OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ***************************************************************************** |
| 3 * Copyright (C) 1996-2010, International Business Machines Corporation and * |
| 4 * others. All Rights Reserved. * |
| 5 ***************************************************************************** |
| 6 */ |
| 7 |
| 8 #include "unicode/utypes.h" |
| 9 |
| 10 #if !UCONFIG_NO_NORMALIZATION |
| 11 |
| 12 #include "unicode/caniter.h" |
| 13 #include "unicode/normalizer2.h" |
| 14 #include "unicode/uchar.h" |
| 15 #include "unicode/uniset.h" |
| 16 #include "unicode/usetiter.h" |
| 17 #include "unicode/ustring.h" |
| 18 #include "cmemory.h" |
| 19 #include "hash.h" |
| 20 #include "normalizer2impl.h" |
| 21 |
| 22 /** |
| 23 * This class allows one to iterate through all the strings that are canonically
equivalent to a given |
| 24 * string. For example, here are some sample results: |
| 25 Results for: {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMB
INING DOT ABOVE}{COMBINING CEDILLA} |
| 26 1: \u0041\u030A\u0064\u0307\u0327 |
| 27 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBININ
G DOT ABOVE}{COMBINING CEDILLA} |
| 28 2: \u0041\u030A\u0064\u0327\u0307 |
| 29 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D}{COMBININ
G CEDILLA}{COMBINING DOT ABOVE} |
| 30 3: \u0041\u030A\u1E0B\u0327 |
| 31 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH DOT
ABOVE}{COMBINING CEDILLA} |
| 32 4: \u0041\u030A\u1E11\u0307 |
| 33 = {LATIN CAPITAL LETTER A}{COMBINING RING ABOVE}{LATIN SMALL LETTER D WITH CEDI
LLA}{COMBINING DOT ABOVE} |
| 34 5: \u00C5\u0064\u0307\u0327 |
| 35 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING DOT
ABOVE}{COMBINING CEDILLA} |
| 36 6: \u00C5\u0064\u0327\u0307 |
| 37 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D}{COMBINING CEDI
LLA}{COMBINING DOT ABOVE} |
| 38 7: \u00C5\u1E0B\u0327 |
| 39 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH DOT ABOVE}
{COMBINING CEDILLA} |
| 40 8: \u00C5\u1E11\u0307 |
| 41 = {LATIN CAPITAL LETTER A WITH RING ABOVE}{LATIN SMALL LETTER D WITH CEDILLA}{C
OMBINING DOT ABOVE} |
| 42 9: \u212B\u0064\u0307\u0327 |
| 43 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING DOT ABOVE}{COMBINING CEDILLA} |
| 44 10: \u212B\u0064\u0327\u0307 |
| 45 = {ANGSTROM SIGN}{LATIN SMALL LETTER D}{COMBINING CEDILLA}{COMBINING DOT ABOVE} |
| 46 11: \u212B\u1E0B\u0327 |
| 47 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH DOT ABOVE}{COMBINING CEDILLA} |
| 48 12: \u212B\u1E11\u0307 |
| 49 = {ANGSTROM SIGN}{LATIN SMALL LETTER D WITH CEDILLA}{COMBINING DOT ABOVE} |
| 50 *<br>Note: the code is intended for use with small strings, and is not suitable
for larger ones, |
| 51 * since it has not been optimized for that situation. |
| 52 *@author M. Davis |
| 53 *@draft |
| 54 */ |
| 55 |
| 56 // public |
| 57 |
| 58 U_NAMESPACE_BEGIN |
| 59 |
| 60 // TODO: add boilerplate methods. |
| 61 |
| 62 UOBJECT_DEFINE_RTTI_IMPLEMENTATION(CanonicalIterator) |
| 63 |
| 64 /** |
| 65 *@param source string to get results for |
| 66 */ |
| 67 CanonicalIterator::CanonicalIterator(const UnicodeString &sourceStr, UErrorCode
&status) : |
| 68 pieces(NULL), |
| 69 pieces_length(0), |
| 70 pieces_lengths(NULL), |
| 71 current(NULL), |
| 72 current_length(0), |
| 73 nfd(*Normalizer2Factory::getNFDInstance(status)), |
| 74 nfcImpl(*Normalizer2Factory::getNFCImpl(status)) |
| 75 { |
| 76 if(U_SUCCESS(status) && nfcImpl.ensureCanonIterData(status)) { |
