OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ******************************************************************************* |
| 3 * |
| 4 * Copyright (C) 2008-2009, International Business Machines |
| 5 * Corporation, Google and others. All Rights Reserved. |
| 6 * |
| 7 ******************************************************************************* |
| 8 */ |
| 9 // Author : eldawy@google.com (Mohamed Eldawy) |
| 10 // ucnvsel.cpp |
| 11 // |
| 12 // Purpose: To generate a list of encodings capable of handling |
| 13 // a given Unicode text |
| 14 // |
| 15 // Started 09-April-2008 |
| 16 |
| 17 /** |
| 18 * \file |
| 19 * |
| 20 * This is an implementation of an encoding selector. |
| 21 * The goal is, given a unicode string, find the encodings |
| 22 * this string can be mapped to. To make processing faster |
| 23 * a trie is built when you call ucnvsel_open() that |
| 24 * stores all encodings a codepoint can map to |
| 25 */ |
| 26 |
| 27 #include "unicode/ucnvsel.h" |
| 28 |
| 29 #include <string.h> |
| 30 |
| 31 #include "unicode/uchar.h" |
| 32 #include "unicode/uniset.h" |
| 33 #include "unicode/ucnv.h" |
| 34 #include "unicode/ustring.h" |
| 35 #include "unicode/uchriter.h" |
| 36 #include "utrie2.h" |
| 37 #include "propsvec.h" |
| 38 #include "uassert.h" |
| 39 #include "ucmndata.h" |
| 40 #include "uenumimp.h" |
| 41 #include "cmemory.h" |
| 42 #include "cstring.h" |
| 43 |
| 44 U_NAMESPACE_USE |
| 45 |
| 46 struct UConverterSelector { |
| 47 UTrie2 *trie; // 16 bit trie containing offsets into pv |
| 48 uint32_t* pv; // table of bits! |
| 49 int32_t pvCount; |
| 50 char** encodings; // which encodings did user ask to use? |
| 51 int32_t encodingsCount; |
| 52 int32_t encodingStrLength; |
| 53 uint8_t* swapped; |
| 54 UBool ownPv, ownEncodingStrings; |
| 55 }; |
| 56 |
| 57 static void generateSelectorData(UConverterSelector* result, |
| 58 UPropsVectors *upvec, |
| 59 const USet* excludedCodePoints, |
| 60 const UConverterUnicodeSet whichSet, |
| 61 UErrorCode* status) { |
| 62 if (U_FAILURE(*status)) { |
| 63 return; |
| 64 } |
| 65 |
| 66 int32_t columns = (result->encodingsCount+31)/32; |
| 67 |
| 68 // set errorValue to all-ones |
| 69 for (int32_t col = 0; col < columns; col++) { |
| 70 upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP, |
| 71 col, ~0, ~0, status); |
| 72 } |
| 73 |
| 74 for (int32_t i = 0; i < result->encodingsCount; ++i) { |
| 75 uint32_t mask; |
| 76 uint32_t column; |
| 77 int32_t item_count; |
| 78 int32_t j; |
| 79 UConverter* test_converter = ucnv_open(result->encodings[i], status); |
| 80 if (U_FAILURE(*status)) { |
| 81 return; |
| 82 } |
| 83 USet* unicode_point_set; |
| 84 unicode_point_set = uset_open(1, 0); // empty set |
| 85 |
| 86 ucnv_getUnicodeSet(test_converter, unicode_point_set, |
| 87 whichSet, status); |
| 88 if (U_FAILURE(*status)) { |
| 89 ucnv_close(test_converter); |
| 90 return; |
| 91 } |
| 92 |
| 93 column = i / 32; |
| 94 mask = 1 << (i%32); |
| 95 // now iterate over intervals on set i! |
| 96 item_count = uset_getItemCount(unicode_point_set); |
| 97 |
| 98 for (j = 0; j < item_count; ++j) { |
| 99 UChar32 start_char; |
| 100 UChar32 end_char; |
| 101 UErrorCode smallStatus = U_ZERO_ERROR; |
| 102 uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0, |
| 103 &smallStatus); |
| 104 if (U_FAILURE(smallStatus)) { |
| 105 // this will be reached for the converters that fill the set with |
| 106 // strings. Those should be ignored by our system |
