OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ****************************************************************************** |
| 3 * Copyright (C) 1997-2009, International Business Machines |
| 4 * Corporation and others. All Rights Reserved. |
| 5 ****************************************************************************** |
| 6 * Date Name Description |
| 7 * 03/22/00 aliu Adapted from original C++ ICU Hashtable. |
| 8 * 07/06/01 aliu Modified to support int32_t keys on |
| 9 * platforms with sizeof(void*) < 32. |
| 10 ****************************************************************************** |
| 11 */ |
| 12 |
| 13 #include "uhash.h" |
| 14 #include "unicode/ustring.h" |
| 15 #include "cstring.h" |
| 16 #include "cmemory.h" |
| 17 #include "uassert.h" |
| 18 |
| 19 /* This hashtable is implemented as a double hash. All elements are |
| 20 * stored in a single array with no secondary storage for collision |
| 21 * resolution (no linked list, etc.). When there is a hash collision |
| 22 * (when two unequal keys have the same hashcode) we resolve this by |
| 23 * using a secondary hash. The secondary hash is an increment |
| 24 * computed as a hash function (a different one) of the primary |
| 25 * hashcode. This increment is added to the initial hash value to |
| 26 * obtain further slots assigned to the same hash code. For this to |
| 27 * work, the length of the array and the increment must be relatively |
| 28 * prime. The easiest way to achieve this is to have the length of |
| 29 * the array be prime, and the increment be any value from |
| 30 * 1..length-1. |
| 31 * |
| 32 * Hashcodes are 32-bit integers. We make sure all hashcodes are |
| 33 * non-negative by masking off the top bit. This has two effects: (1) |
| 34 * modulo arithmetic is simplified. If we allowed negative hashcodes, |
| 35 * then when we computed hashcode % length, we could get a negative |
| 36 * result, which we would then have to adjust back into range. It's |
| 37 * simpler to just make hashcodes non-negative. (2) It makes it easy |
| 38 * to check for empty vs. occupied slots in the table. We just mark |
| 39 * empty or deleted slots with a negative hashcode. |
| 40 * |
| 41 * The central function is _uhash_find(). This function looks for a |
| 42 * slot matching the given key and hashcode. If one is found, it |
| 43 * returns a pointer to that slot. If the table is full, and no match |
| 44 * is found, it returns NULL -- in theory. This would make the code |
| 45 * more complicated, since all callers of _uhash_find() would then |
| 46 * have to check for a NULL result. To keep this from happening, we |
| 47 * don't allow the table to fill. When there is only one |
| 48 * empty/deleted slot left, uhash_put() will refuse to increase the |
| 49 * count, and fail. This simplifies the code. In practice, one will |
| 50 * seldom encounter this using default UHashtables. However, if a |
| 51 * hashtable is set to a U_FIXED resize policy, or if memory is |
| 52 * exhausted, then the table may fill. |
| 53 * |
| 54 * High and low water ratios control rehashing. They establish levels |
| 55 * of fullness (from 0 to 1) outside of which the data array is |
| 56 * reallocated and repopulated. Setting the low water ratio to zero |
| 57 * means the table will never shrink. Setting the high water ratio to |
| 58 * one means the table will never grow. The ratios should be |
| 59 * coordinated with the ratio between successive elements of the |
| 60 * PRIMES table, so that when the primeIndex is incremented or |
| 61 * decremented during rehashing, it brings the ratio of count / length |
| 62 * back into the desired range (between low and high water ratios). |
| 63 */ |
| 64 |
| 65 /******************************************************************** |
| 66 * PRIVATE Constants, Macros |
| 67 ********************************************************************/ |
| 68 |
| 69 /* This is a list of non-consecutive primes chosen such that |
| 70 * PRIMES[i+1] ~ 2*PRIMES[i]. (Currently, the ratio ranges from 1.81 |
| 71 * to 2.18; the inverse ratio ranges from 0.459 to 0.552.) If this |
| 72 * ratio is changed, the low and high water ratios should also be |
| 73 * adjusted to suit. |
| 74 * |
| 75 * These prime numbers were also chosen so that they are the largest |
| 76 * prime number while being less than a power of two. |
| 77 */ |
| 78 static const int32_t PRIMES[] = { |
| 79 13, 31, 61, 127, 251, 509, 1021, 2039, 4093, 8191, 16381, 32749, |
| 80 65521, 131071, 262139, 524287, 1048573, 2097143, 4194301, 8388593, |
