Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(126)

Side by Side Diff: source/libvpx/vp9/encoder/vp9_ratectrl.c

Issue 54923004: libvpx: Pull from upstream (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/libvpx/
Patch Set: Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ratectrl.h ('k') | source/libvpx/vp9/encoder/vp9_rdopt.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 /* 1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 * 3 *
4 * Use of this source code is governed by a BSD-style license 4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source 5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found 6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may 7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree. 8 * be found in the AUTHORS file in the root of the source tree.
9 */ 9 */
10 10
(...skipping 41 matching lines...) Expand 10 before | Expand all | Expand 10 after
52 52
53 static int kfboost_qadjust(int qindex) { 53 static int kfboost_qadjust(int qindex) {
54 const double q = vp9_convert_qindex_to_q(qindex); 54 const double q = vp9_convert_qindex_to_q(qindex);
55 return (int)((0.00000973 * q * q * q) + 55 return (int)((0.00000973 * q * q * q) +
56 (-0.00613 * q * q) + 56 (-0.00613 * q * q) +
57 (1.316 * q) + 121.2); 57 (1.316 * q) + 121.2);
58 } 58 }
59 59
60 int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex, 60 int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex,
61 double correction_factor) { 61 double correction_factor) {
62
63 const double q = vp9_convert_qindex_to_q(qindex); 62 const double q = vp9_convert_qindex_to_q(qindex);
64 int enumerator = frame_type == KEY_FRAME ? 4000000 : 2500000; 63 int enumerator = frame_type == KEY_FRAME ? 3300000 : 2250000;
65 64
66 // q based adjustment to baseline enumerator 65 // q based adjustment to baseline enumerator
67 enumerator += (int)(enumerator * q) >> 12; 66 enumerator += (int)(enumerator * q) >> 12;
68 return (int)(0.5 + (enumerator * correction_factor / q)); 67 return (int)(0.5 + (enumerator * correction_factor / q));
69 } 68 }
70 69
71 void vp9_save_coding_context(VP9_COMP *cpi) { 70 void vp9_save_coding_context(VP9_COMP *cpi) {
72 CODING_CONTEXT *const cc = &cpi->coding_context; 71 CODING_CONTEXT *const cc = &cpi->coding_context;
73 VP9_COMMON *cm = &cpi->common; 72 VP9_COMMON *cm = &cpi->common;
74 73
75 // Stores a snapshot of key state variables which can subsequently be 74 // Stores a snapshot of key state variables which can subsequently be
76 // restored with a call to vp9_restore_coding_context. These functions are 75 // restored with a call to vp9_restore_coding_context. These functions are
77 // intended for use in a re-code loop in vp9_compress_frame where the 76 // intended for use in a re-code loop in vp9_compress_frame where the
78 // quantizer value is adjusted between loop iterations. 77 // quantizer value is adjusted between loop iterations.
79
80 cc->nmvc = cm->fc.nmvc;
81 vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost); 78 vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
82 vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts); 79 vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
83 vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp); 80 vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
84 81
85 vp9_copy(cc->inter_mode_probs, cm->fc.inter_mode_probs);
86
87 vp9_copy(cc->y_mode_prob, cm->fc.y_mode_prob);
88 vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob);
89 vp9_copy(cc->partition_prob, cm->fc.partition_prob);
90
91 vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs); 82 vp9_copy(cc->segment_pred_probs, cm->seg.pred_probs);
92 83
93 vp9_copy(cc->intra_inter_prob, cm->fc.intra_inter_prob);
94 vp9_copy(cc->comp_inter_prob, cm->fc.comp_inter_prob);
95 vp9_copy(cc->single_ref_prob, cm->fc.single_ref_prob);
96 vp9_copy(cc->comp_ref_prob, cm->fc.comp_ref_prob);
97
98 vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy, 84 vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
99 cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols)); 85 cm->last_frame_seg_map, (cm->mi_rows * cm->mi_cols));
100 86
101 vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas); 87 vp9_copy(cc->last_ref_lf_deltas, cm->lf.last_ref_deltas);
102 vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas); 88 vp9_copy(cc->last_mode_lf_deltas, cm->lf.last_mode_deltas);
103 89
104 vp9_copy(cc->coef_probs, cm->fc.coef_probs); 90 cc->fc = cm->fc;
105 vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob);
106 cc->tx_probs = cm->fc.tx_probs;
107 vp9_copy(cc->mbskip_probs, cm->fc.mbskip_probs);
108 } 91 }
109 92
110 void vp9_restore_coding_context(VP9_COMP *cpi) { 93 void vp9_restore_coding_context(VP9_COMP *cpi) {
111 CODING_CONTEXT *const cc = &cpi->coding_context; 94 CODING_CONTEXT *const cc = &cpi->coding_context;
112 VP9_COMMON *cm = &cpi->common; 95 VP9_COMMON *cm = &cpi->common;
113 96
114 // Restore key state variables to the snapshot state stored in the 97 // Restore key state variables to the snapshot state stored in the
115 // previous call to vp9_save_coding_context. 98 // previous call to vp9_save_coding_context.
