL; |
| 2948 } |
| 2949 ut = utext_setup(ut, 0, status); |
| 2950 if (U_SUCCESS(*status)) { |
| 2951 ut->pFuncs = &ucstrFuncs; |
| 2952 ut->context = s; |
| 2953 ut->providerProperties = I32_FLAG(UTEXT_PROVIDER_STABLE_CHUNKS); |
| 2954 if (length==-1) { |
| 2955 ut->providerProperties |= I32_FLAG(UTEXT_PROVIDER_LENGTH_IS_EXPENSIV
E); |
| 2956 } |
| 2957 ut->a = length; |
| 2958 ut->chunkContents = s; |
| 2959 ut->chunkNativeStart = 0; |
| 2960 ut->chunkNativeLimit = length>=0? length : 0; |
| 2961 ut->chunkLength = (int32_t)ut->chunkNativeLimit; |
| 2962 ut->chunkOffset = 0; |
| 2963 ut->nativeIndexingLimit = ut->chunkLength; |
| 2964 } |
| 2965 return ut; |
| 2966 } |
| 2967 |
| 2968 |
| 2969 //------------------------------------------------------------------------------ |
| 2970 // |
| 2971 // UText implementation for text from ICU CharacterIterators |
| 2972 // |
| 2973 // Use of UText data members: |
| 2974 // context pointer to the CharacterIterator |
| 2975 // a length of the full text. |
| 2976 // p pointer to buffer 1 |
| 2977 // b start index of local buffer 1 contents |
| 2978 // q pointer to buffer 2 |
| 2979 // c start index of local buffer 2 contents |
| 2980 // r pointer to the character iterator if the UText owns it. |
| 2981 // Null otherwise. |
| 2982 // |
| 2983 //------------------------------------------------------------------------------ |
| 2984 #define CIBufSize 16 |
| 2985 |
| 2986 U_CDECL_BEGIN |
| 2987 static void U_CALLCONV |
| 2988 charIterTextClose(UText *ut) { |
| 2989 // Most of the work of close is done by the generic UText framework close. |
| 2990 // All that needs to be done here is delete the CharacterIterator if the UTe
xt |
| 2991 // owns it. This occurs if the UText was created by cloning. |
| 2992 CharacterIterator *ci = (CharacterIterator *)ut->r; |
| 2993 delete ci; |
| 2994 ut->r = NULL; |
| 2995 } |
| 2996 |
| 2997 static int64_t U_CALLCONV |
| 2998 charIterTextLength(UText *ut) { |
| 2999 return (int32_t)ut->a; |
| 3000 } |
| 3001 |
| 3002 static UBool U_CALLCONV |
| 3003 charIterTextAccess(UText *ut, int64_t index, UBool forward) { |
| 3004 CharacterIterator *ci = (CharacterIterator *)ut->context; |
| 3005 |
| 3006 int32_t clippedIndex = (int32_t)index; |
| 3007 if (clippedIndex<0) { |
| 3008 clippedIndex=0; |
| 3009 } else if (clippedIndex>=ut->a) { |
| 3010 clippedIndex=(int32_t)ut->a; |
| 3011 } |
| 3012 int32_t neededIndex = clippedIndex; |
| 3013 if (!forward && neededIndex>0) { |
| 3014 // reverse iteration, want the position just before what was asked for. |
| 3015 neededIndex--; |
| 3016 } else if (forward && neededIndex==ut->a && neededIndex>0) { |
| 3017 // Forward iteration, don't ask for something past the end of the text. |
| 3018 neededIndex--; |
| 3019 } |
| 3020 |
| 3021 // Find the native index of the start of the buffer containing what we want. |
| 3022 neededIndex -= neededIndex % CIBufSize; |
| 3023 |
| 3024 UChar *buf = NULL; |
| 3025 UBool needChunkSetup = TRUE; |
| 3026 int i; |
| 3027 if (ut->chunkNativeStart == neededIndex) { |
| 3028 // The buffer we want is already the current chunk. |