| 81 16777213, 33554393, 67108859, 134217689, 268435399, 536870909, |
| 82 1073741789, 2147483647 /*, 4294967291 */ |
| 83 }; |
| 84 |
| 85 #define PRIMES_LENGTH (sizeof(PRIMES) / sizeof(PRIMES[0])) |
| 86 #define DEFAULT_PRIME_INDEX 3 |
| 87 |
| 88 /* These ratios are tuned to the PRIMES array such that a resize |
| 89 * places the table back into the zone of non-resizing. That is, |
| 90 * after a call to _uhash_rehash(), a subsequent call to |
| 91 * _uhash_rehash() should do nothing (should not churn). This is only |
| 92 * a potential problem with U_GROW_AND_SHRINK. |
| 93 */ |
| 94 static const float RESIZE_POLICY_RATIO_TABLE[6] = { |
| 95 /* low, high water ratio */ |
| 96 0.0F, 0.5F, /* U_GROW: Grow on demand, do not shrink */ |
| 97 0.1F, 0.5F, /* U_GROW_AND_SHRINK: Grow and shrink on demand */ |
| 98 0.0F, 1.0F /* U_FIXED: Never change size */ |
| 99 }; |
| 100 |
| 101 /* |
| 102 Invariants for hashcode values: |
| 103 |
| 104 * DELETED < 0 |
| 105 * EMPTY < 0 |
| 106 * Real hashes >= 0 |
| 107 |
| 108 Hashcodes may not start out this way, but internally they are |
| 109 adjusted so that they are always positive. We assume 32-bit |
| 110 hashcodes; adjust these constants for other hashcode sizes. |
| 111 */ |
| 112 #define HASH_DELETED ((int32_t) 0x80000000) |
| 113 #define HASH_EMPTY ((int32_t) HASH_DELETED + 1) |
| 114 |
| 115 #define IS_EMPTY_OR_DELETED(x) ((x) < 0) |
| 116 |
| 117 /* This macro expects a UHashTok.pointer as its keypointer and |
| 118 valuepointer parameters */ |
| 119 #define HASH_DELETE_KEY_VALUE(hash, keypointer, valuepointer) \ |
| 120 if (hash->keyDeleter != NULL && keypointer != NULL) { \ |
| 121 (*hash->keyDeleter)(keypointer); \ |
| 122 } \ |
| 123 if (hash->valueDeleter != NULL && valuepointer != NULL) { \ |
| 124 (*hash->valueDeleter)(valuepointer); \ |
| 125 } |
| 126 |
| 127 /* |
| 128 * Constants for hinting whether a key or value is an integer |
| 129 * or a pointer. If a hint bit is zero, then the associated |
| 130 * token is assumed to be an integer. |
| 131 */ |
| 132 #define HINT_KEY_POINTER (1) |
| 133 #define HINT_VALUE_POINTER (2) |
| 134 |
| 135 /******************************************************************** |
| 136 * PRIVATE Implementation |
| 137 ********************************************************************/ |
| 138 |
| 139 static UHashTok |
| 140 _uhash_setElement(UHashtable *hash, UHashElement* e, |
| 141 int32_t hashcode, |
| 142 UHashTok key, UHashTok value, int8_t hint) { |
| 143 |
| 144 UHashTok oldValue = e->value; |
| 145 if (hash->keyDeleter != NULL && e->key.pointer != NULL && |
| 146 e->key.pointer != key.pointer) { /* Avoid double deletion */ |
| 147 (*hash->keyDeleter)(e->key.pointer); |
| 148 } |
| 149 if (hash->valueDeleter != NULL) { |
| 150 if (oldValue.pointer != NULL && |
| 151 oldValue.pointer != value.pointer) { /* Avoid double deletion */ |
| 152 (*hash->valueDeleter)(oldValue.pointer); |
| 153 } |
| 154 oldValue.pointer = NULL; |
| 155 } |
| 156 /* Compilers should copy the UHashTok union correctly, but even if |
| 157 * they do, memory heap tools (e.g. BoundsChecker) can get |
| 158 * confused when a pointer is cloaked in a union and then copied. |
| 159 * TO ALLEVIATE THIS, we use hints (based on what API the user is |
| 160 * calling) to copy pointers when we know the user thinks |
| 161 * something is a pointer. */ |
| 162 if (hint & HINT_KEY_POINTER) { |
| 163 e->key.pointer = key.pointer; |
| 164 } else { |
| 165 e->key = key; |
| 166 } |
| 167 if (hint & HINT_VALUE_POINTER) { |
| 168 e->value.pointer = value.pointer; |
| 169 } else { |
| 170 e->value = value; |
| 171 } |
| 172 e->hashcode = hashcode; |
| 173 return oldValue; |
| 174 } |
| 175 |
| 176 /** |
| 177 * Assumes that the given element is not empty or deleted. |
| 178 */ |
| 179 static UHashTok |
| 180 _uhash_internalRemoveElement(UHashtable *hash, UHashElement* e) { |
| 181 UHashTok empty; |
| 182 U_ASSERT(!IS_EMPTY_OR_DELETED(e->hashcode)); |
| 183 --hash->count; |
| 184 empty.pointer = NULL; empty.integer = 0; |
| 185 return _uhash_setElement(hash, e, HASH_DELETED, empty, empty, 0); |
| 186 } |
| 187 |
| 188 static void |
| 189 _uhash_internalSetResizePolicy(UHashtable *hash, enum UHashResizePolicy policy)
{ |
| 190 U_ASSERT(hash != NULL); |
| 191 U_ASSERT(((int32_t)policy) >= 0); |
| 192 U_ASSERT(((int32_t)policy) < 3); |
| 193 hash->lowWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2]; |
| 194 hash->highWaterRatio = RESIZE_POLICY_RATIO_TABLE[policy * 2 + 1]; |
| 195 } |
| 196 |
| 197 /** |
