OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ********************************************************************** |
| 3 * Copyright (C) 2002-2009, International Business Machines |
| 4 * Corporation and others. All Rights Reserved. |
| 5 ********************************************************************** |
| 6 * file name: ucnv_u7.c |
| 7 * encoding: US-ASCII |
| 8 * tab size: 8 (not used) |
| 9 * indentation:4 |
| 10 * |
| 11 * created on: 2002jul01 |
| 12 * created by: Markus W. Scherer |
| 13 * |
| 14 * UTF-7 converter implementation. Used to be in ucnv_utf.c. |
| 15 */ |
| 16 |
| 17 #include "unicode/utypes.h" |
| 18 |
| 19 #if !UCONFIG_NO_CONVERSION |
| 20 |
| 21 #include "unicode/ucnv.h" |
| 22 #include "ucnv_bld.h" |
| 23 #include "ucnv_cnv.h" |
| 24 |
| 25 /* UTF-7 -------------------------------------------------------------------- */ |
| 26 |
| 27 /* |
| 28 * UTF-7 is a stateful encoding of Unicode. |
| 29 * It is defined in RFC 2152. (http://www.ietf.org/rfc/rfc2152.txt) |
| 30 * It was intended for use in Internet email systems, using in its bytewise |
| 31 * encoding only a subset of 7-bit US-ASCII. |
| 32 * UTF-7 is deprecated in favor of UTF-8/16/32 and SCSU, but still |
| 33 * occasionally used. |
| 34 * |
| 35 * For converting Unicode to UTF-7, the RFC allows to encode some US-ASCII |
| 36 * characters directly or in base64. Especially, the characters in set O |
| 37 * as defined in the RFC (see below) may be encoded directly but are not |
| 38 * allowed in, e.g., email headers. |
| 39 * By default, the ICU UTF-7 converter encodes set O directly. |
| 40 * By choosing the option "version=1", set O will be escaped instead. |
| 41 * For example: |
| 42 * utf7Converter=ucnv_open("UTF-7,version=1"); |
| 43 * |
| 44 * For details about email headers see RFC 2047. |
| 45 */ |
| 46 |
| 47 /* |
| 48 * Tests for US-ASCII characters belonging to character classes |
| 49 * defined in UTF-7. |
| 50 * |
| 51 * Set D (directly encoded characters) consists of the following |
| 52 * characters: the upper and lower case letters A through Z |
| 53 * and a through z, the 10 digits 0-9, and the following nine special |
| 54 * characters (note that "+" and "=" are omitted): |
| 55 * '(),-./:? |
| 56 * |
| 57 * Set O (optional direct characters) consists of the following |
| 58 * characters (note that "\" and "~" are omitted): |
| 59 * !"#$%&*;<=>@[]^_`{|} |
| 60 * |
| 61 * According to the rules in RFC 2152, the byte values for the following |
| 62 * US-ASCII characters are not used in UTF-7 and are therefore illegal: |
| 63 * - all C0 control codes except for CR LF TAB |
| 64 * - BACKSLASH |
| 65 * - TILDE |
| 66 * - DEL |
| 67 * - all codes beyond US-ASCII, i.e. all >127 |
| 68 */ |
| 69 #define inSetD(c) \ |
| 70 ((uint8_t)((c)-97)<26 || (uint8_t)((c)-65)<26 || /* letters */ \ |
| 71 (uint8_t)((c)-48)<10 || /* digits */ \ |
| 72 (uint8_t)((c)-39)<3 || /* '() */ \ |
| 73 (uint8_t)((c)-44)<4 || /* ,-./ */ \ |
| 74 (c)==58 || (c)==63 /* :? */ \ |
| 75 ) |
| 76 |
| 77 #define inSetO(c) \ |
| 78 ((uint8_t)((c)-33)<6 || /* !"#$%& */ \ |
| 79 (uint8_t)((c)-59)<4 || /* ;<=> */ \ |
| 80 (uint8_t)((c)-93)<4 || /* ]^_` */ \ |
| 81 (uint8_t)((c)-123)<3 || /* {|} */ \ |
| 82 (c)==42 || (c)==64 || (c)==91 /* *@[ */ \ |
| 83 ) |
| 84 |
| 85 #define isCRLFTAB(c) ((c)==13 || (c)==10 || (c)==9) |
| 86 #define isCRLFSPTAB(c) ((c)==32 || (c)==13 || (c)==10 || (c)==9) |
| 87 |
| 88 #define PLUS 43 |
| 89 #define MINUS 45 |
| 90 #define BACKSLASH 92 |
| 91 #define TILDE 126 |
| 92 |
| 93 /* legal byte values: all US-ASCII graphic characters from space to before tilde
, and CR LF TAB */ |
| 94 #define isLegalUTF7(c) (((uint8_t)((c)-32)<94 && (c)!=BACKSLASH) || isCRLFTAB(c)
) |
| 95 |
| 96 /* encode directly sets D and O and CR LF SP TAB */ |
| 97 static const UBool encodeDirectlyMaximum[128]={ |
| 98 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 99 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, |
| 100 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 101 |
| 102 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, |
| 103 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 104 |
| 105 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 106 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, |
| 107 |
| 108 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 109 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0 |
| 110 }; |
| 111 |
| 112 /* encode directly set D and CR LF SP TAB but not set O */ |
| 113 static const UBool encodeDirectlyRestricted[128]={ |
| 114 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| 115 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, |
| 116 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 117 |
| 118 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, |
| 119 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, |
| 120 |
| 121 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 122 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, |
| 123 |
| 124 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 125 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 |
| 126 }; |
| 127 |
| 128 static const uint8_t |
| 129 toBase64[64]={ |
| 130 /* A-Z */ |
| 131 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, |
| 132 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, |
| 133 /* a-z */ |
| 134 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, |
| 135 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, |
| 136 /* 0-9 */ |
| 137 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, |
| 138 /* +/ */ |
| 139 43, 47 |
| 140 }; |
| 141 |
| 142 static const int8_t |
| 143 fromBase64[128]={ |
| 144 /* C0 controls, -1 for legal ones (CR LF TAB), -3 for illegal ones */ |
| 145 -3, -3, -3, -3, -3, -3, -3, -3, -3, -1, -1, -3, -3, -1, -3, -3, |
| 146 -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, |
| 147 |
| 148 /* general punctuation with + and / and a special value (-2) for - */ |
| 149 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -2, -1, 63, |
