OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ****************************************************************************** |
| 3 * |
| 4 * Copyright (C) 2000-2010, International Business Machines |
| 5 * Corporation and others. All Rights Reserved. |
| 6 * |
| 7 ****************************************************************************** |
| 8 * file name: ucnvmbcs.c |
| 9 * encoding: US-ASCII |
| 10 * tab size: 8 (not used) |
| 11 * indentation:4 |
| 12 * |
| 13 * created on: 2000jul03 |
| 14 * created by: Markus W. Scherer |
| 15 * |
| 16 * The current code in this file replaces the previous implementation |
| 17 * of conversion code from multi-byte codepages to Unicode and back. |
| 18 * This implementation supports the following: |
| 19 * - legacy variable-length codepages with up to 4 bytes per character |
| 20 * - all Unicode code points (up to 0x10ffff) |
| 21 * - efficient distinction of unassigned vs. illegal byte sequences |
| 22 * - it is possible in fromUnicode() to directly deal with simple |
| 23 * stateful encodings (used for EBCDIC_STATEFUL) |
| 24 * - it is possible to convert Unicode code points |
| 25 * to a single zero byte (but not as a fallback except for SBCS) |
| 26 * |
| 27 * Remaining limitations in fromUnicode: |
| 28 * - byte sequences must not have leading zero bytes |
| 29 * - except for SBCS codepages: no fallback mapping from Unicode to a zero byte |
| 30 * - limitation to up to 4 bytes per character |
| 31 * |
| 32 * ICU 2.8 (late 2003) adds a secondary data structure which lifts some of thes
e |
| 33 * limitations and adds m:n character mappings and other features. |
| 34 * See ucnv_ext.h for details. |
| 35 * |
| 36 * Change history: |
| 37 * |
| 38 * 5/6/2001 Ram Moved MBCS_SINGLE_RESULT_FROM_U,MBCS_STAGE_2_FROM
_U, |
| 39 * MBCS_VALUE_2_FROM_STAGE_2, MBCS_VALUE_4_FROM_STAGE
_2 |
| 40 * macros to ucnvmbcs.h file |
| 41 */ |
| 42 |
| 43 #include "unicode/utypes.h" |
| 44 |
| 45 #if !UCONFIG_NO_CONVERSION && !UCONFIG_NO_LEGACY_CONVERSION |
| 46 |
| 47 #include "unicode/ucnv.h" |
| 48 #include "unicode/ucnv_cb.h" |
| 49 #include "unicode/udata.h" |
| 50 #include "unicode/uset.h" |
| 51 #include "ucnv_bld.h" |
| 52 #include "ucnvmbcs.h" |
| 53 #include "ucnv_ext.h" |
| 54 #include "ucnv_cnv.h" |
| 55 #include "umutex.h" |
| 56 #include "cmemory.h" |
| 57 #include "cstring.h" |
| 58 |
| 59 /* control optimizations according to the platform */ |
| 60 #define MBCS_UNROLL_SINGLE_TO_BMP 1 |
| 61 #define MBCS_UNROLL_SINGLE_FROM_BMP 0 |
| 62 |
| 63 /* |
| 64 * _MBCSHeader versions 5.3 & 4.3 |
| 65 * (Note that the _MBCSHeader version is in addition to the converter formatVers
ion.) |
| 66 * |
| 67 * This version is optional. Version 5 is used for incompatible data format chan
ges. |
| 68 * makeconv will continue to generate version 4 files if possible. |
| 69 * |
| 70 * Changes from version 4: |
| 71 * |
| 72 * The main difference is an additional _MBCSHeader field with |
| 73 * - the length (number of uint32_t) of the _MBCSHeader |
| 74 * - flags for further incompatible data format changes |
| 75 * - flags for further, backward compatible data format changes |
| 76 * |
| 77 * The MBCS_OPT_FROM_U flag indicates that most of the fromUnicode data is omitt
ed from |
| 78 * the file and needs to be reconstituted at load time. |
| 79 * This requires a utf8Friendly format with an additional mbcsIndex table for fa
st |
| 80 * (and UTF-8-friendly) fromUnicode conversion for Unicode code points up to max
FastUChar. |
| 81 * (For details about these structures see below, and see ucnvmbcs.h.) |
| 82 * |
| 83 * utf8Friendly also implies that the fromUnicode mappings are stored in ascen
ding order |
| 84 * of the Unicode code points. (This requires that the .ucm file has the |0 et
c. |
| 85 * precision markers for all mappings.) |
| 86 * |
| 87 * All fallbacks have been moved to the extension table, leaving only roundtri
ps in the |
| 88 * omitted data that can be reconstituted from the toUnicode data. |
| 89 * |
| 90 * Of the stage 2 table, the part corresponding to maxFastUChar and below is o
mitted. |
| 91 * With only roundtrip mappings in the base fromUnicode data, this part is ful
ly |
| 92 * redundant with the mbcsIndex and will be reconstituted from that (also usin
g the |
| 93 * stage 1 table which contains the information about how stage 2 was compacte
d). |
| 94 * |
| 95 * The rest of the stage 2 table, the part for code points above maxFastUChar, |
| 96 * is stored in the file and will be appended to the reconstituted part. |
| 97 * |
| 98 * The entire fromUBytes array is omitted from the file and will be reconstitu
ed. |
| 99 * This is done by enumerating all toUnicode roundtrip mappings, performing |
| 100 * each mapping (using the stage 1 and reconstituted stage 2 tables) and |
| 101 * writing instead of reading the byte values. |
| 102 * |
| 103 * _MBCSHeader version 4.3 |
| 104 * |
| 105 * Change from version 4.2: |
| 106 * - Optional utf8Friendly data structures, with 64-entry stage 3 block |
| 107 * allocation for parts of the BMP, and an additional mbcsIndex in non-SBCS |
| 108 * files which can be used instead of stages 1 & 2. |
| 109 * Faster lookups for roundtrips from most commonly used characters, |
| 110 * and lookups from UTF-8 byte sequences with a natural bit distribution. |
| 111 * See ucnvmbcs.h for more details. |
| 112 * |
| 113 * Change from version 4.1: |
| 114 * - Added an optional extension table structure at the end of the .cnv file. |
| 115 * It is present if the upper bits of the header flags field contains a non-ze
ro |
| 116 * byte offset to it. |
| 117 * Files that contain only a conversion table and no base table |
| 118 * use the special outputType MBCS_OUTPUT_EXT_ONLY. |
| 119 * These contain the base table name between the MBCS header and the extension |
| 120 * data. |
| 121 * |
| 122 * Change from version 4.0: |
| 123 * - Replace header.reserved with header.fromUBytesLength so that all |
| 124 * fields in the data have length. |
| 125 * |
| 126 * Changes from version 3 (for performance improvements): |
| 127 * - new bit distribution for state table entries |
| 128 * - reordered action codes |
| 129 * - new data structure for single-byte fromUnicode |
| 130 * + stage 2 only contains indexes |
| 131 * + stage 3 stores 16 bits per character with classification bits 15..8 |
| 132 * - no multiplier for stage 1 entries |
| 133 * - stage 2 for non-single-byte codepages contains the index and the flags in |
| 134 * one 32-bit value |
| 135 * - 2-byte and 4-byte fromUnicode results are stored directly as 16/32-bit inte
gers |
| 136 * |
| 137 * For more details about old versions of the MBCS data structure, see |
| 138 * the corresponding versions of this file. |
| 139 * |
| 140 * Converting stateless codepage data ---------------------------------------*** |
| 141 * (or codepage data with simple states) to Unicode. |
| 142 * |
| 143 * Data structure and algorithm for converting from complex legacy codepages |
| 144 * to Unicode. (Designed before 2000-may-22.) |
| 145 * |
| 146 * The basic idea is that the structure of legacy codepages can be described |
| 147 * with state tables. |
| 148 * When reading a byte stream, each input byte causes a state transition. |
| 149 * Some transitions result in the output of a code point, some result in |
| 150 * "unassigned" or "illegal" output. |
| 151 * This is used here for character conversion. |
| 152 * |
| 153 * The data structure begins with a state table consisting of a row |
| 154 * per state, with 256 entries (columns) per row for each possible input |
| 155 * byte value. |
| 156 * Each entry is 32 bits wide, with two formats distinguished by |
| 157 * the sign bit (bit 31): |
| 158 * |
| 159 * One format for transitional entries (bit 31 not set) for non-final bytes, and |
| 160 * one format for final entries (bit 31 set). |
| 161 * Both formats contain the number of the next state in the same bit |
| 162 * positions. |
| 163 * State 0 is the initial state. |
| 164 * |
| 165 * Most of the time, the offset values of subsequent states are added |
| 166 * up to a scalar value. This value will eventually be the index of |
| 167 * the Unicode code point in a table that follows the state table. |
| 168 * The effect is that the code points for final state table rows |
| 169 * are contiguous. The code points of final state rows follow each other |
| 170 * in the order of the references to those final states by previous |
| 171 * states, etc. |
| 172 * |
| 173 * For some terminal states, the offset is itself the output Unicode |
| 174 * code point (16 bits for a BMP code point or 20 bits for a supplementary |
| 175 * code point (stored as code point minus 0x10000 so that 20 bits are enough). |
| 176 * For others, the code point in the Unicode table is stored with either |
| 177 * one or two code units: one for BMP code points, two for a pair of |
| 178 * surrogates. |
| 179 * All code points for a final state entry take up the same number of code |
| 180 * units, regardless of whether they all actually _use_ the same number |
| 181 * of code units. This is necessary for simple array access. |
| 182 * |
| 183 * An additional feature comes in with what in ICU is called "fallback" |
| 184 * mappings: |
| 185 * |
| 186 * In addition to round-trippable, precise, 1:1 mappings, there are often |
| 187 * mappings defined between similar, though not the same, characters. |
| 188 * Typically, such mappings occur only in fromUnicode mapping tables because |
| 189 * Unicode has a superset repertoire of most other codepages. However, it |
| 190 * is possible to provide such mappings in the toUnicode tables, too. |
| 191 * In this case, the fallback mappings are partly integrated into the |
| 192 * general state tables because the structure of the encoding includes their |
| 193 * byte sequences. |
| 194 * For final entries in an initial state, fallback mappings are stored in |
| 195 * the entry itself like with roundtrip mappings. |
| 196 * For other final entries, they are stored in the code units table if |
| 197 * the entry is for a pair of code units. |
| 198 * For single-unit results in the code units table, there is no space to |
| 199 * alternatively hold a fallback mapping; in this case, the code unit |
| 200 * is stored as U+fffe (unassigned), and the fallback mapping needs to |
| 201 * be looked up by the scalar offset value in a separate table. |
| 202 * |
| 203 * "Unassigned" state entries really mean "structurally unassigned", |
| 204 * i.e., such a byte sequence will never have a mapping result. |
| 205 * |
| 206 * The interpretation of the bits in each entry is as follows: |
| 207 * |
| 208 * Bit 31 not set, not a terminal entry ("transitional"): |
| 209 * 30..24 next state |
| 210 * 23..0 offset delta, to be added up |
| 211 * |
| 212 * Bit 31 set, terminal ("final") entry: |
| 213 * 30..24 next state (regardless of action code) |
| 214 * 23..20 action code: |
| 215 * action codes 0 and 1 result in precise-mapping Unicode code points |
| 216 * 0 valid byte sequence |
| 217 * 19..16 not used, 0 |
| 218 * 15..0 16-bit Unicode BMP code point |
| 219 * never U+fffe or U+ffff |
| 220 * 1 valid byte sequence |
| 221 * 19..0 20-bit Unicode supplementary code point |
| 222 * never U+fffe or U+ffff |
| 223 * |
| 224 * action codes 2 and 3 result in fallback (unidirectional-mapping) Unico
de code points |
| 225 * 2 valid byte sequence (fallback) |
| 226 * 19..16 not used, 0 |
| 227 * 15..0 16-bit Unicode BMP code point as fallback result |
| 228 * 3 valid byte sequence (fallback) |
| 229 * 19..0 20-bit Unicode supplementary code point as fallback result |
| 230 * |
| 231 * action codes 4 and 5 may result in roundtrip/fallback/unassigned/illeg
al results |
| 232 * depending on the code units they result in |
| 233 * 4 valid byte sequence |
| 234 * 19..9 not used, 0 |
| 235 * 8..0 final offset delta |
| 236 * pointing to one 16-bit code unit which may be |
| 237 * fffe unassigned -- look for a fallback for this offset |
| 238 * ffff illegal |
| 239 * 5 valid byte sequence |
| 240 * 19..9 not used, 0 |
| 241 * 8..0 final offset delta |
| 242 * pointing to two 16-bit code units |
| 243 * (typically UTF-16 surrogates) |
| 244 * the result depends on the first code unit as follows: |
| 245 * 0000..d7ff roundtrip BMP code point (1st alone) |
| 246 * d800..dbff roundtrip surrogate pair (1st, 2nd) |
| 247 * dc00..dfff fallback surrogate pair (1st-400, 2nd) |
| 248 * e000 roundtrip BMP code point (2nd alone) |
| 249 * e001 fallback BMP code point (2nd alone) |
| 250 * fffe unassigned |
| 251 * ffff illegal |
| 252 * (the final offset deltas are at most 255 * 2, |
| 253 * times 2 because of storing code unit pairs) |
| 254 * |
| 255 * 6 unassigned byte sequence |
| 256 * 19..16 not used, 0 |
| 257 * 15..0 16-bit Unicode BMP code point U+fffe (new with version 2) |
| 258 * this does not contain a final offset delta because the main |
| 259 * purpose of this action code is to save scalar offset values; |
| 260 * therefore, fallback values cannot be assigned to byte |
| 261 * sequences that result in this action code |
| 262 * 7 illegal byte sequence |
| 263 * 19..16 not used, 0 |
| 264 * 15..0 16-bit Unicode BMP code point U+ffff (new with version 2) |
| 265 * 8 state change only |
| 266 * 19..0 not used, 0 |
| 267 * useful for state changes in simple stateful encodings, |
| 268 * at Shift-In/Shift-Out codes |
| 269 * |
| 270 * |
| 271 * 9..15 reserved for future use |
| 272 * current implementations will only perform a state change |
| 273 * and ignore bits 19..0 |
| 274 * |
| 275 * An encoding with contiguous ranges of unassigned byte sequences, like |
| 276 * Shift-JIS and especially EUC-TW, can be stored efficiently by having |
| 277 * at least two states for the trail bytes: |
| 278 * One trail byte state that results in code points, and one that only |
| 279 * has "unassigned" and "illegal" terminal states. |
| 280 * |
| 281 * Note: partly by accident, this data structure supports simple stateful |
| 282 * encodings without any additional logic. |
| 283 * Currently, only simple Shift-In/Shift-Out schemes are handled with |
| 284 * appropriate state tables (especially EBCDIC_STATEFUL!). |
| 285 * |
| 286 * MBCS version 2 added: |
| 287 * unassigned and illegal action codes have U+fffe and U+ffff |
| 288 * instead of unused bits; this is useful for _MBCS_SINGLE_SIMPLE_GET_NEXT_BMP() |
| 289 * |
| 290 * Converting from Unicode to codepage bytes --------------------------------*** |
| 291 * |
| 292 * The conversion data structure for fromUnicode is designed for the known |
| 293 * structure of Unicode. It maps from 21-bit code points (0..0x10ffff) to |
| 294 * a sequence of 1..4 bytes, in addition to a flag that indicates if there is |
| 295 * a roundtrip mapping. |
| 296 * |
| 297 * The lookup is done with a 3-stage trie, using 11/6/4 bits for stage 1/2/3 |
| 298 * like in the character properties table. |
| 299 * The beginning of the trie is at offsetFromUTable, the beginning of stage 3 |
| 300 * with the resulting bytes is at offsetFromUBytes. |
| 301 * |
| 302 * Beginning with version 4, single-byte codepages have a significantly differen
t |
| 303 * trie compared to other codepages. |
| 304 * In all cases, the entry in stage 1 is directly the index of the block of |
| 305 * 64 entries in stage 2. |
| 306 * |
| 307 * Single-byte lookup: |
| 308 * |
| 309 * Stage 2 only contains 16-bit indexes directly to the 16-blocks in stage 3. |
| 310 * Stage 3 contains one 16-bit word per result: |
| 311 * Bits 15..8 indicate the kind of result: |
| 312 * f roundtrip result |
| 313 * c fallback result from private-use code point |
| 314 * 8 fallback result from other code points |
| 315 * 0 unassigned |
| 316 * Bits 7..0 contain the codepage byte. A zero byte is always possible. |
| 317 * |
| 318 * In version 4.3, the runtime code can build an sbcsIndex for a utf8Friendly |
| 319 * file. For 2-byte UTF-8 byte sequences and some 3-byte sequences the lookup |
| 320 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
| 321 * ASCII code points can be looked up with a linear array access into stage 3. |
| 322 * See maxFastUChar and other details in ucnvmbcs.h. |
| 323 * |
| 324 * Multi-byte lookup: |
| 325 * |
| 326 * Stage 2 contains a 32-bit word for each 16-block in stage 3: |
| 327 * Bits 31..16 contain flags for which stage 3 entries contain roundtrip results |
| 328 * test: MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) |
| 329 * If this test is false, then a non-zero result will be interpreted
as |
| 330 * a fallback mapping. |
| 331 * Bits 15..0 contain the index to stage 3, which must be multiplied by 16*(byt
es per char) |
| 332 * |
| 333 * Stage 3 contains 2, 3, or 4 bytes per result. |
| 334 * 2 or 4 bytes are stored as uint16_t/uint32_t in platform endianness, |
| 335 * while 3 bytes are stored as bytes in big-endian order. |
| 336 * Leading zero bytes are ignored, and the number of bytes is counted. |
| 337 * A zero byte mapping result is possible as a roundtrip result. |
| 338 * For some output types, the actual result is processed from this; |
| 339 * see ucnv_MBCSFromUnicodeWithOffsets(). |
| 340 * |
| 341 * Note that stage 1 always contains 0x440=1088 entries (0x440==0x110000>>10), |
| 342 * or (version 3 and up) for BMP-only codepages, it contains 64 entries. |
| 343 * |
| 344 * In version 4.3, a utf8Friendly file contains an mbcsIndex table. |
| 345 * For 2-byte UTF-8 byte sequences and most 3-byte sequences the lookup |
| 346 * becomes a 2-stage (single-index) trie lookup with 6 bits for stage 3. |
| 347 * ASCII code points can be looked up with a linear array access into stage 3. |
| 348 * See maxFastUChar, mbcsIndex and other details in ucnvmbcs.h. |
| 349 * |
| 350 * In version 3, stage 2 blocks may overlap by multiples of the multiplier |
| 351 * for compaction. |
| 352 * In version 4, stage 2 blocks (and for single-byte codepages, stage 3 blocks) |
| 353 * may overlap by any number of entries. |
| 354 * |
| 355 * MBCS version 2 added: |
| 356 * the converter checks for known output types, which allows |
| 357 * adding new ones without crashing an unaware converter |
| 358 */ |
| 359 |
| 360 static const UConverterImpl _SBCSUTF8Impl; |
| 361 static const UConverterImpl _DBCSUTF8Impl; |
| 362 |
| 363 /* GB 18030 data ------------------------------------------------------------ */ |
| 364 |
| 365 /* helper macros for linear values for GB 18030 four-byte sequences */ |
| 366 #define LINEAR_18030(a, b, c, d) ((((a)*10+(b))*126L+(c))*10L+(d)) |
| 367 |
| 368 #define LINEAR_18030_BASE LINEAR_18030(0x81, 0x30, 0x81, 0x30) |
| 369 |
| 370 #define LINEAR(x) LINEAR_18030(x>>24, (x>>16)&0xff, (x>>8)&0xff, x&0xff) |
| 371 |
| 372 /* |
| 373 * Some ranges of GB 18030 where both the Unicode code points and the |
| 374 * GB four-byte sequences are contiguous and are handled algorithmically by |
| 375 * the special callback functions below. |
| 376 * The values are start & end of Unicode & GB codes. |
| 377 * |
| 378 * Note that single surrogates are not mapped by GB 18030 |
| 379 * as of the re-released mapping tables from 2000-nov-30. |
| 380 */ |
| 381 static const uint32_t |
| 382 gb18030Ranges[13][4]={ |
| 383 {0x10000, 0x10FFFF, LINEAR(0x90308130), LINEAR(0xE3329A35)}, |
| 384 {0x9FA6, 0xD7FF, LINEAR(0x82358F33), LINEAR(0x8336C738)}, |
| 385 {0x0452, 0x200F, LINEAR(0x8130D330), LINEAR(0x8136A531)}, |
| 386 {0xE865, 0xF92B, LINEAR(0x8336D030), LINEAR(0x84308534)}, |
| 387 {0x2643, 0x2E80, LINEAR(0x8137A839), LINEAR(0x8138FD38)}, |
| 388 {0xFA2A, 0xFE2F, LINEAR(0x84309C38), LINEAR(0x84318537)}, |
| 389 {0x3CE1, 0x4055, LINEAR(0x8231D438), LINEAR(0x8232AF32)}, |
| 390 {0x361B, 0x3917, LINEAR(0x8230A633), LINEAR(0x8230F237)}, |
| 391 {0x49B8, 0x4C76, LINEAR(0x8234A131), LINEAR(0x8234E733)}, |
| 392 {0x4160, 0x4336, LINEAR(0x8232C937), LINEAR(0x8232F837)}, |
| 393 {0x478E, 0x4946, LINEAR(0x8233E838), LINEAR(0x82349638)}, |
| 394 {0x44D7, 0x464B, LINEAR(0x8233A339), LINEAR(0x8233C931)}, |
| 395 {0xFFE6, 0xFFFF, LINEAR(0x8431A234), LINEAR(0x8431A439)} |
| 396 }; |
| 397 |
| 398 /* bit flag for UConverter.options indicating GB 18030 special handling */ |
| 399 #define _MBCS_OPTION_GB18030 0x8000 |
| 400 |
| 401 /* bit flag for UConverter.options indicating KEIS,JEF,JIF special handling */ |
| 402 #define _MBCS_OPTION_KEIS 0x01000 |
| 403 #define _MBCS_OPTION_JEF 0x02000 |
| 404 #define _MBCS_OPTION_JIPS 0x04000 |
| 405 |
| 406 #define KEIS_SO_CHAR_1 0x0A |
| 407 #define KEIS_SO_CHAR_2 0x42 |
| 408 #define KEIS_SI_CHAR_1 0x0A |
| 409 #define KEIS_SI_CHAR_2 0x41 |
| 410 |
| 411 #define JEF_SO_CHAR 0x28 |
| 412 #define JEF_SI_CHAR 0x29 |
| 413 |
| 414 #define JIPS_SO_CHAR_1 0x1A |
| 415 #define JIPS_SO_CHAR_2 0x70 |
| 416 #define JIPS_SI_CHAR_1 0x1A |
| 417 #define JIPS_SI_CHAR_2 0x71 |
| 418 |
| 419 enum SISO_Option { |
| 420 SI, |
| 421 SO |
| 422 }; |
| 423 typedef enum SISO_Option SISO_Option; |
| 424 |
| 425 static int32_t getSISOBytes(SISO_Option option, uint32_t cnvOption, uint8_t *val
ue) { |
| 426 int32_t SISOLength = 0; |
| 427 |
| 428 switch (option) { |
| 429 case SI: |
| 430 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
| 431 value[0] = KEIS_SI_CHAR_1; |
| 432 value[1] = KEIS_SI_CHAR_2; |
| 433 SISOLength = 2; |
| 434 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
| 435 value[0] = JEF_SI_CHAR; |
| 436 SISOLength = 1; |
| 437 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
| 438 value[0] = JIPS_SI_CHAR_1; |
| 439 value[1] = JIPS_SI_CHAR_2; |
| 440 SISOLength = 2; |
| 441 } else { |
| 442 value[0] = UCNV_SI; |
| 443 SISOLength = 1; |
| 444 } |
| 445 break; |
| 446 case SO: |
| 447 if ((cnvOption&_MBCS_OPTION_KEIS)!=0) { |
| 448 value[0] = KEIS_SO_CHAR_1; |
| 449 value[1] = KEIS_SO_CHAR_2; |
| 450 SISOLength = 2; |
| 451 } else if ((cnvOption&_MBCS_OPTION_JEF)!=0) { |
| 452 value[0] = JEF_SO_CHAR; |
| 453 SISOLength = 1; |
| 454 } else if ((cnvOption&_MBCS_OPTION_JIPS)!=0) { |
| 455 value[0] = JIPS_SO_CHAR_1; |
| 456 value[1] = JIPS_SO_CHAR_2; |
| 457 SISOLength = 2; |
| 458 } else { |
| 459 value[0] = UCNV_SO; |
| 460 SISOLength = 1; |
| 461 } |
| 462 break; |
| 463 default: |
| 464 /* Should never happen. */ |
| 465 break; |
| 466 } |
| 467 |
| 468 return SISOLength; |
| 469 } |
| 470 |
| 471 /* Miscellaneous ------------------------------------------------------------ */ |
| 472 |
| 473 /** |
| 474 * Callback from ucnv_MBCSEnumToUnicode(), takes 32 mappings from |
| 475 * consecutive sequences of bytes, starting from the one encoded in value, |
| 476 * to Unicode code points. (Multiple mappings to reduce per-function call overhe
ad.) |
| 477 * Does not currently support m:n mappings or reverse fallbacks. |
| 478 * This function will not be called for sequences of bytes with leading zeros. |
| 479 * |
| 480 * @param context an opaque pointer, as passed into ucnv_MBCSEnumToUnicode() |
| 481 * @param value contains 1..4 bytes of the first byte sequence, right-aligned |
| 482 * @param codePoints resulting Unicode code points, or negative if a byte sequen
ce does |
| 483 * not map to anything |
| 484 * @return TRUE to continue enumeration, FALSE to stop |
| 485 */ |
| 486 typedef UBool U_CALLCONV |
| 487 UConverterEnumToUCallback(const void *context, uint32_t value, UChar32 codePoint
s[32]); |
| 488 |
| 489 /* similar to ucnv_MBCSGetNextUChar() but recursive */ |
| 490 static UBool |
| 491 enumToU(UConverterMBCSTable *mbcsTable, int8_t stateProps[], |
| 492 int32_t state, uint32_t offset, |
| 493 uint32_t value, |
| 494 UConverterEnumToUCallback *callback, const void *context, |
| 495 UErrorCode *pErrorCode) { |
| 496 UChar32 codePoints[32]; |
| 497 const int32_t *row; |
| 498 const uint16_t *unicodeCodeUnits; |
| 499 UChar32 anyCodePoints; |
| 500 int32_t b, limit; |
| 501 |
| 502 row=mbcsTable->stateTable[state]; |
| 503 unicodeCodeUnits=mbcsTable->unicodeCodeUnits; |
| 504 |
| 505 value<<=8; |
| 506 anyCodePoints=-1; /* becomes non-negative if there is a mapping */ |
| 507 |
| 508 b=(stateProps[state]&0x38)<<2; |
| 509 if(b==0 && stateProps[state]>=0x40) { |
| 510 /* skip byte sequences with leading zeros because they are not stored in
the fromUnicode table */ |
| 511 codePoints[0]=U_SENTINEL; |
| 512 b=1; |
| 513 } |
| 514 limit=((stateProps[state]&7)+1)<<5; |
| 515 while(b<limit) { |
| 516 int32_t entry=row[b]; |
| 517 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 518 int32_t nextState=MBCS_ENTRY_TRANSITION_STATE(entry); |
| 519 if(stateProps[nextState]>=0) { |
| 520 /* recurse to a state with non-ignorable actions */ |
| 521 if(!enumToU( |
| 522 mbcsTable, stateProps, nextState, |
| 523 offset+MBCS_ENTRY_TRANSITION_OFFSET(entry), |
| 524 value|(uint32_t)b, |
| 525 callback, context, |
| 526 pErrorCode)) { |
| 527 return FALSE; |
| 528 } |
| 529 } |
| 530 codePoints[b&0x1f]=U_SENTINEL; |
| 531 } else { |
| 532 UChar32 c; |
| 533 int32_t action; |
| 534 |
| 535 /* |
| 536 * An if-else-if chain provides more reliable performance for |
| 537 * the most common cases compared to a switch. |
| 538 */ |
| 539 action=MBCS_ENTRY_FINAL_ACTION(entry); |
| 540 if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 541 /* output BMP code point */ |