| 198 * Allocate internal data array of a size determined by the given |
| 199 * prime index. If the index is out of range it is pinned into range. |
| 200 * If the allocation fails the status is set to |
| 201 * U_MEMORY_ALLOCATION_ERROR and all array storage is freed. In |
| 202 * either case the previous array pointer is overwritten. |
| 203 * |
| 204 * Caller must ensure primeIndex is in range 0..PRIME_LENGTH-1. |
| 205 */ |
| 206 static void |
| 207 _uhash_allocate(UHashtable *hash, |
| 208 int32_t primeIndex, |
| 209 UErrorCode *status) { |
| 210 |
| 211 UHashElement *p, *limit; |
| 212 UHashTok emptytok; |
| 213 |
| 214 if (U_FAILURE(*status)) return; |
| 215 |
| 216 U_ASSERT(primeIndex >= 0 && primeIndex < PRIMES_LENGTH); |
| 217 |
| 218 hash->primeIndex = primeIndex; |
| 219 hash->length = PRIMES[primeIndex]; |
| 220 |
| 221 p = hash->elements = (UHashElement*) |
| 222 uprv_malloc(sizeof(UHashElement) * hash->length); |
| 223 |
| 224 if (hash->elements == NULL) { |
| 225 *status = U_MEMORY_ALLOCATION_ERROR; |
| 226 return; |
| 227 } |
| 228 |
| 229 emptytok.pointer = NULL; /* Only one of these two is needed */ |
| 230 emptytok.integer = 0; /* but we don't know which one. */ |
| 231 |
| 232 limit = p + hash->length; |
| 233 while (p < limit) { |
| 234 p->key = emptytok; |
| 235 p->value = emptytok; |
| 236 p->hashcode = HASH_EMPTY; |
| 237 ++p; |
| 238 } |
| 239 |
| 240 hash->count = 0; |
| 241 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
| 242 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
| 243 } |
| 244 |
| 245 static UHashtable* |
| 246 _uhash_init(UHashtable *result, |
| 247 UHashFunction *keyHash, |
| 248 UKeyComparator *keyComp, |
| 249 UValueComparator *valueComp, |
| 250 int32_t primeIndex, |
| 251 UErrorCode *status) |
| 252 { |
| 253 if (U_FAILURE(*status)) return NULL; |
| 254 U_ASSERT(keyHash != NULL); |
| 255 U_ASSERT(keyComp != NULL); |
| 256 |
| 257 result->keyHasher = keyHash; |
| 258 result->keyComparator = keyComp; |
| 259 result->valueComparator = valueComp; |
| 260 result->keyDeleter = NULL; |
| 261 result->valueDeleter = NULL; |
| 262 result->allocated = FALSE; |
| 263 _uhash_internalSetResizePolicy(result, U_GROW); |
| 264 |
| 265 _uhash_allocate(result, primeIndex, status); |
| 266 |
| 267 if (U_FAILURE(*status)) { |
| 268 return NULL; |
| 269 } |
| 270 |
| 271 return result; |
| 272 } |
| 273 |
| 274 static UHashtable* |
| 275 _uhash_create(UHashFunction *keyHash, |
| 276 UKeyComparator *keyComp, |
| 277 UValueComparator *valueComp, |
| 278 int32_t primeIndex, |
| 279 UErrorCode *status) { |
| 280 UHashtable *result; |
| 281 |
| 282 if (U_FAILURE(*status)) return NULL; |
| 283 |
| 284 result = (UHashtable*) uprv_malloc(sizeof(UHashtable)); |
| 285 if (result == NULL) { |
| 286 *status = U_MEMORY_ALLOCATION_ERROR; |
| 287 return NULL; |
| 288 } |
| 289 |
| 290 _uhash_init(result, keyHash, keyComp, valueComp, primeIndex, status); |
| 291 result->allocated = TRUE; |
| 292 |
| 293 if (U_FAILURE(*status)) { |
| 294 uprv_free(result); |
| 295 return NULL; |
| 296 } |
| 297 |
| 298 return result; |
| 299 } |
| 300 |
| 301 /** |
| 302 * Look for a key in the table, or if no such key exists, the first |
| 303 * empty slot matching the given hashcode. Keys are compared using |
| 304 * the keyComparator function. |
| 305 * |
| 306 * First find the start position, which is the hashcode modulo |
| 307 * the length. Test it to see if it is: |
| 308 * |
| 309 * a. identical: First check the hash values for a quick check, |
| 310 * then compare keys for equality using keyComparator. |
| 311 * b. deleted |
| 312 * c. empty |
| 313 * |
| 314 * Stop if it is identical or empty, otherwise continue by adding a |
| 315 * "jump" value (moduloing by the length again to keep it within |
| 316 * range) and retesting. For efficiency, there need enough empty |
| 317 * values so that the searchs stop within a reasonable amount of time. |
| 318 * This can be changed by changing the high/low water marks. |
| 319 * |
| 320 * In theory, this function can return NULL, if it is full (no empty |
| 321 * or deleted slots) and if no matching key is found. In practice, we |
| 322 * prevent this elsewhere (in uhash_put) by making sure the last slot |
| 323 * in the table is never filled. |
| 324 * |
| 325 * The size of the table should be prime for this algorithm to work; |
| 326 * otherwise we are not guaranteed that the jump value (the secondary |
| 327 * hash) is relatively prime to the table length. |
| 328 */ |
| 329 static UHashElement* |
| 330 _uhash_find(const UHashtable *hash, UHashTok key, |