| 107 } else { |
| 108 upvec_setValue(upvec, start_char, end_char, column, ~0, mask, |
| 109 status); |
| 110 } |
| 111 } |
| 112 ucnv_close(test_converter); |
| 113 uset_close(unicode_point_set); |
| 114 if (U_FAILURE(*status)) { |
| 115 return; |
| 116 } |
| 117 } |
| 118 |
| 119 // handle excluded encodings! Simply set their values to all 1's in the upvec |
| 120 if (excludedCodePoints) { |
| 121 int32_t item_count = uset_getItemCount(excludedCodePoints); |
| 122 for (int32_t j = 0; j < item_count; ++j) { |
| 123 UChar32 start_char; |
| 124 UChar32 end_char; |
| 125 |
| 126 uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0, |
| 127 status); |
| 128 for (int32_t col = 0; col < columns; col++) { |
| 129 upvec_setValue(upvec, start_char, end_char, col, ~0, ~0, |
| 130 status); |
| 131 } |
| 132 } |
| 133 } |
| 134 |
| 135 // alright. Now, let's put things in the same exact form you'd get when you |
| 136 // unserialize things. |
| 137 result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status); |
| 138 result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status); |
| 139 result->pvCount *= columns; // number of uint32_t = rows * columns |
| 140 result->ownPv = TRUE; |
| 141 } |
| 142 |
| 143 /* open a selector. If converterListSize is 0, build for all converters. |
| 144 If excludedCodePoints is NULL, don't exclude any codepoints */ |
| 145 U_CAPI UConverterSelector* U_EXPORT2 |
| 146 ucnvsel_open(const char* const* converterList, int32_t converterListSize, |
| 147 const USet* excludedCodePoints, |
| 148 const UConverterUnicodeSet whichSet, UErrorCode* status) { |
| 149 // check if already failed |
| 150 if (U_FAILURE(*status)) { |
| 151 return NULL; |
| 152 } |
| 153 // ensure args make sense! |
| 154 if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)
) { |
| 155 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 156 return NULL; |
| 157 } |
| 158 |
| 159 // allocate a new converter |
| 160 LocalUConverterSelectorPointer newSelector( |
| 161 (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector))); |
| 162 if (newSelector.isNull()) { |
| 163 *status = U_MEMORY_ALLOCATION_ERROR; |
| 164 return NULL; |
| 165 } |
| 166 uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector)); |
| 167 |
| 168 if (converterListSize == 0) { |
| 169 converterList = NULL; |
| 170 converterListSize = ucnv_countAvailable(); |
| 171 } |
| 172 newSelector->encodings = |
| 173 (char**)uprv_malloc(converterListSize * sizeof(char*)); |
| 174 if (!newSelector->encodings) { |
| 175 *status = U_MEMORY_ALLOCATION_ERROR; |
| 176 return NULL; |
| 177 } |
| 178 newSelector->encodings[0] = NULL; // now we can call ucnvsel_close() |
| 179 |
| 180 // make a backup copy of the list of converters |
| 181 int32_t totalSize = 0; |
| 182 int32_t i; |
| 183 for (i = 0; i < converterListSize; i++) { |
| 184 totalSize += |
| 185 (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAv
ailableName(i)) + 1; |
| 186 } |
| 187 // 4-align the totalSize to 4-align the size of the serialized form |
| 188 int32_t encodingStrPadding = totalSize & 3; |
| 189 if (encodingStrPadding != 0) { |
| 190 encodingStrPadding = 4 - encodingStrPadding; |
| 191 } |
| 192 newSelector->encodingStrLength = totalSize += encodingStrPadding; |
| 193 char* allStrings = (char*) uprv_malloc(totalSize); |
| 194 if (!allStrings) { |
| 195 *status = U_MEMORY_ALLOCATION_ERROR; |
| 196 return NULL; |
| 197 } |
| 198 |
| 199 for (i = 0; i < converterListSize; i++) { |