| 542 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 543 } else if(action==MBCS_STATE_VALID_16) { |
| 544 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 545 c=unicodeCodeUnits[finalOffset]; |
| 546 if(c<0xfffe) { |
| 547 /* output BMP code point */ |
| 548 } else { |
| 549 c=U_SENTINEL; |
| 550 } |
| 551 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 552 int32_t finalOffset=offset+MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 553 c=unicodeCodeUnits[finalOffset++]; |
| 554 if(c<0xd800) { |
| 555 /* output BMP code point below 0xd800 */ |
| 556 } else if(c<=0xdbff) { |
| 557 /* output roundtrip or fallback supplementary code point */ |
| 558 c=((c&0x3ff)<<10)+unicodeCodeUnits[finalOffset]+(0x10000-0xd
c00); |
| 559 } else if(c==0xe000) { |
| 560 /* output roundtrip BMP code point above 0xd800 or fallback
BMP code point */ |
| 561 c=unicodeCodeUnits[finalOffset]; |
| 562 } else { |
| 563 c=U_SENTINEL; |
| 564 } |
| 565 } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
| 566 /* output supplementary code point */ |
| 567 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| 568 } else { |
| 569 c=U_SENTINEL; |
| 570 } |
| 571 |
| 572 codePoints[b&0x1f]=c; |
| 573 anyCodePoints&=c; |
| 574 } |
| 575 if(((++b)&0x1f)==0) { |
| 576 if(anyCodePoints>=0) { |
| 577 if(!callback(context, value|(uint32_t)(b-0x20), codePoints)) { |
| 578 return FALSE; |
| 579 } |
| 580 anyCodePoints=-1; |
| 581 } |
| 582 } |
| 583 } |
| 584 return TRUE; |
| 585 } |
| 586 |
| 587 /* |
| 588 * Only called if stateProps[state]==-1. |
| 589 * A recursive call may do stateProps[state]|=0x40 if this state is the target o
f an |
| 590 * MBCS_STATE_CHANGE_ONLY. |
| 591 */ |
| 592 static int8_t |
| 593 getStateProp(const int32_t (*stateTable)[256], int8_t stateProps[], int state) { |
| 594 const int32_t *row; |
| 595 int32_t min, max, entry, nextState; |
| 596 |
| 597 row=stateTable[state]; |
| 598 stateProps[state]=0; |
| 599 |
| 600 /* find first non-ignorable state */ |
| 601 for(min=0;; ++min) { |
| 602 entry=row[min]; |
| 603 nextState=MBCS_ENTRY_STATE(entry); |
| 604 if(stateProps[nextState]==-1) { |
| 605 getStateProp(stateTable, stateProps, nextState); |
| 606 } |
| 607 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 608 if(stateProps[nextState]>=0) { |
| 609 break; |
| 610 } |
| 611 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
| 612 break; |
| 613 } |
| 614 if(min==0xff) { |
| 615 stateProps[state]=-0x40; /* (int8_t)0xc0 */ |
| 616 return stateProps[state]; |
| 617 } |
| 618 } |
| 619 stateProps[state]|=(int8_t)((min>>5)<<3); |
| 620 |
| 621 /* find last non-ignorable state */ |
| 622 for(max=0xff; min<max; --max) { |
| 623 entry=row[max]; |
| 624 nextState=MBCS_ENTRY_STATE(entry); |
| 625 if(stateProps[nextState]==-1) { |
| 626 getStateProp(stateTable, stateProps, nextState); |
| 627 } |
| 628 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 629 if(stateProps[nextState]>=0) { |
| 630 break; |
| 631 } |
| 632 } else if(MBCS_ENTRY_FINAL_ACTION(entry)<MBCS_STATE_UNASSIGNED) { |
| 633 break; |
| 634 } |
| 635 } |
| 636 stateProps[state]|=(int8_t)(max>>5); |
| 637 |
| 638 /* recurse further and collect direct-state information */ |
| 639 while(min<=max) { |
| 640 entry=row[min]; |
| 641 nextState=MBCS_ENTRY_STATE(entry); |
| 642 if(stateProps[nextState]==-1) { |
| 643 getStateProp(stateTable, stateProps, nextState); |
| 644 } |
| 645 if(MBCS_ENTRY_IS_FINAL(entry)) { |
| 646 stateProps[nextState]|=0x40; |
| 647 if(MBCS_ENTRY_FINAL_ACTION(entry)<=MBCS_STATE_FALLBACK_DIRECT_20) { |
| 648 stateProps[state]|=0x40; |
| 649 } |
| 650 } |
| 651 ++min; |
| 652 } |
| 653 return stateProps[state]; |
| 654 } |
| 655 |
| 656 /* |
| 657 * Internal function enumerating the toUnicode data of an MBCS converter. |
| 658 * Currently only used for reconstituting data for a MBCS_OPT_NO_FROM_U |
| 659 * table, but could also be used for a future ucnv_getUnicodeSet() option |
| 660 * that includes reverse fallbacks (after updating this function's implementatio
n). |
| 661 * Currently only handles roundtrip mappings. |
| 662 * Does not currently handle extensions. |
| 663 */ |
| 664 static void |
| 665 ucnv_MBCSEnumToUnicode(UConverterMBCSTable *mbcsTable, |
| 666 UConverterEnumToUCallback *callback, const void *context, |
| 667 UErrorCode *pErrorCode) { |
| 668 /* |
| 669 * Properties for each state, to speed up the enumeration. |
| 670 * Ignorable actions are unassigned/illegal/state-change-only: |
| 671 * They do not lead to mappings. |
| 672 * |
| 673 * Bits 7..6: |
| 674 * 1 direct/initial state (stateful converters have multiple) |
| 675 * 0 non-initial state with transitions or with non-ignorable result actions |
| 676 * -1 final state with only ignorable actions |
| 677 * |
| 678 * Bits 5..3: |
| 679 * The lowest byte value with non-ignorable actions is |
| 680 * value<<5 (rounded down). |
| 681 * |
| 682 * Bits 2..0: |
| 683 * The highest byte value with non-ignorable actions is |
| 684 * (value<<5)&0x1f (rounded up). |
| 685 */ |
| 686 int8_t stateProps[MBCS_MAX_STATE_COUNT]; |
| 687 int32_t state; |
| 688 |
| 689 uprv_memset(stateProps, -1, sizeof(stateProps)); |
| 690 |
| 691 /* recurse from state 0 and set all stateProps */ |
| 692 getStateProp(mbcsTable->stateTable, stateProps, 0); |
| 693 |
| 694 for(state=0; state<mbcsTable->countStates; ++state) { |
| 695 /*if(stateProps[state]==-1) { |
| 696 printf("unused/unreachable <icu:state> %d\n", state); |
| 697 }*/ |
| 698 if(stateProps[state]>=0x40) { |
| 699 /* start from each direct state */ |
| 700 enumToU( |
| 701 mbcsTable, stateProps, state, 0, 0, |
| 702 callback, context, |
| 703 pErrorCode); |
| 704 } |
| 705 } |
| 706 } |
| 707 |
| 708 U_CFUNC void |
| 709 ucnv_MBCSGetFilteredUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
| 710 const USetAdder *sa, |
| 711 UConverterUnicodeSet which, |
| 712 UConverterSetFilter filter, |
| 713 UErrorCode *pErrorCode) { |
| 714 const UConverterMBCSTable *mbcsTable; |
| 715 const uint16_t *table; |
| 716 |
| 717 uint32_t st3; |
| 718 uint16_t st1, maxStage1, st2; |
| 719 |
| 720 UChar32 c; |
| 721 |
| 722 /* enumerate the from-Unicode trie table */ |
| 723 mbcsTable=&sharedData->mbcs; |
| 724 table=mbcsTable->fromUnicodeTable; |
| 725 if(mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY) { |
| 726 maxStage1=0x440; |
| 727 } else { |
| 728 maxStage1=0x40; |
| 729 } |
| 730 |
| 731 c=0; /* keep track of the current code point while enumerating */ |
| 732 |
| 733 if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 734 const uint16_t *stage2, *stage3, *results; |
| 735 uint16_t minValue; |
| 736 |
| 737 results=(const uint16_t *)mbcsTable->fromUnicodeBytes; |
| 738 |
| 739 /* |
| 740 * Set a threshold variable for selecting which mappings to use. |
| 741 * See ucnv_MBCSSingleFromBMPWithOffsets() and |
| 742 * MBCS_SINGLE_RESULT_FROM_U() for details. |
| 743 */ |
| 744 if(which==UCNV_ROUNDTRIP_SET) { |
| 745 /* use only roundtrips */ |
| 746 minValue=0xf00; |
| 747 } else /* UCNV_ROUNDTRIP_AND_FALLBACK_SET */ { |
| 748 /* use all roundtrip and fallback results */ |
| 749 minValue=0x800; |
| 750 } |
| 751 |
| 752 for(st1=0; st1<maxStage1; ++st1) { |
| 753 st2=table[st1]; |
| 754 if(st2>maxStage1) { |
| 755 stage2=table+st2; |
| 756 for(st2=0; st2<64; ++st2) { |
| 757 if((st3=stage2[st2])!=0) { |
| 758 /* read the stage 3 block */ |
| 759 stage3=results+st3; |
| 760 |
| 761 do { |
| 762 if(*stage3++>=minValue) { |
| 763 sa->add(sa->set, c); |
| 764 } |
| 765 } while((++c&0xf)!=0); |
| 766 } else { |
| 767 c+=16; /* empty stage 3 block */ |
| 768 } |
| 769 } |
| 770 } else { |
| 771 c+=1024; /* empty stage 2 block */ |
| 772 } |
| 773 } |
| 774 } else { |
| 775 const uint32_t *stage2; |
| 776 const uint8_t *stage3, *bytes; |
| 777 uint32_t st3Multiplier; |
| 778 uint32_t value; |
| 779 UBool useFallback; |
| 780 |
| 781 bytes=mbcsTable->fromUnicodeBytes; |
| 782 |
| 783 useFallback=(UBool)(which==UCNV_ROUNDTRIP_AND_FALLBACK_SET); |
| 784 |
| 785 switch(mbcsTable->outputType) { |
| 786 case MBCS_OUTPUT_3: |
| 787 case MBCS_OUTPUT_4_EUC: |
| 788 st3Multiplier=3; |
| 789 break; |
| 790 case MBCS_OUTPUT_4: |
| 791 st3Multiplier=4; |
| 792 break; |
| 793 default: |
| 794 st3Multiplier=2; |
| 795 break; |
| 796 } |
| 797 |
| 798 for(st1=0; st1<maxStage1; ++st1) { |
| 799 st2=table[st1]; |
| 800 if(st2>(maxStage1>>1)) { |
| 801 stage2=(const uint32_t *)table+st2; |
| 802 for(st2=0; st2<64; ++st2) { |
| 803 if((st3=stage2[st2])!=0) { |
| 804 /* read the stage 3 block */ |
| 805 stage3=bytes+st3Multiplier*16*(uint32_t)(uint16_t)st3; |
| 806 |
| 807 /* get the roundtrip flags for the stage 3 block */ |
| 808 st3>>=16; |
| 809 |
| 810 /* |
| 811 * Add code points for which the roundtrip flag is set, |
| 812 * or which map to non-zero bytes if we use fallbacks. |
| 813 * See ucnv_MBCSFromUnicodeWithOffsets() for details. |
| 814 */ |
| 815 switch(filter) { |
| 816 case UCNV_SET_FILTER_NONE: |
| 817 do { |
| 818 if(st3&1) { |
| 819 sa->add(sa->set, c); |
| 820 stage3+=st3Multiplier; |
| 821 } else if(useFallback) { |
| 822 uint8_t b=0; |
| 823 switch(st3Multiplier) { |
| 824 case 4: |
| 825 b|=*stage3++; |
| 826 case 3: |
| 827 b|=*stage3++; |
| 828 case 2: |
| 829 b|=stage3[0]|stage3[1]; |
| 830 stage3+=2; |
| 831 default: |
| 832 break; |
| 833 } |
| 834 if(b!=0) { |
| 835 sa->add(sa->set, c); |
| 836 } |
| 837 } |
| 838 st3>>=1; |
| 839 } while((++c&0xf)!=0); |
| 840 break; |
| 841 case UCNV_SET_FILTER_DBCS_ONLY: |
| 842 /* Ignore single-byte results (<0x100). */ |
| 843 do { |
| 844 if(((st3&1)!=0 || useFallback) && *((const uint1
6_t *)stage3)>=0x100) { |
| 845 sa->add(sa->set, c); |
| 846 } |
| 847 st3>>=1; |
| 848 stage3+=2; /* +=st3Multiplier */ |
| 849 } while((++c&0xf)!=0); |
| 850 break; |
| 851 case UCNV_SET_FILTER_2022_CN: |
| 852 /* Only add code points that map to CNS 11643 plane
s 1 & 2 for non-EXT ISO-2022-CN. */ |
| 853 do { |
| 854 if(((st3&1)!=0 || useFallback) && ((value=*stage
3)==0x81 || value==0x82)) { |
| 855 sa->add(sa->set, c); |
| 856 } |
| 857 st3>>=1; |
| 858 stage3+=3; /* +=st3Multiplier */ |
| 859 } while((++c&0xf)!=0); |
| 860 break; |
| 861 case UCNV_SET_FILTER_SJIS: |
| 862 /* Only add code points that map to Shift-JIS codes
corresponding to JIS X 0208. */ |
| 863 do { |
| 864 if(((st3&1)!=0 || useFallback) && (value=*((cons
t uint16_t *)stage3))>=0x8140 && value<=0xeffc) { |
| 865 sa->add(sa->set, c); |
| 866 } |
| 867 st3>>=1; |
| 868 stage3+=2; /* +=st3Multiplier */ |
| 869 } while((++c&0xf)!=0); |
| 870 break; |
| 871 case UCNV_SET_FILTER_GR94DBCS: |
| 872 /* Only add code points that map to ISO 2022 GR 94 D
BCS codes (each byte A1..FE). */ |
| 873 do { |
| 874 if( ((st3&1)!=0 || useFallback) && |
| 875 (uint16_t)((value=*((const uint16_t *)stage3
)) - 0xa1a1)<=(0xfefe - 0xa1a1) && |
| 876 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
| 877 ) { |
| 878 sa->add(sa->set, c); |
| 879 } |
| 880 st3>>=1; |
| 881 stage3+=2; /* +=st3Multiplier */ |
| 882 } while((++c&0xf)!=0); |
| 883 break; |
| 884 case UCNV_SET_FILTER_HZ: |
| 885 /* Only add code points that are suitable for HZ DBC
S (lead byte A1..FD). */ |
| 886 do { |
| 887 if( ((st3&1)!=0 || useFallback) && |
| 888 (uint16_t)((value=*((const uint16_t *)stage3
))-0xa1a1)<=(0xfdfe - 0xa1a1) && |
| 889 (uint8_t)(value-0xa1)<=(0xfe - 0xa1) |
| 890 ) { |
| 891 sa->add(sa->set, c); |
| 892 } |
| 893 st3>>=1; |
| 894 stage3+=2; /* +=st3Multiplier */ |
| 895 } while((++c&0xf)!=0); |
| 896 break; |
| 897 default: |
| 898 *pErrorCode=U_INTERNAL_PROGRAM_ERROR; |
| 899 return; |
| 900 } |
| 901 } else { |
| 902 c+=16; /* empty stage 3 block */ |
| 903 } |
| 904 } |
| 905 } else { |
| 906 c+=1024; /* empty stage 2 block */ |
| 907 } |
| 908 } |
| 909 } |
| 910 |
| 911 ucnv_extGetUnicodeSet(sharedData, sa, which, filter, pErrorCode); |
| 912 } |
| 913 |
| 914 U_CFUNC void |
| 915 ucnv_MBCSGetUnicodeSetForUnicode(const UConverterSharedData *sharedData, |
| 916 const USetAdder *sa, |
| 917 UConverterUnicodeSet which, |
| 918 UErrorCode *pErrorCode) { |
| 919 ucnv_MBCSGetFilteredUnicodeSetForUnicode( |
| 920 sharedData, sa, which, |
| 921 sharedData->mbcs.outputType==MBCS_OUTPUT_DBCS_ONLY ? |
| 922 UCNV_SET_FILTER_DBCS_ONLY : |
| 923 UCNV_SET_FILTER_NONE, |
| 924 pErrorCode); |
| 925 } |
| 926 |
| 927 static void |
| 928 ucnv_MBCSGetUnicodeSet(const UConverter *cnv, |
| 929 const USetAdder *sa, |
| 930 UConverterUnicodeSet which, |
| 931 UErrorCode *pErrorCode) { |
| 932 if(cnv->options&_MBCS_OPTION_GB18030) { |
| 933 sa->addRange(sa->set, 0, 0xd7ff); |
| 934 sa->addRange(sa->set, 0xe000, 0x10ffff); |
| 935 } else { |
| 936 ucnv_MBCSGetUnicodeSetForUnicode(cnv->sharedData, sa, which, pErrorCode)
; |
| 937 } |
| 938 } |
| 939 |
| 940 /* conversion extensions for input not in the main table -------------------- */ |
| 941 |
| 942 /* |
| 943 * Hardcoded extension handling for GB 18030. |
| 944 * Definition of LINEAR macros and gb18030Ranges see near the beginning of the f
ile. |
| 945 * |
| 946 * In the future, conversion extensions may handle m:n mappings and delta tables
, |
| 947 * see http://source.icu-project.org/repos/icu/icuhtml/trunk/design/conversion/c
onversion_extensions.html |
| 948 * |
| 949 * If an input character cannot be mapped, then these functions set an error |
| 950 * code. The framework will then call the callback function. |
| 951 */ |
| 952 |
| 953 /* |
| 954 * @return if(U_FAILURE) return the code point for cnv->fromUChar32 |
| 955 * else return 0 after output has been written to the target |
| 956 */ |
| 957 static UChar32 |
| 958 _extFromU(UConverter *cnv, const UConverterSharedData *sharedData, |
| 959 UChar32 cp, |
| 960 const UChar **source, const UChar *sourceLimit, |
| 961 uint8_t **target, const uint8_t *targetLimit, |
| 962 int32_t **offsets, int32_t sourceIndex, |
| 963 UBool flush, |
| 964 UErrorCode *pErrorCode) { |
| 965 const int32_t *cx; |
| 966 |
| 967 cnv->useSubChar1=FALSE; |
| 968 |
| 969 if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
| 970 ucnv_extInitialMatchFromU( |
| 971 cnv, cx, |
| 972 cp, source, sourceLimit, |
| 973 (char **)target, (char *)targetLimit, |
| 974 offsets, sourceIndex, |
| 975 flush, |
| 976 pErrorCode) |
| 977 ) { |
| 978 return 0; /* an extension mapping handled the input */ |
| 979 } |
| 980 |
| 981 /* GB 18030 */ |
| 982 if((cnv->options&_MBCS_OPTION_GB18030)!=0) { |
| 983 const uint32_t *range; |
| 984 int32_t i; |
| 985 |
| 986 range=gb18030Ranges[0]; |
| 987 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i
) { |
| 988 if(range[0]<=(uint32_t)cp && (uint32_t)cp<=range[1]) { |
| 989 /* found the Unicode code point, output the four-byte sequence f
or it */ |
| 990 uint32_t linear; |
| 991 char bytes[4]; |
| 992 |
| 993 /* get the linear value of the first GB 18030 code in this range
*/ |
| 994 linear=range[2]-LINEAR_18030_BASE; |
| 995 |
| 996 /* add the offset from the beginning of the range */ |
| 997 linear+=((uint32_t)cp-range[0]); |
| 998 |
| 999 /* turn this into a four-byte sequence */ |
| 1000 bytes[3]=(char)(0x30+linear%10); linear/=10; |
| 1001 bytes[2]=(char)(0x81+linear%126); linear/=126; |
| 1002 bytes[1]=(char)(0x30+linear%10); linear/=10; |
| 1003 bytes[0]=(char)(0x81+linear); |
| 1004 |
| 1005 /* output this sequence */ |
| 1006 ucnv_fromUWriteBytes(cnv, |
| 1007 bytes, 4, (char **)target, (char *)targetLi
mit, |
| 1008 offsets, sourceIndex, pErrorCode); |
| 1009 return 0; |
| 1010 } |
| 1011 } |
| 1012 } |
| 1013 |
| 1014 /* no mapping */ |
| 1015 *pErrorCode=U_INVALID_CHAR_FOUND; |
| 1016 return cp; |
| 1017 } |
| 1018 |
| 1019 /* |
| 1020 * Input sequence: cnv->toUBytes[0..length[ |
| 1021 * @return if(U_FAILURE) return the length (toULength, byteIndex) for the input |
| 1022 * else return 0 after output has been written to the target |
| 1023 */ |
| 1024 static int8_t |
| 1025 _extToU(UConverter *cnv, const UConverterSharedData *sharedData, |
| 1026 int8_t length, |
| 1027 const uint8_t **source, const uint8_t *sourceLimit, |
| 1028 UChar **target, const UChar *targetLimit, |
| 1029 int32_t **offsets, int32_t sourceIndex, |
| 1030 UBool flush, |
| 1031 UErrorCode *pErrorCode) { |
| 1032 const int32_t *cx; |
| 1033 |
| 1034 if( (cx=sharedData->mbcs.extIndexes)!=NULL && |
| 1035 ucnv_extInitialMatchToU( |
| 1036 cnv, cx, |
| 1037 length, (const char **)source, (const char *)sourceLimit, |
| 1038 target, targetLimit, |
| 1039 offsets, sourceIndex, |
| 1040 flush, |
| 1041 pErrorCode) |
| 1042 ) { |
| 1043 return 0; /* an extension mapping handled the input */ |
| 1044 } |
| 1045 |
| 1046 /* GB 18030 */ |
| 1047 if(length==4 && (cnv->options&_MBCS_OPTION_GB18030)!=0) { |
| 1048 const uint32_t *range; |
| 1049 uint32_t linear; |
| 1050 int32_t i; |
| 1051 |
| 1052 linear=LINEAR_18030(cnv->toUBytes[0], cnv->toUBytes[1], cnv->toUBytes[2]
, cnv->toUBytes[3]); |
| 1053 range=gb18030Ranges[0]; |
| 1054 for(i=0; i<sizeof(gb18030Ranges)/sizeof(gb18030Ranges[0]); range+=4, ++i
) { |
| 1055 if(range[2]<=linear && linear<=range[3]) { |
| 1056 /* found the sequence, output the Unicode code point for it */ |
| 1057 *pErrorCode=U_ZERO_ERROR; |
| 1058 |
| 1059 /* add the linear difference between the input and start sequenc
es to the start code point */ |
| 1060 linear=range[0]+(linear-range[2]); |
| 1061 |
| 1062 /* output this code point */ |
| 1063 ucnv_toUWriteCodePoint(cnv, linear, target, targetLimit, offsets
, sourceIndex, pErrorCode); |
| 1064 |
| 1065 return 0; |
| 1066 } |
| 1067 } |
| 1068 } |
| 1069 |
| 1070 /* no mapping */ |
| 1071 *pErrorCode=U_INVALID_CHAR_FOUND; |
| 1072 return length; |
| 1073 } |
| 1074 |
| 1075 /* EBCDIC swap LF<->NL ------------------------------------------------------ */ |
| 1076 |
| 1077 /* |
| 1078 * This code modifies a standard EBCDIC<->Unicode mapping table for |
| 1079 * OS/390 (z/OS) Unix System Services (Open Edition). |
| 1080 * The difference is in the mapping of Line Feed and New Line control codes: |
| 1081 * Standard EBCDIC maps |
| 1082 * |
| 1083 * <U000A> \x25 |0 |
| 1084 * <U0085> \x15 |0 |
| 1085 * |
| 1086 * but OS/390 USS EBCDIC swaps the control codes for LF and NL, |
| 1087 * mapping |
| 1088 * |
| 1089 * <U000A> \x15 |0 |
| 1090 * <U0085> \x25 |0 |
| 1091 * |
| 1092 * This code modifies a loaded standard EBCDIC<->Unicode mapping table |
| 1093 * by copying it into allocated memory and swapping the LF and NL values. |
| 1094 * It allows to support the same EBCDIC charset in both versions without |
| 1095 * duplicating the entire installed table. |
| 1096 */ |
| 1097 |
| 1098 /* standard EBCDIC codes */ |
| 1099 #define EBCDIC_LF 0x25 |
| 1100 #define EBCDIC_NL 0x15 |
| 1101 |
| 1102 /* standard EBCDIC codes with roundtrip flag as stored in Unicode-to-single-byte
tables */ |
| 1103 #define EBCDIC_RT_LF 0xf25 |
| 1104 #define EBCDIC_RT_NL 0xf15 |
| 1105 |
| 1106 /* Unicode code points */ |
| 1107 #define U_LF 0x0a |
| 1108 #define U_NL 0x85 |
| 1109 |
| 1110 static UBool |
| 1111 _EBCDICSwapLFNL(UConverterSharedData *sharedData, UErrorCode *pErrorCode) { |
| 1112 UConverterMBCSTable *mbcsTable; |
| 1113 |
| 1114 const uint16_t *table, *results; |
| 1115 const uint8_t *bytes; |
| 1116 |
| 1117 int32_t (*newStateTable)[256]; |
| 1118 uint16_t *newResults; |
| 1119 uint8_t *p; |
| 1120 char *name; |
| 1121 |
| 1122 uint32_t stage2Entry; |
| 1123 uint32_t size, sizeofFromUBytes; |
| 1124 |
| 1125 mbcsTable=&sharedData->mbcs; |
| 1126 |
| 1127 table=mbcsTable->fromUnicodeTable; |
| 1128 bytes=mbcsTable->fromUnicodeBytes; |
| 1129 results=(const uint16_t *)bytes; |
| 1130 |
| 1131 /* |
| 1132 * Check that this is an EBCDIC table with SBCS portion - |
| 1133 * SBCS or EBCDIC_STATEFUL with standard EBCDIC LF and NL mappings. |
| 1134 * |
| 1135 * If not, ignore the option. Options are always ignored if they do not appl
y. |
| 1136 */ |
| 1137 if(!( |
| 1138 (mbcsTable->outputType==MBCS_OUTPUT_1 || mbcsTable->outputType==MBCS_OU
TPUT_2_SISO) && |
| 1139 mbcsTable->stateTable[0][EBCDIC_LF]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VAL
ID_DIRECT_16, U_LF) && |
| 1140 mbcsTable->stateTable[0][EBCDIC_NL]==MBCS_ENTRY_FINAL(0, MBCS_STATE_VAL
ID_DIRECT_16, U_NL) |
| 1141 )) { |
| 1142 return FALSE; |
| 1143 } |
| 1144 |
| 1145 if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 1146 if(!( |
| 1147 EBCDIC_RT_LF==MBCS_SINGLE_RESULT_FROM_U(table, results, U_LF) && |
| 1148 EBCDIC_RT_NL==MBCS_SINGLE_RESULT_FROM_U(table, results, U_NL) |
| 1149 )) { |
| 1150 return FALSE; |
| 1151 } |
| 1152 } else /* MBCS_OUTPUT_2_SISO */ { |
| 1153 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
| 1154 if(!( |
| 1155 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_LF)!=0 && |
| 1156 EBCDIC_LF==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_LF) |
| 1157 )) { |
| 1158 return FALSE; |
| 1159 } |
| 1160 |
| 1161 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
| 1162 if(!( |
| 1163 MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, U_NL)!=0 && |
| 1164 EBCDIC_NL==MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, U_NL) |
| 1165 )) { |
| 1166 return FALSE; |
| 1167 } |
| 1168 } |
| 1169 |
| 1170 if(mbcsTable->fromUBytesLength>0) { |
| 1171 /* |
| 1172 * We _know_ the number of bytes in the fromUnicodeBytes array |
| 1173 * starting with header.version 4.1. |
| 1174 */ |
| 1175 sizeofFromUBytes=mbcsTable->fromUBytesLength; |
| 1176 } else { |
| 1177 /* |
| 1178 * Otherwise: |
| 1179 * There used to be code to enumerate the fromUnicode |
| 1180 * trie and find the highest entry, but it was removed in ICU 3.2 |
| 1181 * because it was not tested and caused a low code coverage number. |
| 1182 * See Jitterbug 3674. |
| 1183 * This affects only some .cnv file formats with a header.version |
| 1184 * below 4.1, and only when swaplfnl is requested. |
| 1185 * |
| 1186 * ucnvmbcs.c revision 1.99 is the last one with the |
| 1187 * ucnv_MBCSSizeofFromUBytes() function. |
| 1188 */ |
| 1189 *pErrorCode=U_INVALID_FORMAT_ERROR; |
| 1190 return FALSE; |
| 1191 } |
| 1192 |
| 1193 /* |
| 1194 * The table has an appropriate format. |
| 1195 * Allocate and build |
| 1196 * - a modified to-Unicode state table |
| 1197 * - a modified from-Unicode output array |
| 1198 * - a converter name string with the swap option appended |
| 1199 */ |
| 1200 size= |
| 1201 mbcsTable->countStates*1024+ |
| 1202 sizeofFromUBytes+ |
| 1203 UCNV_MAX_CONVERTER_NAME_LENGTH+20; |
| 1204 p=(uint8_t *)uprv_malloc(size); |
| 1205 if(p==NULL) { |
| 1206 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1207 return FALSE; |
| 1208 } |
| 1209 |
| 1210 /* copy and modify the to-Unicode state table */ |
| 1211 newStateTable=(int32_t (*)[256])p; |
| 1212 uprv_memcpy(newStateTable, mbcsTable->stateTable, mbcsTable->countStates*102
4); |
| 1213 |
| 1214 newStateTable[0][EBCDIC_LF]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16,
U_NL); |
| 1215 newStateTable[0][EBCDIC_NL]=MBCS_ENTRY_FINAL(0, MBCS_STATE_VALID_DIRECT_16,
U_LF); |
| 1216 |
| 1217 /* copy and modify the from-Unicode result table */ |
| 1218 newResults=(uint16_t *)newStateTable[mbcsTable->countStates]; |
| 1219 uprv_memcpy(newResults, bytes, sizeofFromUBytes); |
| 1220 |
| 1221 /* conveniently, the table access macros work on the left side of expression
s */ |
| 1222 if(mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 1223 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_LF)=EBCDIC_RT_NL; |
| 1224 MBCS_SINGLE_RESULT_FROM_U(table, newResults, U_NL)=EBCDIC_RT_LF; |
| 1225 } else /* MBCS_OUTPUT_2_SISO */ { |
| 1226 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_LF); |
| 1227 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_LF)=EBCDIC_NL; |
| 1228 |
| 1229 stage2Entry=MBCS_STAGE_2_FROM_U(table, U_NL); |
| 1230 MBCS_VALUE_2_FROM_STAGE_2(newResults, stage2Entry, U_NL)=EBCDIC_LF; |
| 1231 } |
| 1232 |
| 1233 /* set the canonical converter name */ |
| 1234 name=(char *)newResults+sizeofFromUBytes; |
| 1235 uprv_strcpy(name, sharedData->staticData->name); |
| 1236 uprv_strcat(name, UCNV_SWAP_LFNL_OPTION_STRING); |
| 1237 |
| 1238 /* set the pointers */ |
| 1239 umtx_lock(NULL); |
| 1240 if(mbcsTable->swapLFNLStateTable==NULL) { |
| 1241 mbcsTable->swapLFNLStateTable=newStateTable; |
| 1242 mbcsTable->swapLFNLFromUnicodeBytes=(uint8_t *)newResults; |
| 1243 mbcsTable->swapLFNLName=name; |
| 1244 |
| 1245 newStateTable=NULL; |
| 1246 } |
| 1247 umtx_unlock(NULL); |
| 1248 |
| 1249 /* release the allocated memory if another thread beat us to it */ |
| 1250 if(newStateTable!=NULL) { |
| 1251 uprv_free(newStateTable); |
| 1252 } |
| 1253 return TRUE; |
| 1254 } |
| 1255 |
| 1256 /* reconstitute omitted fromUnicode data ------------------------------------ */ |
| 1257 |
| 1258 /* for details, compare with genmbcs.c MBCSAddFromUnicode() and transformEUC() *
/ |
| 1259 static UBool U_CALLCONV |
| 1260 writeStage3Roundtrip(const void *context, uint32_t value, UChar32 codePoints[32]
) { |
| 1261 UConverterMBCSTable *mbcsTable=(UConverterMBCSTable *)context; |
| 1262 const uint16_t *table; |
| 1263 uint32_t *stage2; |
| 1264 uint8_t *bytes, *p; |
| 1265 UChar32 c; |
| 1266 int32_t i, st3; |
| 1267 |
| 1268 table=mbcsTable->fromUnicodeTable; |
| 1269 bytes=(uint8_t *)mbcsTable->fromUnicodeBytes; |
| 1270 |
| 1271 /* for EUC outputTypes, modify the value like genmbcs.c's transformEUC() */ |
| 1272 switch(mbcsTable->outputType) { |