| 3029 needChunkSetup = FALSE; |
| 3030 } else if (ut->b == neededIndex) { |
| 3031 // The first buffer (buffer p) has what we need. |
| 3032 buf = (UChar *)ut->p; |
| 3033 } else if (ut->c == neededIndex) { |
| 3034 // The second buffer (buffer q) has what we need. |
| 3035 buf = (UChar *)ut->q; |
| 3036 } else { |
| 3037 // Neither buffer already has what we need. |
| 3038 // Load new data from the character iterator. |
| 3039 // Use the buf that is not the current buffer. |
| 3040 buf = (UChar *)ut->p; |
| 3041 if (ut->p == ut->chunkContents) { |
| 3042 buf = (UChar *)ut->q; |
| 3043 } |
| 3044 ci->setIndex(neededIndex); |
| 3045 for (i=0; i<CIBufSize; i++) { |
| 3046 buf[i] = ci->nextPostInc(); |
| 3047 if (i+neededIndex > ut->a) { |
| 3048 break; |
| 3049 } |
| 3050 } |
| 3051 } |
| 3052 |
| 3053 // We have a buffer with the data we need. |
| 3054 // Set it up as the current chunk, if it wasn't already. |
| 3055 if (needChunkSetup) { |
| 3056 ut->chunkContents = buf; |
| 3057 ut->chunkLength = CIBufSize; |
| 3058 ut->chunkNativeStart = neededIndex; |
| 3059 ut->chunkNativeLimit = neededIndex + CIBufSize; |
| 3060 if (ut->chunkNativeLimit > ut->a) { |
| 3061 ut->chunkNativeLimit = ut->a; |
| 3062 ut->chunkLength = (int32_t)(ut->chunkNativeLimit)-(int32_t)(ut->chu
nkNativeStart); |
| 3063 } |
| 3064 ut->nativeIndexingLimit = ut->chunkLength; |
| 3065 U_ASSERT(ut->chunkOffset>=0 && ut->chunkOffset<=CIBufSize); |
| 3066 } |
| 3067 ut->chunkOffset = clippedIndex - (int32_t)ut->chunkNativeStart; |
| 3068 UBool success = (forward? ut->chunkOffset<ut->chunkLength : ut->chunkOffset>
0); |
| 3069 return success; |
| 3070 } |
| 3071 |
| 3072 static UText * U_CALLCONV |
| 3073 charIterTextClone(UText *dest, const UText *src, UBool deep, UErrorCode * status
) { |
| 3074 if (U_FAILURE(*status)) { |
| 3075 return NULL; |
| 3076 } |
| 3077 |
| 3078 if (deep) { |
| 3079 // There is no CharacterIterator API for cloning the underlying text sto
rage. |
| 3080 *status = U_UNSUPPORTED_ERROR; |
| 3081 return NULL; |
| 3082 } else { |
| 3083 CharacterIterator *srcCI =(CharacterIterator *)src->context; |
| 3084 srcCI = srcCI->clone(); |
| 3085 dest = utext_openCharacterIterator(dest, srcCI, status); |
| 3086 // cast off const on getNativeIndex. |
| 3087 // For CharacterIterator based UTexts, this is safe, the operation is
const. |
| 3088 int64_t ix = utext_getNativeIndex((UText *)src); |
| 3089 utext_setNativeIndex(dest, ix); |
| 3090 dest->r = srcCI; // flags that this UText owns the CharacterIterator |
| 3091 } |
| 3092 return dest; |
| 3093 } |
| 3094 |
| 3095 static int32_t U_CALLCONV |
| 3096 charIterTextExtract(UText *ut, |
| 3097 int64_t start, int64_t limit, |
| 3098 UChar *dest, int32_t destCapacity, |
| 3099 UErrorCode *status) |
| 3100 { |
| 3101 if(U_FAILURE(*status)) { |
| 3102 return 0; |
| 3103 } |
| 3104 if(destCapacity<0 || (dest==NULL && destCapacity>0) || start>limit) { |
| 3105 *status=U_ILLEGAL_ARGUMENT_ERROR; |
| 3106 return 0; |
| 3107 } |
| 3108 int32_t length = (int32_t)ut->a; |
| 3109 int32_t start32 = pinIndex(start, length); |
| 3110 int32_t limit32 = pinIndex(limit, length); |