| 77 setSource(sourceStr, status); |
| 78 } |
| 79 } |
| 80 |
| 81 CanonicalIterator::~CanonicalIterator() { |
| 82 cleanPieces(); |
| 83 } |
| 84 |
| 85 void CanonicalIterator::cleanPieces() { |
| 86 int32_t i = 0; |
| 87 if(pieces != NULL) { |
| 88 for(i = 0; i < pieces_length; i++) { |
| 89 if(pieces[i] != NULL) { |
| 90 delete[] pieces[i]; |
| 91 } |
| 92 } |
| 93 uprv_free(pieces); |
| 94 pieces = NULL; |
| 95 pieces_length = 0; |
| 96 } |
| 97 if(pieces_lengths != NULL) { |
| 98 uprv_free(pieces_lengths); |
| 99 pieces_lengths = NULL; |
| 100 } |
| 101 if(current != NULL) { |
| 102 uprv_free(current); |
| 103 current = NULL; |
| 104 current_length = 0; |
| 105 } |
| 106 } |
| 107 |
| 108 /** |
| 109 *@return gets the source: NOTE: it is the NFD form of source |
| 110 */ |
| 111 UnicodeString CanonicalIterator::getSource() { |
| 112 return source; |
| 113 } |
| 114 |
| 115 /** |
| 116 * Resets the iterator so that one can start again from the beginning. |
| 117 */ |
| 118 void CanonicalIterator::reset() { |
| 119 done = FALSE; |
| 120 for (int i = 0; i < current_length; ++i) { |
| 121 current[i] = 0; |
| 122 } |
| 123 } |
| 124 |
| 125 /** |
| 126 *@return the next string that is canonically equivalent. The value null is retu
rned when |
| 127 * the iteration is done. |
| 128 */ |
| 129 UnicodeString CanonicalIterator::next() { |
| 130 int32_t i = 0; |
| 131 |
| 132 if (done) { |
| 133 buffer.setToBogus(); |
| 134 return buffer; |
| 135 } |
| 136 |
| 137 // delete old contents |
| 138 buffer.remove(); |
| 139 |
| 140 // construct return value |
| 141 |
| 142 for (i = 0; i < pieces_length; ++i) { |
| 143 buffer.append(pieces[i][current[i]]); |
| 144 } |
| 145 //String result = buffer.toString(); // not needed |
| 146 |
| 147 // find next value for next time |
| 148 |
| 149 for (i = current_length - 1; ; --i) { |
| 150 if (i < 0) { |
| 151 done = TRUE; |
| 152 break; |
| 153 } |
| 154 current[i]++; |
| 155 if (current[i] < pieces_lengths[i]) break; // got sequence |
| 156 current[i] = 0; |
| 157 } |
| 158 return buffer; |
| 159 } |
| 160 |
| 161 /** |
| 162 *@param set the source string to iterate against. This allows the same iterator
to be used |
| 163 * while changing the source string, saving object creation. |
| 164 */ |
| 165 void CanonicalIterator::setSource(const UnicodeString &newSource, UErrorCode &st
atus) { |
| 166 int32_t list_length = 0; |
| 167 UChar32 cp = 0; |
| 168 int32_t start = 0; |
| 169 int32_t i = 0; |
| 170 UnicodeString *list = NULL; |
| 171 |
| 172 nfd.normalize(newSource, source, status); |
| 173 if(U_FAILURE(status)) { |
| 174 return; |
| 175 } |
| 176 done = FALSE; |
| 177 |
| 178 cleanPieces(); |
| 179 |
| 180 // catch degenerate case |
| 181 if (newSource.length() == 0) { |
| 182 pieces = (UnicodeString **)uprv_malloc(sizeof(UnicodeString *)); |
| 183 pieces_lengths = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
| 184 pieces_length = 1; |
| 185 current = (int32_t*)uprv_malloc(1 * sizeof(int32_t)); |
| 186 current_length = 1; |
| 187 if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
| 188 status = U_MEMORY_ALLOCATION_ERROR; |
| 189 goto CleanPartialInitialization; |
| 190 } |
| 191 current[0] = 0; |
| 192 pieces[0] = new UnicodeString[1]; |
| 193 pieces_lengths[0] = 1; |
| 194 if (pieces[0] == 0) { |
| 195 status = U_MEMORY_ALLOCATION_ERROR; |
| 196 goto CleanPartialInitialization; |
| 197 } |
| 198 return; |
| 199 } |
| 200 |
| 201 |
| 202 list = new UnicodeString[source.length()]; |