| 1273 case MBCS_OUTPUT_3_EUC: |
| 1274 if(value<=0xffff) { |
| 1275 /* short sequences are stored directly */ |
| 1276 /* code set 0 or 1 */ |
| 1277 } else if(value<=0x8effff) { |
| 1278 /* code set 2 */ |
| 1279 value&=0x7fff; |
| 1280 } else /* first byte is 0x8f */ { |
| 1281 /* code set 3 */ |
| 1282 value&=0xff7f; |
| 1283 } |
| 1284 break; |
| 1285 case MBCS_OUTPUT_4_EUC: |
| 1286 if(value<=0xffffff) { |
| 1287 /* short sequences are stored directly */ |
| 1288 /* code set 0 or 1 */ |
| 1289 } else if(value<=0x8effffff) { |
| 1290 /* code set 2 */ |
| 1291 value&=0x7fffff; |
| 1292 } else /* first byte is 0x8f */ { |
| 1293 /* code set 3 */ |
| 1294 value&=0xff7fff; |
| 1295 } |
| 1296 break; |
| 1297 default: |
| 1298 break; |
| 1299 } |
| 1300 |
| 1301 for(i=0; i<=0x1f; ++value, ++i) { |
| 1302 c=codePoints[i]; |
| 1303 if(c<0) { |
| 1304 continue; |
| 1305 } |
| 1306 |
| 1307 /* locate the stage 2 & 3 data */ |
| 1308 stage2=((uint32_t *)table)+table[c>>10]+((c>>4)&0x3f); |
| 1309 p=bytes; |
| 1310 st3=(int32_t)(uint16_t)*stage2*16+(c&0xf); |
| 1311 |
| 1312 /* write the codepage bytes into stage 3 */ |
| 1313 switch(mbcsTable->outputType) { |
| 1314 case MBCS_OUTPUT_3: |
| 1315 case MBCS_OUTPUT_4_EUC: |
| 1316 p+=st3*3; |
| 1317 p[0]=(uint8_t)(value>>16); |
| 1318 p[1]=(uint8_t)(value>>8); |
| 1319 p[2]=(uint8_t)value; |
| 1320 break; |
| 1321 case MBCS_OUTPUT_4: |
| 1322 ((uint32_t *)p)[st3]=value; |
| 1323 break; |
| 1324 default: |
| 1325 /* 2 bytes per character */ |
| 1326 ((uint16_t *)p)[st3]=(uint16_t)value; |
| 1327 break; |
| 1328 } |
| 1329 |
| 1330 /* set the roundtrip flag */ |
| 1331 *stage2|=(1UL<<(16+(c&0xf))); |
| 1332 } |
| 1333 return TRUE; |
| 1334 } |
| 1335 |
| 1336 static void |
| 1337 reconstituteData(UConverterMBCSTable *mbcsTable, |
| 1338 uint32_t stage1Length, uint32_t stage2Length, |
| 1339 uint32_t fullStage2Length, /* lengths are numbers of units, no
t bytes */ |
| 1340 UErrorCode *pErrorCode) { |
| 1341 uint16_t *stage1; |
| 1342 uint32_t *stage2; |
| 1343 uint8_t *bytes; |
| 1344 uint32_t dataLength=stage1Length*2+fullStage2Length*4+mbcsTable->fromUBytesL
ength; |
| 1345 mbcsTable->reconstitutedData=(uint8_t *)uprv_malloc(dataLength); |
| 1346 if(mbcsTable->reconstitutedData==NULL) { |
| 1347 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1348 return; |
| 1349 } |
| 1350 uprv_memset(mbcsTable->reconstitutedData, 0, dataLength); |
| 1351 |
| 1352 /* copy existing data and reroute the pointers */ |
| 1353 stage1=(uint16_t *)mbcsTable->reconstitutedData; |
| 1354 uprv_memcpy(stage1, mbcsTable->fromUnicodeTable, stage1Length*2); |
| 1355 |
| 1356 stage2=(uint32_t *)(stage1+stage1Length); |
| 1357 uprv_memcpy(stage2+(fullStage2Length-stage2Length), |
| 1358 mbcsTable->fromUnicodeTable+stage1Length, |
| 1359 stage2Length*4); |
| 1360 |
| 1361 mbcsTable->fromUnicodeTable=stage1; |
| 1362 mbcsTable->fromUnicodeBytes=bytes=(uint8_t *)(stage2+fullStage2Length); |
| 1363 |
| 1364 /* indexes into stage 2 count from the bottom of the fromUnicodeTable */ |
| 1365 stage2=(uint32_t *)stage1; |
| 1366 |
| 1367 /* reconstitute the initial part of stage 2 from the mbcsIndex */ |
| 1368 { |
| 1369 int32_t stageUTF8Length=((int32_t)mbcsTable->maxFastUChar+1)>>6; |
| 1370 int32_t stageUTF8Index=0; |
| 1371 int32_t st1, st2, st3, i; |
| 1372 |
| 1373 for(st1=0; stageUTF8Index<stageUTF8Length; ++st1) { |
| 1374 st2=stage1[st1]; |
| 1375 if(st2!=stage1Length/2) { |
| 1376 /* each stage 2 block has 64 entries corresponding to 16 entries
in the mbcsIndex */ |
| 1377 for(i=0; i<16; ++i) { |
| 1378 st3=mbcsTable->mbcsIndex[stageUTF8Index++]; |
| 1379 if(st3!=0) { |
| 1380 /* an stage 2 entry's index is per stage 3 16-block, not
per stage 3 entry */ |
| 1381 st3>>=4; |
| 1382 /* |
| 1383 * 4 stage 2 entries point to 4 consecutive stage 3 16-b
locks which are |
| 1384 * allocated together as a single 64-block for access fr
om the mbcsIndex |
| 1385 */ |
| 1386 stage2[st2++]=st3++; |
| 1387 stage2[st2++]=st3++; |
| 1388 stage2[st2++]=st3++; |
| 1389 stage2[st2++]=st3; |
| 1390 } else { |
| 1391 /* no stage 3 block, skip */ |
| 1392 st2+=4; |
| 1393 } |
| 1394 } |
| 1395 } else { |
| 1396 /* no stage 2 block, skip */ |
| 1397 stageUTF8Index+=16; |
| 1398 } |
| 1399 } |
| 1400 } |
| 1401 |
| 1402 /* reconstitute fromUnicodeBytes with roundtrips from toUnicode data */ |
| 1403 ucnv_MBCSEnumToUnicode(mbcsTable, writeStage3Roundtrip, mbcsTable, pErrorCod
e); |
| 1404 } |
| 1405 |
| 1406 /* MBCS setup functions ----------------------------------------------------- */ |
| 1407 |
| 1408 static void |
| 1409 ucnv_MBCSLoad(UConverterSharedData *sharedData, |
| 1410 UConverterLoadArgs *pArgs, |
| 1411 const uint8_t *raw, |
| 1412 UErrorCode *pErrorCode) { |
| 1413 UDataInfo info; |
| 1414 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
| 1415 _MBCSHeader *header=(_MBCSHeader *)raw; |
| 1416 uint32_t offset; |
| 1417 uint32_t headerLength; |
| 1418 UBool noFromU=FALSE; |
| 1419 |
| 1420 if(header->version[0]==4) { |
| 1421 headerLength=MBCS_HEADER_V4_LENGTH; |
| 1422 } else if(header->version[0]==5 && header->version[1]>=3 && |
| 1423 (header->options&MBCS_OPT_UNKNOWN_INCOMPATIBLE_MASK)==0) { |
| 1424 headerLength=header->options&MBCS_OPT_LENGTH_MASK; |
| 1425 noFromU=(UBool)((header->options&MBCS_OPT_NO_FROM_U)!=0); |
| 1426 } else { |
| 1427 *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1428 return; |
| 1429 } |
| 1430 |
| 1431 mbcsTable->outputType=(uint8_t)header->flags; |
| 1432 if(noFromU && mbcsTable->outputType==MBCS_OUTPUT_1) { |
| 1433 *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1434 return; |
| 1435 } |
| 1436 |
| 1437 /* extension data, header version 4.2 and higher */ |
| 1438 offset=header->flags>>8; |
| 1439 if(offset!=0) { |
| 1440 mbcsTable->extIndexes=(const int32_t *)(raw+offset); |
| 1441 } |
| 1442 |
| 1443 if(mbcsTable->outputType==MBCS_OUTPUT_EXT_ONLY) { |
| 1444 UConverterLoadArgs args={ 0 }; |
| 1445 UConverterSharedData *baseSharedData; |
| 1446 const int32_t *extIndexes; |
| 1447 const char *baseName; |
| 1448 |
| 1449 /* extension-only file, load the base table and set values appropriately
*/ |
| 1450 if((extIndexes=mbcsTable->extIndexes)==NULL) { |
| 1451 /* extension-only file without extension */ |
| 1452 *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1453 return; |
| 1454 } |
| 1455 |
| 1456 if(pArgs->nestedLoads!=1) { |
| 1457 /* an extension table must not be loaded as a base table */ |
| 1458 *pErrorCode=U_INVALID_TABLE_FILE; |
| 1459 return; |
| 1460 } |
| 1461 |
| 1462 /* load the base table */ |
| 1463 baseName=(const char *)header+headerLength*4; |
| 1464 if(0==uprv_strcmp(baseName, sharedData->staticData->name)) { |
| 1465 /* forbid loading this same extension-only file */ |
| 1466 *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1467 return; |
| 1468 } |
| 1469 |
| 1470 /* TODO parse package name out of the prefix of the base name in the ext
ension .cnv file? */ |
| 1471 args.size=sizeof(UConverterLoadArgs); |
| 1472 args.nestedLoads=2; |
| 1473 args.onlyTestIsLoadable=pArgs->onlyTestIsLoadable; |
| 1474 args.reserved=pArgs->reserved; |
| 1475 args.options=pArgs->options; |
| 1476 args.pkg=pArgs->pkg; |
| 1477 args.name=baseName; |
| 1478 baseSharedData=ucnv_load(&args, pErrorCode); |
| 1479 if(U_FAILURE(*pErrorCode)) { |
| 1480 return; |
| 1481 } |
| 1482 if( baseSharedData->staticData->conversionType!=UCNV_MBCS || |
| 1483 baseSharedData->mbcs.baseSharedData!=NULL |
| 1484 ) { |
| 1485 ucnv_unload(baseSharedData); |
| 1486 *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1487 return; |
| 1488 } |
| 1489 if(pArgs->onlyTestIsLoadable) { |
| 1490 /* |
| 1491 * Exit as soon as we know that we can load the converter |
| 1492 * and the format is valid and supported. |
| 1493 * The worst that can happen in the following code is a memory |
| 1494 * allocation error. |
| 1495 */ |
| 1496 ucnv_unload(baseSharedData); |
| 1497 return; |
| 1498 } |
| 1499 |
| 1500 /* copy the base table data */ |
| 1501 uprv_memcpy(mbcsTable, &baseSharedData->mbcs, sizeof(UConverterMBCSTable
)); |
| 1502 |
| 1503 /* overwrite values with relevant ones for the extension converter */ |
| 1504 mbcsTable->baseSharedData=baseSharedData; |
| 1505 mbcsTable->extIndexes=extIndexes; |
| 1506 |
| 1507 /* |
| 1508 * It would be possible to share the swapLFNL data with a base converter
, |
| 1509 * but the generated name would have to be different, and the memory |
| 1510 * would have to be free'd only once. |
| 1511 * It is easier to just create the data for the extension converter |
| 1512 * separately when it is requested. |
| 1513 */ |
| 1514 mbcsTable->swapLFNLStateTable=NULL; |
| 1515 mbcsTable->swapLFNLFromUnicodeBytes=NULL; |
| 1516 mbcsTable->swapLFNLName=NULL; |
| 1517 |
| 1518 /* |
| 1519 * The reconstitutedData must be deleted only when the base converter |
| 1520 * is unloaded. |
| 1521 */ |
| 1522 mbcsTable->reconstitutedData=NULL; |
| 1523 |
| 1524 /* |
| 1525 * Set a special, runtime-only outputType if the extension converter |
| 1526 * is a DBCS version of a base converter that also maps single bytes. |
| 1527 */ |
| 1528 if( sharedData->staticData->conversionType==UCNV_DBCS || |
| 1529 (sharedData->staticData->conversionType==UCNV_MBCS && |
| 1530 sharedData->staticData->minBytesPerChar>=2) |
| 1531 ) { |
| 1532 if(baseSharedData->mbcs.outputType==MBCS_OUTPUT_2_SISO) { |
| 1533 /* the base converter is SI/SO-stateful */ |
| 1534 int32_t entry; |
| 1535 |
| 1536 /* get the dbcs state from the state table entry for SO=0x0e */ |
| 1537 entry=mbcsTable->stateTable[0][0xe]; |
| 1538 if( MBCS_ENTRY_IS_FINAL(entry) && |
| 1539 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_CHANGE_ONLY && |
| 1540 MBCS_ENTRY_FINAL_STATE(entry)!=0 |
| 1541 ) { |
| 1542 mbcsTable->dbcsOnlyState=(uint8_t)MBCS_ENTRY_FINAL_STATE(ent
ry); |
| 1543 |
| 1544 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
| 1545 } |
| 1546 } else if( |
| 1547 baseSharedData->staticData->conversionType==UCNV_MBCS && |
| 1548 baseSharedData->staticData->minBytesPerChar==1 && |
| 1549 baseSharedData->staticData->maxBytesPerChar==2 && |
| 1550 mbcsTable->countStates<=127 |
| 1551 ) { |
| 1552 /* non-stateful base converter, need to modify the state table *
/ |
| 1553 int32_t (*newStateTable)[256]; |
| 1554 int32_t *state; |
| 1555 int32_t i, count; |
| 1556 |
| 1557 /* allocate a new state table and copy the base state table cont
ents */ |
| 1558 count=mbcsTable->countStates; |
| 1559 newStateTable=(int32_t (*)[256])uprv_malloc((count+1)*1024); |
| 1560 if(newStateTable==NULL) { |
| 1561 ucnv_unload(baseSharedData); |
| 1562 *pErrorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1563 return; |
| 1564 } |
| 1565 |
| 1566 uprv_memcpy(newStateTable, mbcsTable->stateTable, count*1024); |
| 1567 |
| 1568 /* change all final single-byte entries to go to a new all-illeg
al state */ |
| 1569 state=newStateTable[0]; |
| 1570 for(i=0; i<256; ++i) { |
| 1571 if(MBCS_ENTRY_IS_FINAL(state[i])) { |
| 1572 state[i]=MBCS_ENTRY_TRANSITION(count, 0); |
| 1573 } |
| 1574 } |
| 1575 |
| 1576 /* build the new all-illegal state */ |
| 1577 state=newStateTable[count]; |
| 1578 for(i=0; i<256; ++i) { |
| 1579 state[i]=MBCS_ENTRY_FINAL(0, MBCS_STATE_ILLEGAL, 0); |
| 1580 } |
| 1581 mbcsTable->stateTable=(const int32_t (*)[256])newStateTable; |
| 1582 mbcsTable->countStates=(uint8_t)(count+1); |
| 1583 mbcsTable->stateTableOwned=TRUE; |
| 1584 |
| 1585 mbcsTable->outputType=MBCS_OUTPUT_DBCS_ONLY; |
| 1586 } |
| 1587 } |
| 1588 |
| 1589 /* |
| 1590 * unlike below for files with base tables, do not get the unicodeMask |
| 1591 * from the sharedData; instead, use the base table's unicodeMask, |
| 1592 * which we copied in the memcpy above; |
| 1593 * this is necessary because the static data unicodeMask, especially |
| 1594 * the UCNV_HAS_SUPPLEMENTARY flag, is part of the base table data |
| 1595 */ |
| 1596 } else { |
| 1597 /* conversion file with a base table; an additional extension table is o
ptional */ |
| 1598 /* make sure that the output type is known */ |
| 1599 switch(mbcsTable->outputType) { |
| 1600 case MBCS_OUTPUT_1: |
| 1601 case MBCS_OUTPUT_2: |
| 1602 case MBCS_OUTPUT_3: |
| 1603 case MBCS_OUTPUT_4: |
| 1604 case MBCS_OUTPUT_3_EUC: |
| 1605 case MBCS_OUTPUT_4_EUC: |
| 1606 case MBCS_OUTPUT_2_SISO: |
| 1607 /* OK */ |
| 1608 break; |
| 1609 default: |
| 1610 *pErrorCode=U_INVALID_TABLE_FORMAT; |
| 1611 return; |
| 1612 } |
| 1613 if(pArgs->onlyTestIsLoadable) { |
| 1614 /* |
| 1615 * Exit as soon as we know that we can load the converter |
| 1616 * and the format is valid and supported. |
| 1617 * The worst that can happen in the following code is a memory |
| 1618 * allocation error. |
| 1619 */ |
| 1620 return; |
| 1621 } |
| 1622 |
| 1623 mbcsTable->countStates=(uint8_t)header->countStates; |
| 1624 mbcsTable->countToUFallbacks=header->countToUFallbacks; |
| 1625 mbcsTable->stateTable=(const int32_t (*)[256])(raw+headerLength*4); |
| 1626 mbcsTable->toUFallbacks=(const _MBCSToUFallback *)(mbcsTable->stateTable
+header->countStates); |
| 1627 mbcsTable->unicodeCodeUnits=(const uint16_t *)(raw+header->offsetToUCode
Units); |
| 1628 |
| 1629 mbcsTable->fromUnicodeTable=(const uint16_t *)(raw+header->offsetFromUTa
ble); |
| 1630 mbcsTable->fromUnicodeBytes=(const uint8_t *)(raw+header->offsetFromUByt
es); |
| 1631 mbcsTable->fromUBytesLength=header->fromUBytesLength; |
| 1632 |
| 1633 /* |
| 1634 * converter versions 6.1 and up contain a unicodeMask that is |
| 1635 * used here to select the most efficient function implementations |
| 1636 */ |
| 1637 info.size=sizeof(UDataInfo); |
| 1638 udata_getInfo((UDataMemory *)sharedData->dataMemory, &info); |
| 1639 if(info.formatVersion[0]>6 || (info.formatVersion[0]==6 && info.formatVe
rsion[1]>=1)) { |
| 1640 /* mask off possible future extensions to be safe */ |
| 1641 mbcsTable->unicodeMask=(uint8_t)(sharedData->staticData->unicodeMask
&3); |
| 1642 } else { |
| 1643 /* for older versions, assume worst case: contains anything possible
(prevent over-optimizations) */ |
| 1644 mbcsTable->unicodeMask=UCNV_HAS_SUPPLEMENTARY|UCNV_HAS_SURROGATES; |
| 1645 } |
| 1646 |
| 1647 /* |
| 1648 * _MBCSHeader.version 4.3 adds utf8Friendly data structures. |
| 1649 * Check for the header version, SBCS vs. MBCS, and for whether the |
| 1650 * data structures are optimized for code points as high as what the |
| 1651 * runtime code is designed for. |
| 1652 * The implementation does not handle mapping tables with entries for |
| 1653 * unpaired surrogates. |
| 1654 */ |
| 1655 if( header->version[1]>=3 && |
| 1656 (mbcsTable->unicodeMask&UCNV_HAS_SURROGATES)==0 && |
| 1657 (mbcsTable->countStates==1 ? |
| 1658 (header->version[2]>=(SBCS_FAST_MAX>>8)) : |
| 1659 (header->version[2]>=(MBCS_FAST_MAX>>8)) |
| 1660 ) |
| 1661 ) { |
| 1662 mbcsTable->utf8Friendly=TRUE; |
| 1663 |
| 1664 if(mbcsTable->countStates==1) { |
| 1665 /* |
| 1666 * SBCS: Stage 3 is allocated in 64-entry blocks for U+0000..SBC
S_FAST_MAX or higher. |
| 1667 * Build a table with indexes to each block, to be used instead
of |
| 1668 * the regular stage 1/2 table. |
| 1669 */ |
| 1670 int32_t i; |
| 1671 for(i=0; i<(SBCS_FAST_LIMIT>>6); ++i) { |
| 1672 mbcsTable->sbcsIndex[i]=mbcsTable->fromUnicodeTable[mbcsTabl
e->fromUnicodeTable[i>>4]+((i<<2)&0x3c)]; |
| 1673 } |
| 1674 /* set SBCS_FAST_MAX to reflect the reach of sbcsIndex[] even if
header->version[2]>(SBCS_FAST_MAX>>8) */ |
| 1675 mbcsTable->maxFastUChar=SBCS_FAST_MAX; |
| 1676 } else { |
| 1677 /* |
| 1678 * MBCS: Stage 3 is allocated in 64-entry blocks for U+0000..MBC
S_FAST_MAX or higher. |
| 1679 * The .cnv file is prebuilt with an additional stage table with
indexes |
| 1680 * to each block. |
| 1681 */ |
| 1682 mbcsTable->mbcsIndex=(const uint16_t *) |
| 1683 (mbcsTable->fromUnicodeBytes+ |
| 1684 (noFromU ? 0 : mbcsTable->fromUBytesLength)); |
| 1685 mbcsTable->maxFastUChar=(((UChar)header->version[2])<<8)|0xff; |
| 1686 } |
| 1687 } |
| 1688 |
| 1689 /* calculate a bit set of 4 ASCII characters per bit that round-trip to
ASCII bytes */ |
| 1690 { |
| 1691 uint32_t asciiRoundtrips=0xffffffff; |
| 1692 int32_t i; |
| 1693 |
| 1694 for(i=0; i<0x80; ++i) { |
| 1695 if(mbcsTable->stateTable[0][i]!=MBCS_ENTRY_FINAL(0, MBCS_STATE_V
ALID_DIRECT_16, i)) { |
| 1696 asciiRoundtrips&=~((uint32_t)1<<(i>>2)); |
| 1697 } |
| 1698 } |
| 1699 mbcsTable->asciiRoundtrips=asciiRoundtrips; |
| 1700 } |
| 1701 |
| 1702 if(noFromU) { |
| 1703 uint32_t stage1Length= |
| 1704 mbcsTable->unicodeMask&UCNV_HAS_SUPPLEMENTARY ? |
| 1705 0x440 : 0x40; |
| 1706 uint32_t stage2Length= |
| 1707 (header->offsetFromUBytes-header->offsetFromUTable)/4- |
| 1708 stage1Length/2; |
| 1709 reconstituteData(mbcsTable, stage1Length, stage2Length, header->full
Stage2Length, pErrorCode); |
| 1710 } |
| 1711 } |
| 1712 |
| 1713 /* Set the impl pointer here so that it is set for both extension-only and b
ase tables. */ |
| 1714 if(mbcsTable->utf8Friendly) { |
| 1715 if(mbcsTable->countStates==1) { |
| 1716 sharedData->impl=&_SBCSUTF8Impl; |
| 1717 } else { |
| 1718 if(mbcsTable->outputType==MBCS_OUTPUT_2) { |
| 1719 sharedData->impl=&_DBCSUTF8Impl; |
| 1720 } |
| 1721 } |
| 1722 } |
| 1723 |
| 1724 if(mbcsTable->outputType==MBCS_OUTPUT_DBCS_ONLY || mbcsTable->outputType==MB
CS_OUTPUT_2_SISO) { |
| 1725 /* |
| 1726 * MBCS_OUTPUT_DBCS_ONLY: No SBCS mappings, therefore ASCII does not rou
ndtrip. |
| 1727 * MBCS_OUTPUT_2_SISO: Bypass the ASCII fastpath to handle prevLength co
rrectly. |
| 1728 */ |
| 1729 mbcsTable->asciiRoundtrips=0; |
| 1730 } |
| 1731 } |
| 1732 |
| 1733 static void |
| 1734 ucnv_MBCSUnload(UConverterSharedData *sharedData) { |
| 1735 UConverterMBCSTable *mbcsTable=&sharedData->mbcs; |
| 1736 |
| 1737 if(mbcsTable->swapLFNLStateTable!=NULL) { |
| 1738 uprv_free(mbcsTable->swapLFNLStateTable); |
| 1739 } |
| 1740 if(mbcsTable->stateTableOwned) { |
| 1741 uprv_free((void *)mbcsTable->stateTable); |
| 1742 } |
| 1743 if(mbcsTable->baseSharedData!=NULL) { |
| 1744 ucnv_unload(mbcsTable->baseSharedData); |
| 1745 } |
| 1746 if(mbcsTable->reconstitutedData!=NULL) { |
| 1747 uprv_free(mbcsTable->reconstitutedData); |
| 1748 } |
| 1749 } |
| 1750 |
| 1751 static void |
| 1752 ucnv_MBCSOpen(UConverter *cnv, |
| 1753 UConverterLoadArgs *pArgs, |
| 1754 UErrorCode *pErrorCode) { |
| 1755 UConverterMBCSTable *mbcsTable; |
| 1756 const int32_t *extIndexes; |
| 1757 uint8_t outputType; |
| 1758 int8_t maxBytesPerUChar; |
| 1759 |
| 1760 if(pArgs->onlyTestIsLoadable) { |
| 1761 return; |
| 1762 } |
| 1763 |
| 1764 mbcsTable=&cnv->sharedData->mbcs; |
| 1765 outputType=mbcsTable->outputType; |
| 1766 |
| 1767 if(outputType==MBCS_OUTPUT_DBCS_ONLY) { |
| 1768 /* the swaplfnl option does not apply, remove it */ |
| 1769 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
| 1770 } |
| 1771 |
| 1772 if((pArgs->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 1773 /* do this because double-checked locking is broken */ |
| 1774 UBool isCached; |
| 1775 |
| 1776 umtx_lock(NULL); |
| 1777 isCached=mbcsTable->swapLFNLStateTable!=NULL; |
| 1778 umtx_unlock(NULL); |
| 1779 |
| 1780 if(!isCached) { |
| 1781 if(!_EBCDICSwapLFNL(cnv->sharedData, pErrorCode)) { |
| 1782 if(U_FAILURE(*pErrorCode)) { |
| 1783 return; /* something went wrong */ |
| 1784 } |
| 1785 |
| 1786 /* the option does not apply, remove it */ |
| 1787 cnv->options=pArgs->options&=~UCNV_OPTION_SWAP_LFNL; |
| 1788 } |
| 1789 } |
| 1790 } |
| 1791 |
| 1792 if(uprv_strstr(pArgs->name, "18030")!=NULL) { |
| 1793 if(uprv_strstr(pArgs->name, "gb18030")!=NULL || uprv_strstr(pArgs->name,
"GB18030")!=NULL) { |
| 1794 /* set a flag for GB 18030 mode, which changes the callback behavior
*/ |
| 1795 cnv->options|=_MBCS_OPTION_GB18030; |
| 1796 } |
| 1797 } else if((uprv_strstr(pArgs->name, "KEIS")!=NULL) || (uprv_strstr(pArgs->na
me, "keis")!=NULL)) { |
| 1798 /* set a flag for KEIS converter, which changes the SI/SO character sequ
ence */ |
| 1799 cnv->options|=_MBCS_OPTION_KEIS; |
| 1800 } else if((uprv_strstr(pArgs->name, "JEF")!=NULL) || (uprv_strstr(pArgs->nam
e, "jef")!=NULL)) { |
| 1801 /* set a flag for JEF converter, which changes the SI/SO character seque
nce */ |
| 1802 cnv->options|=_MBCS_OPTION_JEF; |
| 1803 } else if((uprv_strstr(pArgs->name, "JIPS")!=NULL) || (uprv_strstr(pArgs->na
me, "jips")!=NULL)) { |
| 1804 /* set a flag for JIPS converter, which changes the SI/SO character sequ
ence */ |
| 1805 cnv->options|=_MBCS_OPTION_JIPS; |
| 1806 } |
| 1807 |
| 1808 /* fix maxBytesPerUChar depending on outputType and options etc. */ |
| 1809 if(outputType==MBCS_OUTPUT_2_SISO) { |
| 1810 cnv->maxBytesPerUChar=3; /* SO+DBCS */ |
| 1811 } |
| 1812 |
| 1813 extIndexes=mbcsTable->extIndexes; |
| 1814 if(extIndexes!=NULL) { |
| 1815 maxBytesPerUChar=(int8_t)UCNV_GET_MAX_BYTES_PER_UCHAR(extIndexes); |
| 1816 if(outputType==MBCS_OUTPUT_2_SISO) { |
| 1817 ++maxBytesPerUChar; /* SO + multiple DBCS */ |
| 1818 } |
| 1819 |
| 1820 if(maxBytesPerUChar>cnv->maxBytesPerUChar) { |
| 1821 cnv->maxBytesPerUChar=maxBytesPerUChar; |
| 1822 } |
| 1823 } |
| 1824 |
| 1825 #if 0 |
| 1826 /* |
| 1827 * documentation of UConverter fields used for status |
| 1828 * all of these fields are (re)set to 0 by ucnv_bld.c and ucnv_reset() |
| 1829 */ |
| 1830 |
| 1831 /* toUnicode */ |
| 1832 cnv->toUnicodeStatus=0; /* offset */ |
| 1833 cnv->mode=0; /* state */ |
| 1834 cnv->toULength=0; /* byteIndex */ |
| 1835 |
| 1836 /* fromUnicode */ |
| 1837 cnv->fromUChar32=0; |
| 1838 cnv->fromUnicodeStatus=1; /* prevLength */ |
| 1839 #endif |
| 1840 } |
| 1841 |
| 1842 static const char * |
| 1843 ucnv_MBCSGetName(const UConverter *cnv) { |
| 1844 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0 && cnv->sharedData->mbcs.swapLFNL
Name!=NULL) { |
| 1845 return cnv->sharedData->mbcs.swapLFNLName; |
| 1846 } else { |
| 1847 return cnv->sharedData->staticData->name; |
| 1848 } |
| 1849 } |
| 1850 |
| 1851 /* MBCS-to-Unicode conversion functions ------------------------------------- */ |
| 1852 |
| 1853 static UChar32 |
| 1854 ucnv_MBCSGetFallback(UConverterMBCSTable *mbcsTable, uint32_t offset) { |
| 1855 const _MBCSToUFallback *toUFallbacks; |
| 1856 uint32_t i, start, limit; |
| 1857 |
| 1858 limit=mbcsTable->countToUFallbacks; |
| 1859 if(limit>0) { |
| 1860 /* do a binary search for the fallback mapping */ |
| 1861 toUFallbacks=mbcsTable->toUFallbacks; |
| 1862 start=0; |
| 1863 while(start<limit-1) { |
| 1864 i=(start+limit)/2; |
| 1865 if(offset<toUFallbacks[i].offset) { |
| 1866 limit=i; |
| 1867 } else { |
| 1868 start=i; |
| 1869 } |
| 1870 } |
| 1871 |
| 1872 /* did we really find it? */ |
| 1873 if(offset==toUFallbacks[start].offset) { |
| 1874 return toUFallbacks[start].codePoint; |
| 1875 } |
| 1876 } |
| 1877 |
| 1878 return 0xfffe; |
| 1879 } |
| 1880 |
| 1881 /* This version of ucnv_MBCSToUnicodeWithOffsets() is optimized for single-byte,
single-state codepages. */ |
| 1882 static void |
| 1883 ucnv_MBCSSingleToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 1884 UErrorCode *pErrorCode) { |
| 1885 UConverter *cnv; |
| 1886 const uint8_t *source, *sourceLimit; |
| 1887 UChar *target; |
| 1888 const UChar *targetLimit; |
| 1889 int32_t *offsets; |
| 1890 |
| 1891 const int32_t (*stateTable)[256]; |
| 1892 |
| 1893 int32_t sourceIndex; |
| 1894 |
| 1895 int32_t entry; |
| 1896 UChar c; |
| 1897 uint8_t action; |
| 1898 |
| 1899 /* set up the local pointers */ |
| 1900 cnv=pArgs->converter; |
| 1901 source=(const uint8_t *)pArgs->source; |
| 1902 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 1903 target=pArgs->target; |
| 1904 targetLimit=pArgs->targetLimit; |
| 1905 offsets=pArgs->offsets; |
| 1906 |
| 1907 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 1908 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; |
| 1909 } else { |
| 1910 stateTable=cnv->sharedData->mbcs.stateTable; |
| 1911 } |
| 1912 |
| 1913 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 1914 sourceIndex=0; |
| 1915 |
| 1916 /* conversion loop */ |
| 1917 while(source<sourceLimit) { |
| 1918 /* |
| 1919 * This following test is to see if available input would overflow the o
utput. |
| 1920 * It does not catch output of more than one code unit that |
| 1921 * overflows as a result of a surrogate pair or callback output |
| 1922 * from the last source byte. |
| 1923 * Therefore, those situations also test for overflows and will |
| 1924 * then break the loop, too. |
| 1925 */ |
| 1926 if(target>=targetLimit) { |
| 1927 /* target is full */ |
| 1928 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1929 break; |
| 1930 } |
| 1931 |
| 1932 entry=stateTable[0][*source++]; |
| 1933 /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 1934 |
| 1935 /* test the most common case first */ |
| 1936 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 1937 /* output BMP code point */ |
| 1938 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 1939 if(offsets!=NULL) { |
| 1940 *offsets++=sourceIndex; |
| 1941 } |
| 1942 |
| 1943 /* normal end of action codes: prepare for a new character */ |
| 1944 ++sourceIndex; |
| 1945 continue; |
| 1946 } |
| 1947 |
| 1948 /* |
| 1949 * An if-else-if chain provides more reliable performance for |