| 150 /* digits */ |
| 151 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -1, -1, -1, |
| 152 |
| 153 /* A-Z */ |
| 154 -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, |
| 155 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -3, -1, -1, -1, |
| 156 |
| 157 /* a-z */ |
| 158 -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, |
| 159 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -3, -3 |
| 160 }; |
| 161 |
| 162 /* |
| 163 * converter status values: |
| 164 * |
| 165 * toUnicodeStatus: |
| 166 * 24 inDirectMode (boolean) |
| 167 * 23..16 base64Counter (-1..7) |
| 168 * 15..0 bits (up to 14 bits incoming base64) |
| 169 * |
| 170 * fromUnicodeStatus: |
| 171 * 31..28 version (0: set O direct 1: set O escaped) |
| 172 * 24 inDirectMode (boolean) |
| 173 * 23..16 base64Counter (0..2) |
| 174 * 7..0 bits (6 bits outgoing base64) |
| 175 * |
| 176 */ |
| 177 |
| 178 static void |
| 179 _UTF7Reset(UConverter *cnv, UConverterResetChoice choice) { |
| 180 if(choice<=UCNV_RESET_TO_UNICODE) { |
| 181 /* reset toUnicode */ |
| 182 cnv->toUnicodeStatus=0x1000000; /* inDirectMode=TRUE */ |
| 183 cnv->toULength=0; |
| 184 } |
| 185 if(choice!=UCNV_RESET_TO_UNICODE) { |
| 186 /* reset fromUnicode */ |
| 187 cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /*
keep version, inDirectMode=TRUE */ |
| 188 } |
| 189 } |
| 190 |
| 191 static void |
| 192 _UTF7Open(UConverter *cnv, |
| 193 UConverterLoadArgs *pArgs, |
| 194 UErrorCode *pErrorCode) { |
| 195 if(UCNV_GET_VERSION(cnv)<=1) { |
| 196 /* TODO(markus): Should just use cnv->options rather than copying the ve
rsion number. */ |
| 197 cnv->fromUnicodeStatus=UCNV_GET_VERSION(cnv)<<28; |
| 198 _UTF7Reset(cnv, UCNV_RESET_BOTH); |
| 199 } else { |
| 200 *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR; |
| 201 } |
| 202 } |
| 203 |
| 204 static void |
| 205 _UTF7ToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 206 UErrorCode *pErrorCode) { |
| 207 UConverter *cnv; |
| 208 const uint8_t *source, *sourceLimit; |
| 209 UChar *target; |
| 210 const UChar *targetLimit; |
| 211 int32_t *offsets; |
| 212 |
| 213 uint8_t *bytes; |
| 214 uint8_t byteIndex; |
| 215 |
| 216 int32_t length, targetCapacity; |
| 217 |
| 218 /* UTF-7 state */ |
| 219 uint16_t bits; |
| 220 int8_t base64Counter; |
| 221 UBool inDirectMode; |
| 222 |
| 223 int8_t base64Value; |
| 224 |
| 225 int32_t sourceIndex, nextSourceIndex; |
| 226 |
| 227 uint8_t b; |
| 228 /* set up the local pointers */ |
| 229 cnv=pArgs->converter; |
| 230 |
| 231 source=(const uint8_t *)pArgs->source; |
| 232 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 233 target=pArgs->target; |
| 234 targetLimit=pArgs->targetLimit; |
| 235 offsets=pArgs->offsets; |
| 236 /* get the state machine state */ |
| 237 { |
| 238 uint32_t status=cnv->toUnicodeStatus; |
| 239 inDirectMode=(UBool)((status>>24)&1); |
| 240 base64Counter=(int8_t)(status>>16); |
| 241 bits=(uint16_t)status; |
| 242 } |
| 243 bytes=cnv->toUBytes; |
| 244 byteIndex=cnv->toULength; |
| 245 |
| 246 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 247 sourceIndex=byteIndex==0 ? 0 : -1; |
| 248 nextSourceIndex=0; |
| 249 |
| 250 if(inDirectMode) { |
| 251 directMode: |
| 252 /* |
| 253 * In Direct Mode, most US-ASCII characters are encoded directly, i.e., |
| 254 * with their US-ASCII byte values. |
| 255 * Backslash and Tilde and most control characters are not allowed in UT
F-7. |
| 256 * A plus sign starts Unicode (or "escape") Mode. |
| 257 * |
| 258 * In Direct Mode, only the sourceIndex is used. |
| 259 */ |
| 260 byteIndex=0; |
| 261 length=(int32_t)(sourceLimit-source); |
| 262 targetCapacity=(int32_t)(targetLimit-target); |
| 263 if(length>targetCapacity) { |
| 264 length=targetCapacity; |
| 265 } |
| 266 while(length>0) { |
| 267 b=*source++; |
| 268 if(!isLegalUTF7(b)) { |
| 269 /* illegal */ |
| 270 bytes[0]=b; |
| 271 byteIndex=1; |
| 272 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 273 break; |
| 274 } else if(b!=PLUS) { |
| 275 /* write directly encoded character */ |
| 276 *target++=b; |
| 277 if(offsets!=NULL) { |
| 278 *offsets++=sourceIndex++; |
| 279 } |
| 280 } else /* PLUS */ { |
| 281 /* switch to Unicode mode */ |
| 282 nextSourceIndex=++sourceIndex; |
| 283 inDirectMode=FALSE; |
| 284 byteIndex=0; |
| 285 bits=0; |
| 286 base64Counter=-1; |
| 287 goto unicodeMode; |
| 288 } |
| 289 --length; |
| 290 } |
| 291 if(source<sourceLimit && target>=targetLimit) { |
| 292 /* target is full */ |
| 293 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 294 } |
| 295 } else { |
| 296 unicodeMode: |
| 297 /* |
| 298 * In Unicode (or "escape") Mode, UTF-16BE is base64-encoded. |
| 299 * The base64 sequence ends with any character that is not in the base64
alphabet. |
| 300 * A terminating minus sign is consumed. |
| 301 * |
| 302 * In Unicode Mode, the sourceIndex has the index to the start of the cu
rrent |
| 303 * base64 bytes, while nextSourceIndex is precisely parallel to source, |
| 304 * keeping the index to the following byte. |
| 305 * Note that in 2 out of 3 cases, UChars overlap within a base64 byte. |
| 306 */ |
| 307 while(source<sourceLimit) { |
| 308 if(target<targetLimit) { |
| 309 bytes[byteIndex++]=b=*source++; |
| 310 ++nextSourceIndex; |
| 311 if(b>=126) { |
| 312 /* illegal - test other illegal US-ASCII values by base64Val
ue==-3 */ |
| 313 inDirectMode=TRUE; |
| 314 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 315 break; |
| 316 } else if((base64Value=fromBase64[b])>=0) { |
| 317 /* collect base64 bytes into UChars */ |
| 318 switch(base64Counter) { |
| 319 case -1: /* -1 is immediately after the + */ |
| 320 case 0: |
| 321 bits=base64Value; |
| 322 base64Counter=1; |
| 323 break; |
| 324 case 1: |
| 325 case 3: |
| 326 case 4: |
| 327 case 6: |
| 328 bits=(uint16_t)((bits<<6)|base64Value); |
| 329 ++base64Counter; |
| 330 break; |
| 331 case 2: |
| 332 *target++=(UChar)((bits<<4)|(base64Value>>2)); |
| 333 if(offsets!=NULL) { |
| 334 *offsets++=sourceIndex; |
| 335 sourceIndex=nextSourceIndex-1; |
| 336 } |