| 203 if (list == 0) { |
| 204 status = U_MEMORY_ALLOCATION_ERROR; |
| 205 goto CleanPartialInitialization; |
| 206 } |
| 207 |
| 208 // i should initialy be the number of code units at the |
| 209 // start of the string |
| 210 i = UTF16_CHAR_LENGTH(source.char32At(0)); |
| 211 //int32_t i = 1; |
| 212 // find the segments |
| 213 // This code iterates through the source string and |
| 214 // extracts segments that end up on a codepoint that |
| 215 // doesn't start any decompositions. (Analysis is done |
| 216 // on the NFD form - see above). |
| 217 for (; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { |
| 218 cp = source.char32At(i); |
| 219 if (nfcImpl.isCanonSegmentStarter(cp)) { |
| 220 source.extract(start, i-start, list[list_length++]); // add up to i |
| 221 start = i; |
| 222 } |
| 223 } |
| 224 source.extract(start, i-start, list[list_length++]); // add last one |
| 225 |
| 226 |
| 227 // allocate the arrays, and find the strings that are CE to each segment |
| 228 pieces = (UnicodeString **)uprv_malloc(list_length * sizeof(UnicodeString *)
); |
| 229 pieces_length = list_length; |
| 230 pieces_lengths = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
| 231 current = (int32_t*)uprv_malloc(list_length * sizeof(int32_t)); |
| 232 current_length = list_length; |
| 233 if (pieces == NULL || pieces_lengths == NULL || current == NULL) { |
| 234 status = U_MEMORY_ALLOCATION_ERROR; |
| 235 goto CleanPartialInitialization; |
| 236 } |
| 237 |
| 238 for (i = 0; i < current_length; i++) { |
| 239 current[i] = 0; |
| 240 } |
| 241 // for each segment, get all the combinations that can produce |
| 242 // it after NFD normalization |
| 243 for (i = 0; i < pieces_length; ++i) { |
| 244 //if (PROGRESS) printf("SEGMENT\n"); |
| 245 pieces[i] = getEquivalents(list[i], pieces_lengths[i], status); |
| 246 } |
| 247 |
| 248 delete[] list; |
| 249 return; |
| 250 // Common section to cleanup all local variables and reset object variables. |
| 251 CleanPartialInitialization: |
| 252 if (list != NULL) { |
| 253 delete[] list; |
| 254 } |
| 255 cleanPieces(); |
| 256 } |
| 257 |
| 258 /** |
| 259 * Dumb recursive implementation of permutation. |
| 260 * TODO: optimize |
| 261 * @param source the string to find permutations for |
| 262 * @return the results in a set. |
| 263 */ |
| 264 void U_EXPORT2 CanonicalIterator::permute(UnicodeString &source, UBool skipZeros
, Hashtable *result, UErrorCode &status) { |
| 265 if(U_FAILURE(status)) { |
| 266 return; |
| 267 } |
| 268 //if (PROGRESS) printf("Permute: %s\n", UToS(Tr(source))); |
| 269 int32_t i = 0; |
| 270 |
| 271 // optimization: |
| 272 // if zero or one character, just return a set with it |
| 273 // we check for length < 2 to keep from counting code points all the time |
| 274 if (source.length() <= 2 && source.countChar32() <= 1) { |
| 275 UnicodeString *toPut = new UnicodeString(source); |
| 276 /* test for NULL */ |
| 277 if (toPut == 0) { |
| 278 status = U_MEMORY_ALLOCATION_ERROR; |
| 279 return; |
| 280 } |
| 281 result->put(source, toPut, status); |
| 282 return; |
| 283 } |
| 284 |
| 285 // otherwise iterate through the string, and recursively permute all the oth
er characters |
| 286 UChar32 cp; |
| 287 Hashtable subpermute(status); |
| 288 if(U_FAILURE(status)) { |
| 289 return; |
| 290 } |
| 291 subpermute.setValueDeleter(uhash_deleteUnicodeString); |
| 292 |
| 293 for (i = 0; i < source.length(); i += UTF16_CHAR_LENGTH(cp)) { |