| 1950 * the most common cases compared to a switch. |
| 1951 */ |
| 1952 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 1953 if(action==MBCS_STATE_VALID_DIRECT_20 || |
| 1954 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv)
) |
| 1955 ) { |
| 1956 entry=MBCS_ENTRY_FINAL_VALUE(entry); |
| 1957 /* output surrogate pair */ |
| 1958 *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
| 1959 if(offsets!=NULL) { |
| 1960 *offsets++=sourceIndex; |
| 1961 } |
| 1962 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
| 1963 if(target<targetLimit) { |
| 1964 *target++=c; |
| 1965 if(offsets!=NULL) { |
| 1966 *offsets++=sourceIndex; |
| 1967 } |
| 1968 } else { |
| 1969 /* target overflow */ |
| 1970 cnv->UCharErrorBuffer[0]=c; |
| 1971 cnv->UCharErrorBufferLength=1; |
| 1972 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1973 break; |
| 1974 } |
| 1975 |
| 1976 ++sourceIndex; |
| 1977 continue; |
| 1978 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 1979 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 1980 /* output BMP code point */ |
| 1981 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 1982 if(offsets!=NULL) { |
| 1983 *offsets++=sourceIndex; |
| 1984 } |
| 1985 |
| 1986 ++sourceIndex; |
| 1987 continue; |
| 1988 } |
| 1989 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 1990 /* just fall through */ |
| 1991 } else if(action==MBCS_STATE_ILLEGAL) { |
| 1992 /* callback(illegal) */ |
| 1993 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 1994 } else { |
| 1995 /* reserved, must never occur */ |
| 1996 ++sourceIndex; |
| 1997 continue; |
| 1998 } |
| 1999 |
| 2000 if(U_FAILURE(*pErrorCode)) { |
| 2001 /* callback(illegal) */ |
| 2002 break; |
| 2003 } else /* unassigned sequences indicated with byteIndex>0 */ { |
| 2004 /* try an extension mapping */ |
| 2005 pArgs->source=(const char *)source; |
| 2006 cnv->toUBytes[0]=*(source-1); |
| 2007 cnv->toULength=_extToU(cnv, cnv->sharedData, |
| 2008 1, &source, sourceLimit, |
| 2009 &target, targetLimit, |
| 2010 &offsets, sourceIndex, |
| 2011 pArgs->flush, |
| 2012 pErrorCode); |
| 2013 sourceIndex+=1+(int32_t)(source-(const uint8_t *)pArgs->source); |
| 2014 |
| 2015 if(U_FAILURE(*pErrorCode)) { |
| 2016 /* not mappable or buffer overflow */ |
| 2017 break; |
| 2018 } |
| 2019 } |
| 2020 } |
| 2021 |
| 2022 /* write back the updated pointers */ |
| 2023 pArgs->source=(const char *)source; |
| 2024 pArgs->target=target; |
| 2025 pArgs->offsets=offsets; |
| 2026 } |
| 2027 |
| 2028 /* |
| 2029 * This version of ucnv_MBCSSingleToUnicodeWithOffsets() is optimized for single
-byte, single-state codepages |
| 2030 * that only map to and from the BMP. |
| 2031 * In addition to single-byte optimizations, the offset calculations |
| 2032 * become much easier. |
| 2033 */ |
| 2034 static void |
| 2035 ucnv_MBCSSingleToBMPWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 2036 UErrorCode *pErrorCode) { |
| 2037 UConverter *cnv; |
| 2038 const uint8_t *source, *sourceLimit, *lastSource; |
| 2039 UChar *target; |
| 2040 int32_t targetCapacity, length; |
| 2041 int32_t *offsets; |
| 2042 |
| 2043 const int32_t (*stateTable)[256]; |
| 2044 |
| 2045 int32_t sourceIndex; |
| 2046 |
| 2047 int32_t entry; |
| 2048 uint8_t action; |
| 2049 |
| 2050 /* set up the local pointers */ |
| 2051 cnv=pArgs->converter; |
| 2052 source=(const uint8_t *)pArgs->source; |
| 2053 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2054 target=pArgs->target; |
| 2055 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 2056 offsets=pArgs->offsets; |
| 2057 |
| 2058 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2059 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; |
| 2060 } else { |
| 2061 stateTable=cnv->sharedData->mbcs.stateTable; |
| 2062 } |
| 2063 |
| 2064 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 2065 sourceIndex=0; |
| 2066 lastSource=source; |
| 2067 |
| 2068 /* |
| 2069 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
| 2070 * for the minimum of the sourceLength and targetCapacity |
| 2071 */ |
| 2072 length=(int32_t)(sourceLimit-source); |
| 2073 if(length<targetCapacity) { |
| 2074 targetCapacity=length; |
| 2075 } |
| 2076 |
| 2077 #if MBCS_UNROLL_SINGLE_TO_BMP |
| 2078 /* unrolling makes it faster on Pentium III/Windows 2000 */ |
| 2079 /* unroll the loop with the most common case */ |
| 2080 unrolled: |
| 2081 if(targetCapacity>=16) { |
| 2082 int32_t count, loops, oredEntries; |
| 2083 |
| 2084 loops=count=targetCapacity>>4; |
| 2085 do { |
| 2086 oredEntries=entry=stateTable[0][*source++]; |
| 2087 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2088 oredEntries|=entry=stateTable[0][*source++]; |
| 2089 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2090 oredEntries|=entry=stateTable[0][*source++]; |
| 2091 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2092 oredEntries|=entry=stateTable[0][*source++]; |
| 2093 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2094 oredEntries|=entry=stateTable[0][*source++]; |
| 2095 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2096 oredEntries|=entry=stateTable[0][*source++]; |
| 2097 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2098 oredEntries|=entry=stateTable[0][*source++]; |
| 2099 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2100 oredEntries|=entry=stateTable[0][*source++]; |
| 2101 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2102 oredEntries|=entry=stateTable[0][*source++]; |
| 2103 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2104 oredEntries|=entry=stateTable[0][*source++]; |
| 2105 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2106 oredEntries|=entry=stateTable[0][*source++]; |
| 2107 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2108 oredEntries|=entry=stateTable[0][*source++]; |
| 2109 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2110 oredEntries|=entry=stateTable[0][*source++]; |
| 2111 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2112 oredEntries|=entry=stateTable[0][*source++]; |
| 2113 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2114 oredEntries|=entry=stateTable[0][*source++]; |
| 2115 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2116 oredEntries|=entry=stateTable[0][*source++]; |
| 2117 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2118 |
| 2119 /* were all 16 entries really valid? */ |
| 2120 if(!MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(oredEntries)) { |
| 2121 /* no, return to the first of these 16 */ |
| 2122 source-=16; |
| 2123 target-=16; |
| 2124 break; |
| 2125 } |
| 2126 } while(--count>0); |
| 2127 count=loops-count; |
| 2128 targetCapacity-=16*count; |
| 2129 |
| 2130 if(offsets!=NULL) { |
| 2131 lastSource+=16*count; |
| 2132 while(count>0) { |
| 2133 *offsets++=sourceIndex++; |
| 2134 *offsets++=sourceIndex++; |
| 2135 *offsets++=sourceIndex++; |
| 2136 *offsets++=sourceIndex++; |
| 2137 *offsets++=sourceIndex++; |
| 2138 *offsets++=sourceIndex++; |
| 2139 *offsets++=sourceIndex++; |
| 2140 *offsets++=sourceIndex++; |
| 2141 *offsets++=sourceIndex++; |
| 2142 *offsets++=sourceIndex++; |
| 2143 *offsets++=sourceIndex++; |
| 2144 *offsets++=sourceIndex++; |
| 2145 *offsets++=sourceIndex++; |
| 2146 *offsets++=sourceIndex++; |
| 2147 *offsets++=sourceIndex++; |
| 2148 *offsets++=sourceIndex++; |
| 2149 --count; |
| 2150 } |
| 2151 } |
| 2152 } |
| 2153 #endif |
| 2154 |
| 2155 /* conversion loop */ |
| 2156 while(targetCapacity > 0 && source < sourceLimit) { |
| 2157 entry=stateTable[0][*source++]; |
| 2158 /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 2159 |
| 2160 /* test the most common case first */ |
| 2161 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2162 /* output BMP code point */ |
| 2163 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2164 --targetCapacity; |
| 2165 continue; |
| 2166 } |
| 2167 |
| 2168 /* |
| 2169 * An if-else-if chain provides more reliable performance for |
| 2170 * the most common cases compared to a switch. |
| 2171 */ |
| 2172 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2173 if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2174 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2175 /* output BMP code point */ |
| 2176 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2177 --targetCapacity; |
| 2178 continue; |
| 2179 } |
| 2180 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2181 /* just fall through */ |
| 2182 } else if(action==MBCS_STATE_ILLEGAL) { |
| 2183 /* callback(illegal) */ |
| 2184 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2185 } else { |
| 2186 /* reserved, must never occur */ |
| 2187 continue; |
| 2188 } |
| 2189 |
| 2190 /* set offsets since the start or the last extension */ |
| 2191 if(offsets!=NULL) { |
| 2192 int32_t count=(int32_t)(source-lastSource); |
| 2193 |
| 2194 /* predecrement: do not set the offset for the callback-causing char
acter */ |
| 2195 while(--count>0) { |
| 2196 *offsets++=sourceIndex++; |
| 2197 } |
| 2198 /* offset and sourceIndex are now set for the current character */ |
| 2199 } |
| 2200 |
| 2201 if(U_FAILURE(*pErrorCode)) { |
| 2202 /* callback(illegal) */ |
| 2203 break; |
| 2204 } else /* unassigned sequences indicated with byteIndex>0 */ { |
| 2205 /* try an extension mapping */ |
| 2206 lastSource=source; |
| 2207 cnv->toUBytes[0]=*(source-1); |
| 2208 cnv->toULength=_extToU(cnv, cnv->sharedData, |
| 2209 1, &source, sourceLimit, |
| 2210 &target, pArgs->targetLimit, |
| 2211 &offsets, sourceIndex, |
| 2212 pArgs->flush, |
| 2213 pErrorCode); |
| 2214 sourceIndex+=1+(int32_t)(source-lastSource); |
| 2215 |
| 2216 if(U_FAILURE(*pErrorCode)) { |
| 2217 /* not mappable or buffer overflow */ |
| 2218 break; |
| 2219 } |
| 2220 |
| 2221 /* recalculate the targetCapacity after an extension mapping */ |
| 2222 targetCapacity=(int32_t)(pArgs->targetLimit-target); |
| 2223 length=(int32_t)(sourceLimit-source); |
| 2224 if(length<targetCapacity) { |
| 2225 targetCapacity=length; |
| 2226 } |
| 2227 } |
| 2228 |
| 2229 #if MBCS_UNROLL_SINGLE_TO_BMP |
| 2230 /* unrolling makes it faster on Pentium III/Windows 2000 */ |
| 2231 goto unrolled; |
| 2232 #endif |
| 2233 } |
| 2234 |
| 2235 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=pArgs->targetLimi
t) { |
| 2236 /* target is full */ |
| 2237 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2238 } |
| 2239 |
| 2240 /* set offsets since the start or the last callback */ |
| 2241 if(offsets!=NULL) { |
| 2242 size_t count=source-lastSource; |
| 2243 while(count>0) { |
| 2244 *offsets++=sourceIndex++; |
| 2245 --count; |
| 2246 } |
| 2247 } |
| 2248 |
| 2249 /* write back the updated pointers */ |
| 2250 pArgs->source=(const char *)source; |
| 2251 pArgs->target=target; |
| 2252 pArgs->offsets=offsets; |
| 2253 } |
| 2254 |
| 2255 static UBool |
| 2256 hasValidTrailBytes(const int32_t (*stateTable)[256], uint8_t state) { |
| 2257 const int32_t *row=stateTable[state]; |
| 2258 int32_t b, entry; |
| 2259 /* First test for final entries in this state for some commonly valid byte v
alues. */ |
| 2260 entry=row[0xa1]; |
| 2261 if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2262 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| 2263 ) { |
| 2264 return TRUE; |
| 2265 } |
| 2266 entry=row[0x41]; |
| 2267 if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2268 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| 2269 ) { |
| 2270 return TRUE; |
| 2271 } |
| 2272 /* Then test for final entries in this state. */ |
| 2273 for(b=0; b<=0xff; ++b) { |
| 2274 entry=row[b]; |
| 2275 if( !MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2276 MBCS_ENTRY_FINAL_ACTION(entry)!=MBCS_STATE_ILLEGAL |
| 2277 ) { |
| 2278 return TRUE; |
| 2279 } |
| 2280 } |
| 2281 /* Then recurse for transition entries. */ |
| 2282 for(b=0; b<=0xff; ++b) { |
| 2283 entry=row[b]; |
| 2284 if( MBCS_ENTRY_IS_TRANSITION(entry) && |
| 2285 hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STATE(
entry)) |
| 2286 ) { |
| 2287 return TRUE; |
| 2288 } |
| 2289 } |
| 2290 return FALSE; |
| 2291 } |
| 2292 |
| 2293 /* |
| 2294 * Is byte b a single/lead byte in this state? |
| 2295 * Recurse for transition states, because here we don't want to say that |
| 2296 * b is a lead byte if all byte sequences that start with b are illegal. |
| 2297 */ |
| 2298 static UBool |
| 2299 isSingleOrLead(const int32_t (*stateTable)[256], uint8_t state, UBool isDBCSOnly
, uint8_t b) { |
| 2300 const int32_t *row=stateTable[state]; |
| 2301 int32_t entry=row[b]; |
| 2302 if(MBCS_ENTRY_IS_TRANSITION(entry)) { /* lead byte */ |
| 2303 return hasValidTrailBytes(stateTable, (uint8_t)MBCS_ENTRY_TRANSITION_STA
TE(entry)); |
| 2304 } else { |
| 2305 uint8_t action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2306 if(action==MBCS_STATE_CHANGE_ONLY && isDBCSOnly) { |
| 2307 return FALSE; /* SI/SO are illegal for DBCS-only conversion */ |
| 2308 } else { |
| 2309 return action!=MBCS_STATE_ILLEGAL; |
| 2310 } |
| 2311 } |
| 2312 } |
| 2313 |
| 2314 U_CFUNC void |
| 2315 ucnv_MBCSToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 2316 UErrorCode *pErrorCode) { |
| 2317 UConverter *cnv; |
| 2318 const uint8_t *source, *sourceLimit; |
| 2319 UChar *target; |
| 2320 const UChar *targetLimit; |
| 2321 int32_t *offsets; |
| 2322 |
| 2323 const int32_t (*stateTable)[256]; |
| 2324 const uint16_t *unicodeCodeUnits; |
| 2325 |
| 2326 uint32_t offset; |
| 2327 uint8_t state; |
| 2328 int8_t byteIndex; |
| 2329 uint8_t *bytes; |
| 2330 |
| 2331 int32_t sourceIndex, nextSourceIndex; |
| 2332 |
| 2333 int32_t entry; |
| 2334 UChar c; |
| 2335 uint8_t action; |
| 2336 |
| 2337 /* use optimized function if possible */ |
| 2338 cnv=pArgs->converter; |
| 2339 |
| 2340 if(cnv->preToULength>0) { |
| 2341 /* |
| 2342 * pass sourceIndex=-1 because we continue from an earlier buffer |
| 2343 * in the future, this may change with continuous offsets |
| 2344 */ |
| 2345 ucnv_extContinueMatchToU(cnv, pArgs, -1, pErrorCode); |
| 2346 |
| 2347 if(U_FAILURE(*pErrorCode) || cnv->preToULength<0) { |
| 2348 return; |
| 2349 } |
| 2350 } |
| 2351 |
| 2352 if(cnv->sharedData->mbcs.countStates==1) { |
| 2353 if(!(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 2354 ucnv_MBCSSingleToBMPWithOffsets(pArgs, pErrorCode); |
| 2355 } else { |
| 2356 ucnv_MBCSSingleToUnicodeWithOffsets(pArgs, pErrorCode); |
| 2357 } |
| 2358 return; |
| 2359 } |
| 2360 |
| 2361 /* set up the local pointers */ |
| 2362 source=(const uint8_t *)pArgs->source; |
| 2363 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2364 target=pArgs->target; |
| 2365 targetLimit=pArgs->targetLimit; |
| 2366 offsets=pArgs->offsets; |
| 2367 |
| 2368 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2369 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; |
| 2370 } else { |
| 2371 stateTable=cnv->sharedData->mbcs.stateTable; |
| 2372 } |
| 2373 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
| 2374 |
| 2375 /* get the converter state from UConverter */ |
| 2376 offset=cnv->toUnicodeStatus; |
| 2377 byteIndex=cnv->toULength; |
| 2378 bytes=cnv->toUBytes; |
| 2379 |
| 2380 /* |
| 2381 * if we are in the SBCS state for a DBCS-only converter, |
| 2382 * then load the DBCS state from the MBCS data |
| 2383 * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
| 2384 */ |
| 2385 if((state=(uint8_t)(cnv->mode))==0) { |
| 2386 state=cnv->sharedData->mbcs.dbcsOnlyState; |
| 2387 } |
| 2388 |
| 2389 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 2390 sourceIndex=byteIndex==0 ? 0 : -1; |
| 2391 nextSourceIndex=0; |
| 2392 |
| 2393 /* conversion loop */ |
| 2394 while(source<sourceLimit) { |
| 2395 /* |
| 2396 * This following test is to see if available input would overflow the o
utput. |
| 2397 * It does not catch output of more than one code unit that |
| 2398 * overflows as a result of a surrogate pair or callback output |
| 2399 * from the last source byte. |
| 2400 * Therefore, those situations also test for overflows and will |
| 2401 * then break the loop, too. |
| 2402 */ |
| 2403 if(target>=targetLimit) { |
| 2404 /* target is full */ |
| 2405 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2406 break; |
| 2407 } |
| 2408 |
| 2409 if(byteIndex==0) { |
| 2410 /* optimized loop for 1/2-byte input and BMP output */ |
| 2411 if(offsets==NULL) { |
| 2412 do { |
| 2413 entry=stateTable[state][*source]; |
| 2414 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2415 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2416 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2417 |
| 2418 ++source; |
| 2419 if( source<sourceLimit && |
| 2420 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]
) && |
| 2421 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16
&& |
| 2422 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16
(entry)])<0xfffe |
| 2423 ) { |
| 2424 ++source; |
| 2425 *target++=c; |
| 2426 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ |
| 2427 offset=0; |
| 2428 } else { |
| 2429 /* set the state and leave the optimized loop */ |
| 2430 bytes[0]=*(source-1); |
| 2431 byteIndex=1; |
| 2432 break; |
| 2433 } |
| 2434 } else { |
| 2435 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2436 /* output BMP code point */ |
| 2437 ++source; |
| 2438 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2439 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ |
| 2440 } else { |
| 2441 /* leave the optimized loop */ |
| 2442 break; |
| 2443 } |
| 2444 } |
| 2445 } while(source<sourceLimit && target<targetLimit); |
| 2446 } else /* offsets!=NULL */ { |
| 2447 do { |
| 2448 entry=stateTable[state][*source]; |
| 2449 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2450 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2451 offset=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2452 |
| 2453 ++source; |
| 2454 if( source<sourceLimit && |
| 2455 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]
) && |
| 2456 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16
&& |
| 2457 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16
(entry)])<0xfffe |
| 2458 ) { |
| 2459 ++source; |
| 2460 *target++=c; |
| 2461 if(offsets!=NULL) { |
| 2462 *offsets++=sourceIndex; |
| 2463 sourceIndex=(nextSourceIndex+=2); |
| 2464 } |
| 2465 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ |
| 2466 offset=0; |
| 2467 } else { |
| 2468 /* set the state and leave the optimized loop */ |
| 2469 ++nextSourceIndex; |
| 2470 bytes[0]=*(source-1); |
| 2471 byteIndex=1; |
| 2472 break; |
| 2473 } |
| 2474 } else { |
| 2475 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2476 /* output BMP code point */ |
| 2477 ++source; |
| 2478 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2479 if(offsets!=NULL) { |
| 2480 *offsets++=sourceIndex; |
| 2481 sourceIndex=++nextSourceIndex; |
| 2482 } |
| 2483 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typ
ically 0 */ |
| 2484 } else { |
| 2485 /* leave the optimized loop */ |
| 2486 break; |
| 2487 } |
| 2488 } |
| 2489 } while(source<sourceLimit && target<targetLimit); |
| 2490 } |
| 2491 |
| 2492 /* |
| 2493 * these tests and break statements could be put inside the loop |
| 2494 * if C had "break outerLoop" like Java |
| 2495 */ |
| 2496 if(source>=sourceLimit) { |
| 2497 break; |
| 2498 } |
| 2499 if(target>=targetLimit) { |
| 2500 /* target is full */ |
| 2501 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2502 break; |
| 2503 } |
| 2504 |
| 2505 ++nextSourceIndex; |
| 2506 bytes[byteIndex++]=*source++; |
| 2507 } else /* byteIndex>0 */ { |
| 2508 ++nextSourceIndex; |
| 2509 entry=stateTable[state][bytes[byteIndex++]=*source++]; |
| 2510 } |
| 2511 |
| 2512 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2513 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2514 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2515 continue; |
| 2516 } |
| 2517 |
| 2518 /* save the previous state for proper extension mapping with SI/SO-state
ful converters */ |
| 2519 cnv->mode=state; |
| 2520 |
| 2521 /* set the next state early so that we can reuse the entry variable */ |
| 2522 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2523 |
| 2524 /* |
| 2525 * An if-else-if chain provides more reliable performance for |
| 2526 * the most common cases compared to a switch. |
| 2527 */ |
| 2528 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2529 if(action==MBCS_STATE_VALID_16) { |
| 2530 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2531 c=unicodeCodeUnits[offset]; |
| 2532 if(c<0xfffe) { |
| 2533 /* output BMP code point */ |
| 2534 *target++=c; |
| 2535 if(offsets!=NULL) { |
| 2536 *offsets++=sourceIndex; |
| 2537 } |
| 2538 byteIndex=0; |
| 2539 } else if(c==0xfffe) { |
| 2540 if(UCNV_TO_U_USE_FALLBACK(cnv) && (entry=(int32_t)ucnv_MBCSGetFa
llback(&cnv->sharedData->mbcs, offset))!=0xfffe) { |
| 2541 /* output fallback BMP code point */ |
| 2542 *target++=(UChar)entry; |
| 2543 if(offsets!=NULL) { |
| 2544 *offsets++=sourceIndex; |
| 2545 } |
| 2546 byteIndex=0; |
| 2547 } |
| 2548 } else { |
| 2549 /* callback(illegal) */ |
| 2550 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2551 } |
| 2552 } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 2553 /* output BMP code point */ |
| 2554 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2555 if(offsets!=NULL) { |
| 2556 *offsets++=sourceIndex; |
| 2557 } |
| 2558 byteIndex=0; |
| 2559 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 2560 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2561 c=unicodeCodeUnits[offset++]; |
| 2562 if(c<0xd800) { |
| 2563 /* output BMP code point below 0xd800 */ |
| 2564 *target++=c; |
| 2565 if(offsets!=NULL) { |
| 2566 *offsets++=sourceIndex; |
| 2567 } |
| 2568 byteIndex=0; |
| 2569 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| 2570 /* output roundtrip or fallback surrogate pair */ |
| 2571 *target++=(UChar)(c&0xdbff); |
| 2572 if(offsets!=NULL) { |
| 2573 *offsets++=sourceIndex; |
| 2574 } |
| 2575 byteIndex=0; |
| 2576 if(target<targetLimit) { |
| 2577 *target++=unicodeCodeUnits[offset]; |
| 2578 if(offsets!=NULL) { |
| 2579 *offsets++=sourceIndex; |
| 2580 } |
| 2581 } else { |
| 2582 /* target overflow */ |
| 2583 cnv->UCharErrorBuffer[0]=unicodeCodeUnits[offset]; |
| 2584 cnv->UCharErrorBufferLength=1; |
| 2585 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2586 |
| 2587 offset=0; |
| 2588 break; |
| 2589 } |
| 2590 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==0xe0
00) { |
| 2591 /* output roundtrip BMP code point above 0xd800 or fallback BMP
code point */ |
| 2592 *target++=unicodeCodeUnits[offset]; |
| 2593 if(offsets!=NULL) { |
| 2594 *offsets++=sourceIndex; |
| 2595 } |
| 2596 byteIndex=0; |
| 2597 } else if(c==0xffff) { |
| 2598 /* callback(illegal) */ |
| 2599 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2600 } |
| 2601 } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
| 2602 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBA
CK(cnv)) |
| 2603 ) { |
| 2604 entry=MBCS_ENTRY_FINAL_VALUE(entry); |
| 2605 /* output surrogate pair */ |
| 2606 *target++=(UChar)(0xd800|(UChar)(entry>>10)); |
| 2607 if(offsets!=NULL) { |
| 2608 *offsets++=sourceIndex; |
| 2609 } |
| 2610 byteIndex=0; |
| 2611 c=(UChar)(0xdc00|(UChar)(entry&0x3ff)); |
| 2612 if(target<targetLimit) { |
| 2613 *target++=c; |
| 2614 if(offsets!=NULL) { |
| 2615 *offsets++=sourceIndex; |
| 2616 } |
| 2617 } else { |
| 2618 /* target overflow */ |
| 2619 cnv->UCharErrorBuffer[0]=c; |
| 2620 cnv->UCharErrorBufferLength=1; |
| 2621 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 2622 |
| 2623 offset=0; |
| 2624 break; |
| 2625 } |
| 2626 } else if(action==MBCS_STATE_CHANGE_ONLY) { |
| 2627 /* |
| 2628 * This serves as a state change without any output. |
| 2629 * It is useful for reading simple stateful encodings, |
| 2630 * for example using just Shift-In/Shift-Out codes. |
| 2631 * The 21 unused bits may later be used for more sophisticated |
| 2632 * state transitions. |
| 2633 */ |
| 2634 if(cnv->sharedData->mbcs.dbcsOnlyState==0) { |
| 2635 byteIndex=0; |
| 2636 } else { |
| 2637 /* SI/SO are illegal for DBCS-only conversion */ |
| 2638 state=(uint8_t)(cnv->mode); /* restore the previous state */ |
| 2639 |
| 2640 /* callback(illegal) */ |
| 2641 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2642 } |
| 2643 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2644 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2645 /* output BMP code point */ |
| 2646 *target++=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2647 if(offsets!=NULL) { |
| 2648 *offsets++=sourceIndex; |
| 2649 } |
| 2650 byteIndex=0; |
| 2651 } |
| 2652 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2653 /* just fall through */ |
| 2654 } else if(action==MBCS_STATE_ILLEGAL) { |
| 2655 /* callback(illegal) */ |
| 2656 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2657 } else { |
| 2658 /* reserved, must never occur */ |
| 2659 byteIndex=0; |
| 2660 } |
| 2661 |
| 2662 /* end of action codes: prepare for a new character */ |
| 2663 offset=0; |
| 2664 |
| 2665 if(byteIndex==0) { |
| 2666 sourceIndex=nextSourceIndex; |
| 2667 } else if(U_FAILURE(*pErrorCode)) { |
| 2668 /* callback(illegal) */ |
| 2669 if(byteIndex>1) { |