| 337 bytes[0]=b; /* keep this byte in case an error occurs */ |
| 338 byteIndex=1; |
| 339 bits=(uint16_t)(base64Value&3); |
| 340 base64Counter=3; |
| 341 break; |
| 342 case 5: |
| 343 *target++=(UChar)((bits<<2)|(base64Value>>4)); |
| 344 if(offsets!=NULL) { |
| 345 *offsets++=sourceIndex; |
| 346 sourceIndex=nextSourceIndex-1; |
| 347 } |
| 348 bytes[0]=b; /* keep this byte in case an error occurs */ |
| 349 byteIndex=1; |
| 350 bits=(uint16_t)(base64Value&15); |
| 351 base64Counter=6; |
| 352 break; |
| 353 case 7: |
| 354 *target++=(UChar)((bits<<6)|base64Value); |
| 355 if(offsets!=NULL) { |
| 356 *offsets++=sourceIndex; |
| 357 sourceIndex=nextSourceIndex; |
| 358 } |
| 359 byteIndex=0; |
| 360 bits=0; |
| 361 base64Counter=0; |
| 362 break; |
| 363 default: |
| 364 /* will never occur */ |
| 365 break; |
| 366 } |
| 367 } else if(base64Value==-2) { |
| 368 /* minus sign terminates the base64 sequence */ |
| 369 inDirectMode=TRUE; |
| 370 if(base64Counter==-1) { |
| 371 /* +- i.e. a minus immediately following a plus */ |
| 372 *target++=PLUS; |
| 373 if(offsets!=NULL) { |
| 374 *offsets++=sourceIndex-1; |
| 375 } |
| 376 } else { |
| 377 /* absorb the minus and leave the Unicode Mode */ |
| 378 if(bits!=0) { |
| 379 /* bits are illegally left over, a UChar is incomple
te */ |
| 380 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 381 break; |
| 382 } |
| 383 } |
| 384 sourceIndex=nextSourceIndex; |
| 385 goto directMode; |
| 386 } else if(base64Value==-1) /* for any legal character except bas
e64 and minus sign */ { |
| 387 /* leave the Unicode Mode */ |
| 388 inDirectMode=TRUE; |
| 389 if(base64Counter==-1) { |
| 390 /* illegal: + immediately followed by something other th
an base64 or minus sign */ |
| 391 /* include the plus sign in the reported sequence */ |
| 392 --sourceIndex; |
| 393 bytes[0]=PLUS; |
| 394 bytes[1]=b; |
| 395 byteIndex=2; |
| 396 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 397 break; |
| 398 } else if(bits==0) { |
| 399 /* un-read the character in case it is a plus sign */ |
| 400 --source; |
| 401 sourceIndex=nextSourceIndex-1; |
| 402 goto directMode; |
| 403 } else { |
| 404 /* bits are illegally left over, a UChar is incomplete *
/ |
| 405 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 406 break; |
| 407 } |
| 408 } else /* base64Value==-3 for illegal characters */ { |
| 409 /* illegal */ |
| 410 inDirectMode=TRUE; |
| 411 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 412 break; |
| 413 } |
| 414 } else { |
| 415 /* target is full */ |
| 416 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 417 break; |
| 418 } |
| 419 } |
| 420 } |
| 421 |
| 422 if(U_SUCCESS(*pErrorCode) && pArgs->flush && source==sourceLimit && bits==0)
{ |
| 423 /* |
| 424 * if we are in Unicode mode, then the byteIndex might not be 0, |
| 425 * but that is ok if bits==0 |
| 426 * -> we set byteIndex=0 at the end of the stream to avoid a truncated e
rror |
| 427 * (not true for IMAP-mailbox-name where we must end in direct mode) |
| 428 */ |
| 429 byteIndex=0; |
| 430 } |
| 431 |
| 432 /* set the converter state back into UConverter */ |
| 433 cnv->toUnicodeStatus=((uint32_t)inDirectMode<<24)|((uint32_t)((uint8_t)base6
4Counter)<<16)|(uint32_t)bits; |
| 434 cnv->toULength=byteIndex; |
| 435 |
| 436 /* write back the updated pointers */ |
| 437 pArgs->source=(const char *)source; |
| 438 pArgs->target=target; |
| 439 pArgs->offsets=offsets; |
| 440 return; |
| 441 } |
| 442 |
| 443 static void |
| 444 _UTF7FromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 445 UErrorCode *pErrorCode) { |
| 446 UConverter *cnv; |
| 447 const UChar *source, *sourceLimit; |
| 448 uint8_t *target, *targetLimit; |
| 449 int32_t *offsets; |
| 450 |
| 451 int32_t length, targetCapacity, sourceIndex; |
| 452 UChar c; |
| 453 |
| 454 /* UTF-7 state */ |
| 455 const UBool *encodeDirectly; |
| 456 uint8_t bits; |
| 457 int8_t base64Counter; |
| 458 UBool inDirectMode; |
| 459 |
| 460 /* set up the local pointers */ |
| 461 cnv=pArgs->converter; |
| 462 |
| 463 /* set up the local pointers */ |
| 464 source=pArgs->source; |
| 465 sourceLimit=pArgs->sourceLimit; |
| 466 target=(uint8_t *)pArgs->target; |
| 467 targetLimit=(uint8_t *)pArgs->targetLimit; |
| 468 offsets=pArgs->offsets; |
| 469 |
| 470 /* get the state machine state */ |
| 471 { |
| 472 uint32_t status=cnv->fromUnicodeStatus; |
| 473 encodeDirectly= status<0x10000000 ? encodeDirectlyMaximum : encodeDirect
lyRestricted; |
| 474 inDirectMode=(UBool)((status>>24)&1); |
| 475 base64Counter=(int8_t)(status>>16); |
| 476 bits=(uint8_t)status; |
| 477 } |
| 478 |
| 479 /* UTF-7 always encodes UTF-16 code units, therefore we need only a simple s
ourceIndex */ |
| 480 sourceIndex=0; |
| 481 |
| 482 if(inDirectMode) { |
| 483 directMode: |
| 484 length=(int32_t)(sourceLimit-source); |
| 485 targetCapacity=(int32_t)(targetLimit-target); |
| 486 if(length>targetCapacity) { |
| 487 length=targetCapacity; |
| 488 } |
| 489 while(length>0) { |
| 490 c=*source++; |
| 491 /* currently always encode CR LF SP TAB directly */ |
| 492 if(c<=127 && encodeDirectly[c]) { |
| 493 /* encode directly */ |
| 494 *target++=(uint8_t)c; |
| 495 if(offsets!=NULL) { |
| 496 *offsets++=sourceIndex++; |
| 497 } |
| 498 } else if(c==PLUS) { |
| 499 /* output +- for + */ |
| 500 *target++=PLUS; |
| 501 if(target<targetLimit) { |
| 502 *target++=MINUS; |
| 503 if(offsets!=NULL) { |
| 504 *offsets++=sourceIndex; |
| 505 *offsets++=sourceIndex++; |
| 506 } |
| 507 /* realign length and targetCapacity */ |
| 508 goto directMode; |
| 509 } else { |
| 510 if(offsets!=NULL) { |
| 511 *offsets++=sourceIndex++; |
| 512 } |
| 513 cnv->charErrorBuffer[0]=MINUS; |
| 514 cnv->charErrorBufferLength=1; |
| 515 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 516 break; |
| 517 } |
| 518 } else { |
| 519 /* un-read this character and switch to Unicode Mode */ |
| 520 --source; |
| 521 *target++=PLUS; |
| 522 if(offsets!=NULL) { |
| 523 *offsets++=sourceIndex; |
| 524 } |
| 525 inDirectMode=FALSE; |
| 526 base64Counter=0; |