| 200 newSelector->encodings[i] = allStrings; |
| 201 uprv_strcpy(newSelector->encodings[i], |
| 202 converterList != NULL ? converterList[i] : ucnv_getAvailableName
(i)); |
| 203 allStrings += uprv_strlen(newSelector->encodings[i]) + 1; |
| 204 } |
| 205 while (encodingStrPadding > 0) { |
| 206 *allStrings++ = 0; |
| 207 --encodingStrPadding; |
| 208 } |
| 209 |
| 210 newSelector->ownEncodingStrings = TRUE; |
| 211 newSelector->encodingsCount = converterListSize; |
| 212 UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status); |
| 213 generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichS
et, status); |
| 214 upvec_close(upvec); |
| 215 |
| 216 if (U_FAILURE(*status)) { |
| 217 return NULL; |
| 218 } |
| 219 |
| 220 return newSelector.orphan(); |
| 221 } |
| 222 |
| 223 /* close opened selector */ |
| 224 U_CAPI void U_EXPORT2 |
| 225 ucnvsel_close(UConverterSelector *sel) { |
| 226 if (!sel) { |
| 227 return; |
| 228 } |
| 229 if (sel->ownEncodingStrings) { |
| 230 uprv_free(sel->encodings[0]); |
| 231 } |
| 232 uprv_free(sel->encodings); |
| 233 if (sel->ownPv) { |
| 234 uprv_free(sel->pv); |
| 235 } |
| 236 utrie2_close(sel->trie); |
| 237 uprv_free(sel->swapped); |
| 238 uprv_free(sel); |
| 239 } |
| 240 |
| 241 static const UDataInfo dataInfo = { |
| 242 sizeof(UDataInfo), |
| 243 0, |
| 244 |
| 245 U_IS_BIG_ENDIAN, |
| 246 U_CHARSET_FAMILY, |
| 247 U_SIZEOF_UCHAR, |
| 248 0, |
| 249 |
| 250 { 0x43, 0x53, 0x65, 0x6c }, /* dataFormat="CSel" */ |
| 251 { 1, 0, 0, 0 }, /* formatVersion */ |
| 252 { 0, 0, 0, 0 } /* dataVersion */ |
| 253 }; |
| 254 |
| 255 enum { |
| 256 UCNVSEL_INDEX_TRIE_SIZE, // trie size in bytes |
| 257 UCNVSEL_INDEX_PV_COUNT, // number of uint32_t in the bit vectors |
| 258 UCNVSEL_INDEX_NAMES_COUNT, // number of encoding names |
| 259 UCNVSEL_INDEX_NAMES_LENGTH, // number of encoding name bytes including paddi
ng |
| 260 UCNVSEL_INDEX_SIZE = 15, // bytes following the DataHeader |
| 261 UCNVSEL_INDEX_COUNT = 16 |
| 262 }; |
| 263 |
| 264 /* |
| 265 * Serialized form of a UConverterSelector, formatVersion 1: |
| 266 * |
| 267 * The serialized form begins with a standard ICU DataHeader with a UDataInfo |
| 268 * as the template above. |
| 269 * This is followed by: |
| 270 * int32_t indexes[UCNVSEL_INDEX_COUNT]; // see index entry constants
above |
| 271 * serialized UTrie2; // indexes[UCNVSEL_INDEX_TRI
E_SIZE] bytes |
| 272 * uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]]; // bit vectors |
| 273 * char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]]; // NUL-terminate
d strings + padding |
| 274 */ |
| 275 |
| 276 /* serialize a selector */ |
| 277 U_CAPI int32_t U_EXPORT2 |
| 278 ucnvsel_serialize(const UConverterSelector* sel, |
| 279 void* buffer, int32_t bufferCapacity, UErrorCode* status) { |
| 280 // check if already failed |
| 281 if (U_FAILURE(*status)) { |
| 282 return 0; |
| 283 } |
| 284 // ensure args make sense! |
| 285 uint8_t *p = (uint8_t *)buffer; |
| 286 if (bufferCapacity < 0 || |
| 287 (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) |
| 288 ) { |
| 289 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 290 return 0; |
| 291 } |
| 292 // add up the size of the serialized form |
| 293 int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status); |
| 294 if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) { |
| 295 return 0; |
| 296 } |
| 297 *status = U_ZERO_ERROR; |
| 298 |
| 299 DataHeader header; |
| 300 uprv_memset(&header, 0, sizeof(header)); |