| 2670 /* |
| 2671 * Ticket 5691: consistent illegal sequences: |
| 2672 * - We include at least the first byte in the illegal sequence. |
| 2673 * - If any of the non-initial bytes could be the start of a cha
racter, |
| 2674 * we stop the illegal sequence before the first one of those. |
| 2675 */ |
| 2676 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0)
; |
| 2677 int8_t i; |
| 2678 for(i=1; |
| 2679 i<byteIndex && !isSingleOrLead(stateTable, state, isDBCSOnly
, bytes[i]); |
| 2680 ++i) {} |
| 2681 if(i<byteIndex) { |
| 2682 /* Back out some bytes. */ |
| 2683 int8_t backOutDistance=byteIndex-i; |
| 2684 int32_t bytesFromThisBuffer=(int32_t)(source-(const uint8_t
*)pArgs->source); |
| 2685 byteIndex=i; /* length of reported illegal byte sequence */ |
| 2686 if(backOutDistance<=bytesFromThisBuffer) { |
| 2687 source-=backOutDistance; |
| 2688 } else { |
| 2689 /* Back out bytes from the previous buffer: Need to repl
ay them. */ |
| 2690 cnv->preToULength=(int8_t)(bytesFromThisBuffer-backOutDi
stance); |
| 2691 /* preToULength is negative! */ |
| 2692 uprv_memcpy(cnv->preToU, bytes+i, -cnv->preToULength); |
| 2693 source=(const uint8_t *)pArgs->source; |
| 2694 } |
| 2695 } |
| 2696 } |
| 2697 break; |
| 2698 } else /* unassigned sequences indicated with byteIndex>0 */ { |
| 2699 /* try an extension mapping */ |
| 2700 pArgs->source=(const char *)source; |
| 2701 byteIndex=_extToU(cnv, cnv->sharedData, |
| 2702 byteIndex, &source, sourceLimit, |
| 2703 &target, targetLimit, |
| 2704 &offsets, sourceIndex, |
| 2705 pArgs->flush, |
| 2706 pErrorCode); |
| 2707 sourceIndex=nextSourceIndex+=(int32_t)(source-(const uint8_t *)pArgs
->source); |
| 2708 |
| 2709 if(U_FAILURE(*pErrorCode)) { |
| 2710 /* not mappable or buffer overflow */ |
| 2711 break; |
| 2712 } |
| 2713 } |
| 2714 } |
| 2715 |
| 2716 /* set the converter state back into UConverter */ |
| 2717 cnv->toUnicodeStatus=offset; |
| 2718 cnv->mode=state; |
| 2719 cnv->toULength=byteIndex; |
| 2720 |
| 2721 /* write back the updated pointers */ |
| 2722 pArgs->source=(const char *)source; |
| 2723 pArgs->target=target; |
| 2724 pArgs->offsets=offsets; |
| 2725 } |
| 2726 |
| 2727 /* |
| 2728 * This version of ucnv_MBCSGetNextUChar() is optimized for single-byte, single-
state codepages. |
| 2729 * We still need a conversion loop in case we find reserved action codes, which
are to be ignored. |
| 2730 */ |
| 2731 static UChar32 |
| 2732 ucnv_MBCSSingleGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| 2733 UErrorCode *pErrorCode) { |
| 2734 UConverter *cnv; |
| 2735 const int32_t (*stateTable)[256]; |
| 2736 const uint8_t *source, *sourceLimit; |
| 2737 |
| 2738 int32_t entry; |
| 2739 uint8_t action; |
| 2740 |
| 2741 /* set up the local pointers */ |
| 2742 cnv=pArgs->converter; |
| 2743 source=(const uint8_t *)pArgs->source; |
| 2744 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2745 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2746 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; |
| 2747 } else { |
| 2748 stateTable=cnv->sharedData->mbcs.stateTable; |
| 2749 } |
| 2750 |
| 2751 /* conversion loop */ |
| 2752 while(source<sourceLimit) { |
| 2753 entry=stateTable[0][*source++]; |
| 2754 /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 2755 |
| 2756 /* write back the updated pointer early so that we can return directly *
/ |
| 2757 pArgs->source=(const char *)source; |
| 2758 |
| 2759 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 2760 /* output BMP code point */ |
| 2761 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2762 } |
| 2763 |
| 2764 /* |
| 2765 * An if-else-if chain provides more reliable performance for |
| 2766 * the most common cases compared to a switch. |
| 2767 */ |
| 2768 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2769 if( action==MBCS_STATE_VALID_DIRECT_20 || |
| 2770 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FALLBACK(cnv
)) |
| 2771 ) { |
| 2772 /* output supplementary code point */ |
| 2773 return (UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| 2774 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2775 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2776 /* output BMP code point */ |
| 2777 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2778 } |
| 2779 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2780 /* just fall through */ |
| 2781 } else if(action==MBCS_STATE_ILLEGAL) { |
| 2782 /* callback(illegal) */ |
| 2783 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2784 } else { |
| 2785 /* reserved, must never occur */ |
| 2786 continue; |
| 2787 } |
| 2788 |
| 2789 if(U_FAILURE(*pErrorCode)) { |
| 2790 /* callback(illegal) */ |
| 2791 break; |
| 2792 } else /* unassigned sequence */ { |
| 2793 /* defer to the generic implementation */ |
| 2794 pArgs->source=(const char *)source-1; |
| 2795 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2796 } |
| 2797 } |
| 2798 |
| 2799 /* no output because of empty input or only state changes */ |
| 2800 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 2801 return 0xffff; |
| 2802 } |
| 2803 |
| 2804 /* |
| 2805 * Version of _MBCSToUnicodeWithOffsets() optimized for single-character |
| 2806 * conversion without offset handling. |
| 2807 * |
| 2808 * When a character does not have a mapping to Unicode, then we return to the |
| 2809 * generic ucnv_getNextUChar() code for extension/GB 18030 and error/callback |
| 2810 * handling. |
| 2811 * We also defer to the generic code in other complicated cases and have them |
| 2812 * ultimately handled by _MBCSToUnicodeWithOffsets() itself. |
| 2813 * |
| 2814 * All normal mappings and errors are handled here. |
| 2815 */ |
| 2816 static UChar32 |
| 2817 ucnv_MBCSGetNextUChar(UConverterToUnicodeArgs *pArgs, |
| 2818 UErrorCode *pErrorCode) { |
| 2819 UConverter *cnv; |
| 2820 const uint8_t *source, *sourceLimit, *lastSource; |
| 2821 |
| 2822 const int32_t (*stateTable)[256]; |
| 2823 const uint16_t *unicodeCodeUnits; |
| 2824 |
| 2825 uint32_t offset; |
| 2826 uint8_t state; |
| 2827 |
| 2828 int32_t entry; |
| 2829 UChar32 c; |
| 2830 uint8_t action; |
| 2831 |
| 2832 /* use optimized function if possible */ |
| 2833 cnv=pArgs->converter; |
| 2834 |
| 2835 if(cnv->preToULength>0) { |
| 2836 /* use the generic code in ucnv_getNextUChar() to continue with a partia
l match */ |
| 2837 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2838 } |
| 2839 |
| 2840 if(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SURROGATES) { |
| 2841 /* |
| 2842 * Using the generic ucnv_getNextUChar() code lets us deal correctly |
| 2843 * with the rare case of a codepage that maps single surrogates |
| 2844 * without adding the complexity to this already complicated function he
re. |
| 2845 */ |
| 2846 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2847 } else if(cnv->sharedData->mbcs.countStates==1) { |
| 2848 return ucnv_MBCSSingleGetNextUChar(pArgs, pErrorCode); |
| 2849 } |
| 2850 |
| 2851 /* set up the local pointers */ |
| 2852 source=lastSource=(const uint8_t *)pArgs->source; |
| 2853 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 2854 |
| 2855 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 2856 stateTable=(const int32_t (*)[256])cnv->sharedData->mbcs.swapLFNLStateTa
ble; |
| 2857 } else { |
| 2858 stateTable=cnv->sharedData->mbcs.stateTable; |
| 2859 } |
| 2860 unicodeCodeUnits=cnv->sharedData->mbcs.unicodeCodeUnits; |
| 2861 |
| 2862 /* get the converter state from UConverter */ |
| 2863 offset=cnv->toUnicodeStatus; |
| 2864 |
| 2865 /* |
| 2866 * if we are in the SBCS state for a DBCS-only converter, |
| 2867 * then load the DBCS state from the MBCS data |
| 2868 * (dbcsOnlyState==0 if it is not a DBCS-only converter) |
| 2869 */ |
| 2870 if((state=(uint8_t)(cnv->mode))==0) { |
| 2871 state=cnv->sharedData->mbcs.dbcsOnlyState; |
| 2872 } |
| 2873 |
| 2874 /* conversion loop */ |
| 2875 c=U_SENTINEL; |
| 2876 while(source<sourceLimit) { |
| 2877 entry=stateTable[state][*source++]; |
| 2878 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 2879 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 2880 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 2881 |
| 2882 /* optimization for 1/2-byte input and BMP output */ |
| 2883 if( source<sourceLimit && |
| 2884 MBCS_ENTRY_IS_FINAL(entry=stateTable[state][*source]) && |
| 2885 MBCS_ENTRY_FINAL_ACTION(entry)==MBCS_STATE_VALID_16 && |
| 2886 (c=unicodeCodeUnits[offset+MBCS_ENTRY_FINAL_VALUE_16(entry)])<0x
fffe |
| 2887 ) { |
| 2888 ++source; |
| 2889 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2890 /* output BMP code point */ |
| 2891 break; |
| 2892 } |
| 2893 } else { |
| 2894 /* save the previous state for proper extension mapping with SI/SO-s
tateful converters */ |
| 2895 cnv->mode=state; |
| 2896 |
| 2897 /* set the next state early so that we can reuse the entry variable
*/ |
| 2898 state=(uint8_t)MBCS_ENTRY_FINAL_STATE(entry); /* typically 0 */ |
| 2899 |
| 2900 /* |
| 2901 * An if-else-if chain provides more reliable performance for |
| 2902 * the most common cases compared to a switch. |
| 2903 */ |
| 2904 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 2905 if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 2906 /* output BMP code point */ |
| 2907 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2908 break; |
| 2909 } else if(action==MBCS_STATE_VALID_16) { |
| 2910 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2911 c=unicodeCodeUnits[offset]; |
| 2912 if(c<0xfffe) { |
| 2913 /* output BMP code point */ |
| 2914 break; |
| 2915 } else if(c==0xfffe) { |
| 2916 if(UCNV_TO_U_USE_FALLBACK(cnv) && (c=ucnv_MBCSGetFallback(&c
nv->sharedData->mbcs, offset))!=0xfffe) { |
| 2917 break; |
| 2918 } |
| 2919 } else { |
| 2920 /* callback(illegal) */ |
| 2921 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2922 } |
| 2923 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 2924 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2925 c=unicodeCodeUnits[offset++]; |
| 2926 if(c<0xd800) { |
| 2927 /* output BMP code point below 0xd800 */ |
| 2928 break; |
| 2929 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| 2930 /* output roundtrip or fallback supplementary code point */ |
| 2931 c=((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x10000-0xdc00); |
| 2932 break; |
| 2933 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==
0xe000) { |
| 2934 /* output roundtrip BMP code point above 0xd800 or fallback
BMP code point */ |
| 2935 c=unicodeCodeUnits[offset]; |
| 2936 break; |
| 2937 } else if(c==0xffff) { |
| 2938 /* callback(illegal) */ |
| 2939 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2940 } |
| 2941 } else if(action==MBCS_STATE_VALID_DIRECT_20 || |
| 2942 (action==MBCS_STATE_FALLBACK_DIRECT_20 && UCNV_TO_U_USE_FA
LLBACK(cnv)) |
| 2943 ) { |
| 2944 /* output supplementary code point */ |
| 2945 c=(UChar32)(MBCS_ENTRY_FINAL_VALUE(entry)+0x10000); |
| 2946 break; |
| 2947 } else if(action==MBCS_STATE_CHANGE_ONLY) { |
| 2948 /* |
| 2949 * This serves as a state change without any output. |
| 2950 * It is useful for reading simple stateful encodings, |
| 2951 * for example using just Shift-In/Shift-Out codes. |
| 2952 * The 21 unused bits may later be used for more sophisticated |
| 2953 * state transitions. |
| 2954 */ |
| 2955 if(cnv->sharedData->mbcs.dbcsOnlyState!=0) { |
| 2956 /* SI/SO are illegal for DBCS-only conversion */ |
| 2957 state=(uint8_t)(cnv->mode); /* restore the previous state */ |
| 2958 |
| 2959 /* callback(illegal) */ |
| 2960 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2961 } |
| 2962 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 2963 if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 2964 /* output BMP code point */ |
| 2965 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 2966 break; |
| 2967 } |
| 2968 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 2969 /* just fall through */ |
| 2970 } else if(action==MBCS_STATE_ILLEGAL) { |
| 2971 /* callback(illegal) */ |
| 2972 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 2973 } else { |
| 2974 /* reserved (must never occur), or only state change */ |
| 2975 offset=0; |
| 2976 lastSource=source; |
| 2977 continue; |
| 2978 } |
| 2979 |
| 2980 /* end of action codes: prepare for a new character */ |
| 2981 offset=0; |
| 2982 |
| 2983 if(U_FAILURE(*pErrorCode)) { |
| 2984 /* callback(illegal) */ |
| 2985 break; |
| 2986 } else /* unassigned sequence */ { |
| 2987 /* defer to the generic implementation */ |
| 2988 cnv->toUnicodeStatus=0; |
| 2989 cnv->mode=state; |
| 2990 pArgs->source=(const char *)lastSource; |
| 2991 return UCNV_GET_NEXT_UCHAR_USE_TO_U; |
| 2992 } |
| 2993 } |
| 2994 } |
| 2995 |
| 2996 if(c<0) { |
| 2997 if(U_SUCCESS(*pErrorCode) && source==sourceLimit && lastSource<source) { |
| 2998 /* incomplete character byte sequence */ |
| 2999 uint8_t *bytes=cnv->toUBytes; |
| 3000 cnv->toULength=(int8_t)(source-lastSource); |
| 3001 do { |
| 3002 *bytes++=*lastSource++; |
| 3003 } while(lastSource<source); |
| 3004 *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
| 3005 } else if(U_FAILURE(*pErrorCode)) { |
| 3006 /* callback(illegal) */ |
| 3007 /* |
| 3008 * Ticket 5691: consistent illegal sequences: |
| 3009 * - We include at least the first byte in the illegal sequence. |
| 3010 * - If any of the non-initial bytes could be the start of a charact
er, |
| 3011 * we stop the illegal sequence before the first one of those. |
| 3012 */ |
| 3013 UBool isDBCSOnly=(UBool)(cnv->sharedData->mbcs.dbcsOnlyState!=0); |
| 3014 uint8_t *bytes=cnv->toUBytes; |
| 3015 *bytes++=*lastSource++; /* first byte */ |
| 3016 if(lastSource==source) { |
| 3017 cnv->toULength=1; |
| 3018 } else /* lastSource<source: multi-byte character */ { |
| 3019 int8_t i; |
| 3020 for(i=1; |
| 3021 lastSource<source && !isSingleOrLead(stateTable, state, isDB
CSOnly, *lastSource); |
| 3022 ++i |
| 3023 ) { |
| 3024 *bytes++=*lastSource++; |
| 3025 } |
| 3026 cnv->toULength=i; |
| 3027 source=lastSource; |
| 3028 } |
| 3029 } else { |
| 3030 /* no output because of empty input or only state changes */ |
| 3031 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 3032 } |
| 3033 c=0xffff; |
| 3034 } |
| 3035 |
| 3036 /* set the converter state back into UConverter, ready for a new character *
/ |
| 3037 cnv->toUnicodeStatus=0; |
| 3038 cnv->mode=state; |
| 3039 |
| 3040 /* write back the updated pointer */ |
| 3041 pArgs->source=(const char *)source; |
| 3042 return c; |
| 3043 } |
| 3044 |
| 3045 #if 0 |
| 3046 /* |
| 3047 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. ma
rkus |
| 3048 * Removal improves code coverage. |
| 3049 */ |
| 3050 /** |
| 3051 * This version of ucnv_MBCSSimpleGetNextUChar() is optimized for single-byte, s
ingle-state codepages. |
| 3052 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 3053 * It does not handle conversion extensions (_extToU()). |
| 3054 */ |
| 3055 U_CFUNC UChar32 |
| 3056 ucnv_MBCSSingleSimpleGetNextUChar(UConverterSharedData *sharedData, |
| 3057 uint8_t b, UBool useFallback) { |
| 3058 int32_t entry; |
| 3059 uint8_t action; |
| 3060 |
| 3061 entry=sharedData->mbcs.stateTable[0][b]; |
| 3062 /* MBCS_ENTRY_IS_FINAL(entry) */ |
| 3063 |
| 3064 if(MBCS_ENTRY_FINAL_IS_VALID_DIRECT_16(entry)) { |
| 3065 /* output BMP code point */ |
| 3066 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3067 } |
| 3068 |
| 3069 /* |
| 3070 * An if-else-if chain provides more reliable performance for |
| 3071 * the most common cases compared to a switch. |
| 3072 */ |
| 3073 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 3074 if(action==MBCS_STATE_VALID_DIRECT_20) { |
| 3075 /* output supplementary code point */ |
| 3076 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3077 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 3078 if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3079 return 0xfffe; |
| 3080 } |
| 3081 /* output BMP code point */ |
| 3082 return (UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3083 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { |
| 3084 if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3085 return 0xfffe; |
| 3086 } |
| 3087 /* output supplementary code point */ |
| 3088 return 0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3089 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 3090 return 0xfffe; |
| 3091 } else if(action==MBCS_STATE_ILLEGAL) { |
| 3092 return 0xffff; |
| 3093 } else { |
| 3094 /* reserved, must never occur */ |
| 3095 return 0xffff; |
| 3096 } |
| 3097 } |
| 3098 #endif |
| 3099 |
| 3100 /* |
| 3101 * This is a simple version of _MBCSGetNextUChar() that is used |
| 3102 * by other converter implementations. |
| 3103 * It only returns an "assigned" result if it consumes the entire input. |
| 3104 * It does not use state from the converter, nor error codes. |
| 3105 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 3106 * It handles conversion extensions but not GB 18030. |
| 3107 * |
| 3108 * Return value: |
| 3109 * U+fffe unassigned |
| 3110 * U+ffff illegal |
| 3111 * otherwise the Unicode code point |
| 3112 */ |
| 3113 U_CFUNC UChar32 |
| 3114 ucnv_MBCSSimpleGetNextUChar(UConverterSharedData *sharedData, |
| 3115 const char *source, int32_t length, |
| 3116 UBool useFallback) { |
| 3117 const int32_t (*stateTable)[256]; |
| 3118 const uint16_t *unicodeCodeUnits; |
| 3119 |
| 3120 uint32_t offset; |
| 3121 uint8_t state, action; |
| 3122 |
| 3123 UChar32 c; |
| 3124 int32_t i, entry; |
| 3125 |
| 3126 if(length<=0) { |
| 3127 /* no input at all: "illegal" */ |
| 3128 return 0xffff; |
| 3129 } |
| 3130 |
| 3131 #if 0 |
| 3132 /* |
| 3133 * Code disabled 2002dec09 (ICU 2.4) because it is not currently used in ICU. ma
rkus |
| 3134 * TODO In future releases, verify that this function is never called for SBCS |
| 3135 * conversions, i.e., that sharedData->mbcs.countStates==1 is still true. |
| 3136 * Removal improves code coverage. |
| 3137 */ |
| 3138 /* use optimized function if possible */ |
| 3139 if(sharedData->mbcs.countStates==1) { |
| 3140 if(length==1) { |
| 3141 return ucnv_MBCSSingleSimpleGetNextUChar(sharedData, (uint8_t)*sourc
e, useFallback); |
| 3142 } else { |
| 3143 return 0xffff; /* illegal: more than a single byte for an SBCS conve
rter */ |
| 3144 } |
| 3145 } |
| 3146 #endif |
| 3147 |
| 3148 /* set up the local pointers */ |
| 3149 stateTable=sharedData->mbcs.stateTable; |
| 3150 unicodeCodeUnits=sharedData->mbcs.unicodeCodeUnits; |
| 3151 |
| 3152 /* converter state */ |
| 3153 offset=0; |
| 3154 state=sharedData->mbcs.dbcsOnlyState; |
| 3155 |
| 3156 /* conversion loop */ |
| 3157 for(i=0;;) { |
| 3158 entry=stateTable[state][(uint8_t)source[i++]]; |
| 3159 if(MBCS_ENTRY_IS_TRANSITION(entry)) { |
| 3160 state=(uint8_t)MBCS_ENTRY_TRANSITION_STATE(entry); |
| 3161 offset+=MBCS_ENTRY_TRANSITION_OFFSET(entry); |
| 3162 |
| 3163 if(i==length) { |
| 3164 return 0xffff; /* truncated character */ |
| 3165 } |
| 3166 } else { |
| 3167 /* |
| 3168 * An if-else-if chain provides more reliable performance for |
| 3169 * the most common cases compared to a switch. |
| 3170 */ |
| 3171 action=(uint8_t)(MBCS_ENTRY_FINAL_ACTION(entry)); |
| 3172 if(action==MBCS_STATE_VALID_16) { |
| 3173 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3174 c=unicodeCodeUnits[offset]; |
| 3175 if(c!=0xfffe) { |
| 3176 /* done */ |
| 3177 } else if(UCNV_TO_U_USE_FALLBACK(cnv)) { |
| 3178 c=ucnv_MBCSGetFallback(&sharedData->mbcs, offset); |
| 3179 /* else done with 0xfffe */ |
| 3180 } |
| 3181 break; |
| 3182 } else if(action==MBCS_STATE_VALID_DIRECT_16) { |
| 3183 /* output BMP code point */ |
| 3184 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3185 break; |
| 3186 } else if(action==MBCS_STATE_VALID_16_PAIR) { |
| 3187 offset+=MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3188 c=unicodeCodeUnits[offset++]; |
| 3189 if(c<0xd800) { |
| 3190 /* output BMP code point below 0xd800 */ |
| 3191 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? c<=0xdfff : c<=0xdbff) { |
| 3192 /* output roundtrip or fallback supplementary code point */ |
| 3193 c=(UChar32)(((c&0x3ff)<<10)+unicodeCodeUnits[offset]+(0x1000
0-0xdc00)); |
| 3194 } else if(UCNV_TO_U_USE_FALLBACK(cnv) ? (c&0xfffe)==0xe000 : c==
0xe000) { |
| 3195 /* output roundtrip BMP code point above 0xd800 or fallback
BMP code point */ |
| 3196 c=unicodeCodeUnits[offset]; |
| 3197 } else if(c==0xffff) { |
| 3198 return 0xffff; |
| 3199 } else { |
| 3200 c=0xfffe; |
| 3201 } |
| 3202 break; |
| 3203 } else if(action==MBCS_STATE_VALID_DIRECT_20) { |
| 3204 /* output supplementary code point */ |
| 3205 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3206 break; |
| 3207 } else if(action==MBCS_STATE_FALLBACK_DIRECT_16) { |
| 3208 if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3209 c=0xfffe; |
| 3210 break; |
| 3211 } |
| 3212 /* output BMP code point */ |
| 3213 c=(UChar)MBCS_ENTRY_FINAL_VALUE_16(entry); |
| 3214 break; |
| 3215 } else if(action==MBCS_STATE_FALLBACK_DIRECT_20) { |
| 3216 if(!TO_U_USE_FALLBACK(useFallback)) { |
| 3217 c=0xfffe; |
| 3218 break; |
| 3219 } |
| 3220 /* output supplementary code point */ |
| 3221 c=0x10000+MBCS_ENTRY_FINAL_VALUE(entry); |
| 3222 break; |
| 3223 } else if(action==MBCS_STATE_UNASSIGNED) { |
| 3224 c=0xfffe; |
| 3225 break; |
| 3226 } |
| 3227 |
| 3228 /* |
| 3229 * forbid MBCS_STATE_CHANGE_ONLY for this function, |
| 3230 * and MBCS_STATE_ILLEGAL and reserved action codes |
| 3231 */ |
| 3232 return 0xffff; |
| 3233 } |
| 3234 } |
| 3235 |
| 3236 if(i!=length) { |
| 3237 /* illegal for this function: not all input consumed */ |
| 3238 return 0xffff; |
| 3239 } |
| 3240 |
| 3241 if(c==0xfffe) { |
| 3242 /* try an extension mapping */ |
| 3243 const int32_t *cx=sharedData->mbcs.extIndexes; |
| 3244 if(cx!=NULL) { |
| 3245 return ucnv_extSimpleMatchToU(cx, source, length, useFallback); |
| 3246 } |
| 3247 } |
| 3248 |
| 3249 return c; |
| 3250 } |
| 3251 |
| 3252 /* MBCS-from-Unicode conversion functions ----------------------------------- */ |
| 3253 |
| 3254 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for double-byt
e codepages. */ |
| 3255 static void |
| 3256 ucnv_MBCSDoubleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3257 UErrorCode *pErrorCode) { |
| 3258 UConverter *cnv; |
| 3259 const UChar *source, *sourceLimit; |
| 3260 uint8_t *target; |
| 3261 int32_t targetCapacity; |
| 3262 int32_t *offsets; |
| 3263 |
| 3264 const uint16_t *table; |
| 3265 const uint16_t *mbcsIndex; |
| 3266 const uint8_t *bytes; |
| 3267 |
| 3268 UChar32 c; |
| 3269 |
| 3270 int32_t sourceIndex, nextSourceIndex; |
| 3271 |
| 3272 uint32_t stage2Entry; |
| 3273 uint32_t asciiRoundtrips; |
| 3274 uint32_t value; |
| 3275 uint8_t unicodeMask; |
| 3276 |
| 3277 /* use optimized function if possible */ |
| 3278 cnv=pArgs->converter; |
| 3279 unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
| 3280 |
| 3281 /* set up the local pointers */ |
| 3282 source=pArgs->source; |
| 3283 sourceLimit=pArgs->sourceLimit; |
| 3284 target=(uint8_t *)pArgs->target; |
| 3285 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3286 offsets=pArgs->offsets; |
| 3287 |
| 3288 table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3289 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
| 3290 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3291 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3292 } else { |
| 3293 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3294 } |
| 3295 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 3296 |
| 3297 /* get the converter state from UConverter */ |
| 3298 c=cnv->fromUChar32; |
| 3299 |
| 3300 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 3301 sourceIndex= c==0 ? 0 : -1; |
| 3302 nextSourceIndex=0; |
| 3303 |
| 3304 /* conversion loop */ |
| 3305 if(c!=0 && targetCapacity>0) { |
| 3306 goto getTrail; |
| 3307 } |
| 3308 |
| 3309 while(source<sourceLimit) { |
| 3310 /* |
| 3311 * This following test is to see if available input would overflow the o
utput. |
| 3312 * It does not catch output of more than one byte that |
| 3313 * overflows as a result of a multi-byte character or callback output |
| 3314 * from the last source character. |
| 3315 * Therefore, those situations also test for overflows and will |
| 3316 * then break the loop, too. |
| 3317 */ |
| 3318 if(targetCapacity>0) { |
| 3319 /* |
| 3320 * Get a correct Unicode code point: |
| 3321 * a single UChar for a BMP code point or |
| 3322 * a matched surrogate pair for a "supplementary code point". |
| 3323 */ |
| 3324 c=*source++; |
| 3325 ++nextSourceIndex; |
| 3326 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
| 3327 *target++=(uint8_t)c; |
| 3328 if(offsets!=NULL) { |
| 3329 *offsets++=sourceIndex; |
| 3330 sourceIndex=nextSourceIndex; |
| 3331 } |
| 3332 --targetCapacity; |
| 3333 c=0; |
| 3334 continue; |
| 3335 } |
| 3336 /* |
| 3337 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
| 3338 * to avoid dealing with surrogates. |
| 3339 * MBCS_FAST_MAX must be >=0xd7ff. |
| 3340 */ |
| 3341 if(c<=0xd7ff) { |
| 3342 value=DBCS_RESULT_FROM_MOST_BMP(mbcsIndex, (const uint16_t *)byt
es, c); |
| 3343 /* There are only roundtrips (!=0) and no-mapping (==0) entries.