| 294 cp = source.char32At(i); |
| 295 const UHashElement *ne = NULL; |
| 296 int32_t el = -1; |
| 297 UnicodeString subPermuteString = source; |
| 298 |
| 299 // optimization: |
| 300 // if the character is canonical combining class zero, |
| 301 // don't permute it |
| 302 if (skipZeros && i != 0 && u_getCombiningClass(cp) == 0) { |
| 303 //System.out.println("Skipping " + Utility.hex(UTF16.valueOf(source,
i))); |
| 304 continue; |
| 305 } |
| 306 |
| 307 subpermute.removeAll(); |
| 308 |
| 309 // see what the permutations of the characters before and after this one
are |
| 310 //Hashtable *subpermute = permute(source.substring(0,i) + source.substri
ng(i + UTF16.getCharCount(cp))); |
| 311 permute(subPermuteString.replace(i, UTF16_CHAR_LENGTH(cp), NULL, 0), ski
pZeros, &subpermute, status); |
| 312 /* Test for buffer overflows */ |
| 313 if(U_FAILURE(status)) { |
| 314 return; |
| 315 } |
| 316 // The upper replace is destructive. The question is do we have to make
a copy, or we don't care about the contents |
| 317 // of source at this point. |
| 318 |
| 319 // prefix this character to all of them |
| 320 ne = subpermute.nextElement(el); |
| 321 while (ne != NULL) { |
| 322 UnicodeString *permRes = (UnicodeString *)(ne->value.pointer); |
| 323 UnicodeString *chStr = new UnicodeString(cp); |
| 324 //test for NULL |
| 325 if (chStr == NULL) { |
| 326 status = U_MEMORY_ALLOCATION_ERROR; |
| 327 return; |
| 328 } |
| 329 chStr->append(*permRes); //*((UnicodeString *)(ne->value.pointer)); |
| 330 //if (PROGRESS) printf(" Piece: %s\n", UToS(*chStr)); |
| 331 result->put(*chStr, chStr, status); |
| 332 ne = subpermute.nextElement(el); |
| 333 } |
| 334 } |
| 335 //return result; |
| 336 } |
| 337 |
| 338 // privates |
| 339 |
| 340 // we have a segment, in NFD. Find all the strings that are canonically equivale
nt to it. |
| 341 UnicodeString* CanonicalIterator::getEquivalents(const UnicodeString &segment, i
nt32_t &result_len, UErrorCode &status) { |
| 342 Hashtable result(status); |
| 343 Hashtable permutations(status); |
| 344 Hashtable basic(status); |
| 345 if (U_FAILURE(status)) { |
| 346 return 0; |
| 347 } |
| 348 result.setValueDeleter(uhash_deleteUnicodeString); |
| 349 permutations.setValueDeleter(uhash_deleteUnicodeString); |
| 350 basic.setValueDeleter(uhash_deleteUnicodeString); |
| 351 |
| 352 UChar USeg[256]; |
| 353 int32_t segLen = segment.extract(USeg, 256, status); |
| 354 getEquivalents2(&basic, USeg, segLen, status); |
| 355 |
| 356 // now get all the permutations |
| 357 // add only the ones that are canonically equivalent |
| 358 // TODO: optimize by not permuting any class zero. |
| 359 |
| 360 const UHashElement *ne = NULL; |
| 361 int32_t el = -1; |
| 362 //Iterator it = basic.iterator(); |
| 363 ne = basic.nextElement(el); |
| 364 //while (it.hasNext()) |
| 365 while (ne != NULL) { |
| 366 //String item = (String) it.next(); |
| 367 UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
| 368 |
| 369 permutations.removeAll(); |
| 370 permute(item, CANITER_SKIP_ZEROES, &permutations, status); |
| 371 const UHashElement *ne2 = NULL; |
| 372 int32_t el2 = -1; |
| 373 //Iterator it2 = permutations.iterator(); |
| 374 ne2 = permutations.nextElement(el2); |
| 375 //while (it2.hasNext()) |
| 376 while (ne2 != NULL) { |
| 377 //String possible = (String) it2.next(); |
| 378 //UnicodeString *possible = new UnicodeString(*((UnicodeString *)(ne
2->value.pointer))); |
| 379 UnicodeString possible(*((UnicodeString *)(ne2->value.pointer))); |