| 301 header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15); |
| 302 header.dataHeader.magic1 = 0xda; |
| 303 header.dataHeader.magic2 = 0x27; |
| 304 uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo)); |
| 305 |
| 306 int32_t indexes[UCNVSEL_INDEX_COUNT] = { |
| 307 serializedTrieSize, |
| 308 sel->pvCount, |
| 309 sel->encodingsCount, |
| 310 sel->encodingStrLength |
| 311 }; |
| 312 |
| 313 int32_t totalSize = |
| 314 header.dataHeader.headerSize + |
| 315 (int32_t)sizeof(indexes) + |
| 316 serializedTrieSize + |
| 317 sel->pvCount * 4 + |
| 318 sel->encodingStrLength; |
| 319 indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize; |
| 320 if (totalSize > bufferCapacity) { |
| 321 *status = U_BUFFER_OVERFLOW_ERROR; |
| 322 return totalSize; |
| 323 } |
| 324 // ok, save! |
| 325 int32_t length = header.dataHeader.headerSize; |
| 326 uprv_memcpy(p, &header, sizeof(header)); |
| 327 uprv_memset(p + sizeof(header), 0, length - sizeof(header)); |
| 328 p += length; |
| 329 |
| 330 length = (int32_t)sizeof(indexes); |
| 331 uprv_memcpy(p, indexes, length); |
| 332 p += length; |
| 333 |
| 334 utrie2_serialize(sel->trie, p, serializedTrieSize, status); |
| 335 p += serializedTrieSize; |
| 336 |
| 337 length = sel->pvCount * 4; |
| 338 uprv_memcpy(p, sel->pv, length); |
| 339 p += length; |
| 340 |
| 341 uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength); |
| 342 p += sel->encodingStrLength; |
| 343 |
| 344 return totalSize; |
| 345 } |
| 346 |
| 347 /** |
| 348 * swap a selector into the desired Endianness and Asciiness of |
| 349 * the system. Just as FYI, selectors are always saved in the format |
| 350 * of the system that created them. They are only converted if used |
| 351 * on another system. In other words, selectors created on different |
| 352 * system can be different even if the params are identical (endianness |
| 353 * and Asciiness differences only) |
| 354 * |
| 355 * @param ds pointer to data swapper containing swapping info |
| 356 * @param inData pointer to incoming data |
| 357 * @param length length of inData in bytes |
| 358 * @param outData pointer to output data. Capacity should |
| 359 * be at least equal to capacity of inData |
| 360 * @param status an in/out ICU UErrorCode |
| 361 * @return 0 on failure, number of bytes swapped on success |
| 362 * number of bytes swapped can be smaller than length |
| 363 */ |
| 364 static int32_t |
| 365 ucnvsel_swap(const UDataSwapper *ds, |
| 366 const void *inData, int32_t length, |
| 367 void *outData, UErrorCode *status) { |
| 368 /* udata_swapDataHeader checks the arguments */ |
| 369 int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status)
; |
| 370 if(U_FAILURE(*status)) { |
| 371 return 0; |
| 372 } |
| 373 |
| 374 /* check data format and format version */ |
| 375 const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4); |
| 376 if(!( |
| 377 pInfo->dataFormat[0] == 0x43 && /* dataFormat="CSel" */ |
| 378 pInfo->dataFormat[1] == 0x53 && |
| 379 pInfo->dataFormat[2] == 0x65 && |
| 380 pInfo->dataFormat[3] == 0x6c |
| 381 )) { |
| 382 udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not
recognized as UConverterSelector data\n", |
| 383 pInfo->dataFormat[0], pInfo->dataFormat[1], |
| 384 pInfo->dataFormat[2], pInfo->dataFormat[3]); |
| 385 *status = U_INVALID_FORMAT_ERROR; |
| 386 return 0; |
| 387 } |
| 388 if(pInfo->formatVersion[0] != 1) { |
| 389 udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n
", |