| 331 int32_t hashcode) { |
| 332 |
| 333 int32_t firstDeleted = -1; /* assume invalid index */ |
| 334 int32_t theIndex, startIndex; |
| 335 int32_t jump = 0; /* lazy evaluate */ |
| 336 int32_t tableHash; |
| 337 UHashElement *elements = hash->elements; |
| 338 |
| 339 hashcode &= 0x7FFFFFFF; /* must be positive */ |
| 340 startIndex = theIndex = (hashcode ^ 0x4000000) % hash->length; |
| 341 |
| 342 do { |
| 343 tableHash = elements[theIndex].hashcode; |
| 344 if (tableHash == hashcode) { /* quick check */ |
| 345 if ((*hash->keyComparator)(key, elements[theIndex].key)) { |
| 346 return &(elements[theIndex]); |
| 347 } |
| 348 } else if (!IS_EMPTY_OR_DELETED(tableHash)) { |
| 349 /* We have hit a slot which contains a key-value pair, |
| 350 * but for which the hash code does not match. Keep |
| 351 * looking. |
| 352 */ |
| 353 } else if (tableHash == HASH_EMPTY) { /* empty, end o' the line */ |
| 354 break; |
| 355 } else if (firstDeleted < 0) { /* remember first deleted */ |
| 356 firstDeleted = theIndex; |
| 357 } |
| 358 if (jump == 0) { /* lazy compute jump */ |
| 359 /* The jump value must be relatively prime to the table |
| 360 * length. As long as the length is prime, then any value |
| 361 * 1..length-1 will be relatively prime to it. |
| 362 */ |
| 363 jump = (hashcode % (hash->length - 1)) + 1; |
| 364 } |
| 365 theIndex = (theIndex + jump) % hash->length; |
| 366 } while (theIndex != startIndex); |
| 367 |
| 368 if (firstDeleted >= 0) { |
| 369 theIndex = firstDeleted; /* reset if had deleted slot */ |
| 370 } else if (tableHash != HASH_EMPTY) { |
| 371 /* We get to this point if the hashtable is full (no empty or |
| 372 * deleted slots), and we've failed to find a match. THIS |
| 373 * WILL NEVER HAPPEN as long as uhash_put() makes sure that |
| 374 * count is always < length. |
| 375 */ |
| 376 U_ASSERT(FALSE); |
| 377 return NULL; /* Never happens if uhash_put() behaves */ |
| 378 } |
| 379 return &(elements[theIndex]); |
| 380 } |
| 381 |
| 382 /** |
| 383 * Attempt to grow or shrink the data arrays in order to make the |
| 384 * count fit between the high and low water marks. hash_put() and |
| 385 * hash_remove() call this method when the count exceeds the high or |
| 386 * low water marks. This method may do nothing, if memory allocation |
| 387 * fails, or if the count is already in range, or if the length is |
| 388 * already at the low or high limit. In any case, upon return the |
| 389 * arrays will be valid. |
| 390 */ |
| 391 static void |
| 392 _uhash_rehash(UHashtable *hash, UErrorCode *status) { |
| 393 |
| 394 UHashElement *old = hash->elements; |
| 395 int32_t oldLength = hash->length; |
| 396 int32_t newPrimeIndex = hash->primeIndex; |
| 397 int32_t i; |
| 398 |
| 399 if (hash->count > hash->highWaterMark) { |
| 400 if (++newPrimeIndex >= PRIMES_LENGTH) { |
| 401 return; |
| 402 } |
| 403 } else if (hash->count < hash->lowWaterMark) { |
| 404 if (--newPrimeIndex < 0) { |
| 405 return; |
| 406 } |
| 407 } else { |
| 408 return; |
| 409 } |
| 410 |
| 411 _uhash_allocate(hash, newPrimeIndex, status); |
| 412 |
| 413 if (U_FAILURE(*status)) { |
| 414 hash->elements = old; |
| 415 hash->length = oldLength; |
| 416 return; |
| 417 } |
| 418 |
| 419 for (i = oldLength - 1; i >= 0; --i) { |
| 420 if (!IS_EMPTY_OR_DELETED(old[i].hashcode)) { |
| 421 UHashElement *e = _uhash_find(hash, old[i].key, old[i].hashcode); |
| 422 U_ASSERT(e != NULL); |
| 423 U_ASSERT(e->hashcode == HASH_EMPTY); |
| 424 e->key = old[i].key; |
| 425 e->value = old[i].value; |
| 426 e->hashcode = old[i].hashcode; |
| 427 ++hash->count; |
| 428 } |
| 429 } |
| 430 |
| 431 uprv_free(old); |
| 432 } |
| 433 |
| 434 static UHashTok |
| 435 _uhash_remove(UHashtable *hash, |
| 436 UHashTok key) { |
| 437 /* First find the position of the key in the table. If the object |
| 438 * has not been removed already, remove it. If the user wanted |
| 439 * keys deleted, then delete it also. We have to put a special |
| 440 * hashcode in that position that means that something has been |
| 441 * deleted, since when we do a find, we have to continue PAST any |
| 442 * deleted values. |
| 443 */ |
| 444 UHashTok result; |
| 445 UHashElement* e = _uhash_find(hash, key, hash->keyHasher(key)); |
| 446 U_ASSERT(e != NULL); |
| 447 result.pointer = NULL; |
| 448 result.integer = 0; |
| 449 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
| 450 result = _uhash_internalRemoveElement(hash, e); |
| 451 if (hash->count < hash->lowWaterMark) { |
| 452 UErrorCode status = U_ZERO_ERROR; |