| 380 UnicodeString attempt; |
| 381 nfd.normalize(possible, attempt, status); |
| 382 |
| 383 // TODO: check if operator == is semanticaly the same as attempt.equ
als(segment) |
| 384 if (attempt==segment) { |
| 385 //if (PROGRESS) printf("Adding Permutation: %s\n", UToS(Tr(*poss
ible))); |
| 386 // TODO: use the hashtable just to catch duplicates - store stri
ngs directly (somehow). |
| 387 result.put(possible, new UnicodeString(possible), status); //add
(possible); |
| 388 } else { |
| 389 //if (PROGRESS) printf("-Skipping Permutation: %s\n", UToS(Tr(*p
ossible))); |
| 390 } |
| 391 |
| 392 ne2 = permutations.nextElement(el2); |
| 393 } |
| 394 ne = basic.nextElement(el); |
| 395 } |
| 396 |
| 397 /* Test for buffer overflows */ |
| 398 if(U_FAILURE(status)) { |
| 399 return 0; |
| 400 } |
| 401 // convert into a String[] to clean up storage |
| 402 //String[] finalResult = new String[result.size()]; |
| 403 UnicodeString *finalResult = NULL; |
| 404 int32_t resultCount; |
| 405 if((resultCount = result.count())) { |
| 406 finalResult = new UnicodeString[resultCount]; |
| 407 if (finalResult == 0) { |
| 408 status = U_MEMORY_ALLOCATION_ERROR; |
| 409 return NULL; |
| 410 } |
| 411 } |
| 412 else { |
| 413 status = U_ILLEGAL_ARGUMENT_ERROR; |
| 414 return NULL; |
| 415 } |
| 416 //result.toArray(finalResult); |
| 417 result_len = 0; |
| 418 el = -1; |
| 419 ne = result.nextElement(el); |
| 420 while(ne != NULL) { |
| 421 finalResult[result_len++] = *((UnicodeString *)(ne->value.pointer)); |
| 422 ne = result.nextElement(el); |
| 423 } |
| 424 |
| 425 |
| 426 return finalResult; |
| 427 } |
| 428 |
| 429 Hashtable *CanonicalIterator::getEquivalents2(Hashtable *fillinResult, const UCh
ar *segment, int32_t segLen, UErrorCode &status) { |
| 430 |
| 431 if (U_FAILURE(status)) { |
| 432 return NULL; |
| 433 } |
| 434 |
| 435 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(segment))); |
| 436 |
| 437 UnicodeString toPut(segment, segLen); |
| 438 |
| 439 fillinResult->put(toPut, new UnicodeString(toPut), status); |
| 440 |
| 441 UnicodeSet starts; |
| 442 |
| 443 // cycle through all the characters |
| 444 UChar32 cp; |
| 445 for (int32_t i = 0; i < segLen; i += UTF16_CHAR_LENGTH(cp)) { |
| 446 // see if any character is at the start of some decomposition |
| 447 UTF_GET_CHAR(segment, 0, i, segLen, cp); |
| 448 if (!nfcImpl.getCanonStartSet(cp, starts)) { |
| 449 continue; |
| 450 } |
| 451 // if so, see which decompositions match |
| 452 UnicodeSetIterator iter(starts); |
| 453 while (iter.next()) { |
| 454 UChar32 cp2 = iter.getCodepoint(); |
| 455 Hashtable remainder(status); |
| 456 remainder.setValueDeleter(uhash_deleteUnicodeString); |
| 457 if (extract(&remainder, cp2, segment, segLen, i, status) == NULL) { |
| 458 continue; |
| 459 } |
| 460 |
| 461 // there were some matches, so add all the possibilities to the set. |
| 462 UnicodeString prefix(segment, i); |
| 463 prefix += cp2; |
| 464 |
| 465 int32_t el = -1; |
| 466 const UHashElement *ne = remainder.nextElement(el); |
| 467 while (ne != NULL) { |
| 468 UnicodeString item = *((UnicodeString *)(ne->value.pointer)); |
| 469 UnicodeString *toAdd = new UnicodeString(prefix); |
| 470 /* test for NULL */ |
| 471 if (toAdd == 0) { |
| 472 status = U_MEMORY_ALLOCATION_ERROR; |
| 473 return NULL; |
| 474 } |
| 475 *toAdd += item; |
| 476 fillinResult->put(*toAdd, toAdd, status); |
| 477 |
| 478 //if (PROGRESS) printf("Adding: %s\n", UToS(Tr(*toAdd))); |