| 390 pInfo->formatVersion[0]); |
| 391 *status = U_UNSUPPORTED_ERROR; |
| 392 return 0; |
| 393 } |
| 394 |
| 395 if(length >= 0) { |
| 396 length -= headerSize; |
| 397 if(length < 16*4) { |
| 398 udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for
UConverterSelector data\n", |
| 399 length); |
| 400 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| 401 return 0; |
| 402 } |
| 403 } |
| 404 |
| 405 const uint8_t *inBytes = (const uint8_t *)inData + headerSize; |
| 406 uint8_t *outBytes = (uint8_t *)outData + headerSize; |
| 407 |
| 408 /* read the indexes */ |
| 409 const int32_t *inIndexes = (const int32_t *)inBytes; |
| 410 int32_t indexes[16]; |
| 411 int32_t i; |
| 412 for(i = 0; i < 16; ++i) { |
| 413 indexes[i] = udata_readInt32(ds, inIndexes[i]); |
| 414 } |
| 415 |
| 416 /* get the total length of the data */ |
| 417 int32_t size = indexes[UCNVSEL_INDEX_SIZE]; |
| 418 if(length >= 0) { |
| 419 if(length < size) { |
| 420 udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for
all of UConverterSelector data\n", |
| 421 length); |
| 422 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| 423 return 0; |
| 424 } |
| 425 |
| 426 /* copy the data for inaccessible bytes */ |
| 427 if(inBytes != outBytes) { |
| 428 uprv_memcpy(outBytes, inBytes, size); |
| 429 } |
| 430 |
| 431 int32_t offset = 0, count; |
| 432 |
| 433 /* swap the int32_t indexes[] */ |
| 434 count = UCNVSEL_INDEX_COUNT*4; |
| 435 ds->swapArray32(ds, inBytes, count, outBytes, status); |
| 436 offset += count; |
| 437 |
| 438 /* swap the UTrie2 */ |
| 439 count = indexes[UCNVSEL_INDEX_TRIE_SIZE]; |
| 440 utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status); |
| 441 offset += count; |
| 442 |
| 443 /* swap the uint32_t pv[] */ |
| 444 count = indexes[UCNVSEL_INDEX_PV_COUNT]*4; |
| 445 ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status); |
| 446 offset += count; |
| 447 |
| 448 /* swap the encoding names */ |
| 449 count = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; |
| 450 ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status); |
| 451 offset += count; |
| 452 |
| 453 U_ASSERT(offset == size); |
| 454 } |
| 455 |
| 456 return headerSize + size; |
| 457 } |
| 458 |
| 459 /* unserialize a selector */ |
| 460 U_CAPI UConverterSelector* U_EXPORT2 |
| 461 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* statu
s) { |
| 462 // check if already failed |
| 463 if (U_FAILURE(*status)) { |
| 464 return NULL; |
| 465 } |
| 466 // ensure args make sense! |
| 467 const uint8_t *p = (const uint8_t *)buffer; |
| 468 if (length <= 0 || |
| 469 (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0))) |
| 470 ) { |
| 471 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 472 return NULL; |
| 473 } |
| 474 // header |
| 475 if (length < 32) { |
| 476 // not even enough space for a minimal header |
| 477 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| 478 return NULL; |
| 479 } |
| 480 const DataHeader *pHeader = (const DataHeader *)p; |
| 481 if (!( |
| 482 pHeader->dataHeader.magic1==0xda && |
| 483 pHeader->dataHeader.magic2==0x27 && |
| 484 pHeader->info.dataFormat[0] == 0x43 && |
| 485 pHeader->info.dataFormat[1] == 0x53 && |
| 486 pHeader->info.dataFormat[2] == 0x65 && |
| 487 pHeader->info.dataFormat[3] == 0x6c |
| 488 )) { |
| 489 /* header not valid or dataFormat not recognized */ |
| 490 *status = U_INVALID_FORMAT_ERROR; |
| 491 return NULL; |
| 492 } |
| 493 if (pHeader->info.formatVersion[0] != 1) { |