| 527 goto unicodeMode; |
| 528 } |
| 529 --length; |
| 530 } |
| 531 if(source<sourceLimit && target>=targetLimit) { |
| 532 /* target is full */ |
| 533 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 534 } |
| 535 } else { |
| 536 unicodeMode: |
| 537 while(source<sourceLimit) { |
| 538 if(target<targetLimit) { |
| 539 c=*source++; |
| 540 if(c<=127 && encodeDirectly[c]) { |
| 541 /* encode directly */ |
| 542 inDirectMode=TRUE; |
| 543 |
| 544 /* trick: back out this character to make this easier */ |
| 545 --source; |
| 546 |
| 547 /* terminate the base64 sequence */ |
| 548 if(base64Counter!=0) { |
| 549 /* write remaining bits for the previous character */ |
| 550 *target++=toBase64[bits]; |
| 551 if(offsets!=NULL) { |
| 552 *offsets++=sourceIndex-1; |
| 553 } |
| 554 } |
| 555 if(fromBase64[c]!=-1) { |
| 556 /* need to terminate with a minus */ |
| 557 if(target<targetLimit) { |
| 558 *target++=MINUS; |
| 559 if(offsets!=NULL) { |
| 560 *offsets++=sourceIndex-1; |
| 561 } |
| 562 } else { |
| 563 cnv->charErrorBuffer[0]=MINUS; |
| 564 cnv->charErrorBufferLength=1; |
| 565 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 566 break; |
| 567 } |
| 568 } |
| 569 goto directMode; |
| 570 } else { |
| 571 /* |
| 572 * base64 this character: |
| 573 * Output 2 or 3 base64 bytes for the remaining bits of the
previous character |
| 574 * and the bits of this character, each implicitly in UTF-16
BE. |
| 575 * |
| 576 * Here, bits is an 8-bit variable because only 6 bits need
to be kept from one |
| 577 * character to the next. The actual 2 or 4 bits are shifted
to the left edge |
| 578 * of the 6-bits field 5..0 to make the termination of the b
ase64 sequence easier. |
| 579 */ |
| 580 switch(base64Counter) { |
| 581 case 0: |
| 582 *target++=toBase64[c>>10]; |
| 583 if(target<targetLimit) { |
| 584 *target++=toBase64[(c>>4)&0x3f]; |
| 585 if(offsets!=NULL) { |
| 586 *offsets++=sourceIndex; |
| 587 *offsets++=sourceIndex++; |
| 588 } |
| 589 } else { |
| 590 if(offsets!=NULL) { |
| 591 *offsets++=sourceIndex++; |
| 592 } |
| 593 cnv->charErrorBuffer[0]=toBase64[(c>>4)&0x3f]; |
| 594 cnv->charErrorBufferLength=1; |
| 595 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 596 } |
| 597 bits=(uint8_t)((c&15)<<2); |
| 598 base64Counter=1; |
| 599 break; |
| 600 case 1: |
| 601 *target++=toBase64[bits|(c>>14)]; |
| 602 if(target<targetLimit) { |
| 603 *target++=toBase64[(c>>8)&0x3f]; |
| 604 if(target<targetLimit) { |
| 605 *target++=toBase64[(c>>2)&0x3f]; |
| 606 if(offsets!=NULL) { |
| 607 *offsets++=sourceIndex; |
| 608 *offsets++=sourceIndex; |
| 609 *offsets++=sourceIndex++; |
| 610 } |
| 611 } else { |
| 612 if(offsets!=NULL) { |
| 613 *offsets++=sourceIndex; |
| 614 *offsets++=sourceIndex++; |
| 615 } |
| 616 cnv->charErrorBuffer[0]=toBase64[(c>>2)&0x3f]; |
| 617 cnv->charErrorBufferLength=1; |
| 618 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 619 } |
| 620 } else { |
| 621 if(offsets!=NULL) { |
| 622 *offsets++=sourceIndex++; |
| 623 } |
| 624 cnv->charErrorBuffer[0]=toBase64[(c>>8)&0x3f]; |
| 625 cnv->charErrorBuffer[1]=toBase64[(c>>2)&0x3f]; |
| 626 cnv->charErrorBufferLength=2; |
| 627 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 628 } |
| 629 bits=(uint8_t)((c&3)<<4); |
| 630 base64Counter=2; |
| 631 break; |
| 632 case 2: |
| 633 *target++=toBase64[bits|(c>>12)]; |
| 634 if(target<targetLimit) { |
| 635 *target++=toBase64[(c>>6)&0x3f]; |
| 636 if(target<targetLimit) { |
| 637 *target++=toBase64[c&0x3f]; |
| 638 if(offsets!=NULL) { |
| 639 *offsets++=sourceIndex; |
| 640 *offsets++=sourceIndex; |
| 641 *offsets++=sourceIndex++; |
| 642 } |
| 643 } else { |
| 644 if(offsets!=NULL) { |
| 645 *offsets++=sourceIndex; |
| 646 *offsets++=sourceIndex++; |
| 647 } |
| 648 cnv->charErrorBuffer[0]=toBase64[c&0x3f]; |
| 649 cnv->charErrorBufferLength=1; |
| 650 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 651 } |
| 652 } else { |
| 653 if(offsets!=NULL) { |
| 654 *offsets++=sourceIndex++; |
| 655 } |
| 656 cnv->charErrorBuffer[0]=toBase64[(c>>6)&0x3f]; |
| 657 cnv->charErrorBuffer[1]=toBase64[c&0x3f]; |
| 658 cnv->charErrorBufferLength=2; |
| 659 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 660 } |
| 661 bits=0; |
| 662 base64Counter=0; |
| 663 break; |
| 664 default: |
| 665 /* will never occur */ |
| 666 break; |
| 667 } |
| 668 } |
| 669 } else { |
| 670 /* target is full */ |
| 671 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 672 break; |
| 673 } |
| 674 } |
| 675 } |
| 676 |
| 677 if(pArgs->flush && source>=sourceLimit) { |
| 678 /* flush remaining bits to the target */ |
| 679 if(!inDirectMode && base64Counter!=0) { |
| 680 if(target<targetLimit) { |
| 681 *target++=toBase64[bits]; |
| 682 if(offsets!=NULL) { |
| 683 *offsets++=sourceIndex-1; |
| 684 } |
| 685 } else { |
| 686 cnv->charErrorBuffer[cnv->charErrorBufferLength++]=toBase64[bits
]; |
| 687 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 688 } |
| 689 } |
| 690 /* reset the state for the next conversion */ |
| 691 cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /*
keep version, inDirectMode=TRUE */ |
| 692 } else { |
| 693 /* set the converter state back into UConverter */ |
| 694 cnv->fromUnicodeStatus= |
| 695 (cnv->fromUnicodeStatus&0xf0000000)| /* keep version*/ |
| 696 ((uint32_t)inDirectMode<<24)|((uint32_t)base64Counter<<16)|(uint32_t
)bits; |
| 697 } |
| 698 |
| 699 /* write back the updated pointers */ |
| 700 pArgs->source=source; |
| 701 pArgs->target=(char *)target; |
| 702 pArgs->offsets=offsets; |
| 703 return; |
| 704 } |
| 705 |
| 706 static const char * |
| 707 _UTF7GetName(const UConverter *cnv) { |
| 708 switch(cnv->fromUnicodeStatus>>28) { |
| 709 case 1: |
| 710 return "UTF-7,version=1"; |
| 711 default: |
| 712 return "UTF-7"; |
| 713 } |
| 714 } |
| 715 |
| 716 static const UConverterImpl _UTF7Impl={ |
| 717 UCNV_UTF7, |
| 718 |
| 719 NULL, |
| 720 NULL, |
| 721 |
| 722 _UTF7Open, |
| 723 NULL, |
| 724 _UTF7Reset, |
| 725 |
| 726 _UTF7ToUnicodeWithOffsets, |
| 727 _UTF7ToUnicodeWithOffsets, |