*/ |
| 3344 if(value==0) { |
| 3345 goto unassigned; |
| 3346 } |
| 3347 /* output the value */ |
| 3348 } else { |
| 3349 /* |
| 3350 * This also tests if the codepage maps single surrogates. |
| 3351 * If it does, then surrogates are not paired but mapped separat
ely. |
| 3352 * Note that in this case unmatched surrogates are not detected. |
| 3353 */ |
| 3354 if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
| 3355 if(UTF_IS_SURROGATE_FIRST(c)) { |
| 3356 getTrail: |
| 3357 if(source<sourceLimit) { |
| 3358 /* test the following code unit */ |
| 3359 UChar trail=*source; |
| 3360 if(UTF_IS_SECOND_SURROGATE(trail)) { |
| 3361 ++source; |
| 3362 ++nextSourceIndex; |
| 3363 c=UTF16_GET_PAIR_VALUE(c, trail); |
| 3364 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 3365 /* BMP-only codepages are stored without sta
ge 1 entries for supplementary code points */ |
| 3366 /* callback(unassigned) */ |
| 3367 goto unassigned; |
| 3368 } |
| 3369 /* convert this supplementary code point */ |
| 3370 /* exit this condition tree */ |
| 3371 } else { |
| 3372 /* this is an unmatched lead code unit (1st surr
ogate) */ |
| 3373 /* callback(illegal) */ |
| 3374 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3375 break; |
| 3376 } |
| 3377 } else { |
| 3378 /* no more input */ |
| 3379 break; |
| 3380 } |
| 3381 } else { |
| 3382 /* this is an unmatched trail code unit (2nd surrogate)
*/ |
| 3383 /* callback(illegal) */ |
| 3384 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3385 break; |
| 3386 } |
| 3387 } |
| 3388 |
| 3389 /* convert the Unicode code point in c into codepage bytes */ |
| 3390 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 3391 |
| 3392 /* get the bytes and the length for the output */ |
| 3393 /* MBCS_OUTPUT_2 */ |
| 3394 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 3395 |
| 3396 /* is this code point assigned, or do we use fallbacks? */ |
| 3397 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
| 3398 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
| 3399 ) { |
| 3400 /* |
| 3401 * We allow a 0 byte output if the "assigned" bit is set for
this entry. |
| 3402 * There is no way with this data structure for fallback out
put |
| 3403 * to be a zero byte. |
| 3404 */ |
| 3405 |
| 3406 unassigned: |
| 3407 /* try an extension mapping */ |
| 3408 pArgs->source=source; |
| 3409 c=_extFromU(cnv, cnv->sharedData, |
| 3410 c, &source, sourceLimit, |
| 3411 &target, target+targetCapacity, |
| 3412 &offsets, sourceIndex, |
| 3413 pArgs->flush, |
| 3414 pErrorCode); |
| 3415 nextSourceIndex+=(int32_t)(source-pArgs->source); |
| 3416 |
| 3417 if(U_FAILURE(*pErrorCode)) { |
| 3418 /* not mappable or buffer overflow */ |
| 3419 break; |
| 3420 } else { |
| 3421 /* a mapping was written to the target, continue */ |
| 3422 |
| 3423 /* recalculate the targetCapacity after an extension map
ping */ |
| 3424 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)targ
et); |
| 3425 |
| 3426 /* normal end of conversion: prepare for a new character
*/ |
| 3427 sourceIndex=nextSourceIndex; |
| 3428 continue; |
| 3429 } |
| 3430 } |
| 3431 } |
| 3432 |
| 3433 /* write the output character bytes from value and length */ |
| 3434 /* from the first if in the loop we know that targetCapacity>0 */ |
| 3435 if(value<=0xff) { |
| 3436 /* this is easy because we know that there is enough space */ |
| 3437 *target++=(uint8_t)value; |
| 3438 if(offsets!=NULL) { |
| 3439 *offsets++=sourceIndex; |
| 3440 } |
| 3441 --targetCapacity; |
| 3442 } else /* length==2 */ { |
| 3443 *target++=(uint8_t)(value>>8); |
| 3444 if(2<=targetCapacity) { |
| 3445 *target++=(uint8_t)value; |
| 3446 if(offsets!=NULL) { |
| 3447 *offsets++=sourceIndex; |
| 3448 *offsets++=sourceIndex; |
| 3449 } |
| 3450 targetCapacity-=2; |
| 3451 } else { |
| 3452 if(offsets!=NULL) { |
| 3453 *offsets++=sourceIndex; |
| 3454 } |
| 3455 cnv->charErrorBuffer[0]=(char)value; |
| 3456 cnv->charErrorBufferLength=1; |
| 3457 |
| 3458 /* target overflow */ |
| 3459 targetCapacity=0; |
| 3460 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3461 c=0; |
| 3462 break; |
| 3463 } |
| 3464 } |
| 3465 |
| 3466 /* normal end of conversion: prepare for a new character */ |
| 3467 c=0; |
| 3468 sourceIndex=nextSourceIndex; |
| 3469 continue; |
| 3470 } else { |
| 3471 /* target is full */ |
| 3472 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3473 break; |
| 3474 } |
| 3475 } |
| 3476 |
| 3477 /* set the converter state back into UConverter */ |
| 3478 cnv->fromUChar32=c; |
| 3479 |
| 3480 /* write back the updated pointers */ |
| 3481 pArgs->source=source; |
| 3482 pArgs->target=(char *)target; |
| 3483 pArgs->offsets=offsets; |
| 3484 } |
| 3485 |
| 3486 /* This version of ucnv_MBCSFromUnicodeWithOffsets() is optimized for single-byt
e codepages. */ |
| 3487 static void |
| 3488 ucnv_MBCSSingleFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3489 UErrorCode *pErrorCode) { |
| 3490 UConverter *cnv; |
| 3491 const UChar *source, *sourceLimit; |
| 3492 uint8_t *target; |
| 3493 int32_t targetCapacity; |
| 3494 int32_t *offsets; |
| 3495 |
| 3496 const uint16_t *table; |
| 3497 const uint16_t *results; |
| 3498 |
| 3499 UChar32 c; |
| 3500 |
| 3501 int32_t sourceIndex, nextSourceIndex; |
| 3502 |
| 3503 uint16_t value, minValue; |
| 3504 UBool hasSupplementary; |
| 3505 |
| 3506 /* set up the local pointers */ |
| 3507 cnv=pArgs->converter; |
| 3508 source=pArgs->source; |
| 3509 sourceLimit=pArgs->sourceLimit; |
| 3510 target=(uint8_t *)pArgs->target; |
| 3511 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3512 offsets=pArgs->offsets; |
| 3513 |
| 3514 table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3515 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3516 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3517 } else { |
| 3518 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3519 } |
| 3520 |
| 3521 if(cnv->useFallback) { |
| 3522 /* use all roundtrip and fallback results */ |
| 3523 minValue=0x800; |
| 3524 } else { |
| 3525 /* use only roundtrips and fallbacks from private-use characters */ |
| 3526 minValue=0xc00; |
| 3527 } |
| 3528 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEME
NTARY); |
| 3529 |
| 3530 /* get the converter state from UConverter */ |
| 3531 c=cnv->fromUChar32; |
| 3532 |
| 3533 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 3534 sourceIndex= c==0 ? 0 : -1; |
| 3535 nextSourceIndex=0; |
| 3536 |
| 3537 /* conversion loop */ |
| 3538 if(c!=0 && targetCapacity>0) { |
| 3539 goto getTrail; |
| 3540 } |
| 3541 |
| 3542 while(source<sourceLimit) { |
| 3543 /* |
| 3544 * This following test is to see if available input would overflow the o
utput. |
| 3545 * It does not catch output of more than one byte that |
| 3546 * overflows as a result of a multi-byte character or callback output |
| 3547 * from the last source character. |
| 3548 * Therefore, those situations also test for overflows and will |
| 3549 * then break the loop, too. |
| 3550 */ |
| 3551 if(targetCapacity>0) { |
| 3552 /* |
| 3553 * Get a correct Unicode code point: |
| 3554 * a single UChar for a BMP code point or |
| 3555 * a matched surrogate pair for a "supplementary code point". |
| 3556 */ |
| 3557 c=*source++; |
| 3558 ++nextSourceIndex; |
| 3559 if(UTF_IS_SURROGATE(c)) { |
| 3560 if(UTF_IS_SURROGATE_FIRST(c)) { |
| 3561 getTrail: |
| 3562 if(source<sourceLimit) { |
| 3563 /* test the following code unit */ |
| 3564 UChar trail=*source; |
| 3565 if(UTF_IS_SECOND_SURROGATE(trail)) { |
| 3566 ++source; |
| 3567 ++nextSourceIndex; |
| 3568 c=UTF16_GET_PAIR_VALUE(c, trail); |
| 3569 if(!hasSupplementary) { |
| 3570 /* BMP-only codepages are stored without stage 1
entries for supplementary code points */ |
| 3571 /* callback(unassigned) */ |
| 3572 goto unassigned; |
| 3573 } |
| 3574 /* convert this supplementary code point */ |
| 3575 /* exit this condition tree */ |
| 3576 } else { |
| 3577 /* this is an unmatched lead code unit (1st surrogat
e) */ |
| 3578 /* callback(illegal) */ |
| 3579 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3580 break; |
| 3581 } |
| 3582 } else { |
| 3583 /* no more input */ |
| 3584 break; |
| 3585 } |
| 3586 } else { |
| 3587 /* this is an unmatched trail code unit (2nd surrogate) */ |
| 3588 /* callback(illegal) */ |
| 3589 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3590 break; |
| 3591 } |
| 3592 } |
| 3593 |
| 3594 /* convert the Unicode code point in c into codepage bytes */ |
| 3595 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3596 |
| 3597 /* is this code point assigned, or do we use fallbacks? */ |
| 3598 if(value>=minValue) { |
| 3599 /* assigned, write the output character bytes from value and len
gth */ |
| 3600 /* length==1 */ |
| 3601 /* this is easy because we know that there is enough space */ |
| 3602 *target++=(uint8_t)value; |
| 3603 if(offsets!=NULL) { |
| 3604 *offsets++=sourceIndex; |
| 3605 } |
| 3606 --targetCapacity; |
| 3607 |
| 3608 /* normal end of conversion: prepare for a new character */ |
| 3609 c=0; |
| 3610 sourceIndex=nextSourceIndex; |
| 3611 } else { /* unassigned */ |
| 3612 unassigned: |
| 3613 /* try an extension mapping */ |
| 3614 pArgs->source=source; |
| 3615 c=_extFromU(cnv, cnv->sharedData, |
| 3616 c, &source, sourceLimit, |
| 3617 &target, target+targetCapacity, |
| 3618 &offsets, sourceIndex, |
| 3619 pArgs->flush, |
| 3620 pErrorCode); |
| 3621 nextSourceIndex+=(int32_t)(source-pArgs->source); |
| 3622 |
| 3623 if(U_FAILURE(*pErrorCode)) { |
| 3624 /* not mappable or buffer overflow */ |
| 3625 break; |
| 3626 } else { |
| 3627 /* a mapping was written to the target, continue */ |
| 3628 |
| 3629 /* recalculate the targetCapacity after an extension mapping
*/ |
| 3630 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
| 3631 |
| 3632 /* normal end of conversion: prepare for a new character */ |
| 3633 sourceIndex=nextSourceIndex; |
| 3634 } |
| 3635 } |
| 3636 } else { |
| 3637 /* target is full */ |
| 3638 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3639 break; |
| 3640 } |
| 3641 } |
| 3642 |
| 3643 /* set the converter state back into UConverter */ |
| 3644 cnv->fromUChar32=c; |
| 3645 |
| 3646 /* write back the updated pointers */ |
| 3647 pArgs->source=source; |
| 3648 pArgs->target=(char *)target; |
| 3649 pArgs->offsets=offsets; |
| 3650 } |
| 3651 |
| 3652 /* |
| 3653 * This version of ucnv_MBCSFromUnicode() is optimized for single-byte codepages |
| 3654 * that map only to and from the BMP. |
| 3655 * In addition to single-byte/state optimizations, the offset calculations |
| 3656 * become much easier. |
| 3657 * It would be possible to use the sbcsIndex for UTF-8-friendly tables, |
| 3658 * but measurements have shown that this diminishes performance |
| 3659 * in more cases than it improves it. |
| 3660 * See SVN revision 21013 (2007-feb-06) for the last version with #if switches |
| 3661 * for various MBCS and SBCS optimizations. |
| 3662 */ |
| 3663 static void |
| 3664 ucnv_MBCSSingleFromBMPWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3665 UErrorCode *pErrorCode) { |
| 3666 UConverter *cnv; |
| 3667 const UChar *source, *sourceLimit, *lastSource; |
| 3668 uint8_t *target; |
| 3669 int32_t targetCapacity, length; |
| 3670 int32_t *offsets; |
| 3671 |
| 3672 const uint16_t *table; |
| 3673 const uint16_t *results; |
| 3674 |
| 3675 UChar32 c; |
| 3676 |
| 3677 int32_t sourceIndex; |
| 3678 |
| 3679 uint32_t asciiRoundtrips; |
| 3680 uint16_t value, minValue; |
| 3681 |
| 3682 /* set up the local pointers */ |
| 3683 cnv=pArgs->converter; |
| 3684 source=pArgs->source; |
| 3685 sourceLimit=pArgs->sourceLimit; |
| 3686 target=(uint8_t *)pArgs->target; |
| 3687 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3688 offsets=pArgs->offsets; |
| 3689 |
| 3690 table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3691 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3692 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3693 } else { |
| 3694 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3695 } |
| 3696 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 3697 |
| 3698 if(cnv->useFallback) { |
| 3699 /* use all roundtrip and fallback results */ |
| 3700 minValue=0x800; |
| 3701 } else { |
| 3702 /* use only roundtrips and fallbacks from private-use characters */ |
| 3703 minValue=0xc00; |
| 3704 } |
| 3705 |
| 3706 /* get the converter state from UConverter */ |
| 3707 c=cnv->fromUChar32; |
| 3708 |
| 3709 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 3710 sourceIndex= c==0 ? 0 : -1; |
| 3711 lastSource=source; |
| 3712 |
| 3713 /* |
| 3714 * since the conversion here is 1:1 UChar:uint8_t, we need only one counter |
| 3715 * for the minimum of the sourceLength and targetCapacity |
| 3716 */ |
| 3717 length=(int32_t)(sourceLimit-source); |
| 3718 if(length<targetCapacity) { |
| 3719 targetCapacity=length; |
| 3720 } |
| 3721 |
| 3722 /* conversion loop */ |
| 3723 if(c!=0 && targetCapacity>0) { |
| 3724 goto getTrail; |
| 3725 } |
| 3726 |
| 3727 #if MBCS_UNROLL_SINGLE_FROM_BMP |
| 3728 /* unrolling makes it slower on Pentium III/Windows 2000?! */ |
| 3729 /* unroll the loop with the most common case */ |
| 3730 unrolled: |
| 3731 if(targetCapacity>=4) { |
| 3732 int32_t count, loops; |
| 3733 uint16_t andedValues; |
| 3734 |
| 3735 loops=count=targetCapacity>>2; |
| 3736 do { |
| 3737 c=*source++; |
| 3738 andedValues=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3739 *target++=(uint8_t)value; |
| 3740 c=*source++; |
| 3741 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3742 *target++=(uint8_t)value; |
| 3743 c=*source++; |
| 3744 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3745 *target++=(uint8_t)value; |
| 3746 c=*source++; |
| 3747 andedValues&=value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3748 *target++=(uint8_t)value; |
| 3749 |
| 3750 /* were all 4 entries really valid? */ |
| 3751 if(andedValues<minValue) { |
| 3752 /* no, return to the first of these 4 */ |
| 3753 source-=4; |
| 3754 target-=4; |
| 3755 break; |
| 3756 } |
| 3757 } while(--count>0); |
| 3758 count=loops-count; |
| 3759 targetCapacity-=4*count; |
| 3760 |
| 3761 if(offsets!=NULL) { |
| 3762 lastSource+=4*count; |
| 3763 while(count>0) { |
| 3764 *offsets++=sourceIndex++; |
| 3765 *offsets++=sourceIndex++; |
| 3766 *offsets++=sourceIndex++; |
| 3767 *offsets++=sourceIndex++; |
| 3768 --count; |
| 3769 } |
| 3770 } |
| 3771 |
| 3772 c=0; |
| 3773 } |
| 3774 #endif |
| 3775 |
| 3776 while(targetCapacity>0) { |
| 3777 /* |
| 3778 * Get a correct Unicode code point: |
| 3779 * a single UChar for a BMP code point or |
| 3780 * a matched surrogate pair for a "supplementary code point". |
| 3781 */ |
| 3782 c=*source++; |
| 3783 /* |
| 3784 * Do not immediately check for single surrogates: |
| 3785 * Assume that they are unassigned and check for them in that case. |
| 3786 * This speeds up the conversion of assigned characters. |
| 3787 */ |
| 3788 /* convert the Unicode code point in c into codepage bytes */ |
| 3789 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
| 3790 *target++=(uint8_t)c; |
| 3791 --targetCapacity; |
| 3792 c=0; |
| 3793 continue; |
| 3794 } |
| 3795 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 3796 /* is this code point assigned, or do we use fallbacks? */ |
| 3797 if(value>=minValue) { |
| 3798 /* assigned, write the output character bytes from value and length
*/ |
| 3799 /* length==1 */ |
| 3800 /* this is easy because we know that there is enough space */ |
| 3801 *target++=(uint8_t)value; |
| 3802 --targetCapacity; |
| 3803 |
| 3804 /* normal end of conversion: prepare for a new character */ |
| 3805 c=0; |
| 3806 continue; |
| 3807 } else if(!UTF_IS_SURROGATE(c)) { |
| 3808 /* normal, unassigned BMP character */ |
| 3809 } else if(UTF_IS_SURROGATE_FIRST(c)) { |
| 3810 getTrail: |
| 3811 if(source<sourceLimit) { |
| 3812 /* test the following code unit */ |
| 3813 UChar trail=*source; |
| 3814 if(UTF_IS_SECOND_SURROGATE(trail)) { |
| 3815 ++source; |
| 3816 c=UTF16_GET_PAIR_VALUE(c, trail); |
| 3817 /* this codepage does not map supplementary code points */ |
| 3818 /* callback(unassigned) */ |
| 3819 } else { |
| 3820 /* this is an unmatched lead code unit (1st surrogate) */ |
| 3821 /* callback(illegal) */ |
| 3822 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3823 break; |
| 3824 } |
| 3825 } else { |
| 3826 /* no more input */ |
| 3827 if (pArgs->flush) { |
| 3828 *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
| 3829 } |
| 3830 break; |
| 3831 } |
| 3832 } else { |
| 3833 /* this is an unmatched trail code unit (2nd surrogate) */ |
| 3834 /* callback(illegal) */ |
| 3835 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 3836 break; |
| 3837 } |
| 3838 |
| 3839 /* c does not have a mapping */ |
| 3840 |
| 3841 /* get the number of code units for c to correctly advance sourceIndex *
/ |
| 3842 length=U16_LENGTH(c); |
| 3843 |
| 3844 /* set offsets since the start or the last extension */ |
| 3845 if(offsets!=NULL) { |
| 3846 int32_t count=(int32_t)(source-lastSource); |
| 3847 |
| 3848 /* do not set the offset for this character */ |
| 3849 count-=length; |
| 3850 |
| 3851 while(count>0) { |
| 3852 *offsets++=sourceIndex++; |
| 3853 --count; |
| 3854 } |
| 3855 /* offsets and sourceIndex are now set for the current character */ |
| 3856 } |
| 3857 |
| 3858 /* try an extension mapping */ |
| 3859 lastSource=source; |
| 3860 c=_extFromU(cnv, cnv->sharedData, |
| 3861 c, &source, sourceLimit, |
| 3862 &target, (const uint8_t *)(pArgs->targetLimit), |
| 3863 &offsets, sourceIndex, |
| 3864 pArgs->flush, |
| 3865 pErrorCode); |
| 3866 sourceIndex+=length+(int32_t)(source-lastSource); |
| 3867 lastSource=source; |
| 3868 |
| 3869 if(U_FAILURE(*pErrorCode)) { |
| 3870 /* not mappable or buffer overflow */ |
| 3871 break; |
| 3872 } else { |
| 3873 /* a mapping was written to the target, continue */ |
| 3874 |
| 3875 /* recalculate the targetCapacity after an extension mapping */ |
| 3876 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)target); |
| 3877 length=(int32_t)(sourceLimit-source); |
| 3878 if(length<targetCapacity) { |
| 3879 targetCapacity=length; |
| 3880 } |
| 3881 } |
| 3882 |
| 3883 #if MBCS_UNROLL_SINGLE_FROM_BMP |
| 3884 /* unrolling makes it slower on Pentium III/Windows 2000?! */ |
| 3885 goto unrolled; |
| 3886 #endif |
| 3887 } |
| 3888 |
| 3889 if(U_SUCCESS(*pErrorCode) && source<sourceLimit && target>=(uint8_t *)pArgs-
>targetLimit) { |
| 3890 /* target is full */ |
| 3891 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 3892 } |
| 3893 |
| 3894 /* set offsets since the start or the last callback */ |
| 3895 if(offsets!=NULL) { |
| 3896 size_t count=source-lastSource; |
| 3897 if (count > 0 && *pErrorCode == U_TRUNCATED_CHAR_FOUND) { |
| 3898 /* |
| 3899 Caller gave us a partial supplementary character, |
| 3900 which this function couldn't convert in any case. |
| 3901 The callback will handle the offset. |
| 3902 */ |
| 3903 count--; |
| 3904 } |
| 3905 while(count>0) { |
| 3906 *offsets++=sourceIndex++; |
| 3907 --count; |
| 3908 } |
| 3909 } |
| 3910 |
| 3911 /* set the converter state back into UConverter */ |
| 3912 cnv->fromUChar32=c; |
| 3913 |
| 3914 /* write back the updated pointers */ |
| 3915 pArgs->source=source; |
| 3916 pArgs->target=(char *)target; |
| 3917 pArgs->offsets=offsets; |
| 3918 } |
| 3919 |
| 3920 U_CFUNC void |
| 3921 ucnv_MBCSFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 3922 UErrorCode *pErrorCode) { |
| 3923 UConverter *cnv; |
| 3924 const UChar *source, *sourceLimit; |
| 3925 uint8_t *target; |
| 3926 int32_t targetCapacity; |
| 3927 int32_t *offsets; |
| 3928 |
| 3929 const uint16_t *table; |
| 3930 const uint16_t *mbcsIndex; |
| 3931 const uint8_t *p, *bytes; |
| 3932 uint8_t outputType; |
| 3933 |
| 3934 UChar32 c; |
| 3935 |
| 3936 int32_t prevSourceIndex, sourceIndex, nextSourceIndex; |
| 3937 |
| 3938 uint32_t stage2Entry; |
| 3939 uint32_t asciiRoundtrips; |
| 3940 uint32_t value; |
| 3941 uint8_t si_value[2] = {0, 0}; |
| 3942 uint8_t so_value[2] = {0, 0}; |
| 3943 uint8_t si_value_length, so_value_length; |
| 3944 int32_t length = 0, prevLength; |
| 3945 uint8_t unicodeMask; |
| 3946 |
| 3947 cnv=pArgs->converter; |
| 3948 |
| 3949 if(cnv->preFromUFirstCP>=0) { |
| 3950 /* |
| 3951 * pass sourceIndex=-1 because we continue from an earlier buffer |
| 3952 * in the future, this may change with continuous offsets |
| 3953 */ |
| 3954 ucnv_extContinueMatchFromU(cnv, pArgs, -1, pErrorCode); |
| 3955 |
| 3956 if(U_FAILURE(*pErrorCode) || cnv->preFromULength<0) { |
| 3957 return; |
| 3958 } |
| 3959 } |
| 3960 |
| 3961 /* use optimized function if possible */ |
| 3962 outputType=cnv->sharedData->mbcs.outputType; |
| 3963 unicodeMask=cnv->sharedData->mbcs.unicodeMask; |
| 3964 if(outputType==MBCS_OUTPUT_1 && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
| 3965 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 3966 ucnv_MBCSSingleFromBMPWithOffsets(pArgs, pErrorCode); |
| 3967 } else { |
| 3968 ucnv_MBCSSingleFromUnicodeWithOffsets(pArgs, pErrorCode); |
| 3969 } |
| 3970 return; |
| 3971 } else if(outputType==MBCS_OUTPUT_2 && cnv->sharedData->mbcs.utf8Friendly) { |
| 3972 ucnv_MBCSDoubleFromUnicodeWithOffsets(pArgs, pErrorCode); |
| 3973 return; |
| 3974 } |
| 3975 |
| 3976 /* set up the local pointers */ |
| 3977 source=pArgs->source; |
| 3978 sourceLimit=pArgs->sourceLimit; |
| 3979 target=(uint8_t *)pArgs->target; |
| 3980 targetCapacity=(int32_t)(pArgs->targetLimit-pArgs->target); |
| 3981 offsets=pArgs->offsets; |
| 3982 |
| 3983 table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 3984 if(cnv->sharedData->mbcs.utf8Friendly) { |
| 3985 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
| 3986 } else { |
| 3987 mbcsIndex=NULL; |
| 3988 } |
| 3989 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 3990 bytes=cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 3991 } else { |
| 3992 bytes=cnv->sharedData->mbcs.fromUnicodeBytes; |
| 3993 } |
| 3994 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 3995 |
| 3996 /* get the converter state from UConverter */ |
| 3997 c=cnv->fromUChar32; |
| 3998 |
| 3999 if(outputType==MBCS_OUTPUT_2_SISO) { |
| 4000 prevLength=cnv->fromUnicodeStatus; |
| 4001 if(prevLength==0) { |
| 4002 /* set the real value */ |
| 4003 prevLength=1; |
| 4004 } |
| 4005 } else { |
| 4006 /* prevent fromUnicodeStatus from being set to something non-0 */ |
| 4007 prevLength=0; |
| 4008 } |
| 4009 |
| 4010 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 4011 prevSourceIndex=-1; |
| 4012 sourceIndex= c==0 ? 0 : -1; |
| 4013 nextSourceIndex=0; |
| 4014 |
| 4015 /* Get the SI/SO character for the converter */ |
| 4016 si_value_length = getSISOBytes(SI, cnv->options, si_value); |
| 4017 so_value_length = getSISOBytes(SO, cnv->options, so_value); |
| 4018 |
| 4019 /* conversion loop */ |
| 4020 /* |
| 4021 * This is another piece of ugly code: |
| 4022 * A goto into the loop if the converter state contains a first surrogate |
| 4023 * from the previous function call. |
| 4024 * It saves me to check in each loop iteration a check of if(c==0) |
| 4025 * and duplicating the trail-surrogate-handling code in the else |
| 4026 * branch of that check. |
| 4027 * I could not find any other way to get around this other than |
| 4028 * using a function call for the conversion and callback, which would |
| 4029 * be even more inefficient. |
| 4030 * |
| 4031 * Markus Scherer 2000-jul-19 |
| 4032 */ |
| 4033 if(c!=0 && targetCapacity>0) { |
| 4034 goto getTrail; |
| 4035 } |
| 4036 |
| 4037 while(source<sourceLimit) { |
| 4038 /* |
| 4039 * This following test is to see if available input would overflow the o
utput. |
| 4040 * It does not catch output of more than one byte that |
| 4041 * overflows as a result of a multi-byte character or callback output |
| 4042 * from the last source character. |
| 4043 * Therefore, those situations also test for overflows and will |
| 4044 * then break the loop, too. |
| 4045 */ |
| 4046 if(targetCapacity>0) { |
| 4047 /* |
| 4048 * Get a correct Unicode code point: |
| 4049 * a single UChar for a BMP code point or |
| 4050 * a matched surrogate pair for a "supplementary code point". |
| 4051 */ |
| 4052 c=*source++; |
| 4053 ++nextSourceIndex; |
| 4054 if(c<=0x7f && IS_ASCII_ROUNDTRIP(c, asciiRoundtrips)) { |
| 4055 *target++=(uint8_t)c; |
| 4056 if(offsets!=NULL) { |
| 4057 *offsets++=sourceIndex; |
| 4058 prevSourceIndex=sourceIndex; |
| 4059 sourceIndex=nextSourceIndex; |
| 4060 } |
| 4061 --targetCapacity; |
| 4062 c=0; |
| 4063 continue; |
| 4064 } |
| 4065 /* |
| 4066 * utf8Friendly table: Test for <=0xd7ff rather than <=MBCS_FAST_MAX |
| 4067 * to avoid dealing with surrogates. |
| 4068 * MBCS_FAST_MAX must be >=0xd7ff. |
| 4069 */ |
| 4070 if(c<=0xd7ff && mbcsIndex!=NULL) { |
| 4071 value=mbcsIndex[c>>6]; |
| 4072 |
| 4073 /* get the bytes and the length for the output (copied from belo
w and adapted for utf8Friendly data) */ |
| 4074 /* There are only roundtrips (!=0) and no-mapping (==0) entries.