| 453 _uhash_rehash(hash, &status); |
| 454 } |
| 455 } |
| 456 return result; |
| 457 } |
| 458 |
| 459 static UHashTok |
| 460 _uhash_put(UHashtable *hash, |
| 461 UHashTok key, |
| 462 UHashTok value, |
| 463 int8_t hint, |
| 464 UErrorCode *status) { |
| 465 |
| 466 /* Put finds the position in the table for the new value. If the |
| 467 * key is already in the table, it is deleted, if there is a |
| 468 * non-NULL keyDeleter. Then the key, the hash and the value are |
| 469 * all put at the position in their respective arrays. |
| 470 */ |
| 471 int32_t hashcode; |
| 472 UHashElement* e; |
| 473 UHashTok emptytok; |
| 474 |
| 475 if (U_FAILURE(*status)) { |
| 476 goto err; |
| 477 } |
| 478 U_ASSERT(hash != NULL); |
| 479 /* Cannot always check pointer here or iSeries sees NULL every time. */ |
| 480 if ((hint & HINT_VALUE_POINTER) && value.pointer == NULL) { |
| 481 /* Disallow storage of NULL values, since NULL is returned by |
| 482 * get() to indicate an absent key. Storing NULL == removing. |
| 483 */ |
| 484 return _uhash_remove(hash, key); |
| 485 } |
| 486 if (hash->count > hash->highWaterMark) { |
| 487 _uhash_rehash(hash, status); |
| 488 if (U_FAILURE(*status)) { |
| 489 goto err; |
| 490 } |
| 491 } |
| 492 |
| 493 hashcode = (*hash->keyHasher)(key); |
| 494 e = _uhash_find(hash, key, hashcode); |
| 495 U_ASSERT(e != NULL); |
| 496 |
| 497 if (IS_EMPTY_OR_DELETED(e->hashcode)) { |
| 498 /* Important: We must never actually fill the table up. If we |
| 499 * do so, then _uhash_find() will return NULL, and we'll have |
| 500 * to check for NULL after every call to _uhash_find(). To |
| 501 * avoid this we make sure there is always at least one empty |
| 502 * or deleted slot in the table. This only is a problem if we |
| 503 * are out of memory and rehash isn't working. |
| 504 */ |
| 505 ++hash->count; |
| 506 if (hash->count == hash->length) { |
| 507 /* Don't allow count to reach length */ |
| 508 --hash->count; |
| 509 *status = U_MEMORY_ALLOCATION_ERROR; |
| 510 goto err; |
| 511 } |
| 512 } |
| 513 |
| 514 /* We must in all cases handle storage properly. If there was an |
| 515 * old key, then it must be deleted (if the deleter != NULL). |
| 516 * Make hashcodes stored in table positive. |
| 517 */ |
| 518 return _uhash_setElement(hash, e, hashcode & 0x7FFFFFFF, key, value, hint); |
| 519 |
| 520 err: |
| 521 /* If the deleters are non-NULL, this method adopts its key and/or |
| 522 * value arguments, and we must be sure to delete the key and/or |
| 523 * value in all cases, even upon failure. |
| 524 */ |
| 525 HASH_DELETE_KEY_VALUE(hash, key.pointer, value.pointer); |
| 526 emptytok.pointer = NULL; emptytok.integer = 0; |
| 527 return emptytok; |
| 528 } |
| 529 |
| 530 |
| 531 /******************************************************************** |
| 532 * PUBLIC API |
| 533 ********************************************************************/ |
| 534 |
| 535 U_CAPI UHashtable* U_EXPORT2 |
| 536 uhash_open(UHashFunction *keyHash, |
| 537 UKeyComparator *keyComp, |
| 538 UValueComparator *valueComp, |
| 539 UErrorCode *status) { |
| 540 |
| 541 return _uhash_create(keyHash, keyComp, valueComp, DEFAULT_PRIME_INDEX, statu
s); |
| 542 } |
| 543 |
| 544 U_CAPI UHashtable* U_EXPORT2 |
| 545 uhash_openSize(UHashFunction *keyHash, |
| 546 UKeyComparator *keyComp, |
| 547 UValueComparator *valueComp, |
| 548 int32_t size, |
| 549 UErrorCode *status) { |
| 550 |
| 551 /* Find the smallest index i for which PRIMES[i] >= size. */ |
| 552 int32_t i = 0; |
| 553 while (i<(PRIMES_LENGTH-1) && PRIMES[i]<size) { |
| 554 ++i; |
| 555 } |
| 556 |
| 557 return _uhash_create(keyHash, keyComp, valueComp, i, status); |
| 558 } |
| 559 |
| 560 U_CAPI UHashtable* U_EXPORT2 |
| 561 uhash_init(UHashtable *fillinResult, |
| 562 UHashFunction *keyHash, |
| 563 UKeyComparator *keyComp, |
| 564 UValueComparator *valueComp, |
| 565 UErrorCode *status) { |
| 566 |
| 567 return _uhash_init(fillinResult, keyHash, keyComp, valueComp, DEFAULT_PRIME_
INDEX, status); |
| 568 } |
| 569 |
| 570 U_CAPI void U_EXPORT2 |
| 571 uhash_close(UHashtable *hash) { |
| 572 if (hash == NULL) { |
| 573 return; |
| 574 } |
| 575 if (hash->elements != NULL) { |
| 576 if (hash->keyDeleter != NULL || hash->valueDeleter != NULL) { |
| 577 int32_t pos=-1; |
| 578 UHashElement *e; |
| 579 while ((e = (UHashElement*) uhash_nextElement(hash, &pos)) != NULL)
{ |
| 580 HASH_DELETE_KEY_VALUE(hash, e->key.pointer, e->value.pointer); |
| 581 } |
| 582 } |
| 583 uprv_free(hash->elements); |
| 584 hash->elements = NULL; |
| 585 } |