| 728 _UTF7FromUnicodeWithOffsets, |
| 729 _UTF7FromUnicodeWithOffsets, |
| 730 NULL, |
| 731 |
| 732 NULL, |
| 733 _UTF7GetName, |
| 734 NULL, /* we don't need writeSub() because we never call a callback at fromUn
icode() */ |
| 735 NULL, |
| 736 ucnv_getCompleteUnicodeSet |
| 737 }; |
| 738 |
| 739 static const UConverterStaticData _UTF7StaticData={ |
| 740 sizeof(UConverterStaticData), |
| 741 "UTF-7", |
| 742 0, /* TODO CCSID for UTF-7 */ |
| 743 UCNV_IBM, UCNV_UTF7, |
| 744 1, 4, |
| 745 { 0x3f, 0, 0, 0 }, 1, /* the subchar is not used */ |
| 746 FALSE, FALSE, |
| 747 0, |
| 748 0, |
| 749 { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ |
| 750 }; |
| 751 |
| 752 const UConverterSharedData _UTF7Data={ |
| 753 sizeof(UConverterSharedData), ~((uint32_t)0), |
| 754 NULL, NULL, &_UTF7StaticData, FALSE, &_UTF7Impl, |
| 755 0 |
| 756 }; |
| 757 |
| 758 /* IMAP mailbox name encoding ----------------------------------------------- */ |
| 759 |
| 760 /* |
| 761 * RFC 2060: INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1 |
| 762 * http://www.ietf.org/rfc/rfc2060.txt |
| 763 * |
| 764 * 5.1.3. Mailbox International Naming Convention |
| 765 * |
| 766 * By convention, international mailbox names are specified using a |
| 767 * modified version of the UTF-7 encoding described in [UTF-7]. The |
| 768 * purpose of these modifications is to correct the following problems |
| 769 * with UTF-7: |
| 770 * |
| 771 * 1) UTF-7 uses the "+" character for shifting; this conflicts with |
| 772 * the common use of "+" in mailbox names, in particular USENET |
| 773 * newsgroup names. |
| 774 * |
| 775 * 2) UTF-7's encoding is BASE64 which uses the "/" character; this |
| 776 * conflicts with the use of "/" as a popular hierarchy delimiter. |
| 777 * |
| 778 * 3) UTF-7 prohibits the unencoded usage of "\"; this conflicts with |
| 779 * the use of "\" as a popular hierarchy delimiter. |
| 780 * |
| 781 * 4) UTF-7 prohibits the unencoded usage of "~"; this conflicts with |
| 782 * the use of "~" in some servers as a home directory indicator. |
| 783 * |
| 784 * 5) UTF-7 permits multiple alternate forms to represent the same |
| 785 * string; in particular, printable US-ASCII chararacters can be |
| 786 * represented in encoded form. |
| 787 * |
| 788 * In modified UTF-7, printable US-ASCII characters except for "&" |
| 789 * represent themselves; that is, characters with octet values 0x20-0x25 |
| 790 * and 0x27-0x7e. The character "&" (0x26) is represented by the two- |
| 791 * octet sequence "&-". |
| 792 * |
| 793 * All other characters (octet values 0x00-0x1f, 0x7f-0xff, and all |
| 794 * Unicode 16-bit octets) are represented in modified BASE64, with a |
| 795 * further modification from [UTF-7] that "," is used instead of "/". |
| 796 * Modified BASE64 MUST NOT be used to represent any printing US-ASCII |
| 797 * character which can represent itself. |
| 798 * |
| 799 * "&" is used to shift to modified BASE64 and "-" to shift back to US- |
| 800 * ASCII. All names start in US-ASCII, and MUST end in US-ASCII (that |
| 801 * is, a name that ends with a Unicode 16-bit octet MUST end with a "- |
| 802 * "). |
| 803 * |
| 804 * For example, here is a mailbox name which mixes English, Japanese, |
| 805 * and Chinese text: ~peter/mail/&ZeVnLIqe-/&U,BTFw- |
| 806 */ |
| 807 |
| 808 /* |
| 809 * Tests for US-ASCII characters belonging to character classes |
| 810 * defined in UTF-7. |
| 811 * |
| 812 * Set D (directly encoded characters) consists of the following |
| 813 * characters: the upper and lower case letters A through Z |
| 814 * and a through z, the 10 digits 0-9, and the following nine special |
| 815 * characters (note that "+" and "=" are omitted): |
| 816 * '(),-./:? |
| 817 * |
| 818 * Set O (optional direct characters) consists of the following |
| 819 * characters (note that "\" and "~" are omitted): |
| 820 * !"#$%&*;<=>@[]^_`{|} |
| 821 * |
| 822 * According to the rules in RFC 2152, the byte values for the following |
| 823 * US-ASCII characters are not used in UTF-7 and are therefore illegal: |
| 824 * - all C0 control codes except for CR LF TAB |
| 825 * - BACKSLASH |
| 826 * - TILDE |
| 827 * - DEL |
| 828 * - all codes beyond US-ASCII, i.e. all >127 |
| 829 */ |
| 830 |
| 831 /* uses '&' not '+' to start a base64 sequence */ |
| 832 #define AMPERSAND 0x26 |
| 833 #define COMMA 0x2c |
| 834 #define SLASH 0x2f |
| 835 |
| 836 /* legal byte values: all US-ASCII graphic characters 0x20..0x7e */ |
| 837 #define isLegalIMAP(c) (0x20<=(c) && (c)<=0x7e) |
| 838 |
| 839 /* direct-encode all of printable ASCII 0x20..0x7e except '&' 0x26 */ |
| 840 #define inSetDIMAP(c) (isLegalIMAP(c) && c!=AMPERSAND) |
| 841 |
| 842 #define TO_BASE64_IMAP(n) ((n)<63 ? toBase64[n] : COMMA) |
| 843 #define FROM_BASE64_IMAP(c) ((c)==COMMA ? 63 : (c)==SLASH ? -1 : fromBase64[c]) |
| 844 |
| 845 /* |
| 846 * converter status values: |
| 847 * |
| 848 * toUnicodeStatus: |
| 849 * 24 inDirectMode (boolean) |
| 850 * 23..16 base64Counter (-1..7) |
| 851 * 15..0 bits (up to 14 bits incoming base64) |
| 852 * |
| 853 * fromUnicodeStatus: |
| 854 * 24 inDirectMode (boolean) |
| 855 * 23..16 base64Counter (0..2) |
| 856 * 7..0 bits (6 bits outgoing base64) |
| 857 * |
| 858 * ignore bits 31..25 |
| 859 */ |
| 860 |
| 861 static void |
| 862 _IMAPToUnicodeWithOffsets(UConverterToUnicodeArgs *pArgs, |
| 863 UErrorCode *pErrorCode) { |
| 864 UConverter *cnv; |
| 865 const uint8_t *source, *sourceLimit; |
| 866 UChar *target; |
| 867 const UChar *targetLimit; |
| 868 int32_t *offsets; |
| 869 |
| 870 uint8_t *bytes; |
| 871 uint8_t byteIndex; |
| 872 |
| 873 int32_t length, targetCapacity; |
| 874 |
| 875 /* UTF-7 state */ |
| 876 uint16_t bits; |
| 877 int8_t base64Counter; |
| 878 UBool inDirectMode; |
| 879 |
| 880 int8_t base64Value; |
| 881 |
| 882 int32_t sourceIndex, nextSourceIndex; |
| 883 |
| 884 UChar c; |
| 885 uint8_t b; |
| 886 |
| 887 /* set up the local pointers */ |
| 888 cnv=pArgs->converter; |
| 889 |
| 890 source=(const uint8_t *)pArgs->source; |