*/ |
| 4075 switch(outputType) { |
| 4076 case MBCS_OUTPUT_2: |
| 4077 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4078 if(value<=0xff) { |
| 4079 if(value==0) { |
| 4080 goto unassigned; |
| 4081 } else { |
| 4082 length=1; |
| 4083 } |
| 4084 } else { |
| 4085 length=2; |
| 4086 } |
| 4087 break; |
| 4088 case MBCS_OUTPUT_2_SISO: |
| 4089 /* 1/2-byte stateful with Shift-In/Shift-Out */ |
| 4090 /* |
| 4091 * Save the old state in the converter object |
| 4092 * right here, then change the local prevLength state variab
le if necessary. |
| 4093 * Then, if this character turns out to be unassigned or a f
allback that |
| 4094 * is not taken, the callback code must not save the new sta
te in the converter |
| 4095 * because the new state is for a character that is not outp
ut. |
| 4096 * However, the callback must still restore the state from t
he converter |
| 4097 * in case the callback function changed it for its output. |
| 4098 */ |
| 4099 cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
| 4100 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4101 if(value<=0xff) { |
| 4102 if(value==0) { |
| 4103 goto unassigned; |
| 4104 } else if(prevLength<=1) { |
| 4105 length=1; |
| 4106 } else { |
| 4107 /* change from double-byte mode to single-byte */ |
| 4108 if (si_value_length == 1) { |
| 4109 value|=(uint32_t)si_value[0]<<8; |
| 4110 length = 2; |
| 4111 } else if (si_value_length == 2) { |
| 4112 value|=(uint32_t)si_value[1]<<8; |
| 4113 value|=(uint32_t)si_value[0]<<16; |
| 4114 length = 3; |
| 4115 } |
| 4116 prevLength=1; |
| 4117 } |
| 4118 } else { |
| 4119 if(prevLength==2) { |
| 4120 length=2; |
| 4121 } else { |
| 4122 /* change from single-byte mode to double-byte */ |
| 4123 if (so_value_length == 1) { |
| 4124 value|=(uint32_t)so_value[0]<<16; |
| 4125 length = 3; |
| 4126 } else if (so_value_length == 2) { |
| 4127 value|=(uint32_t)so_value[1]<<16; |
| 4128 value|=(uint32_t)so_value[0]<<24; |
| 4129 length = 4; |
| 4130 } |
| 4131 prevLength=2; |
| 4132 } |
| 4133 } |
| 4134 break; |
| 4135 case MBCS_OUTPUT_DBCS_ONLY: |
| 4136 /* table with single-byte results, but only DBCS mappings us
ed */ |
| 4137 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4138 if(value<=0xff) { |
| 4139 /* no mapping or SBCS result, not taken for DBCS-only */ |
| 4140 goto unassigned; |
| 4141 } else { |
| 4142 length=2; |
| 4143 } |
| 4144 break; |
| 4145 case MBCS_OUTPUT_3: |
| 4146 p=bytes+(value+(c&0x3f))*3; |
| 4147 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4148 if(value<=0xff) { |
| 4149 if(value==0) { |
| 4150 goto unassigned; |
| 4151 } else { |
| 4152 length=1; |
| 4153 } |
| 4154 } else if(value<=0xffff) { |
| 4155 length=2; |
| 4156 } else { |
| 4157 length=3; |
| 4158 } |
| 4159 break; |
| 4160 case MBCS_OUTPUT_4: |
| 4161 value=((const uint32_t *)bytes)[value +(c&0x3f)]; |
| 4162 if(value<=0xff) { |
| 4163 if(value==0) { |
| 4164 goto unassigned; |
| 4165 } else { |
| 4166 length=1; |
| 4167 } |
| 4168 } else if(value<=0xffff) { |
| 4169 length=2; |
| 4170 } else if(value<=0xffffff) { |
| 4171 length=3; |
| 4172 } else { |
| 4173 length=4; |
| 4174 } |
| 4175 break; |
| 4176 case MBCS_OUTPUT_3_EUC: |
| 4177 value=((const uint16_t *)bytes)[value +(c&0x3f)]; |
| 4178 /* EUC 16-bit fixed-length representation */ |
| 4179 if(value<=0xff) { |
| 4180 if(value==0) { |
| 4181 goto unassigned; |
| 4182 } else { |
| 4183 length=1; |
| 4184 } |
| 4185 } else if((value&0x8000)==0) { |
| 4186 value|=0x8e8000; |
| 4187 length=3; |
| 4188 } else if((value&0x80)==0) { |
| 4189 value|=0x8f0080; |
| 4190 length=3; |
| 4191 } else { |
| 4192 length=2; |
| 4193 } |
| 4194 break; |
| 4195 case MBCS_OUTPUT_4_EUC: |
| 4196 p=bytes+(value+(c&0x3f))*3; |
| 4197 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4198 /* EUC 16-bit fixed-length representation applied to the fir
st two bytes */ |
| 4199 if(value<=0xff) { |
| 4200 if(value==0) { |
| 4201 goto unassigned; |
| 4202 } else { |
| 4203 length=1; |
| 4204 } |
| 4205 } else if(value<=0xffff) { |
| 4206 length=2; |
| 4207 } else if((value&0x800000)==0) { |
| 4208 value|=0x8e800000; |
| 4209 length=4; |
| 4210 } else if((value&0x8000)==0) { |
| 4211 value|=0x8f008000; |
| 4212 length=4; |
| 4213 } else { |
| 4214 length=3; |
| 4215 } |
| 4216 break; |
| 4217 default: |
| 4218 /* must not occur */ |
| 4219 /* |
| 4220 * To avoid compiler warnings that value & length may be |
| 4221 * used without having been initialized, we set them here. |
| 4222 * In reality, this is unreachable code. |
| 4223 * Not having a default branch also causes warnings with |
| 4224 * some compilers. |
| 4225 */ |
| 4226 value=0; |
| 4227 length=0; |
| 4228 break; |
| 4229 } |
| 4230 /* output the value */ |
| 4231 } else { |
| 4232 /* |
| 4233 * This also tests if the codepage maps single surrogates. |
| 4234 * If it does, then surrogates are not paired but mapped separat
ely. |
| 4235 * Note that in this case unmatched surrogates are not detected. |
| 4236 */ |
| 4237 if(UTF_IS_SURROGATE(c) && !(unicodeMask&UCNV_HAS_SURROGATES)) { |
| 4238 if(UTF_IS_SURROGATE_FIRST(c)) { |
| 4239 getTrail: |
| 4240 if(source<sourceLimit) { |
| 4241 /* test the following code unit */ |
| 4242 UChar trail=*source; |
| 4243 if(UTF_IS_SECOND_SURROGATE(trail)) { |
| 4244 ++source; |
| 4245 ++nextSourceIndex; |
| 4246 c=UTF16_GET_PAIR_VALUE(c, trail); |
| 4247 if(!(unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4248 /* BMP-only codepages are stored without sta
ge 1 entries for supplementary code points */ |
| 4249 cnv->fromUnicodeStatus=prevLength; /* save t
he old state */ |
| 4250 /* callback(unassigned) */ |
| 4251 goto unassigned; |
| 4252 } |
| 4253 /* convert this supplementary code point */ |
| 4254 /* exit this condition tree */ |
| 4255 } else { |
| 4256 /* this is an unmatched lead code unit (1st surr
ogate) */ |
| 4257 /* callback(illegal) */ |
| 4258 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 4259 break; |
| 4260 } |
| 4261 } else { |
| 4262 /* no more input */ |
| 4263 break; |
| 4264 } |
| 4265 } else { |
| 4266 /* this is an unmatched trail code unit (2nd surrogate)
*/ |
| 4267 /* callback(illegal) */ |
| 4268 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 4269 break; |
| 4270 } |
| 4271 } |
| 4272 |
| 4273 /* convert the Unicode code point in c into codepage bytes */ |
| 4274 |
| 4275 /* |
| 4276 * The basic lookup is a triple-stage compact array (trie) looku
p. |
| 4277 * For details see the beginning of this file. |
| 4278 * |
| 4279 * Single-byte codepages are handled with a different data struc
ture |
| 4280 * by _MBCSSingle... functions. |
| 4281 * |
| 4282 * The result consists of a 32-bit value from stage 2 and |
| 4283 * a pointer to as many bytes as are stored per character. |
| 4284 * The pointer points to the character's bytes in stage 3. |
| 4285 * Bits 15..0 of the stage 2 entry contain the stage 3 index |
| 4286 * for that pointer, while bits 31..16 are flags for which of |
| 4287 * the 16 characters in the block are roundtrip-assigned. |
| 4288 * |
| 4289 * For 2-byte and 4-byte codepages, the bytes are stored as uint
16_t |
| 4290 * respectively as uint32_t, in the platform encoding. |
| 4291 * For 3-byte codepages, the bytes are always stored in big-endi
an order. |
| 4292 * |
| 4293 * For EUC encodings that use only either 0x8e or 0x8f as the fi
rst |
| 4294 * byte of their longest byte sequences, the first two bytes in |
| 4295 * this third stage indicate with their 7th bits whether these b
ytes |
| 4296 * are to be written directly or actually need to be preceeded b
y |
| 4297 * one of the two Single-Shift codes. With this, the third stage |
| 4298 * stores one byte fewer per character than the actual maximum l
ength of |
| 4299 * EUC byte sequences. |
| 4300 * |
| 4301 * Other than that, leading zero bytes are removed and the other |
| 4302 * bytes output. A single zero byte may be output if the "assign
ed" |
| 4303 * bit in stage 2 was on. |
| 4304 * The data structure does not support zero byte output as a fal
lback, |
| 4305 * and also does not allow output of leading zeros. |
| 4306 */ |
| 4307 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 4308 |
| 4309 /* get the bytes and the length for the output */ |
| 4310 switch(outputType) { |
| 4311 case MBCS_OUTPUT_2: |
| 4312 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4313 if(value<=0xff) { |
| 4314 length=1; |
| 4315 } else { |
| 4316 length=2; |
| 4317 } |
| 4318 break; |
| 4319 case MBCS_OUTPUT_2_SISO: |
| 4320 /* 1/2-byte stateful with Shift-In/Shift-Out */ |
| 4321 /* |
| 4322 * Save the old state in the converter object |
| 4323 * right here, then change the local prevLength state variab
le if necessary. |
| 4324 * Then, if this character turns out to be unassigned or a f
allback that |
| 4325 * is not taken, the callback code must not save the new sta
te in the converter |
| 4326 * because the new state is for a character that is not outp
ut. |
| 4327 * However, the callback must still restore the state from t
he converter |
| 4328 * in case the callback function changed it for its output. |
| 4329 */ |
| 4330 cnv->fromUnicodeStatus=prevLength; /* save the old state */ |
| 4331 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4332 if(value<=0xff) { |
| 4333 if(value==0 && MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)=
=0) { |
| 4334 /* no mapping, leave value==0 */ |
| 4335 length=0; |
| 4336 } else if(prevLength<=1) { |
| 4337 length=1; |
| 4338 } else { |
| 4339 /* change from double-byte mode to single-byte */ |
| 4340 if (si_value_length == 1) { |
| 4341 value|=(uint32_t)si_value[0]<<8; |
| 4342 length = 2; |
| 4343 } else if (si_value_length == 2) { |
| 4344 value|=(uint32_t)si_value[1]<<8; |
| 4345 value|=(uint32_t)si_value[0]<<16; |
| 4346 length = 3; |
| 4347 } |
| 4348 prevLength=1; |
| 4349 } |
| 4350 } else { |
| 4351 if(prevLength==2) { |
| 4352 length=2; |
| 4353 } else { |
| 4354 /* change from single-byte mode to double-byte */ |
| 4355 if (so_value_length == 1) { |
| 4356 value|=(uint32_t)so_value[0]<<16; |
| 4357 length = 3; |
| 4358 } else if (so_value_length == 2) { |
| 4359 value|=(uint32_t)so_value[1]<<16; |
| 4360 value|=(uint32_t)so_value[0]<<24; |
| 4361 length = 4; |
| 4362 } |
| 4363 prevLength=2; |
| 4364 } |
| 4365 } |
| 4366 break; |
| 4367 case MBCS_OUTPUT_DBCS_ONLY: |
| 4368 /* table with single-byte results, but only DBCS mappings us
ed */ |
| 4369 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4370 if(value<=0xff) { |
| 4371 /* no mapping or SBCS result, not taken for DBCS-only */ |
| 4372 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip
flags */ |
| 4373 length=0; |
| 4374 } else { |
| 4375 length=2; |
| 4376 } |
| 4377 break; |
| 4378 case MBCS_OUTPUT_3: |
| 4379 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4380 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4381 if(value<=0xff) { |
| 4382 length=1; |
| 4383 } else if(value<=0xffff) { |
| 4384 length=2; |
| 4385 } else { |
| 4386 length=3; |
| 4387 } |
| 4388 break; |
| 4389 case MBCS_OUTPUT_4: |
| 4390 value=MBCS_VALUE_4_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4391 if(value<=0xff) { |
| 4392 length=1; |
| 4393 } else if(value<=0xffff) { |
| 4394 length=2; |
| 4395 } else if(value<=0xffffff) { |
| 4396 length=3; |
| 4397 } else { |
| 4398 length=4; |
| 4399 } |
| 4400 break; |
| 4401 case MBCS_OUTPUT_3_EUC: |
| 4402 value=MBCS_VALUE_2_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4403 /* EUC 16-bit fixed-length representation */ |
| 4404 if(value<=0xff) { |
| 4405 length=1; |
| 4406 } else if((value&0x8000)==0) { |
| 4407 value|=0x8e8000; |
| 4408 length=3; |
| 4409 } else if((value&0x80)==0) { |
| 4410 value|=0x8f0080; |
| 4411 length=3; |
| 4412 } else { |
| 4413 length=2; |
| 4414 } |
| 4415 break; |
| 4416 case MBCS_OUTPUT_4_EUC: |
| 4417 p=MBCS_POINTER_3_FROM_STAGE_2(bytes, stage2Entry, c); |
| 4418 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4419 /* EUC 16-bit fixed-length representation applied to the fir
st two bytes */ |
| 4420 if(value<=0xff) { |
| 4421 length=1; |
| 4422 } else if(value<=0xffff) { |
| 4423 length=2; |
| 4424 } else if((value&0x800000)==0) { |
| 4425 value|=0x8e800000; |
| 4426 length=4; |
| 4427 } else if((value&0x8000)==0) { |
| 4428 value|=0x8f008000; |
| 4429 length=4; |
| 4430 } else { |
| 4431 length=3; |
| 4432 } |
| 4433 break; |
| 4434 default: |
| 4435 /* must not occur */ |
| 4436 /* |
| 4437 * To avoid compiler warnings that value & length may be |
| 4438 * used without having been initialized, we set them here. |
| 4439 * In reality, this is unreachable code. |
| 4440 * Not having a default branch also causes warnings with |
| 4441 * some compilers. |
| 4442 */ |
| 4443 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip fla
gs */ |
| 4444 length=0; |
| 4445 break; |
| 4446 } |
| 4447 |
| 4448 /* is this code point assigned, or do we use fallbacks? */ |
| 4449 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c)!=0 || |
| 4450 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
| 4451 ) { |
| 4452 /* |
| 4453 * We allow a 0 byte output if the "assigned" bit is set for
this entry. |
| 4454 * There is no way with this data structure for fallback out
put |
| 4455 * to be a zero byte. |
| 4456 */ |
| 4457 |
| 4458 unassigned: |
| 4459 /* try an extension mapping */ |
| 4460 pArgs->source=source; |
| 4461 c=_extFromU(cnv, cnv->sharedData, |
| 4462 c, &source, sourceLimit, |
| 4463 &target, target+targetCapacity, |
| 4464 &offsets, sourceIndex, |
| 4465 pArgs->flush, |
| 4466 pErrorCode); |
| 4467 nextSourceIndex+=(int32_t)(source-pArgs->source); |
| 4468 prevLength=cnv->fromUnicodeStatus; /* restore SISO state */ |
| 4469 |
| 4470 if(U_FAILURE(*pErrorCode)) { |
| 4471 /* not mappable or buffer overflow */ |
| 4472 break; |
| 4473 } else { |
| 4474 /* a mapping was written to the target, continue */ |
| 4475 |
| 4476 /* recalculate the targetCapacity after an extension map
ping */ |
| 4477 targetCapacity=(int32_t)(pArgs->targetLimit-(char *)targ
et); |
| 4478 |
| 4479 /* normal end of conversion: prepare for a new character
*/ |
| 4480 if(offsets!=NULL) { |
| 4481 prevSourceIndex=sourceIndex; |
| 4482 sourceIndex=nextSourceIndex; |
| 4483 } |
| 4484 continue; |
| 4485 } |
| 4486 } |
| 4487 } |
| 4488 |
| 4489 /* write the output character bytes from value and length */ |
| 4490 /* from the first if in the loop we know that targetCapacity>0 */ |
| 4491 if(length<=targetCapacity) { |
| 4492 if(offsets==NULL) { |
| 4493 switch(length) { |
| 4494 /* each branch falls through to the next one */ |
| 4495 case 4: |
| 4496 *target++=(uint8_t)(value>>24); |
| 4497 case 3: |
| 4498 *target++=(uint8_t)(value>>16); |
| 4499 case 2: |
| 4500 *target++=(uint8_t)(value>>8); |
| 4501 case 1: |
| 4502 *target++=(uint8_t)value; |
| 4503 default: |
| 4504 /* will never occur */ |
| 4505 break; |
| 4506 } |
| 4507 } else { |
| 4508 switch(length) { |
| 4509 /* each branch falls through to the next one */ |
| 4510 case 4: |
| 4511 *target++=(uint8_t)(value>>24); |
| 4512 *offsets++=sourceIndex; |
| 4513 case 3: |
| 4514 *target++=(uint8_t)(value>>16); |
| 4515 *offsets++=sourceIndex; |
| 4516 case 2: |
| 4517 *target++=(uint8_t)(value>>8); |
| 4518 *offsets++=sourceIndex; |
| 4519 case 1: |
| 4520 *target++=(uint8_t)value; |
| 4521 *offsets++=sourceIndex; |
| 4522 default: |
| 4523 /* will never occur */ |
| 4524 break; |
| 4525 } |
| 4526 } |
| 4527 targetCapacity-=length; |
| 4528 } else { |
| 4529 uint8_t *charErrorBuffer; |
| 4530 |
| 4531 /* |
| 4532 * We actually do this backwards here: |
| 4533 * In order to save an intermediate variable, we output |
| 4534 * first to the overflow buffer what does not fit into the |
| 4535 * regular target. |
| 4536 */ |
| 4537 /* we know that 1<=targetCapacity<length<=4 */ |
| 4538 length-=targetCapacity; |
| 4539 charErrorBuffer=(uint8_t *)cnv->charErrorBuffer; |
| 4540 switch(length) { |
| 4541 /* each branch falls through to the next one */ |
| 4542 case 3: |
| 4543 *charErrorBuffer++=(uint8_t)(value>>16); |
| 4544 case 2: |
| 4545 *charErrorBuffer++=(uint8_t)(value>>8); |
| 4546 case 1: |
| 4547 *charErrorBuffer=(uint8_t)value; |
| 4548 default: |
| 4549 /* will never occur */ |
| 4550 break; |
| 4551 } |
| 4552 cnv->charErrorBufferLength=(int8_t)length; |
| 4553 |
| 4554 /* now output what fits into the regular target */ |
| 4555 value>>=8*length; /* length was reduced by targetCapacity */ |
| 4556 switch(targetCapacity) { |
| 4557 /* each branch falls through to the next one */ |
| 4558 case 3: |
| 4559 *target++=(uint8_t)(value>>16); |
| 4560 if(offsets!=NULL) { |
| 4561 *offsets++=sourceIndex; |
| 4562 } |
| 4563 case 2: |
| 4564 *target++=(uint8_t)(value>>8); |
| 4565 if(offsets!=NULL) { |
| 4566 *offsets++=sourceIndex; |
| 4567 } |
| 4568 case 1: |
| 4569 *target++=(uint8_t)value; |
| 4570 if(offsets!=NULL) { |
| 4571 *offsets++=sourceIndex; |
| 4572 } |
| 4573 default: |
| 4574 /* will never occur */ |
| 4575 break; |
| 4576 } |
| 4577 |
| 4578 /* target overflow */ |
| 4579 targetCapacity=0; |
| 4580 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4581 c=0; |
| 4582 break; |
| 4583 } |
| 4584 |
| 4585 /* normal end of conversion: prepare for a new character */ |
| 4586 c=0; |
| 4587 if(offsets!=NULL) { |
| 4588 prevSourceIndex=sourceIndex; |
| 4589 sourceIndex=nextSourceIndex; |
| 4590 } |
| 4591 continue; |
| 4592 } else { |
| 4593 /* target is full */ |
| 4594 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4595 break; |
| 4596 } |
| 4597 } |
| 4598 |
| 4599 /* |
| 4600 * the end of the input stream and detection of truncated input |
| 4601 * are handled by the framework, but for EBCDIC_STATEFUL conversion |
| 4602 * we need to emit an SI at the very end |
| 4603 * |
| 4604 * conditions: |
| 4605 * successful |
| 4606 * EBCDIC_STATEFUL in DBCS mode |
| 4607 * end of input and no truncated input |
| 4608 */ |
| 4609 if( U_SUCCESS(*pErrorCode) && |
| 4610 outputType==MBCS_OUTPUT_2_SISO && prevLength==2 && |
| 4611 pArgs->flush && source>=sourceLimit && c==0 |
| 4612 ) { |
| 4613 /* EBCDIC_STATEFUL ending with DBCS: emit an SI to return the output str
eam to SBCS */ |
| 4614 if(targetCapacity>0) { |
| 4615 *target++=(uint8_t)si_value[0]; |
| 4616 if (si_value_length == 2) { |
| 4617 if (targetCapacity<2) { |
| 4618 cnv->charErrorBuffer[0]=(uint8_t)si_value[1]; |
| 4619 cnv->charErrorBufferLength=1; |
| 4620 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4621 } else { |
| 4622 *target++=(uint8_t)si_value[1]; |
| 4623 } |
| 4624 } |
| 4625 if(offsets!=NULL) { |
| 4626 /* set the last source character's index (sourceIndex points at
sourceLimit now) */ |
| 4627 *offsets++=prevSourceIndex; |
| 4628 } |
| 4629 } else { |
| 4630 /* target is full */ |
| 4631 cnv->charErrorBuffer[0]=(uint8_t)si_value[0]; |
| 4632 if (si_value_length == 2) { |
| 4633 cnv->charErrorBuffer[1]=(uint8_t)si_value[1]; |
| 4634 } |
| 4635 cnv->charErrorBufferLength=si_value_length; |
| 4636 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 4637 } |
| 4638 prevLength=1; /* we switched into SBCS */ |
| 4639 } |
| 4640 |
| 4641 /* set the converter state back into UConverter */ |
| 4642 cnv->fromUChar32=c; |
| 4643 cnv->fromUnicodeStatus=prevLength; |
| 4644 |
| 4645 /* write back the updated pointers */ |
| 4646 pArgs->source=source; |
| 4647 pArgs->target=(char *)target; |
| 4648 pArgs->offsets=offsets; |
| 4649 } |
| 4650 |
| 4651 /* |
| 4652 * This is another simple conversion function for internal use by other |
| 4653 * conversion implementations. |
| 4654 * It does not use the converter state nor call callbacks. |
| 4655 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 4656 * It handles conversion extensions but not GB 18030. |
| 4657 * |
| 4658 * It converts one single Unicode code point into codepage bytes, encoded |
| 4659 * as one 32-bit value. The function returns the number of bytes in *pValue: |
| 4660 * 1..4 the number of bytes in *pValue |
| 4661 * 0 unassigned (*pValue undefined) |
| 4662 * -1 illegal (currently not used, *pValue undefined) |
| 4663 * |
| 4664 * *pValue will contain the resulting bytes with the last byte in bits 7..0, |
| 4665 * the second to last byte in bits 15..8, etc. |
| 4666 * Currently, the function assumes but does not check that 0<=c<=0x10ffff. |
| 4667 */ |
| 4668 U_CFUNC int32_t |
| 4669 ucnv_MBCSFromUChar32(UConverterSharedData *sharedData, |
| 4670 UChar32 c, uint32_t *pValue, |
| 4671 UBool useFallback) { |
| 4672 const int32_t *cx; |
| 4673 const uint16_t *table; |
| 4674 #if 0 |
| 4675 /* #if 0 because this is not currently used in ICU - reduce code, increase code
coverage */ |
| 4676 const uint8_t *p; |
| 4677 #endif |
| 4678 uint32_t stage2Entry; |
| 4679 uint32_t value; |
| 4680 int32_t length; |
| 4681 |
| 4682 /* BMP-only codepages are stored without stage 1 entries for supplementary c
ode points */ |
| 4683 if(c<=0xffff || (sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4684 table=sharedData->mbcs.fromUnicodeTable; |
| 4685 |
| 4686 /* convert the Unicode code point in c into codepage bytes (same as in _
MBCSFromUnicodeWithOffsets) */ |
| 4687 if(sharedData->mbcs.outputType==MBCS_OUTPUT_1) { |
| 4688 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.
fromUnicodeBytes, c); |
| 4689 /* is this code point assigned, or do we use fallbacks? */ |
| 4690 if(useFallback ? value>=0x800 : value>=0xc00) { |
| 4691 *pValue=value&0xff; |
| 4692 return 1; |
| 4693 } |
| 4694 } else /* outputType!=MBCS_OUTPUT_1 */ { |
| 4695 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 4696 |
| 4697 /* get the bytes and the length for the output */ |
| 4698 switch(sharedData->mbcs.outputType) { |
| 4699 case MBCS_OUTPUT_2: |
| 4700 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); |
| 4701 if(value<=0xff) { |
| 4702 length=1; |
| 4703 } else { |
| 4704 length=2; |
| 4705 } |
| 4706 break; |
| 4707 #if 0 |
| 4708 /* #if 0 because this is not currently used in ICU - reduce code, increase code
coverage */ |
| 4709 case MBCS_OUTPUT_DBCS_ONLY: |
| 4710 /* table with single-byte results, but only DBCS mappings used *
/ |
| 4711 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); |
| 4712 if(value<=0xff) { |
| 4713 /* no mapping or SBCS result, not taken for DBCS-only */ |
| 4714 value=stage2Entry=0; /* stage2Entry=0 to reset roundtrip fla
gs */ |
| 4715 length=0; |
| 4716 } else { |
| 4717 length=2; |
| 4718 } |
| 4719 break; |
| 4720 case MBCS_OUTPUT_3: |
| 4721 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes,
stage2Entry, c); |
| 4722 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4723 if(value<=0xff) { |
| 4724 length=1; |
| 4725 } else if(value<=0xffff) { |
| 4726 length=2; |
| 4727 } else { |
| 4728 length=3; |
| 4729 } |
| 4730 break; |
| 4731 case MBCS_OUTPUT_4: |
| 4732 value=MBCS_VALUE_4_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); |
| 4733 if(value<=0xff) { |
| 4734 length=1; |
| 4735 } else if(value<=0xffff) { |
| 4736 length=2; |
| 4737 } else if(value<=0xffffff) { |
| 4738 length=3; |
| 4739 } else { |
| 4740 length=4; |
| 4741 } |
| 4742 break; |
| 4743 case MBCS_OUTPUT_3_EUC: |
| 4744 value=MBCS_VALUE_2_FROM_STAGE_2(sharedData->mbcs.fromUnicodeByte
s, stage2Entry, c); |
| 4745 /* EUC 16-bit fixed-length representation */ |
| 4746 if(value<=0xff) { |
| 4747 length=1; |
| 4748 } else if((value&0x8000)==0) { |
| 4749 value|=0x8e8000; |
| 4750 length=3; |
| 4751 } else if((value&0x80)==0) { |
| 4752 value|=0x8f0080; |
| 4753 length=3; |
| 4754 } else { |
| 4755 length=2; |
| 4756 } |
| 4757 break; |
| 4758 case MBCS_OUTPUT_4_EUC: |
| 4759 p=MBCS_POINTER_3_FROM_STAGE_2(sharedData->mbcs.fromUnicodeBytes,
stage2Entry, c); |
| 4760 value=((uint32_t)*p<<16)|((uint32_t)p[1]<<8)|p[2]; |
| 4761 /* EUC 16-bit fixed-length representation applied to the first t
wo bytes */ |
| 4762 if(value<=0xff) { |
| 4763 length=1; |
| 4764 } else if(value<=0xffff) { |
| 4765 length=2; |
| 4766 } else if((value&0x800000)==0) { |
| 4767 value|=0x8e800000; |
| 4768 length=4; |
| 4769 } else if((value&0x8000)==0) { |
| 4770 value|=0x8f008000; |
| 4771 length=4; |
| 4772 } else { |
| 4773 length=3; |
| 4774 } |
| 4775 break; |
| 4776 #endif |
| 4777 default: |
| 4778 /* must not occur */ |
| 4779 return -1; |
| 4780 } |
| 4781 |
| 4782 /* is this code point assigned, or do we use fallbacks? */ |
| 4783 if( MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
| 4784 (FROM_U_USE_FALLBACK(useFallback, c) && value!=0) |
| 4785 ) { |
| 4786 /* |
| 4787 * We allow a 0 byte output if the "assigned" bit is set for thi
s entry. |
| 4788 * There is no way with this data structure for fallback output |
| 4789 * to be a zero byte. |
| 4790 */ |
| 4791 /* assigned */ |
| 4792 *pValue=value; |
| 4793 return length; |
| 4794 } |
| 4795 } |
| 4796 } |
| 4797 |
| 4798 cx=sharedData->mbcs.extIndexes; |
| 4799 if(cx!=NULL) { |
| 4800 length=ucnv_extSimpleMatchFromU(cx, c, pValue, useFallback); |
| 4801 return length>=0 ? length : -length; /* return abs(length); */ |
| 4802 } |
| 4803 |
| 4804 /* unassigned */ |
| 4805 return 0; |
| 4806 } |
| 4807 |
| 4808 |
| 4809 #if 0 |
| 4810 /* |
| 4811 * This function has been moved to ucnv2022.c for inlining. |
| 4812 * This implementation is here only for documentation purposes |
| 4813 */ |
| 4814 |
| 4815 /** |
| 4816 * This version of ucnv_MBCSFromUChar32() is optimized for single-byte codepages
. |
| 4817 * It does not handle the EBCDIC swaplfnl option (set in UConverter). |
| 4818 * It does not handle conversion extensions (_extFromU()). |
| 4819 * |
| 4820 * It returns the codepage byte for the code point, or -1 if it is unassigned. |
| 4821 */ |
| 4822 U_CFUNC int32_t |
| 4823 ucnv_MBCSSingleFromUChar32(UConverterSharedData *sharedData, |
| 4824 UChar32 c, |
| 4825 UBool useFallback) { |
| 4826 const uint16_t *table; |
| 4827 int32_t value; |
| 4828 |
| 4829 /* BMP-only codepages are stored without stage 1 entries for supplementary c
ode points */ |
| 4830 if(c>=0x10000 && !(sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEMENTARY)) { |
| 4831 return -1; |
| 4832 } |
| 4833 |
| 4834 /* convert the Unicode code point in c into codepage bytes (same as in _MBCS
FromUnicodeWithOffsets) */ |
| 4835 table=sharedData->mbcs.fromUnicodeTable; |
| 4836 |
| 4837 /* get the byte for the output */ |
| 4838 value=MBCS_SINGLE_RESULT_FROM_U(table, (uint16_t *)sharedData->mbcs.fromUnic
odeBytes, c); |
| 4839 /* is this code point assigned, or do we use fallbacks? */ |
| 4840 if(useFallback ? value>=0x800 : value>=0xc00) { |
| 4841 return value&0xff; |
| 4842 } else { |
| 4843 return -1; |
| 4844 } |
| 4845 } |
| 4846 #endif |
| 4847 |
| 4848 /* MBCS-from-UTF-8 conversion functions ------------------------------------- */ |
| 4849 |