| 586 if (hash->allocated) { |
| 587 uprv_free(hash); |
| 588 } |
| 589 } |
| 590 |
| 591 U_CAPI UHashFunction *U_EXPORT2 |
| 592 uhash_setKeyHasher(UHashtable *hash, UHashFunction *fn) { |
| 593 UHashFunction *result = hash->keyHasher; |
| 594 hash->keyHasher = fn; |
| 595 return result; |
| 596 } |
| 597 |
| 598 U_CAPI UKeyComparator *U_EXPORT2 |
| 599 uhash_setKeyComparator(UHashtable *hash, UKeyComparator *fn) { |
| 600 UKeyComparator *result = hash->keyComparator; |
| 601 hash->keyComparator = fn; |
| 602 return result; |
| 603 } |
| 604 U_CAPI UValueComparator *U_EXPORT2 |
| 605 uhash_setValueComparator(UHashtable *hash, UValueComparator *fn){ |
| 606 UValueComparator *result = hash->valueComparator; |
| 607 hash->valueComparator = fn; |
| 608 return result; |
| 609 } |
| 610 |
| 611 U_CAPI UObjectDeleter *U_EXPORT2 |
| 612 uhash_setKeyDeleter(UHashtable *hash, UObjectDeleter *fn) { |
| 613 UObjectDeleter *result = hash->keyDeleter; |
| 614 hash->keyDeleter = fn; |
| 615 return result; |
| 616 } |
| 617 |
| 618 U_CAPI UObjectDeleter *U_EXPORT2 |
| 619 uhash_setValueDeleter(UHashtable *hash, UObjectDeleter *fn) { |
| 620 UObjectDeleter *result = hash->valueDeleter; |
| 621 hash->valueDeleter = fn; |
| 622 return result; |
| 623 } |
| 624 |
| 625 U_CAPI void U_EXPORT2 |
| 626 uhash_setResizePolicy(UHashtable *hash, enum UHashResizePolicy policy) { |
| 627 UErrorCode status = U_ZERO_ERROR; |
| 628 _uhash_internalSetResizePolicy(hash, policy); |
| 629 hash->lowWaterMark = (int32_t)(hash->length * hash->lowWaterRatio); |
| 630 hash->highWaterMark = (int32_t)(hash->length * hash->highWaterRatio); |
| 631 _uhash_rehash(hash, &status); |
| 632 } |
| 633 |
| 634 U_CAPI int32_t U_EXPORT2 |
| 635 uhash_count(const UHashtable *hash) { |
| 636 return hash->count; |
| 637 } |
| 638 |
| 639 U_CAPI void* U_EXPORT2 |
| 640 uhash_get(const UHashtable *hash, |
| 641 const void* key) { |
| 642 UHashTok keyholder; |
| 643 keyholder.pointer = (void*) key; |
| 644 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.point
er; |
| 645 } |
| 646 |
| 647 U_CAPI void* U_EXPORT2 |
| 648 uhash_iget(const UHashtable *hash, |
| 649 int32_t key) { |
| 650 UHashTok keyholder; |
| 651 keyholder.integer = key; |
| 652 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.point
er; |
| 653 } |
| 654 |
| 655 U_CAPI int32_t U_EXPORT2 |
| 656 uhash_geti(const UHashtable *hash, |
| 657 const void* key) { |
| 658 UHashTok keyholder; |
| 659 keyholder.pointer = (void*) key; |
| 660 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integ
er; |
| 661 } |
| 662 |
| 663 U_CAPI int32_t U_EXPORT2 |
| 664 uhash_igeti(const UHashtable *hash, |
| 665 int32_t key) { |
| 666 UHashTok keyholder; |
| 667 keyholder.integer = key; |
| 668 return _uhash_find(hash, keyholder, hash->keyHasher(keyholder))->value.integ
er; |
| 669 } |
| 670 |
| 671 U_CAPI void* U_EXPORT2 |
| 672 uhash_put(UHashtable *hash, |
| 673 void* key, |
| 674 void* value, |
| 675 UErrorCode *status) { |
| 676 UHashTok keyholder, valueholder; |
| 677 keyholder.pointer = key; |
| 678 valueholder.pointer = value; |
| 679 return _uhash_put(hash, keyholder, valueholder, |
| 680 HINT_KEY_POINTER | HINT_VALUE_POINTER, |
| 681 status).pointer; |
| 682 } |
| 683 |
| 684 U_CAPI void* U_EXPORT2 |
| 685 uhash_iput(UHashtable *hash, |
| 686 int32_t key, |
| 687 void* value, |
| 688 UErrorCode *status) { |
| 689 UHashTok keyholder, valueholder; |
| 690 keyholder.integer = key; |
| 691 valueholder.pointer = value; |
| 692 return _uhash_put(hash, keyholder, valueholder, |
| 693 HINT_VALUE_POINTER, |
| 694 status).pointer; |
| 695 } |
| 696 |
| 697 U_CAPI int32_t U_EXPORT2 |
| 698 uhash_puti(UHashtable *hash, |
| 699 void* key, |
| 700 int32_t value, |
| 701 UErrorCode *status) { |
| 702 UHashTok keyholder, valueholder; |
| 703 keyholder.pointer = key; |
| 704 valueholder.integer = value; |
| 705 return _uhash_put(hash, keyholder, valueholder, |
| 706 HINT_KEY_POINTER, |
| 707 status).integer; |
| 708 } |
| 709 |
| 710 |
| 711 U_CAPI int32_t U_EXPORT2 |
| 712 uhash_iputi(UHashtable *hash, |
| 713 int32_t key, |
| 714 int32_t value, |
| 715 UErrorCode *status) { |
| 716 UHashTok keyholder, valueholder; |
| 717 keyholder.integer = key; |
| 718 valueholder.integer = value; |
| 719 return _uhash_put(hash, keyholder, valueholder, |
| 720 0, /* neither is a ptr */ |
| 721 status).integer; |
| 722 } |
| 723 |
| 724 U_CAPI void* U_EXPORT2 |
| 725 uhash_remove(UHashtable *hash, |
| 726 const void* key) { |
| 727 UHashTok keyholder; |
| 728 keyholder.pointer = (void*) key; |