| 479 |
| 480 ne = remainder.nextElement(el); |
| 481 } |
| 482 } |
| 483 } |
| 484 |
| 485 /* Test for buffer overflows */ |
| 486 if(U_FAILURE(status)) { |
| 487 return NULL; |
| 488 } |
| 489 return fillinResult; |
| 490 } |
| 491 |
| 492 /** |
| 493 * See if the decomposition of cp2 is at segment starting at segmentPos |
| 494 * (with canonical rearrangment!) |
| 495 * If so, take the remainder, and return the equivalents |
| 496 */ |
| 497 Hashtable *CanonicalIterator::extract(Hashtable *fillinResult, UChar32 comp, con
st UChar *segment, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
| 498 //Hashtable *CanonicalIterator::extract(UChar32 comp, const UnicodeString &segme
nt, int32_t segLen, int32_t segmentPos, UErrorCode &status) { |
| 499 //if (PROGRESS) printf(" extract: %s, ", UToS(Tr(UnicodeString(comp)))); |
| 500 //if (PROGRESS) printf("%s, %i\n", UToS(Tr(segment)), segmentPos); |
| 501 |
| 502 if (U_FAILURE(status)) { |
| 503 return NULL; |
| 504 } |
| 505 |
| 506 UnicodeString temp(comp); |
| 507 int32_t inputLen=temp.length(); |
| 508 UnicodeString decompString; |
| 509 nfd.normalize(temp, decompString, status); |
| 510 const UChar *decomp=decompString.getBuffer(); |
| 511 int32_t decompLen=decompString.length(); |
| 512 |
| 513 // See if it matches the start of segment (at segmentPos) |
| 514 UBool ok = FALSE; |
| 515 UChar32 cp; |
| 516 int32_t decompPos = 0; |
| 517 UChar32 decompCp; |
| 518 U16_NEXT(decomp, decompPos, decompLen, decompCp); |
| 519 |
| 520 int32_t i = segmentPos; |
| 521 while(i < segLen) { |
| 522 U16_NEXT(segment, i, segLen, cp); |
| 523 |
| 524 if (cp == decompCp) { // if equal, eat another cp from decomp |
| 525 |
| 526 //if (PROGRESS) printf(" matches: %s\n", UToS(Tr(UnicodeString(cp))
)); |
| 527 |
| 528 if (decompPos == decompLen) { // done, have all decomp characters! |
| 529 temp.append(segment+i, segLen-i); |
| 530 ok = TRUE; |
| 531 break; |
| 532 } |
| 533 U16_NEXT(decomp, decompPos, decompLen, decompCp); |
| 534 } else { |
| 535 //if (PROGRESS) printf(" buffer: %s\n", UToS(Tr(UnicodeString(cp)))
); |
| 536 |
| 537 // brute force approach |
| 538 temp.append(cp); |
| 539 |
| 540 /* TODO: optimize |
| 541 // since we know that the classes are monotonically increasing, afte
r zero |
| 542 // e.g. 0 5 7 9 0 3 |
| 543 // we can do an optimization |
| 544 // there are only a few cases that work: zero, less, same, greater |
| 545 // if both classes are the same, we fail |
| 546 // if the decomp class < the segment class, we fail |
| 547 |
| 548 segClass = getClass(cp); |
| 549 if (decompClass <= segClass) return null; |
| 550 */ |
| 551 } |
| 552 } |
| 553 if (!ok) |
| 554 return NULL; // we failed, characters left over |
| 555 |
| 556 //if (PROGRESS) printf("Matches\n"); |
| 557 |
| 558 if (inputLen == temp.length()) { |
| 559 fillinResult->put(UnicodeString(), new UnicodeString(), status); |
| 560 return fillinResult; // succeed, but no remainder |
| 561 } |
| 562 |
| 563 // brute force approach |
| 564 // check to make sure result is canonically equivalent |
| 565 UnicodeString trial; |
| 566 nfd.normalize(temp, trial, status); |
| 567 if(U_FAILURE(status) || trial.compare(segment+segmentPos, segLen - segmentPo
s) != 0) { |
| 568 return NULL; |
| 569 } |
| 570 |
| 571 return getEquivalents2(fillinResult, temp.getBuffer()+inputLen, temp.length(
)-inputLen, status); |
| 572 } |
| 573 |
| 574 U_NAMESPACE_END |
| 575 |
| 576 #endif /* #if !UCONFIG_NO_NORMALIZATION */ |
OLD | NEW |