| 891 sourceLimit=(const uint8_t *)pArgs->sourceLimit; |
| 892 target=pArgs->target; |
| 893 targetLimit=pArgs->targetLimit; |
| 894 offsets=pArgs->offsets; |
| 895 /* get the state machine state */ |
| 896 { |
| 897 uint32_t status=cnv->toUnicodeStatus; |
| 898 inDirectMode=(UBool)((status>>24)&1); |
| 899 base64Counter=(int8_t)(status>>16); |
| 900 bits=(uint16_t)status; |
| 901 } |
| 902 bytes=cnv->toUBytes; |
| 903 byteIndex=cnv->toULength; |
| 904 |
| 905 /* sourceIndex=-1 if the current character began in the previous buffer */ |
| 906 sourceIndex=byteIndex==0 ? 0 : -1; |
| 907 nextSourceIndex=0; |
| 908 |
| 909 if(inDirectMode) { |
| 910 directMode: |
| 911 /* |
| 912 * In Direct Mode, US-ASCII characters are encoded directly, i.e., |
| 913 * with their US-ASCII byte values. |
| 914 * An ampersand starts Unicode (or "escape") Mode. |
| 915 * |
| 916 * In Direct Mode, only the sourceIndex is used. |
| 917 */ |
| 918 byteIndex=0; |
| 919 length=(int32_t)(sourceLimit-source); |
| 920 targetCapacity=(int32_t)(targetLimit-target); |
| 921 if(length>targetCapacity) { |
| 922 length=targetCapacity; |
| 923 } |
| 924 while(length>0) { |
| 925 b=*source++; |
| 926 if(!isLegalIMAP(b)) { |
| 927 /* illegal */ |
| 928 bytes[0]=b; |
| 929 byteIndex=1; |
| 930 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 931 break; |
| 932 } else if(b!=AMPERSAND) { |
| 933 /* write directly encoded character */ |
| 934 *target++=b; |
| 935 if(offsets!=NULL) { |
| 936 *offsets++=sourceIndex++; |
| 937 } |
| 938 } else /* AMPERSAND */ { |
| 939 /* switch to Unicode mode */ |
| 940 nextSourceIndex=++sourceIndex; |
| 941 inDirectMode=FALSE; |
| 942 byteIndex=0; |
| 943 bits=0; |
| 944 base64Counter=-1; |
| 945 goto unicodeMode; |
| 946 } |
| 947 --length; |
| 948 } |
| 949 if(source<sourceLimit && target>=targetLimit) { |
| 950 /* target is full */ |
| 951 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 952 } |
| 953 } else { |
| 954 unicodeMode: |
| 955 /* |
| 956 * In Unicode (or "escape") Mode, UTF-16BE is base64-encoded. |
| 957 * The base64 sequence ends with any character that is not in the base64
alphabet. |
| 958 * A terminating minus sign is consumed. |
| 959 * US-ASCII must not be base64-ed. |
| 960 * |
| 961 * In Unicode Mode, the sourceIndex has the index to the start of the cu
rrent |
| 962 * base64 bytes, while nextSourceIndex is precisely parallel to source, |
| 963 * keeping the index to the following byte. |
| 964 * Note that in 2 out of 3 cases, UChars overlap within a base64 byte. |
| 965 */ |
| 966 while(source<sourceLimit) { |
| 967 if(target<targetLimit) { |
| 968 bytes[byteIndex++]=b=*source++; |
| 969 ++nextSourceIndex; |
| 970 if(b>0x7e) { |
| 971 /* illegal - test other illegal US-ASCII values by base64Val
ue==-3 */ |
| 972 inDirectMode=TRUE; |
| 973 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 974 break; |
| 975 } else if((base64Value=FROM_BASE64_IMAP(b))>=0) { |
| 976 /* collect base64 bytes into UChars */ |
| 977 switch(base64Counter) { |
| 978 case -1: /* -1 is immediately after the & */ |
| 979 case 0: |
| 980 bits=base64Value; |
| 981 base64Counter=1; |
| 982 break; |
| 983 case 1: |
| 984 case 3: |
| 985 case 4: |
| 986 case 6: |
| 987 bits=(uint16_t)((bits<<6)|base64Value); |
| 988 ++base64Counter; |
| 989 break; |
| 990 case 2: |
| 991 c=(UChar)((bits<<4)|(base64Value>>2)); |
| 992 if(isLegalIMAP(c)) { |
| 993 /* illegal */ |
| 994 inDirectMode=TRUE; |
| 995 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 996 goto endloop; |
| 997 } |
| 998 *target++=c; |
| 999 if(offsets!=NULL) { |
| 1000 *offsets++=sourceIndex; |
| 1001 sourceIndex=nextSourceIndex-1; |
| 1002 } |
| 1003 bytes[0]=b; /* keep this byte in case an error occurs */ |
| 1004 byteIndex=1; |
| 1005 bits=(uint16_t)(base64Value&3); |
| 1006 base64Counter=3; |
| 1007 break; |
| 1008 case 5: |
| 1009 c=(UChar)((bits<<2)|(base64Value>>4)); |
| 1010 if(isLegalIMAP(c)) { |
| 1011 /* illegal */ |
| 1012 inDirectMode=TRUE; |
| 1013 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 1014 goto endloop; |
| 1015 } |
| 1016 *target++=c; |
| 1017 if(offsets!=NULL) { |
| 1018 *offsets++=sourceIndex; |
| 1019 sourceIndex=nextSourceIndex-1; |
| 1020 } |
| 1021 bytes[0]=b; /* keep this byte in case an error occurs */ |
| 1022 byteIndex=1; |
| 1023 bits=(uint16_t)(base64Value&15); |
| 1024 base64Counter=6; |
| 1025 break; |
| 1026 case 7: |
| 1027 c=(UChar)((bits<<6)|base64Value); |
| 1028 if(isLegalIMAP(c)) { |
| 1029 /* illegal */ |
| 1030 inDirectMode=TRUE; |
| 1031 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 1032 goto endloop; |
| 1033 } |
| 1034 *target++=c; |
| 1035 if(offsets!=NULL) { |
| 1036 *offsets++=sourceIndex; |
| 1037 sourceIndex=nextSourceIndex; |
| 1038 } |
| 1039 byteIndex=0; |
| 1040 bits=0; |
| 1041 base64Counter=0; |
| 1042 break; |
| 1043 default: |
| 1044 /* will never occur */ |
| 1045 break; |
| 1046 } |
| 1047 } else if(base64Value==-2) { |
| 1048 /* minus sign terminates the base64 sequence */ |
| 1049 inDirectMode=TRUE; |
| 1050 if(base64Counter==-1) { |
| 1051 /* &- i.e. a minus immediately following an ampersand */ |
| 1052 *target++=AMPERSAND; |
| 1053 if(offsets!=NULL) { |
| 1054 *offsets++=sourceIndex-1; |
| 1055 } |
| 1056 } else { |
| 1057 /* absorb the minus and leave the Unicode Mode */ |
| 1058 if(bits!=0 || (base64Counter!=0 && base64Counter!=3 && b
ase64Counter!=6)) { |
| 1059 /* bits are illegally left over, a UChar is incomple
te */ |
| 1060 /* base64Counter other than 0, 3, 6 means non-minima
l zero-padding, also illegal */ |
| 1061 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 1062 break; |
| 1063 } |
| 1064 } |
| 1065 sourceIndex=nextSourceIndex; |
| 1066 goto directMode; |
| 1067 } else { |
| 1068 if(base64Counter==-1) { |
| 1069 /* illegal: & immediately followed by something other th
an base64 or minus sign */ |
| 1070 /* include the ampersand in the reported sequence */ |
| 1071 --sourceIndex; |
| 1072 bytes[0]=AMPERSAND; |
| 1073 bytes[1]=b; |
| 1074 byteIndex=2; |
| 1075 } |
| 1076 /* base64Value==-1 for characters that are illegal only in U