| 729 return _uhash_remove(hash, keyholder).pointer; |
| 730 } |
| 731 |
| 732 U_CAPI void* U_EXPORT2 |
| 733 uhash_iremove(UHashtable *hash, |
| 734 int32_t key) { |
| 735 UHashTok keyholder; |
| 736 keyholder.integer = key; |
| 737 return _uhash_remove(hash, keyholder).pointer; |
| 738 } |
| 739 |
| 740 U_CAPI int32_t U_EXPORT2 |
| 741 uhash_removei(UHashtable *hash, |
| 742 const void* key) { |
| 743 UHashTok keyholder; |
| 744 keyholder.pointer = (void*) key; |
| 745 return _uhash_remove(hash, keyholder).integer; |
| 746 } |
| 747 |
| 748 U_CAPI int32_t U_EXPORT2 |
| 749 uhash_iremovei(UHashtable *hash, |
| 750 int32_t key) { |
| 751 UHashTok keyholder; |
| 752 keyholder.integer = key; |
| 753 return _uhash_remove(hash, keyholder).integer; |
| 754 } |
| 755 |
| 756 U_CAPI void U_EXPORT2 |
| 757 uhash_removeAll(UHashtable *hash) { |
| 758 int32_t pos = -1; |
| 759 const UHashElement *e; |
| 760 U_ASSERT(hash != NULL); |
| 761 if (hash->count != 0) { |
| 762 while ((e = uhash_nextElement(hash, &pos)) != NULL) { |
| 763 uhash_removeElement(hash, e); |
| 764 } |
| 765 } |
| 766 U_ASSERT(hash->count == 0); |
| 767 } |
| 768 |
| 769 U_CAPI const UHashElement* U_EXPORT2 |
| 770 uhash_find(const UHashtable *hash, const void* key) { |
| 771 UHashTok keyholder; |
| 772 const UHashElement *e; |
| 773 keyholder.pointer = (void*) key; |
| 774 e = _uhash_find(hash, keyholder, hash->keyHasher(keyholder)); |
| 775 return IS_EMPTY_OR_DELETED(e->hashcode) ? NULL : e; |
| 776 } |
| 777 |
| 778 U_CAPI const UHashElement* U_EXPORT2 |
| 779 uhash_nextElement(const UHashtable *hash, int32_t *pos) { |
| 780 /* Walk through the array until we find an element that is not |
| 781 * EMPTY and not DELETED. |
| 782 */ |
| 783 int32_t i; |
| 784 U_ASSERT(hash != NULL); |
| 785 for (i = *pos + 1; i < hash->length; ++i) { |
| 786 if (!IS_EMPTY_OR_DELETED(hash->elements[i].hashcode)) { |
| 787 *pos = i; |
| 788 return &(hash->elements[i]); |
| 789 } |
| 790 } |
| 791 |
| 792 /* No more elements */ |
| 793 return NULL; |
| 794 } |
| 795 |
| 796 U_CAPI void* U_EXPORT2 |
| 797 uhash_removeElement(UHashtable *hash, const UHashElement* e) { |
| 798 U_ASSERT(hash != NULL); |
| 799 U_ASSERT(e != NULL); |
| 800 if (!IS_EMPTY_OR_DELETED(e->hashcode)) { |
| 801 UHashElement *nce = (UHashElement *)e; |
| 802 return _uhash_internalRemoveElement(hash, nce).pointer; |
| 803 } |
| 804 return NULL; |
| 805 } |
| 806 |
| 807 /******************************************************************** |
| 808 * UHashTok convenience |
| 809 ********************************************************************/ |
| 810 |
| 811 /** |
| 812 * Return a UHashTok for an integer. |
| 813 */ |
| 814 /*U_CAPI UHashTok U_EXPORT2 |
| 815 uhash_toki(int32_t i) { |
| 816 UHashTok tok; |
| 817 tok.integer = i; |
| 818 return tok; |
| 819 }*/ |
| 820 |
| 821 /** |
| 822 * Return a UHashTok for a pointer. |
| 823 */ |
| 824 /*U_CAPI UHashTok U_EXPORT2 |
| 825 uhash_tokp(void* p) { |
| 826 UHashTok tok; |
| 827 tok.pointer = p; |
| 828 return tok; |
| 829 }*/ |
| 830 |
| 831 /******************************************************************** |
| 832 * PUBLIC Key Hash Functions |
| 833 ********************************************************************/ |
| 834 |
| 835 /* |
| 836 Compute the hash by iterating sparsely over about 32 (up to 63) |
| 837 characters spaced evenly through the string. For each character, |
| 838 multiply the previous hash value by a prime number and add the new |
| 839 character in, like a linear congruential random number generator, |
| 840 producing a pseudorandom deterministic value well distributed over |
| 841 the output range. [LIU] |
| 842 */ |
| 843 |
| 844 #define STRING_HASH(TYPE, STR, STRLEN, DEREF) \ |
| 845 int32_t hash = 0; \ |
| 846 const TYPE *p = (const TYPE*) STR; \ |
| 847 if (p != NULL) { \ |
| 848 int32_t len = (int32_t)(STRLEN); \ |
| 849 int32_t inc = ((len - 32) / 32) + 1; \ |
| 850 const TYPE *limit = p + len; \ |
| 851 while (p<limit) { \ |
| 852 hash = (hash * 37) + DEREF; \ |
| 853 p += inc; \ |
| 854 } \ |
| 855 } \ |
| 856 return hash |
| 857 |
| 858 U_CAPI int32_t U_EXPORT2 |
| 859 uhash_hashUChars(const UHashTok key) { |
| 860 STRING_HASH(UChar, key.pointer, u_strlen(p), *p); |
| 861 } |
| 862 |
| 863 /* Used by UnicodeString to compute its hashcode - Not public API. */ |
| 864 U_CAPI int32_t U_EXPORT2 |
| 865 uhash_hashUCharsN(const UChar *str, int32_t length) { |
| 866 STRING_HASH(UChar, str, length, *p); |
| 867 } |
| 868 |
| 869 U_CAPI int32_t U_EXPORT2 |
| 870 uhash_hashChars(const UHashTok key) { |