116
117 cm->fc.nmvc = cc->nmvc;
118 vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost); 99 vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
119 vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts); 100 vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
120 vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp); 101 vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
121 102
122 vp9_copy(cm->fc.inter_mode_probs, cc->inter_mode_probs);
123
124 vp9_copy(cm->fc.y_mode_prob, cc->y_mode_prob);
125 vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob);
126 vp9_copy(cm->fc.partition_prob, cc->partition_prob);
127
128 vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs); 103 vp9_copy(cm->seg.pred_probs, cc->segment_pred_probs);
129 104
130 vp9_copy(cm->fc.intra_inter_prob, cc->intra_inter_prob);
131 vp9_copy(cm->fc.comp_inter_prob, cc->comp_inter_prob);
132 vp9_copy(cm->fc.single_ref_prob, cc->single_ref_prob);
133 vp9_copy(cm->fc.comp_ref_prob, cc->comp_ref_prob);
134
135 vpx_memcpy(cm->last_frame_seg_map, 105 vpx_memcpy(cm->last_frame_seg_map,
136 cpi->coding_context.last_frame_seg_map_copy, 106 cpi->coding_context.last_frame_seg_map_copy,
137 (cm->mi_rows * cm->mi_cols)); 107 (cm->mi_rows * cm->mi_cols));
138 108
139 vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas); 109 vp9_copy(cm->lf.last_ref_deltas, cc->last_ref_lf_deltas);
140 vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas); 110 vp9_copy(cm->lf.last_mode_deltas, cc->last_mode_lf_deltas);
141 111
142 vp9_copy(cm->fc.coef_probs, cc->coef_probs); 112 cm->fc = cc->fc;
143 vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob);
144 cm->fc.tx_probs = cc->tx_probs;
145 vp9_copy(cm->fc.mbskip_probs, cc->mbskip_probs);
146 } 113 }
147 114
148 void vp9_setup_key_frame(VP9_COMP *cpi) { 115 void vp9_setup_key_frame(VP9_COMP *cpi) {
149 VP9_COMMON *cm = &cpi->common; 116 VP9_COMMON *cm = &cpi->common;
150 117
151 vp9_setup_past_independence(cm); 118 vp9_setup_past_independence(cm);
152 119
153 // interval before next GF 120 // interval before next GF
154 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; 121 cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
155 /* All buffers are implicitly updated on key frames. */ 122 /* All buffers are implicitly updated on key frames. */
(...skipping 61 matching lines...) Expand 10 before | Expand all | Expand 10 after
217 if (cpi->refresh_alt_ref_frame) { 184 if (cpi->refresh_alt_ref_frame) {
218 // Special alt reference frame case 185 // Special alt reference frame case
219 // Per frame bit target for the alt ref frame 186 // Per frame bit target for the alt ref frame
220 cpi->per_frame_bandwidth = cpi->twopass.gf_bits; 187 cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
221 cpi->this_frame_target = cpi->per_frame_bandwidth; 188 cpi->this_frame_target = cpi->per_frame_bandwidth;
222 } else { 189 } else {
223 // Normal frames (gf,and inter) 190 // Normal frames (gf,and inter)
224 cpi->this_frame_target = cpi->per_frame_bandwidth; 191 cpi->this_frame_target = cpi->per_frame_bandwidth;
225 } 192 }
226 193
227 // Sanity check that the total sum of adjustments is not above the maximum all owed 194 // Check that the total sum of adjustments is not above the maximum allowed.
228 // That is that having allowed for KF and GF penalties we have not pushed the 195 // That is, having allowed for the KF and GF penalties, we have not pushed
229 // current interframe target to low. If the adjustment we apply here is not ca pable of recovering 196 // the current inter-frame target too low. If the adjustment we apply here is
230 // all the extra bits we have spent in the KF or GF then the remainder will ha ve to be recovered over 197 // not capable of recovering all the extra bits we have spent in the KF or GF,
231 // a longer time span via other buffer / rate control mechanisms. 198 // then the remainder will have to be recovered over a longer time span via
199 // other buffer / rate control mechanisms.