nicode mode */ |
| 1077 /* base64Value==-3 for illegal characters */ |
| 1078 /* illegal */ |
| 1079 inDirectMode=TRUE; |
| 1080 *pErrorCode=U_ILLEGAL_CHAR_FOUND; |
| 1081 break; |
| 1082 } |
| 1083 } else { |
| 1084 /* target is full */ |
| 1085 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1086 break; |
| 1087 } |
| 1088 } |
| 1089 } |
| 1090 endloop: |
| 1091 |
| 1092 /* |
| 1093 * the end of the input stream and detection of truncated input |
| 1094 * are handled by the framework, but here we must check if we are in Unicode |
| 1095 * mode and byteIndex==0 because we must end in direct mode |
| 1096 * |
| 1097 * conditions: |
| 1098 * successful |
| 1099 * in Unicode mode and byteIndex==0 |
| 1100 * end of input and no truncated input |
| 1101 */ |
| 1102 if( U_SUCCESS(*pErrorCode) && |
| 1103 !inDirectMode && byteIndex==0 && |
| 1104 pArgs->flush && source>=sourceLimit |
| 1105 ) { |
| 1106 if(base64Counter==-1) { |
| 1107 /* & at the very end of the input */ |
| 1108 /* make the ampersand the reported sequence */ |
| 1109 bytes[0]=AMPERSAND; |
| 1110 byteIndex=1; |
| 1111 } |
| 1112 /* else if(base64Counter!=-1) byteIndex remains 0 because there is no pa
rticular byte sequence */ |
| 1113 |
| 1114 inDirectMode=TRUE; /* avoid looping */ |
| 1115 *pErrorCode=U_TRUNCATED_CHAR_FOUND; |
| 1116 } |
| 1117 |
| 1118 /* set the converter state back into UConverter */ |
| 1119 cnv->toUnicodeStatus=((uint32_t)inDirectMode<<24)|((uint32_t)((uint8_t)base6
4Counter)<<16)|(uint32_t)bits; |
| 1120 cnv->toULength=byteIndex; |
| 1121 |
| 1122 /* write back the updated pointers */ |
| 1123 pArgs->source=(const char *)source; |
| 1124 pArgs->target=target; |
| 1125 pArgs->offsets=offsets; |
| 1126 return; |
| 1127 } |
| 1128 |
| 1129 static void |
| 1130 _IMAPFromUnicodeWithOffsets(UConverterFromUnicodeArgs *pArgs, |
| 1131 UErrorCode *pErrorCode) { |
| 1132 UConverter *cnv; |
| 1133 const UChar *source, *sourceLimit; |
| 1134 uint8_t *target, *targetLimit; |
| 1135 int32_t *offsets; |
| 1136 |
| 1137 int32_t length, targetCapacity, sourceIndex; |
| 1138 UChar c; |
| 1139 uint8_t b; |
| 1140 |
| 1141 /* UTF-7 state */ |
| 1142 uint8_t bits; |
| 1143 int8_t base64Counter; |
| 1144 UBool inDirectMode; |
| 1145 |
| 1146 /* set up the local pointers */ |
| 1147 cnv=pArgs->converter; |
| 1148 |
| 1149 /* set up the local pointers */ |
| 1150 source=pArgs->source; |
| 1151 sourceLimit=pArgs->sourceLimit; |
| 1152 target=(uint8_t *)pArgs->target; |
| 1153 targetLimit=(uint8_t *)pArgs->targetLimit; |
| 1154 offsets=pArgs->offsets; |
| 1155 |
| 1156 /* get the state machine state */ |
| 1157 { |
| 1158 uint32_t status=cnv->fromUnicodeStatus; |
| 1159 inDirectMode=(UBool)((status>>24)&1); |
| 1160 base64Counter=(int8_t)(status>>16); |
| 1161 bits=(uint8_t)status; |
| 1162 } |
| 1163 |
| 1164 /* UTF-7 always encodes UTF-16 code units, therefore we need only a simple s
ourceIndex */ |
| 1165 sourceIndex=0; |
| 1166 |
| 1167 if(inDirectMode) { |
| 1168 directMode: |
| 1169 length=(int32_t)(sourceLimit-source); |
| 1170 targetCapacity=(int32_t)(targetLimit-target); |
| 1171 if(length>targetCapacity) { |
| 1172 length=targetCapacity; |
| 1173 } |
| 1174 while(length>0) { |
| 1175 c=*source++; |
| 1176 /* encode 0x20..0x7e except '&' directly */ |
| 1177 if(inSetDIMAP(c)) { |
| 1178 /* encode directly */ |
| 1179 *target++=(uint8_t)c; |
| 1180 if(offsets!=NULL) { |
| 1181 *offsets++=sourceIndex++; |
| 1182 } |
| 1183 } else if(c==AMPERSAND) { |
| 1184 /* output &- for & */ |
| 1185 *target++=AMPERSAND; |
| 1186 if(target<targetLimit) { |
| 1187 *target++=MINUS; |
| 1188 if(offsets!=NULL) { |
| 1189 *offsets++=sourceIndex; |
| 1190 *offsets++=sourceIndex++; |
| 1191 } |
| 1192 /* realign length and targetCapacity */ |
| 1193 goto directMode; |
| 1194 } else { |
| 1195 if(offsets!=NULL) { |
| 1196 *offsets++=sourceIndex++; |
| 1197 } |
| 1198 cnv->charErrorBuffer[0]=MINUS; |
| 1199 cnv->charErrorBufferLength=1; |
| 1200 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1201 break; |
| 1202 } |
| 1203 } else { |
| 1204 /* un-read this character and switch to Unicode Mode */ |
| 1205 --source; |
| 1206 *target++=AMPERSAND; |
| 1207 if(offsets!=NULL) { |
| 1208 *offsets++=sourceIndex; |
| 1209 } |
| 1210 inDirectMode=FALSE; |
| 1211 base64Counter=0; |
| 1212 goto unicodeMode; |
| 1213 } |
| 1214 --length; |
| 1215 } |
| 1216 if(source<sourceLimit && target>=targetLimit) { |
| 1217 /* target is full */ |
| 1218 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1219 } |
| 1220 } else { |
| 1221 unicodeMode: |
| 1222 while(source<sourceLimit) { |
| 1223 if(target<targetLimit) { |
| 1224 c=*source++; |
| 1225 if(isLegalIMAP(c)) { |
| 1226 /* encode directly */ |
| 1227 inDirectMode=TRUE; |
| 1228 |
| 1229 /* trick: back out this character to make this easier */ |
| 1230 --source; |
| 1231 |
| 1232 /* terminate the base64 sequence */ |
| 1233 if(base64Counter!=0) { |
| 1234 /* write remaining bits for the previous character */ |
| 1235 *target++=TO_BASE64_IMAP(bits); |
| 1236 if(offsets!=NULL) { |
| 1237 *offsets++=sourceIndex-1; |
| 1238 } |
| 1239 } |
| 1240 /* need to terminate with a minus */ |
| 1241 if(target<targetLimit) { |
| 1242 *target++=MINUS; |
| 1243 if(offsets!=NULL) { |
| 1244 *offsets++=sourceIndex-1; |
| 1245 } |
| 1246 } else { |
| 1247 cnv->charErrorBuffer[0]=MINUS; |
| 1248 cnv->charErrorBufferLength=1; |
| 1249 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1250 break; |
| 1251 } |
| 1252 goto directMode; |
| 1253 } else { |
| 1254 /* |
| 1255 * base64 this character: |
| 1256 * Output 2 or 3 base64 bytes for the remaining bits of the
previous character |
| 1257 * and the bits of this character, each implicitly in UTF-16
BE. |
| 1258 * |
| 1259 * Here, bits is an 8-bit variable because only 6 bits need
to be kept from one |
| 1260 * character to the next. The actual 2 or 4 bits are shifted
to the left edge |
| 1261 * of the 6-bits field 5..0 to make the termination of the b
ase64 sequence easier. |
| 1262 */ |
| 1263 switch(base64Counter) { |