| 4850 /* minimum code point values for n-byte UTF-8 sequences, n=0..4 */ |
| 4851 static const UChar32 |
| 4852 utf8_minLegal[5]={ 0, 0, 0x80, 0x800, 0x10000 }; |
| 4853 |
| 4854 /* offsets for n-byte UTF-8 sequences that were calculated with ((lead<<6)+trail
)<<6+trail... */ |
| 4855 static const UChar32 |
| 4856 utf8_offsets[7]={ 0, 0, 0x3080, 0xE2080, 0x3C82080 }; |
| 4857 |
| 4858 static void |
| 4859 ucnv_SBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| 4860 UConverterToUnicodeArgs *pToUArgs, |
| 4861 UErrorCode *pErrorCode) { |
| 4862 UConverter *utf8, *cnv; |
| 4863 const uint8_t *source, *sourceLimit; |
| 4864 uint8_t *target; |
| 4865 int32_t targetCapacity; |
| 4866 |
| 4867 const uint16_t *table, *sbcsIndex; |
| 4868 const uint16_t *results; |
| 4869 |
| 4870 int8_t oldToULength, toULength, toULimit; |
| 4871 |
| 4872 UChar32 c; |
| 4873 uint8_t b, t1, t2; |
| 4874 |
| 4875 uint32_t asciiRoundtrips; |
| 4876 uint16_t value, minValue; |
| 4877 UBool hasSupplementary; |
| 4878 |
| 4879 /* set up the local pointers */ |
| 4880 utf8=pToUArgs->converter; |
| 4881 cnv=pFromUArgs->converter; |
| 4882 source=(uint8_t *)pToUArgs->source; |
| 4883 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; |
| 4884 target=(uint8_t *)pFromUArgs->target; |
| 4885 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); |
| 4886 |
| 4887 table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 4888 sbcsIndex=cnv->sharedData->mbcs.sbcsIndex; |
| 4889 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 4890 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 4891 } else { |
| 4892 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 4893 } |
| 4894 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 4895 |
| 4896 if(cnv->useFallback) { |
| 4897 /* use all roundtrip and fallback results */ |
| 4898 minValue=0x800; |
| 4899 } else { |
| 4900 /* use only roundtrips and fallbacks from private-use characters */ |
| 4901 minValue=0xc00; |
| 4902 } |
| 4903 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEME
NTARY); |
| 4904 |
| 4905 /* get the converter state from the UTF-8 UConverter */ |
| 4906 c=(UChar32)utf8->toUnicodeStatus; |
| 4907 if(c!=0) { |
| 4908 toULength=oldToULength=utf8->toULength; |
| 4909 toULimit=(int8_t)utf8->mode; |
| 4910 } else { |
| 4911 toULength=oldToULength=toULimit=0; |
| 4912 } |
| 4913 |
| 4914 /* |
| 4915 * Make sure that the last byte sequence before sourceLimit is complete |
| 4916 * or runs into a lead byte. |
| 4917 * Do not go back into the bytes that will be read for finishing a partial |
| 4918 * sequence from the previous buffer. |
| 4919 * In the conversion loop compare source with sourceLimit only once |
| 4920 * per multi-byte character. |
| 4921 */ |
| 4922 { |
| 4923 int32_t i, length; |
| 4924 |
| 4925 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); |
| 4926 for(i=0; i<3 && i<length;) { |
| 4927 b=*(sourceLimit-i-1); |
| 4928 if(U8_IS_TRAIL(b)) { |
| 4929 ++i; |
| 4930 } else { |
| 4931 if(i<utf8_countTrailBytes[b]) { |
| 4932 /* exit the conversion loop before the lead byte if there ar
e not enough trail bytes for it */ |
| 4933 sourceLimit-=i+1; |
| 4934 } |
| 4935 break; |
| 4936 } |
| 4937 } |
| 4938 } |
| 4939 |
| 4940 if(c!=0 && targetCapacity>0) { |
| 4941 utf8->toUnicodeStatus=0; |
| 4942 utf8->toULength=0; |
| 4943 goto moreBytes; |
| 4944 /* |
| 4945 * Note: We could avoid the goto by duplicating some of the moreBytes |
| 4946 * code, but only up to the point of collecting a complete UTF-8 |
| 4947 * sequence; then recurse for the toUBytes[toULength] |
| 4948 * and then continue with normal conversion. |
| 4949 * |
| 4950 * If so, move this code to just after initializing the minimum |
| 4951 * set of local variables for reading the UTF-8 input |
| 4952 * (utf8, source, target, limits but not cnv, table, minValue, etc.). |
| 4953 * |
| 4954 * Potential advantages: |
| 4955 * - avoid the goto |
| 4956 * - oldToULength could become a local variable in just those code block
s |
| 4957 * that deal with buffer boundaries |
| 4958 * - possibly faster if the goto prevents some compiler optimizations |
| 4959 * (this would need measuring to confirm) |
| 4960 * Disadvantage: |
| 4961 * - code duplication |
| 4962 */ |
| 4963 } |
| 4964 |
| 4965 /* conversion loop */ |
| 4966 while(source<sourceLimit) { |
| 4967 if(targetCapacity>0) { |
| 4968 b=*source++; |
| 4969 if((int8_t)b>=0) { |
| 4970 /* convert ASCII */ |
| 4971 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { |
| 4972 *target++=(uint8_t)b; |
| 4973 --targetCapacity; |
| 4974 continue; |
| 4975 } else { |
| 4976 c=b; |
| 4977 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, 0, c); |
| 4978 } |
| 4979 } else { |
| 4980 if(b<0xe0) { |
| 4981 if( /* handle U+0080..U+07FF inline */ |
| 4982 b>=0xc2 && |
| 4983 (t1=(uint8_t)(*source-0x80)) <= 0x3f |
| 4984 ) { |
| 4985 c=b&0x1f; |
| 4986 ++source; |
| 4987 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t1); |
| 4988 if(value>=minValue) { |
| 4989 *target++=(uint8_t)value; |
| 4990 --targetCapacity; |
| 4991 continue; |
| 4992 } else { |
| 4993 c=(c<<6)|t1; |
| 4994 } |
| 4995 } else { |
| 4996 c=-1; |
| 4997 } |
| 4998 } else if(b==0xe0) { |
| 4999 if( /* handle U+0800..U+0FFF inline */ |
| 5000 (t1=(uint8_t)(source[0]-0x80)) <= 0x3f && t1 >= 0x20 && |
| 5001 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f |
| 5002 ) { |
| 5003 c=t1; |
| 5004 source+=2; |
| 5005 value=SBCS_RESULT_FROM_UTF8(sbcsIndex, results, c, t2); |
| 5006 if(value>=minValue) { |
| 5007 *target++=(uint8_t)value; |
| 5008 --targetCapacity; |
| 5009 continue; |
| 5010 } else { |
| 5011 c=(c<<6)|t2; |
| 5012 } |
| 5013 } else { |
| 5014 c=-1; |
| 5015 } |
| 5016 } else { |
| 5017 c=-1; |
| 5018 } |
| 5019 |
| 5020 if(c<0) { |
| 5021 /* handle "complicated" and error cases, and continuing part
ial characters */ |
| 5022 oldToULength=0; |
| 5023 toULength=1; |
| 5024 toULimit=utf8_countTrailBytes[b]+1; |
| 5025 c=b; |
| 5026 moreBytes: |
| 5027 while(toULength<toULimit) { |
| 5028 /* |
| 5029 * The sourceLimit may have been adjusted before the con
version loop |
| 5030 * to stop before a truncated sequence. |
| 5031 * Here we need to use the real limit in case we have tw
o truncated |
| 5032 * sequences at the end. |
| 5033 * See ticket #7492. |
| 5034 */ |
| 5035 if(source<(uint8_t *)pToUArgs->sourceLimit) { |
| 5036 b=*source; |
| 5037 if(U8_IS_TRAIL(b)) { |
| 5038 ++source; |
| 5039 ++toULength; |
| 5040 c=(c<<6)+b; |
| 5041 } else { |
| 5042 break; /* sequence too short, stop with toULengt
h<toULimit */ |
| 5043 } |
| 5044 } else { |
| 5045 /* store the partial UTF-8 character, compatible wit
h the regular UTF-8 converter */ |
| 5046 source-=(toULength-oldToULength); |
| 5047 while(oldToULength<toULength) { |
| 5048 utf8->toUBytes[oldToULength++]=*source++; |
| 5049 } |
| 5050 utf8->toUnicodeStatus=c; |
| 5051 utf8->toULength=toULength; |
| 5052 utf8->mode=toULimit; |
| 5053 pToUArgs->source=(char *)source; |
| 5054 pFromUArgs->target=(char *)target; |
| 5055 return; |
| 5056 } |
| 5057 } |
| 5058 |
| 5059 if( toULength==toULimit && /* consumed all trail bytes
*/ |
| 5060 (toULength==3 || toULength==2) && /* BMP */ |
| 5061 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &
& |
| 5062 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ |
| 5063 ) { |
| 5064 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 5065 } else if( |
| 5066 toULength==toULimit && toULength==4 && |
| 5067 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) |
| 5068 ) { |
| 5069 /* supplementary code point */ |
| 5070 if(!hasSupplementary) { |
| 5071 /* BMP-only codepages are stored without stage 1 ent
ries for supplementary code points */ |
| 5072 value=0; |
| 5073 } else { |
| 5074 value=MBCS_SINGLE_RESULT_FROM_U(table, results, c); |
| 5075 } |
| 5076 } else { |
| 5077 /* error handling: illegal UTF-8 byte sequence */ |
| 5078 source-=(toULength-oldToULength); |
| 5079 while(oldToULength<toULength) { |
| 5080 utf8->toUBytes[oldToULength++]=*source++; |
| 5081 } |
| 5082 utf8->toULength=toULength; |
| 5083 pToUArgs->source=(char *)source; |
| 5084 pFromUArgs->target=(char *)target; |
| 5085 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 5086 return; |
| 5087 } |
| 5088 } |
| 5089 } |
| 5090 |
| 5091 if(value>=minValue) { |
| 5092 /* output the mapping for c */ |
| 5093 *target++=(uint8_t)value; |
| 5094 --targetCapacity; |
| 5095 } else { |
| 5096 /* value<minValue means c is unassigned (unmappable) */ |
| 5097 /* |
| 5098 * Try an extension mapping. |
| 5099 * Pass in no source because we don't have UTF-16 input. |
| 5100 * If we have a partial match on c, we will return and revert |
| 5101 * to UTF-8->UTF-16->charset conversion. |
| 5102 */ |
| 5103 static const UChar nul=0; |
| 5104 const UChar *noSource=&nul; |
| 5105 c=_extFromU(cnv, cnv->sharedData, |
| 5106 c, &noSource, noSource, |
| 5107 &target, target+targetCapacity, |
| 5108 NULL, -1, |
| 5109 pFromUArgs->flush, |
| 5110 pErrorCode); |
| 5111 |
| 5112 if(U_FAILURE(*pErrorCode)) { |
| 5113 /* not mappable or buffer overflow */ |
| 5114 cnv->fromUChar32=c; |
| 5115 break; |
| 5116 } else if(cnv->preFromUFirstCP>=0) { |
| 5117 /* |
| 5118 * Partial match, return and revert to pivoting. |
| 5119 * In normal from-UTF-16 conversion, we would just continue |
| 5120 * but then exit the loop because the extension match would |
| 5121 * have consumed the source. |
| 5122 */ |
| 5123 break; |
| 5124 } else { |
| 5125 /* a mapping was written to the target, continue */ |
| 5126 |
| 5127 /* recalculate the targetCapacity after an extension mapping
*/ |
| 5128 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)tar
get); |
| 5129 } |
| 5130 } |
| 5131 } else { |
| 5132 /* target is full */ |
| 5133 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 5134 break; |
| 5135 } |
| 5136 } |
| 5137 |
| 5138 /* |
| 5139 * The sourceLimit may have been adjusted before the conversion loop |
| 5140 * to stop before a truncated sequence. |
| 5141 * If so, then collect the truncated sequence now. |
| 5142 */ |
| 5143 if(U_SUCCESS(*pErrorCode) && source<(sourceLimit=(uint8_t *)pToUArgs->source
Limit)) { |
| 5144 c=utf8->toUBytes[0]=b=*source++; |
| 5145 toULength=1; |
| 5146 toULimit=utf8_countTrailBytes[b]+1; |
| 5147 while(source<sourceLimit) { |
| 5148 utf8->toUBytes[toULength++]=b=*source++; |
| 5149 c=(c<<6)+b; |
| 5150 } |
| 5151 utf8->toUnicodeStatus=c; |
| 5152 utf8->toULength=toULength; |
| 5153 utf8->mode=toULimit; |
| 5154 } |
| 5155 |
| 5156 /* write back the updated pointers */ |
| 5157 pToUArgs->source=(char *)source; |
| 5158 pFromUArgs->target=(char *)target; |
| 5159 } |
| 5160 |
| 5161 static void |
| 5162 ucnv_DBCSFromUTF8(UConverterFromUnicodeArgs *pFromUArgs, |
| 5163 UConverterToUnicodeArgs *pToUArgs, |
| 5164 UErrorCode *pErrorCode) { |
| 5165 UConverter *utf8, *cnv; |
| 5166 const uint8_t *source, *sourceLimit; |
| 5167 uint8_t *target; |
| 5168 int32_t targetCapacity; |
| 5169 |
| 5170 const uint16_t *table, *mbcsIndex; |
| 5171 const uint16_t *results; |
| 5172 |
| 5173 int8_t oldToULength, toULength, toULimit; |
| 5174 |
| 5175 UChar32 c; |
| 5176 uint8_t b, t1, t2; |
| 5177 |
| 5178 uint32_t stage2Entry; |
| 5179 uint32_t asciiRoundtrips; |
| 5180 uint16_t value, minValue; |
| 5181 UBool hasSupplementary; |
| 5182 |
| 5183 /* set up the local pointers */ |
| 5184 utf8=pToUArgs->converter; |
| 5185 cnv=pFromUArgs->converter; |
| 5186 source=(uint8_t *)pToUArgs->source; |
| 5187 sourceLimit=(uint8_t *)pToUArgs->sourceLimit; |
| 5188 target=(uint8_t *)pFromUArgs->target; |
| 5189 targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target); |
| 5190 |
| 5191 table=cnv->sharedData->mbcs.fromUnicodeTable; |
| 5192 mbcsIndex=cnv->sharedData->mbcs.mbcsIndex; |
| 5193 if((cnv->options&UCNV_OPTION_SWAP_LFNL)!=0) { |
| 5194 results=(uint16_t *)cnv->sharedData->mbcs.swapLFNLFromUnicodeBytes; |
| 5195 } else { |
| 5196 results=(uint16_t *)cnv->sharedData->mbcs.fromUnicodeBytes; |
| 5197 } |
| 5198 asciiRoundtrips=cnv->sharedData->mbcs.asciiRoundtrips; |
| 5199 |
| 5200 if(cnv->useFallback) { |
| 5201 /* use all roundtrip and fallback results */ |
| 5202 minValue=0x800; |
| 5203 } else { |
| 5204 /* use only roundtrips and fallbacks from private-use characters */ |
| 5205 minValue=0xc00; |
| 5206 } |
| 5207 hasSupplementary=(UBool)(cnv->sharedData->mbcs.unicodeMask&UCNV_HAS_SUPPLEME
NTARY); |
| 5208 |
| 5209 /* get the converter state from the UTF-8 UConverter */ |
| 5210 c=(UChar32)utf8->toUnicodeStatus; |
| 5211 if(c!=0) { |
| 5212 toULength=oldToULength=utf8->toULength; |
| 5213 toULimit=(int8_t)utf8->mode; |
| 5214 } else { |
| 5215 toULength=oldToULength=toULimit=0; |
| 5216 } |
| 5217 |
| 5218 /* |
| 5219 * Make sure that the last byte sequence before sourceLimit is complete |
| 5220 * or runs into a lead byte. |
| 5221 * Do not go back into the bytes that will be read for finishing a partial |
| 5222 * sequence from the previous buffer. |
| 5223 * In the conversion loop compare source with sourceLimit only once |
| 5224 * per multi-byte character. |
| 5225 */ |
| 5226 { |
| 5227 int32_t i, length; |
| 5228 |
| 5229 length=(int32_t)(sourceLimit-source) - (toULimit-oldToULength); |
| 5230 for(i=0; i<3 && i<length;) { |
| 5231 b=*(sourceLimit-i-1); |
| 5232 if(U8_IS_TRAIL(b)) { |
| 5233 ++i; |
| 5234 } else { |
| 5235 if(i<utf8_countTrailBytes[b]) { |
| 5236 /* exit the conversion loop before the lead byte if there ar
e not enough trail bytes for it */ |
| 5237 sourceLimit-=i+1; |
| 5238 } |
| 5239 break; |
| 5240 } |
| 5241 } |
| 5242 } |
| 5243 |
| 5244 if(c!=0 && targetCapacity>0) { |
| 5245 utf8->toUnicodeStatus=0; |
| 5246 utf8->toULength=0; |
| 5247 goto moreBytes; |
| 5248 /* See note in ucnv_SBCSFromUTF8() about this goto. */ |
| 5249 } |
| 5250 |
| 5251 /* conversion loop */ |
| 5252 while(source<sourceLimit) { |
| 5253 if(targetCapacity>0) { |
| 5254 b=*source++; |
| 5255 if((int8_t)b>=0) { |
| 5256 /* convert ASCII */ |
| 5257 if(IS_ASCII_ROUNDTRIP(b, asciiRoundtrips)) { |
| 5258 *target++=b; |
| 5259 --targetCapacity; |
| 5260 continue; |
| 5261 } else { |
| 5262 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, 0, b); |
| 5263 if(value==0) { |
| 5264 c=b; |
| 5265 goto unassigned; |
| 5266 } |
| 5267 } |
| 5268 } else { |
| 5269 if(b>0xe0) { |
| 5270 if( /* handle U+1000..U+D7FF inline */ |
| 5271 (((t1=(uint8_t)(source[0]-0x80), b<0xed) && (t1 <= 0x3f)
) || |
| 5272 (b==0xed && (t1 <= 0x1f)
)) && |
| 5273 (t2=(uint8_t)(source[1]-0x80)) <= 0x3f |
| 5274 ) { |
| 5275 c=((b&0xf)<<6)|t1; |
| 5276 source+=2; |
| 5277 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t2); |
| 5278 if(value==0) { |
| 5279 c=(c<<6)|t2; |
| 5280 goto unassigned; |
| 5281 } |
| 5282 } else { |
| 5283 c=-1; |
| 5284 } |
| 5285 } else if(b<0xe0) { |
| 5286 if( /* handle U+0080..U+07FF inline */ |
| 5287 b>=0xc2 && |
| 5288 (t1=(uint8_t)(*source-0x80)) <= 0x3f |
| 5289 ) { |
| 5290 c=b&0x1f; |
| 5291 ++source; |
| 5292 value=DBCS_RESULT_FROM_UTF8(mbcsIndex, results, c, t1); |
| 5293 if(value==0) { |
| 5294 c=(c<<6)|t1; |
| 5295 goto unassigned; |
| 5296 } |
| 5297 } else { |
| 5298 c=-1; |
| 5299 } |
| 5300 } else { |
| 5301 c=-1; |
| 5302 } |
| 5303 |
| 5304 if(c<0) { |
| 5305 /* handle "complicated" and error cases, and continuing part
ial characters */ |
| 5306 oldToULength=0; |
| 5307 toULength=1; |
| 5308 toULimit=utf8_countTrailBytes[b]+1; |
| 5309 c=b; |
| 5310 moreBytes: |
| 5311 while(toULength<toULimit) { |
| 5312 /* |
| 5313 * The sourceLimit may have been adjusted before the con
version loop |
| 5314 * to stop before a truncated sequence. |
| 5315 * Here we need to use the real limit in case we have tw
o truncated |
| 5316 * sequences at the end. |
| 5317 * See ticket #7492. |
| 5318 */ |
| 5319 if(source<(uint8_t *)pToUArgs->sourceLimit) { |
| 5320 b=*source; |
| 5321 if(U8_IS_TRAIL(b)) { |
| 5322 ++source; |
| 5323 ++toULength; |
| 5324 c=(c<<6)+b; |
| 5325 } else { |
| 5326 break; /* sequence too short, stop with toULengt
h<toULimit */ |
| 5327 } |
| 5328 } else { |
| 5329 /* store the partial UTF-8 character, compatible wit
h the regular UTF-8 converter */ |
| 5330 source-=(toULength-oldToULength); |
| 5331 while(oldToULength<toULength) { |
| 5332 utf8->toUBytes[oldToULength++]=*source++; |
| 5333 } |
| 5334 utf8->toUnicodeStatus=c; |
| 5335 utf8->toULength=toULength; |
| 5336 utf8->mode=toULimit; |
| 5337 pToUArgs->source=(char *)source; |
| 5338 pFromUArgs->target=(char *)target; |
| 5339 return; |
| 5340 } |
| 5341 } |
| 5342 |
| 5343 if( toULength==toULimit && /* consumed all trail bytes
*/ |
| 5344 (toULength==3 || toULength==2) && /* BMP */ |
| 5345 (c-=utf8_offsets[toULength])>=utf8_minLegal[toULength] &
& |
| 5346 (c<=0xd7ff || 0xe000<=c) /* not a surrogate */ |
| 5347 ) { |
| 5348 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 5349 } else if( |
| 5350 toULength==toULimit && toULength==4 && |
| 5351 (0x10000<=(c-=utf8_offsets[4]) && c<=0x10ffff) |
| 5352 ) { |
| 5353 /* supplementary code point */ |
| 5354 if(!hasSupplementary) { |
| 5355 /* BMP-only codepages are stored without stage 1 ent
ries for supplementary code points */ |
| 5356 stage2Entry=0; |
| 5357 } else { |
| 5358 stage2Entry=MBCS_STAGE_2_FROM_U(table, c); |
| 5359 } |
| 5360 } else { |
| 5361 /* error handling: illegal UTF-8 byte sequence */ |
| 5362 source-=(toULength-oldToULength); |
| 5363 while(oldToULength<toULength) { |
| 5364 utf8->toUBytes[oldToULength++]=*source++; |
| 5365 } |
| 5366 utf8->toULength=toULength; |
| 5367 pToUArgs->source=(char *)source; |
| 5368 pFromUArgs->target=(char *)target; |
| 5369 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 5370 return; |
| 5371 } |
| 5372 |
| 5373 /* get the bytes and the length for the output */ |
| 5374 /* MBCS_OUTPUT_2 */ |
| 5375 value=MBCS_VALUE_2_FROM_STAGE_2(results, stage2Entry, c); |
| 5376 |
| 5377 /* is this code point assigned, or do we use fallbacks? */ |
| 5378 if(!(MBCS_FROM_U_IS_ROUNDTRIP(stage2Entry, c) || |
| 5379 (UCNV_FROM_U_USE_FALLBACK(cnv, c) && value!=0)) |
| 5380 ) { |
| 5381 goto unassigned; |
| 5382 } |
| 5383 } |
| 5384 } |
| 5385 |
| 5386 /* write the output character bytes from value and length */ |
| 5387 /* from the first if in the loop we know that targetCapacity>0 */ |
| 5388 if(value<=0xff) { |
| 5389 /* this is easy because we know that there is enough space */ |
| 5390 *target++=(uint8_t)value; |
| 5391 --targetCapacity; |
| 5392 } else /* length==2 */ { |
| 5393 *target++=(uint8_t)(value>>8); |
| 5394 if(2<=targetCapacity) { |
| 5395 *target++=(uint8_t)value; |
| 5396 targetCapacity-=2; |
| 5397 } else { |
| 5398 cnv->charErrorBuffer[0]=(char)value; |
| 5399 cnv->charErrorBufferLength=1; |
| 5400 |
| 5401 /* target overflow */ |
| 5402 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 5403 break; |
| 5404 } |
| 5405 } |
| 5406 continue; |
| 5407 |
| 5408 unassigned: |
| 5409 { |
| 5410 /* |
| 5411 * Try an extension mapping. |
| 5412 * Pass in no source because we don't have UTF-16 input. |
| 5413 * If we have a partial match on c, we will return and revert |
| 5414 * to UTF-8->UTF-16->charset conversion. |
| 5415 */ |
| 5416 static const UChar nul=0; |
| 5417 const UChar *noSource=&nul; |
| 5418 c=_extFromU(cnv, cnv->sharedData, |
| 5419 c, &noSource, noSource, |
| 5420 &target, target+targetCapacity, |
| 5421 NULL, -1, |
| 5422 pFromUArgs->flush, |
| 5423 pErrorCode); |
| 5424 |
| 5425 if(U_FAILURE(*pErrorCode)) { |
| 5426 /* not mappable or buffer overflow */ |
| 5427 cnv->fromUChar32=c; |
| 5428 break; |
| 5429 } else if(cnv->preFromUFirstCP>=0) { |
| 5430 /* |
| 5431 * Partial match, return and revert to pivoting. |
| 5432 * In normal from-UTF-16 conversion, we would just continue |
| 5433 * but then exit the loop because the extension match would |
| 5434 * have consumed the source. |
| 5435 */ |
| 5436 break; |
| 5437 } else { |
| 5438 /* a mapping was written to the target, continue */ |
| 5439 |
| 5440 /* recalculate the targetCapacity after an extension mapping
*/ |
| 5441 targetCapacity=(int32_t)(pFromUArgs->targetLimit-(char *)tar
get); |
| 5442 continue; |
| 5443 } |
| 5444 } |
| 5445 } else { |
| 5446 /* target is full */ |
| 5447 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 5448 break; |
| 5449 } |
| 5450 } |
| 5451 |
| 5452 /* |
| 5453 * The sourceLimit may have been adjusted before the conversion loop |
| 5454 * to stop before a truncated sequence. |
| 5455 * If so, then collect the truncated sequence now. |
| 5456 */ |
| 5457 if(U_SUCCESS(*pErrorCode) && source<(sourceLimit=(uint8_t *)pToUArgs->source
Limit)) { |
| 5458 c=utf8->toUBytes[0]=b=*source++; |
| 5459 toULength=1; |
| 5460 toULimit=utf8_countTrailBytes[b]+1; |
| 5461 while(source<sourceLimit) { |
| 5462 utf8->toUBytes[toULength++]=b=*source++; |
| 5463 c=(c<<6)+b; |
| 5464 } |
| 5465 utf8->toUnicodeStatus=c; |
| 5466 utf8->toULength=toULength; |
| 5467 utf8->mode=toULimit; |
| 5468 } |
| 5469 |
| 5470 /* write back the updated pointers */ |
| 5471 pToUArgs->source=(char *)source; |
| 5472 pFromUArgs->target=(char *)target; |
| 5473 } |
| 5474 |
| 5475 /* miscellaneous ------------------------------------------------------------ */ |
| 5476 |
| 5477 static void |
| 5478 ucnv_MBCSGetStarters(const UConverter* cnv, |
| 5479 UBool starters[256], |
| 5480 UErrorCode *pErrorCode) { |
| 5481 const int32_t *state0; |
| 5482 int i; |
| 5483 |
| 5484 state0=cnv->sharedData->mbcs.stateTable[cnv->sharedData->mbcs.dbcsOnlyState]
; |
| 5485 for(i=0; i<256; ++i) { |
| 5486 /* all bytes that cause a state transition from state 0 are lead bytes *
/ |
| 5487 starters[i]= (UBool)MBCS_ENTRY_IS_TRANSITION(state0[i]); |
| 5488 } |
| 5489 } |
| 5490 |
| 5491 /* |
| 5492 * This is an internal function that allows other converter implementations |
| 5493 * to check whether a byte is a lead byte. |
| 5494 */ |
| 5495 U_CFUNC UBool |
| 5496 ucnv_MBCSIsLeadByte(UConverterSharedData *sharedData, char byte) { |
| 5497 return (UBool)MBCS_ENTRY_IS_TRANSITION(sharedData->mbcs.stateTable[0][(uint8
_t)byte]); |
| 5498 } |
| 5499 |
| 5500 static void |
| 5501 ucnv_MBCSWriteSub(UConverterFromUnicodeArgs *pArgs, |
| 5502 int32_t offsetIndex, |
| 5503 UErrorCode *pErrorCode) { |
| 5504 UConverter *cnv=pArgs->converter; |
| 5505 char *p, *subchar; |
| 5506 char buffer[4]; |
| 5507 int32_t length; |
| 5508 |
| 5509 /* first, select between subChar and subChar1 */ |
| 5510 if( cnv->subChar1!=0 && |
| 5511 (cnv->sharedData->mbcs.extIndexes!=NULL ? |
| 5512 cnv->useSubChar1 : |
| 5513 (cnv->invalidUCharBuffer[0]<=0xff)) |
| 5514 ) { |
| 5515 /* select subChar1 if it is set (not 0) and the unmappable Unicode code
point is up to U+00ff (IBM MBCS behavior) */ |
| 5516 subchar=(char *)&cnv->subChar1; |
| 5517 length=1; |
| 5518 } else { |
| 5519 /* select subChar in all other cases */ |
| 5520 subchar=(char *)cnv->subChars; |
| 5521 length=cnv->subCharLen; |
| 5522 } |
| 5523 |
| 5524 /* reset the selector for the next code point */ |
| 5525 cnv->useSubChar1=FALSE; |
| 5526 |
| 5527 if (cnv->sharedData->mbcs.outputType == MBCS_OUTPUT_2_SISO) { |
| 5528 p=buffer; |
| 5529 |
| 5530 /* fromUnicodeStatus contains prevLength */ |
| 5531 switch(length) { |
| 5532 case 1: |
| 5533 if(cnv->fromUnicodeStatus==2) { |
| 5534 /* DBCS mode and SBCS sub char: change to SBCS */ |
| 5535 cnv->fromUnicodeStatus=1; |
| 5536 *p++=UCNV_SI; |
| 5537 } |
| 5538 *p++=subchar[0]; |
| 5539 break; |
| 5540 case 2: |
| 5541 if(cnv->fromUnicodeStatus<=1) { |
| 5542 /* SBCS mode and DBCS sub char: change to DBCS */ |
| 5543 cnv->fromUnicodeStatus=2; |
| 5544 *p++=UCNV_SO; |
| 5545 } |
| 5546 *p++=subchar[0]; |
| 5547 *p++=subchar[1]; |
| 5548 break; |
| 5549 default: |
| 5550 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 5551 return; |
| 5552 } |
| 5553 subchar=buffer; |
| 5554 length=(int32_t)(p-buffer); |
| 5555 } |
| 5556 |
| 5557 ucnv_cbFromUWriteBytes(pArgs, subchar, length, offsetIndex, pErrorCode); |
| 5558 } |
| 5559 |
| 5560 U_CFUNC UConverterType |
| 5561 ucnv_MBCSGetType(const UConverter* converter) { |
| 5562 /* SBCS, DBCS, and EBCDIC_STATEFUL are replaced by MBCS, but here we cheat a
little */ |
| 5563 if(converter->sharedData->mbcs.countStates==1) { |
| 5564 return (UConverterType)UCNV_SBCS; |
| 5565 } else if((converter->sharedData->mbcs.outputType&0xff)==MBCS_OUTPUT_2_SISO)
{ |
| 5566 return (UConverterType)UCNV_EBCDIC_STATEFUL; |
| 5567 } else if(converter->sharedData->staticData->minBytesPerChar==2 && converter
->sharedData->staticData->maxBytesPerChar==2) { |
| 5568 return (UConverterType)UCNV_DBCS; |
| 5569 } |
| 5570 return (UConverterType)UCNV_MBCS; |
| 5571 } |
| 5572 |
| 5573 static const UConverterImpl _SBCSUTF8Impl={ |
| 5574 UCNV_MBCS, |
| 5575 |
| 5576 ucnv_MBCSLoad, |
| 5577 ucnv_MBCSUnload, |
| 5578 |
| 5579 ucnv_MBCSOpen, |
| 5580 NULL, |
| 5581 NULL, |
| 5582 |
| 5583 ucnv_MBCSToUnicodeWithOffsets, |
| 5584 ucnv_MBCSToUnicodeWithOffsets, |
| 5585 ucnv_MBCSFromUnicodeWithOffsets, |
| 5586 ucnv_MBCSFromUnicodeWithOffsets, |
| 5587 ucnv_MBCSGetNextUChar, |
| 5588 |
| 5589 ucnv_MBCSGetStarters, |
| 5590 ucnv_MBCSGetName, |
| 5591 ucnv_MBCSWriteSub, |
| 5592 NULL, |
| 5593 ucnv_MBCSGetUnicodeSet, |
| 5594 |
| 5595 NULL, |
| 5596 ucnv_SBCSFromUTF8 |
| 5597 }; |
| 5598 |
| 5599 static const UConverterImpl _DBCSUTF8Impl={ |
| 5600 UCNV_MBCS, |
| 5601 |
| 5602 ucnv_MBCSLoad, |
| 5603 ucnv_MBCSUnload, |
| 5604 |
| 5605 ucnv_MBCSOpen, |
| 5606 NULL, |
| 5607 NULL, |
| 5608 |
| 5609 ucnv_MBCSToUnicodeWithOffsets, |
| 5610 ucnv_MBCSToUnicodeWithOffsets, |
| 5611 ucnv_MBCSFromUnicodeWithOffsets, |
| 5612 ucnv_MBCSFromUnicodeWithOffsets, |
| 5613 ucnv_MBCSGetNextUChar, |
| 5614 |
| 5615 ucnv_MBCSGetStarters, |
| 5616 ucnv_MBCSGetName, |
| 5617 ucnv_MBCSWriteSub, |
| 5618 NULL, |
| 5619 ucnv_MBCSGetUnicodeSet, |
| 5620 |
| 5621 NULL, |
| 5622 ucnv_DBCSFromUTF8 |
| 5623 }; |
| 5624 |
| 5625 static const UConverterImpl _MBCSImpl={ |
| 5626 UCNV_MBCS, |
| 5627 |
| 5628 ucnv_MBCSLoad, |
| 5629 ucnv_MBCSUnload, |
| 5630 |
| 5631 ucnv_MBCSOpen, |
| 5632 NULL, |
| 5633 NULL, |
| 5634 |
| 5635 ucnv_MBCSToUnicodeWithOffsets, |
| 5636 ucnv_MBCSToUnicodeWithOffsets, |
| 5637 ucnv_MBCSFromUnicodeWithOffsets, |
| 5638 ucnv_MBCSFromUnicodeWithOffsets, |
| 5639 ucnv_MBCSGetNextUChar, |
| 5640 |
| 5641 ucnv_MBCSGetStarters, |
| 5642 ucnv_MBCSGetName, |
| 5643 ucnv_MBCSWriteSub, |
| 5644 NULL, |
| 5645 ucnv_MBCSGetUnicodeSet |
| 5646 }; |
| 5647 |
| 5648 |
| 5649 /* Static data is in tools/makeconv/ucnvstat.c for data-based |
| 5650 * converters. Be sure to update it as well. |
| 5651 */ |
| 5652 |
| 5653 const UConverterSharedData _MBCSData={ |
| 5654 sizeof(UConverterSharedData), 1, |
| 5655 NULL, NULL, NULL, FALSE, &_MBCSImpl, |
| 5656 0 |
| 5657 }; |
| 5658 |
| 5659 #endif /* #if !UCONFIG_NO_LEGACY_CONVERSION */ |
OLD | NEW |