232 if (cpi->this_frame_target < min_frame_target) 200 if (cpi->this_frame_target < min_frame_target)
233 cpi->this_frame_target = min_frame_target; 201 cpi->this_frame_target = min_frame_target;
234 202
235 if (!cpi->refresh_alt_ref_frame) 203 if (!cpi->refresh_alt_ref_frame)
236 // Note the baseline target data rate for this inter frame. 204 // Note the baseline target data rate for this inter frame.
237 cpi->inter_frame_target = cpi->this_frame_target; 205 cpi->inter_frame_target = cpi->this_frame_target;
238 206
239 // Adjust target frame size for Golden Frames: 207 // Adjust target frame size for Golden Frames:
240 if (cpi->frames_till_gf_update_due == 0) { 208 if (cpi->frames_till_gf_update_due == 0) {
241 const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] 209 const int q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME]
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after
290 } 258 }
291 259
292 // Work out how big we would have expected the frame to be at this Q given 260 // Work out how big we would have expected the frame to be at this Q given
293 // the current correction factor. 261 // the current correction factor.
294 // Stay in double to avoid int overflow when values are large 262 // Stay in double to avoid int overflow when values are large
295 projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q, 263 projected_size_based_on_q = estimate_bits_at_q(cpi->common.frame_type, q,
296 cpi->common.MBs, 264 cpi->common.MBs,
297 rate_correction_factor); 265 rate_correction_factor);
298 266
299 // Work out a size correction factor. 267 // Work out a size correction factor.
300 // if ( cpi->this_frame_target > 0 )
301 // correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_ta rget;
302 if (projected_size_based_on_q > 0) 268 if (projected_size_based_on_q > 0)
303 correction_factor = (100 * cpi->projected_frame_size) / projected_size_based _on_q; 269 correction_factor =
270 (100 * cpi->projected_frame_size) / projected_size_based_on_q;
304 271
305 // More heavily damped adjustment used if we have been oscillating either side of target 272 // More heavily damped adjustment used if we have been oscillating either side
273 // of target.
306 switch (damp_var) { 274 switch (damp_var) {
307 case 0: 275 case 0:
308 adjustment_limit = 0.75; 276 adjustment_limit = 0.75;
309 break; 277 break;
310 case 1: 278 case 1:
311 adjustment_limit = 0.375; 279 adjustment_limit = 0.375;
312 break; 280 break;
313 case 2: 281 case 2:
314 default: 282 default:
315 adjustment_limit = 0.25; 283 adjustment_limit = 0.25;
316 break; 284 break;
317 } 285 }
318 286
319 // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) ) 287 // if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
320 if (correction_factor > 102) { 288 if (correction_factor > 102) {
321 // We are not already at the worst allowable quality 289 // We are not already at the worst allowable quality
322 correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_li mit)); 290 correction_factor =
323 rate_correction_factor = ((rate_correction_factor * correction_factor) / 100 ); 291 (int)(100 + ((correction_factor - 100) * adjustment_limit));
292 rate_correction_factor =
293 ((rate_correction_factor * correction_factor) / 100);
324 294
325 // Keep rate_correction_factor within limits 295 // Keep rate_correction_factor within limits
326 if (rate_correction_factor > MAX_BPB_FACTOR) 296 if (rate_correction_factor > MAX_BPB_FACTOR)
327 rate_correction_factor = MAX_BPB_FACTOR; 297 rate_correction_factor = MAX_BPB_FACTOR;
328 } 298 } else if (correction_factor < 99) {
329 // else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
330 else if (correction_factor < 99) {
331 // We are not already at the best allowable quality 299 // We are not already at the best allowable quality
332 correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_li mit)); 300 correction_factor =
333 rate_correction_factor = ((rate_correction_factor * correction_factor) / 100 ); 301 (int)(100 - ((100 - correction_factor) * adjustment_limit));
302 rate_correction_factor =
303 ((rate_correction_factor * correction_factor) / 100);
334 304
335 // Keep rate_correction_factor within limits 305 // Keep rate_correction_factor within limits
336 if (rate_correction_factor < MIN_BPB_FACTOR) 306 if (rate_correction_factor < MIN_BPB_FACTOR)
337 rate_correction_factor = MIN_BPB_FACTOR; 307 rate_correction_factor = MIN_BPB_FACTOR;
338 } 308 }
339 309
340 if (cpi->common.frame_type == KEY_FRAME) 310 if (cpi->common.frame_type == KEY_FRAME) {
341 cpi->key_frame_rate_correction_factor = rate_correction_factor; 311 cpi->key_frame_rate_correction_factor = rate_correction_factor;
342 else { 312 } else {
343 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 313 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
344 cpi->gf_rate_correction_factor = rate_correction_factor; 314 cpi->gf_rate_correction_factor = rate_correction_factor;
345 else 315 else
346 cpi->rate_correction_factor = rate_correction_factor; 316 cpi->rate_correction_factor = rate_correction_factor;
347 } 317 }
348 } 318 }
349 319
350 320
351 int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) { 321 int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
352 int q = cpi->active_worst_quality; 322 int q = cpi->active_worst_quality;
353 323
354 int i; 324 int i;
355 int last_error = INT_MAX; 325 int last_error = INT_MAX;
356 int target_bits_per_mb; 326 int target_bits_per_mb;
357 int bits_per_mb_at_this_q; 327 int bits_per_mb_at_this_q;
358 double correction_factor; 328 double correction_factor;
359 329
360 // Select the appropriate correction factor based upon type of frame. 330 // Select the appropriate correction factor based upon type of frame.