| 494 *status = U_UNSUPPORTED_ERROR; |
| 495 return NULL; |
| 496 } |
| 497 uint8_t* swapped = NULL; |
| 498 if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN || |
| 499 pHeader->info.charsetFamily != U_CHARSET_FAMILY |
| 500 ) { |
| 501 // swap the data |
| 502 UDataSwapper *ds = |
| 503 udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY
, status); |
| 504 int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status); |
| 505 if (U_FAILURE(*status)) { |
| 506 udata_closeSwapper(ds); |
| 507 return NULL; |
| 508 } |
| 509 if (length < totalSize) { |
| 510 udata_closeSwapper(ds); |
| 511 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| 512 return NULL; |
| 513 } |
| 514 swapped = (uint8_t*)uprv_malloc(totalSize); |
| 515 if (swapped == NULL) { |
| 516 udata_closeSwapper(ds); |
| 517 *status = U_MEMORY_ALLOCATION_ERROR; |
| 518 return NULL; |
| 519 } |
| 520 ucnvsel_swap(ds, p, length, swapped, status); |
| 521 udata_closeSwapper(ds); |
| 522 if (U_FAILURE(*status)) { |
| 523 uprv_free(swapped); |
| 524 return NULL; |
| 525 } |
| 526 p = swapped; |
| 527 pHeader = (const DataHeader *)p; |
| 528 } |
| 529 if (length < (pHeader->dataHeader.headerSize + 16 * 4)) { |
| 530 // not even enough space for the header and the indexes |
| 531 uprv_free(swapped); |
| 532 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| 533 return NULL; |
| 534 } |
| 535 p += pHeader->dataHeader.headerSize; |
| 536 length -= pHeader->dataHeader.headerSize; |
| 537 // indexes |
| 538 const int32_t *indexes = (const int32_t *)p; |
| 539 if (length < indexes[UCNVSEL_INDEX_SIZE]) { |
| 540 uprv_free(swapped); |
| 541 *status = U_INDEX_OUTOFBOUNDS_ERROR; |
| 542 return NULL; |
| 543 } |
| 544 p += UCNVSEL_INDEX_COUNT * 4; |
| 545 // create and populate the selector object |
| 546 UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSe
lector)); |
| 547 char **encodings = |
| 548 (char **)uprv_malloc( |
| 549 indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *)); |
| 550 if (sel == NULL || encodings == NULL) { |
| 551 uprv_free(swapped); |
| 552 uprv_free(sel); |
| 553 uprv_free(encodings); |
| 554 *status = U_MEMORY_ALLOCATION_ERROR; |
| 555 return NULL; |
| 556 } |
| 557 uprv_memset(sel, 0, sizeof(UConverterSelector)); |
| 558 sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT]; |
| 559 sel->encodings = encodings; |
| 560 sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT]; |
| 561 sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH]; |
| 562 sel->swapped = swapped; |
| 563 // trie |
| 564 sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, |
| 565 p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NUL
L, |
| 566 status); |
| 567 p += indexes[UCNVSEL_INDEX_TRIE_SIZE]; |
| 568 if (U_FAILURE(*status)) { |
| 569 ucnvsel_close(sel); |
| 570 return NULL; |
| 571 } |
| 572 // bit vectors |
| 573 sel->pv = (uint32_t *)p; |
| 574 p += sel->pvCount * 4; |
| 575 // encoding names |
| 576 char* s = (char*)p; |
| 577 for (int32_t i = 0; i < sel->encodingsCount; ++i) { |
| 578 sel->encodings[i] = s; |
| 579 s += uprv_strlen(s) + 1; |
| 580 } |
| 581 p += sel->encodingStrLength; |
| 582 |
| 583 return sel; |
| 584 } |
| 585 |
| 586 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just |
| 587 // iterate over the selected encodings |
| 588 struct Enumerator { |
| 589 int16_t* index; |
| 590 int16_t length; |
| 591 int16_t cur; |
| 592 const UConverterSelector* sel; |
| 593 }; |
| 594 |
| 595 U_CDECL_BEGIN |
| 596 |