| 3111 int32_t desti = 0; |
| 3112 int32_t srci; |
| 3113 int32_t copyLimit; |
| 3114 |
| 3115 CharacterIterator *ci = (CharacterIterator *)ut->context; |
| 3116 ci->setIndex32(start32); // Moves ix to lead of surrogate pair, if needed. |
| 3117 srci = ci->getIndex(); |
| 3118 copyLimit = srci; |
| 3119 while (srci<limit32) { |
| 3120 UChar32 c = ci->next32PostInc(); |
| 3121 int32_t len = U16_LENGTH(c); |
| 3122 if (desti+len <= destCapacity) { |
| 3123 U16_APPEND_UNSAFE(dest, desti, c); |
| 3124 copyLimit = srci+len; |
| 3125 } else { |
| 3126 desti += len; |
| 3127 *status = U_BUFFER_OVERFLOW_ERROR; |
| 3128 } |
| 3129 srci += len; |
| 3130 } |
| 3131 |
| 3132 charIterTextAccess(ut, copyLimit, TRUE); |
| 3133 |
| 3134 u_terminateUChars(dest, destCapacity, desti, status); |
| 3135 return desti; |
| 3136 } |
| 3137 |
| 3138 static const struct UTextFuncs charIterFuncs = |
| 3139 { |
| 3140 sizeof(UTextFuncs), |
| 3141 0, 0, 0, // Reserved alignment padding |
| 3142 charIterTextClone, |
| 3143 charIterTextLength, |
| 3144 charIterTextAccess, |
| 3145 charIterTextExtract, |
| 3146 NULL, // Replace |
| 3147 NULL, // Copy |
| 3148 NULL, // MapOffsetToNative, |
| 3149 NULL, // MapIndexToUTF16, |
| 3150 charIterTextClose, |
| 3151 NULL, // spare 1 |
| 3152 NULL, // spare 2 |
| 3153 NULL // spare 3 |
| 3154 }; |
| 3155 U_CDECL_END |
| 3156 |
| 3157 |
| 3158 U_CAPI UText * U_EXPORT2 |
| 3159 utext_openCharacterIterator(UText *ut, CharacterIterator *ci, UErrorCode *status
) { |
| 3160 if (U_FAILURE(*status)) { |
| 3161 return NULL; |
| 3162 } |
| 3163 |
| 3164 if (ci->startIndex() > 0) { |
| 3165 // No support for CharacterIterators that do not start indexing from zer
o. |
| 3166 *status = U_UNSUPPORTED_ERROR; |
| 3167 return NULL; |
| 3168 } |
| 3169 |
| 3170 // Extra space in UText for 2 buffers of CIBufSize UChars each. |
| 3171 int32_t extraSpace = 2 * CIBufSize * sizeof(UChar); |
| 3172 ut = utext_setup(ut, extraSpace, status); |
| 3173 if (U_SUCCESS(*status)) { |
| 3174 ut->pFuncs = &charIterFuncs; |
| 3175 ut->context = ci; |
| 3176 ut->providerProperties = 0; |
| 3177 ut->a = ci->endIndex(); // Length of text |
| 3178 ut->p = ut->pExtra; // First buffer |
| 3179 ut->b = -1; // Native index of fir
st buffer contents |
| 3180 ut->q = (UChar*)ut->pExtra+CIBufSize; // Second buff
er |
| 3181 ut->c = -1; // Native index of sec
ond buffer contents |
| 3182 |
| 3183 // Initialize current chunk contents to be empty. |
| 3184 // First access will fault something in. |
| 3185 // Note: The initial nativeStart and chunkOffset must sum to zero |
| 3186 // so that getNativeIndex() will correctly compute to zero |
| 3187 // if no call to Access() has ever been made. They can't be bo
th |
| 3188 // zero without Access() thinking that the chunk is valid. |
| 3189 ut->chunkContents = (UChar *)ut->p; |
| 3190 ut->chunkNativeStart = -1; |
| 3191 ut->chunkOffset = 1; |
| 3192 ut->chunkNativeLimit = 0; |
| 3193 ut->chunkLength = 0; |
| 3194 ut->nativeIndexingLimit = ut->chunkOffset; // enables native indexing |
| 3195 } |
| 3196 return ut; |
| 3197 } |
| 3198 |
| 3199 |
| 3200 |
OLD | NEW |