361 if (cpi->common.frame_type == KEY_FRAME) 331 if (cpi->common.frame_type == KEY_FRAME) {
362 correction_factor = cpi->key_frame_rate_correction_factor; 332 correction_factor = cpi->key_frame_rate_correction_factor;
363 else { 333 } else {
364 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) 334 if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
365 correction_factor = cpi->gf_rate_correction_factor; 335 correction_factor = cpi->gf_rate_correction_factor;
366 else 336 else
367 correction_factor = cpi->rate_correction_factor; 337 correction_factor = cpi->rate_correction_factor;
368 } 338 }
369 339
370 // Calculate required scaling factor based on target frame size and size of fr ame produced using previous Q 340 // Calculate required scaling factor based on target frame size and size of
341 // frame produced using previous Q.
371 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS)) 342 if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
372 target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NO RMBITS; // Case where we would overflow int 343 target_bits_per_mb =
344 (target_bits_per_frame / cpi->common.MBs)
345 << BPER_MB_NORMBITS; // Case where we would overflow int
373 else 346 else
374 target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->comm on.MBs; 347 target_bits_per_mb =
348 (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
375 349
376 i = cpi->active_best_quality; 350 i = cpi->active_best_quality;
377 351
378 do { 352 do {
379 bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i, 353 bits_per_mb_at_this_q = (int)vp9_bits_per_mb(cpi->common.frame_type, i,
380 correction_factor); 354 correction_factor);
381 355
382 if (bits_per_mb_at_this_q <= target_bits_per_mb) { 356 if (bits_per_mb_at_this_q <= target_bits_per_mb) {
383 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error) 357 if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
384 q = i; 358 q = i;
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after
430 = cpi->prior_key_frame_distance[i + 1]; 404 = cpi->prior_key_frame_distance[i + 1];
431 else 405 else
432 cpi->prior_key_frame_distance[i] = last_kf_interval; 406 cpi->prior_key_frame_distance[i] = last_kf_interval;
433 407
434 av_key_frame_frequency += prior_key_frame_weight[i] 408 av_key_frame_frequency += prior_key_frame_weight[i]
435 * cpi->prior_key_frame_distance[i]; 409 * cpi->prior_key_frame_distance[i];
436 total_weight += prior_key_frame_weight[i]; 410 total_weight += prior_key_frame_weight[i];
437 } 411 }
438 412
439 av_key_frame_frequency /= total_weight; 413 av_key_frame_frequency /= total_weight;
440
441 } 414 }
442 return av_key_frame_frequency; 415 return av_key_frame_frequency;
443 } 416 }
444 417
445 418
446 void vp9_adjust_key_frame_context(VP9_COMP *cpi) { 419 void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
447 // Clear down mmx registers to allow floating point in what follows 420 // Clear down mmx registers to allow floating point in what follows
448 vp9_clear_system_state(); 421 vp9_clear_system_state();
449 422
450 cpi->frames_since_key = 0; 423 cpi->frames_since_key = 0;
(...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after
494 int vp9_pick_frame_size(VP9_COMP *cpi) { 467 int vp9_pick_frame_size(VP9_COMP *cpi) {
495 VP9_COMMON *cm = &cpi->common; 468 VP9_COMMON *cm = &cpi->common;
496 469
497 if (cm->frame_type == KEY_FRAME) 470 if (cm->frame_type == KEY_FRAME)
498 calc_iframe_target_size(cpi); 471 calc_iframe_target_size(cpi);
499 else 472 else
500 calc_pframe_target_size(cpi); 473 calc_pframe_target_size(cpi);
501 474
502 return 1; 475 return 1;
503 } 476 }
OLDNEW
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ratectrl.h ('k') | source/libvpx/vp9/encoder/vp9_rdopt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698