| 597 static void U_CALLCONV |
| 598 ucnvsel_close_selector_iterator(UEnumeration *enumerator) { |
| 599 uprv_free(((Enumerator*)(enumerator->context))->index); |
| 600 uprv_free(enumerator->context); |
| 601 uprv_free(enumerator); |
| 602 } |
| 603 |
| 604 |
| 605 static int32_t U_CALLCONV |
| 606 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) { |
| 607 // check if already failed |
| 608 if (U_FAILURE(*status)) { |
| 609 return 0; |
| 610 } |
| 611 return ((Enumerator*)(enumerator->context))->length; |
| 612 } |
| 613 |
| 614 |
| 615 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator, |
| 616 int32_t* resultLength, |
| 617 UErrorCode* status) { |
| 618 // check if already failed |
| 619 if (U_FAILURE(*status)) { |
| 620 return NULL; |
| 621 } |
| 622 |
| 623 int16_t cur = ((Enumerator*)(enumerator->context))->cur; |
| 624 const UConverterSelector* sel; |
| 625 const char* result; |
| 626 if (cur >= ((Enumerator*)(enumerator->context))->length) { |
| 627 return NULL; |
| 628 } |
| 629 sel = ((Enumerator*)(enumerator->context))->sel; |
| 630 result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ]; |
| 631 ((Enumerator*)(enumerator->context))->cur++; |
| 632 if (resultLength) { |
| 633 *resultLength = (int32_t)uprv_strlen(result); |
| 634 } |
| 635 return result; |
| 636 } |
| 637 |
| 638 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator, |
| 639 UErrorCode* status) { |
| 640 // check if already failed |
| 641 if (U_FAILURE(*status)) { |
| 642 return ; |
| 643 } |
| 644 ((Enumerator*)(enumerator->context))->cur = 0; |
| 645 } |
| 646 |
| 647 U_CDECL_END |
| 648 |
| 649 |
| 650 static const UEnumeration defaultEncodings = { |
| 651 NULL, |
| 652 NULL, |
| 653 ucnvsel_close_selector_iterator, |
| 654 ucnvsel_count_encodings, |
| 655 uenum_unextDefault, |
| 656 ucnvsel_next_encoding, |
| 657 ucnvsel_reset_iterator |
| 658 }; |
| 659 |
| 660 |
| 661 // internal fn to intersect two sets of masks |
| 662 // returns whether the mask has reduced to all zeros |
| 663 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len
) { |
| 664 int32_t i; |
| 665 uint32_t oredDest = 0; |
| 666 for (i = 0 ; i < len ; ++i) { |
| 667 oredDest |= (dest[i] &= source1[i]); |
| 668 } |
| 669 return oredDest == 0; |
| 670 } |
| 671 |
| 672 // internal fn to count how many 1's are there in a mask |
| 673 // algorithm taken from http://graphics.stanford.edu/~seander/bithacks.html |
| 674 static int16_t countOnes(uint32_t* mask, int32_t len) { |
| 675 int32_t i, totalOnes = 0; |
| 676 for (i = 0 ; i < len ; ++i) { |
| 677 uint32_t ent = mask[i]; |
| 678 for (; ent; totalOnes++) |
| 679 { |
| 680 ent &= ent - 1; // clear the least significant bit set |
| 681 } |
| 682 } |
| 683 return totalOnes; |
| 684 } |
| 685 |
| 686 |
| 687 /* internal function! */ |
| 688 static UEnumeration *selectForMask(const UConverterSelector* sel, |
| 689 uint32_t *mask, UErrorCode *status) { |
| 690 // this is the context we will use. Store a table of indices to which |
| 691 // encodings are legit. |
| 692 struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator)); |
| 693 if (result == NULL) { |
| 694 uprv_free(mask); |
| 695 *status = U_MEMORY_ALLOCATION_ERROR; |
| 696 return NULL; |
| 697 } |
| 698 result->index = NULL; // this will be allocated later! |
| 699 result->length = result->cur = 0; |
| 700 result->sel = sel; |
| 701 |
| 702 UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration)); |
| 703 if (en == NULL) { |