| 1264 case 0: |
| 1265 b=(uint8_t)(c>>10); |
| 1266 *target++=TO_BASE64_IMAP(b); |
| 1267 if(target<targetLimit) { |
| 1268 b=(uint8_t)((c>>4)&0x3f); |
| 1269 *target++=TO_BASE64_IMAP(b); |
| 1270 if(offsets!=NULL) { |
| 1271 *offsets++=sourceIndex; |
| 1272 *offsets++=sourceIndex++; |
| 1273 } |
| 1274 } else { |
| 1275 if(offsets!=NULL) { |
| 1276 *offsets++=sourceIndex++; |
| 1277 } |
| 1278 b=(uint8_t)((c>>4)&0x3f); |
| 1279 cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); |
| 1280 cnv->charErrorBufferLength=1; |
| 1281 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1282 } |
| 1283 bits=(uint8_t)((c&15)<<2); |
| 1284 base64Counter=1; |
| 1285 break; |
| 1286 case 1: |
| 1287 b=(uint8_t)(bits|(c>>14)); |
| 1288 *target++=TO_BASE64_IMAP(b); |
| 1289 if(target<targetLimit) { |
| 1290 b=(uint8_t)((c>>8)&0x3f); |
| 1291 *target++=TO_BASE64_IMAP(b); |
| 1292 if(target<targetLimit) { |
| 1293 b=(uint8_t)((c>>2)&0x3f); |
| 1294 *target++=TO_BASE64_IMAP(b); |
| 1295 if(offsets!=NULL) { |
| 1296 *offsets++=sourceIndex; |
| 1297 *offsets++=sourceIndex; |
| 1298 *offsets++=sourceIndex++; |
| 1299 } |
| 1300 } else { |
| 1301 if(offsets!=NULL) { |
| 1302 *offsets++=sourceIndex; |
| 1303 *offsets++=sourceIndex++; |
| 1304 } |
| 1305 b=(uint8_t)((c>>2)&0x3f); |
| 1306 cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); |
| 1307 cnv->charErrorBufferLength=1; |
| 1308 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1309 } |
| 1310 } else { |
| 1311 if(offsets!=NULL) { |
| 1312 *offsets++=sourceIndex++; |
| 1313 } |
| 1314 b=(uint8_t)((c>>8)&0x3f); |
| 1315 cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); |
| 1316 b=(uint8_t)((c>>2)&0x3f); |
| 1317 cnv->charErrorBuffer[1]=TO_BASE64_IMAP(b); |
| 1318 cnv->charErrorBufferLength=2; |
| 1319 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1320 } |
| 1321 bits=(uint8_t)((c&3)<<4); |
| 1322 base64Counter=2; |
| 1323 break; |
| 1324 case 2: |
| 1325 b=(uint8_t)(bits|(c>>12)); |
| 1326 *target++=TO_BASE64_IMAP(b); |
| 1327 if(target<targetLimit) { |
| 1328 b=(uint8_t)((c>>6)&0x3f); |
| 1329 *target++=TO_BASE64_IMAP(b); |
| 1330 if(target<targetLimit) { |
| 1331 b=(uint8_t)(c&0x3f); |
| 1332 *target++=TO_BASE64_IMAP(b); |
| 1333 if(offsets!=NULL) { |
| 1334 *offsets++=sourceIndex; |
| 1335 *offsets++=sourceIndex; |
| 1336 *offsets++=sourceIndex++; |
| 1337 } |
| 1338 } else { |
| 1339 if(offsets!=NULL) { |
| 1340 *offsets++=sourceIndex; |
| 1341 *offsets++=sourceIndex++; |
| 1342 } |
| 1343 b=(uint8_t)(c&0x3f); |
| 1344 cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); |
| 1345 cnv->charErrorBufferLength=1; |
| 1346 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1347 } |
| 1348 } else { |
| 1349 if(offsets!=NULL) { |
| 1350 *offsets++=sourceIndex++; |
| 1351 } |
| 1352 b=(uint8_t)((c>>6)&0x3f); |
| 1353 cnv->charErrorBuffer[0]=TO_BASE64_IMAP(b); |
| 1354 b=(uint8_t)(c&0x3f); |
| 1355 cnv->charErrorBuffer[1]=TO_BASE64_IMAP(b); |
| 1356 cnv->charErrorBufferLength=2; |
| 1357 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1358 } |
| 1359 bits=0; |
| 1360 base64Counter=0; |
| 1361 break; |
| 1362 default: |
| 1363 /* will never occur */ |
| 1364 break; |
| 1365 } |
| 1366 } |
| 1367 } else { |
| 1368 /* target is full */ |
| 1369 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1370 break; |
| 1371 } |
| 1372 } |
| 1373 } |
| 1374 |
| 1375 if(pArgs->flush && source>=sourceLimit) { |
| 1376 /* flush remaining bits to the target */ |
| 1377 if(!inDirectMode) { |
| 1378 if(base64Counter!=0) { |
| 1379 if(target<targetLimit) { |
| 1380 *target++=TO_BASE64_IMAP(bits); |
| 1381 if(offsets!=NULL) { |
| 1382 *offsets++=sourceIndex-1; |
| 1383 } |
| 1384 } else { |
| 1385 cnv->charErrorBuffer[cnv->charErrorBufferLength++]=TO_BASE64
_IMAP(bits); |
| 1386 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1387 } |
| 1388 } |
| 1389 /* need to terminate with a minus */ |
| 1390 if(target<targetLimit) { |
| 1391 *target++=MINUS; |
| 1392 if(offsets!=NULL) { |
| 1393 *offsets++=sourceIndex-1; |
| 1394 } |
| 1395 } else { |
| 1396 cnv->charErrorBuffer[cnv->charErrorBufferLength++]=MINUS; |
| 1397 *pErrorCode=U_BUFFER_OVERFLOW_ERROR; |
| 1398 } |
| 1399 } |
| 1400 /* reset the state for the next conversion */ |
| 1401 cnv->fromUnicodeStatus=(cnv->fromUnicodeStatus&0xf0000000)|0x1000000; /*
keep version, inDirectMode=TRUE */ |
| 1402 } else { |
| 1403 /* set the converter state back into UConverter */ |
| 1404 cnv->fromUnicodeStatus= |
| 1405 (cnv->fromUnicodeStatus&0xf0000000)| /* keep version*/ |
| 1406 ((uint32_t)inDirectMode<<24)|((uint32_t)base64Counter<<16)|(uint32_t
)bits; |
| 1407 } |
| 1408 |
| 1409 /* write back the updated pointers */ |
| 1410 pArgs->source=source; |
| 1411 pArgs->target=(char *)target; |
| 1412 pArgs->offsets=offsets; |
| 1413 return; |
| 1414 } |
| 1415 |
| 1416 static const UConverterImpl _IMAPImpl={ |
| 1417 UCNV_IMAP_MAILBOX, |
| 1418 |
| 1419 NULL, |
| 1420 NULL, |
| 1421 |
| 1422 _UTF7Open, |
| 1423 NULL, |
| 1424 _UTF7Reset, |
| 1425 |
| 1426 _IMAPToUnicodeWithOffsets, |
| 1427 _IMAPToUnicodeWithOffsets, |
| 1428 _IMAPFromUnicodeWithOffsets, |
| 1429 _IMAPFromUnicodeWithOffsets, |
| 1430 NULL, |
| 1431 |
| 1432 NULL, |
| 1433 NULL, |
| 1434 NULL, /* we don't need writeSub() because we never call a callback at fromUn
icode() */ |
| 1435 NULL, |
| 1436 ucnv_getCompleteUnicodeSet |
| 1437 }; |
| 1438 |
| 1439 static const UConverterStaticData _IMAPStaticData={ |
| 1440 sizeof(UConverterStaticData), |
| 1441 "IMAP-mailbox-name", |
| 1442 0, /* TODO CCSID for IMAP-mailbox-name */ |
| 1443 UCNV_IBM, UCNV_IMAP_MAILBOX, |
| 1444 1, 4, |
| 1445 { 0x3f, 0, 0, 0 }, 1, /* the subchar is not used */ |
| 1446 FALSE, FALSE, |
| 1447 0, |
| 1448 0, |
| 1449 { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */ |
| 1450 }; |
| 1451 |
| 1452 const UConverterSharedData _IMAPData={ |
| 1453 sizeof(UConverterSharedData), ~((uint32_t)0), |
| 1454 NULL, NULL, &_IMAPStaticData, FALSE, &_IMAPImpl, |
| 1455 0 |
| 1456 }; |
| 1457 |
| 1458 #endif |
OLD | NEW |