| 871 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), *p); |
| 872 } |
| 873 |
| 874 U_CAPI int32_t U_EXPORT2 |
| 875 uhash_hashIChars(const UHashTok key) { |
| 876 STRING_HASH(uint8_t, key.pointer, uprv_strlen((char*)p), uprv_tolower(*p)); |
| 877 } |
| 878 |
| 879 U_CAPI UBool U_EXPORT2 |
| 880 uhash_equals(const UHashtable* hash1, const UHashtable* hash2){ |
| 881 |
| 882 int32_t count1, count2, pos, i; |
| 883 |
| 884 if(hash1==hash2){ |
| 885 return TRUE; |
| 886 } |
| 887 |
| 888 /* |
| 889 * Make sure that we are comparing 2 valid hashes of the same type |
| 890 * with valid comparison functions. |
| 891 * Without valid comparison functions, a binary comparison |
| 892 * of the hash values will yield random results on machines |
| 893 * with 64-bit pointers and 32-bit integer hashes. |
| 894 * A valueComparator is normally optional. |
| 895 */ |
| 896 if (hash1==NULL || hash2==NULL || |
| 897 hash1->keyComparator != hash2->keyComparator || |
| 898 hash1->valueComparator != hash2->valueComparator || |
| 899 hash1->valueComparator == NULL) |
| 900 { |
| 901 /* |
| 902 Normally we would return an error here about incompatible hash tables, |
| 903 but we return FALSE instead. |
| 904 */ |
| 905 return FALSE; |
| 906 } |
| 907 |
| 908 count1 = uhash_count(hash1); |
| 909 count2 = uhash_count(hash2); |
| 910 if(count1!=count2){ |
| 911 return FALSE; |
| 912 } |
| 913 |
| 914 pos=-1; |
| 915 for(i=0; i<count1; i++){ |
| 916 const UHashElement* elem1 = uhash_nextElement(hash1, &pos); |
| 917 const UHashTok key1 = elem1->key; |
| 918 const UHashTok val1 = elem1->value; |
| 919 /* here the keys are not compared, instead the key form hash1 is used to
fetch |
| 920 * value from hash2. If the hashes are equal then then both hashes shoul
d |
| 921 * contain equal values for the same key! |
| 922 */ |
| 923 const UHashElement* elem2 = _uhash_find(hash2, key1, hash2->keyHasher(ke
y1)); |
| 924 const UHashTok val2 = elem2->value; |
| 925 if(hash1->valueComparator(val1, val2)==FALSE){ |
| 926 return FALSE; |
| 927 } |
| 928 } |
| 929 return TRUE; |
| 930 } |
| 931 |
| 932 /******************************************************************** |
| 933 * PUBLIC Comparator Functions |
| 934 ********************************************************************/ |
| 935 |
| 936 U_CAPI UBool U_EXPORT2 |
| 937 uhash_compareUChars(const UHashTok key1, const UHashTok key2) { |
| 938 const UChar *p1 = (const UChar*) key1.pointer; |
| 939 const UChar *p2 = (const UChar*) key2.pointer; |
| 940 if (p1 == p2) { |
| 941 return TRUE; |
| 942 } |
| 943 if (p1 == NULL || p2 == NULL) { |
| 944 return FALSE; |
| 945 } |
| 946 while (*p1 != 0 && *p1 == *p2) { |
| 947 ++p1; |
| 948 ++p2; |
| 949 } |
| 950 return (UBool)(*p1 == *p2); |
| 951 } |
| 952 |
| 953 U_CAPI UBool U_EXPORT2 |
| 954 uhash_compareChars(const UHashTok key1, const UHashTok key2) { |
| 955 const char *p1 = (const char*) key1.pointer; |
| 956 const char *p2 = (const char*) key2.pointer; |
| 957 if (p1 == p2) { |
| 958 return TRUE; |
| 959 } |
| 960 if (p1 == NULL || p2 == NULL) { |
| 961 return FALSE; |
| 962 } |
| 963 while (*p1 != 0 && *p1 == *p2) { |
| 964 ++p1; |
| 965 ++p2; |
| 966 } |
| 967 return (UBool)(*p1 == *p2); |
| 968 } |
| 969 |
| 970 U_CAPI UBool U_EXPORT2 |
| 971 uhash_compareIChars(const UHashTok key1, const UHashTok key2) { |
| 972 const char *p1 = (const char*) key1.pointer; |
| 973 const char *p2 = (const char*) key2.pointer; |
| 974 if (p1 == p2) { |
| 975 return TRUE; |
| 976 } |
| 977 if (p1 == NULL || p2 == NULL) { |
| 978 return FALSE; |
| 979 } |
| 980 while (*p1 != 0 && uprv_tolower(*p1) == uprv_tolower(*p2)) { |
| 981 ++p1; |
| 982 ++p2; |
| 983 } |
| 984 return (UBool)(*p1 == *p2); |
| 985 } |
| 986 |
| 987 /******************************************************************** |
| 988 * PUBLIC int32_t Support Functions |
| 989 ********************************************************************/ |
| 990 |
| 991 U_CAPI int32_t U_EXPORT2 |
| 992 uhash_hashLong(const UHashTok key) { |
| 993 return key.integer; |
| 994 } |
| 995 |
| 996 U_CAPI UBool U_EXPORT2 |
| 997 uhash_compareLong(const UHashTok key1, const UHashTok key2) { |
| 998 return (UBool)(key1.integer == key2.integer); |
| 999 } |
| 1000 |
| 1001 /******************************************************************** |
| 1002 * PUBLIC Deleter Functions |
| 1003 ********************************************************************/ |
| 1004 |
| 1005 U_CAPI void U_EXPORT2 |
| 1006 uhash_freeBlock(void *obj) { |
| 1007 uprv_free(obj); |
| 1008 } |
| 1009 |
OLD | NEW |