| 704 // TODO(markus): Combine Enumerator and UEnumeration into one struct. |
| 705 uprv_free(mask); |
| 706 uprv_free(result); |
| 707 *status = U_MEMORY_ALLOCATION_ERROR; |
| 708 return NULL; |
| 709 } |
| 710 memcpy(en, &defaultEncodings, sizeof(UEnumeration)); |
| 711 en->context = result; |
| 712 |
| 713 int32_t columns = (sel->encodingsCount+31)/32; |
| 714 int16_t numOnes = countOnes(mask, columns); |
| 715 // now, we know the exact space we need for index |
| 716 if (numOnes > 0) { |
| 717 result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t)); |
| 718 |
| 719 int32_t i, j; |
| 720 int16_t k = 0; |
| 721 for (j = 0 ; j < columns; j++) { |
| 722 uint32_t v = mask[j]; |
| 723 for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) { |
| 724 if ((v & 1) != 0) { |
| 725 result->index[result->length++] = k; |
| 726 } |
| 727 v >>= 1; |
| 728 } |
| 729 } |
| 730 } //otherwise, index will remain NULL (and will never be touched by |
| 731 //the enumerator code anyway) |
| 732 uprv_free(mask); |
| 733 return en; |
| 734 } |
| 735 |
| 736 /* check a string against the selector - UTF16 version */ |
| 737 U_CAPI UEnumeration * U_EXPORT2 |
| 738 ucnvsel_selectForString(const UConverterSelector* sel, |
| 739 const UChar *s, int32_t length, UErrorCode *status) { |
| 740 // check if already failed |
| 741 if (U_FAILURE(*status)) { |
| 742 return NULL; |
| 743 } |
| 744 // ensure args make sense! |
| 745 if (sel == NULL || (s == NULL && length != 0)) { |
| 746 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 747 return NULL; |
| 748 } |
| 749 |
| 750 int32_t columns = (sel->encodingsCount+31)/32; |
| 751 uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); |
| 752 if (mask == NULL) { |
| 753 *status = U_MEMORY_ALLOCATION_ERROR; |
| 754 return NULL; |
| 755 } |
| 756 uprv_memset(mask, ~0, columns *4); |
| 757 |
| 758 const UChar *limit; |
| 759 if (length >= 0) { |
| 760 limit = s + length; |
| 761 } else { |
| 762 limit = NULL; |
| 763 } |
| 764 |
| 765 while (limit == NULL ? *s != 0 : s != limit) { |
| 766 UChar32 c; |
| 767 uint16_t pvIndex; |
| 768 UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex); |
| 769 if (intersectMasks(mask, sel->pv+pvIndex, columns)) { |
| 770 break; |
| 771 } |
| 772 } |
| 773 return selectForMask(sel, mask, status); |
| 774 } |
| 775 |
| 776 /* check a string against the selector - UTF8 version */ |
| 777 U_CAPI UEnumeration * U_EXPORT2 |
| 778 ucnvsel_selectForUTF8(const UConverterSelector* sel, |
| 779 const char *s, int32_t length, UErrorCode *status) { |
| 780 // check if already failed |
| 781 if (U_FAILURE(*status)) { |
| 782 return NULL; |
| 783 } |
| 784 // ensure args make sense! |
| 785 if (sel == NULL || (s == NULL && length != 0)) { |
| 786 *status = U_ILLEGAL_ARGUMENT_ERROR; |
| 787 return NULL; |
| 788 } |
| 789 |
| 790 int32_t columns = (sel->encodingsCount+31)/32; |
| 791 uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4); |
| 792 if (mask == NULL) { |
| 793 *status = U_MEMORY_ALLOCATION_ERROR; |
| 794 return NULL; |
| 795 } |
| 796 uprv_memset(mask, ~0, columns *4); |
| 797 |
| 798 if (length < 0) { |
| 799 length = (int32_t)uprv_strlen(s); |
| 800 } |
| 801 const char *limit = s + length; |
| 802 |
| 803 while (s != limit) { |
| 804 uint16_t pvIndex; |
| 805 UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex); |
| 806 if (intersectMasks(mask, sel->pv+pvIndex, columns)) { |
| 807 break; |
| 808 } |
| 809 } |
| 810 return selectForMask(sel, mask, status); |
| 811 } |
OLD | NEW |