| Index: src/mips/simulator-mips.h
|
| ===================================================================
|
| --- src/mips/simulator-mips.h (revision 0)
|
| +++ src/mips/simulator-mips.h (revision 0)
|
| @@ -0,0 +1,236 @@
|
| +// Declares a Simulator for MIPS instructions if we are not generating a native
|
| +// MIPS binary. This Simulator allows us to run and debug MIPS code generation on
|
| +// regular desktop machines.
|
| +// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
|
| +// which will start execution in the Simulator or forwards to the real entry
|
| +// on a MIPS HW platform.
|
| +
|
| +#ifndef V8_MIPS_SIMULATOR_MIPS_H_
|
| +#define V8_MIPS_SIMULATOR_MIPS_H_
|
| +
|
| +#include "allocation.h"
|
| +
|
| +#if defined(__mips)
|
| +
|
| +// When running without a simulator we call the entry directly.
|
| +#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
|
| + entry(p0, p1, p2, p3, p4);
|
| +
|
| +// TODO TOCHECK: Is this the same on MIPS ?
|
| +// The stack limit beyond which we will throw stack overflow errors in
|
| +// generated code. Because generated code on arm uses the C stack, we
|
| +// just use the C stack limit.
|
| +class SimulatorStack : public v8::internal::AllStatic {
|
| + public:
|
| + static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
|
| + return c_limit;
|
| + }
|
| +};
|
| +
|
| +// Calculated the stack limit beyond which we will throw stack overflow errors.
|
| +// This macro must be called from a C++ method. It relies on being able to take
|
| +// the address of "this" to get a value on the current execution stack and then
|
| +// calculates the stack limit based on that value.
|
| +// NOTE: The check for overflow is not safe as there is no guarantee that the
|
| +// running thread has its stack in all memory up to address 0x00000000.
|
| +#define GENERATED_CODE_STACK_LIMIT(limit) \
|
| + (reinterpret_cast<uintptr_t>(this) >= limit ? \
|
| + reinterpret_cast<uintptr_t>(this) - limit : 0)
|
| +
|
| +// Call the generated regexp code directly. The entry function pointer should
|
| +// expect seven int/pointer sized arguments and return an int.
|
| +#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
|
| + entry(p0, p1, p2, p3, p4, p5, p6)
|
| +
|
| +
|
| +#else // #if defined(__mips)
|
| +
|
| +// printf("Giving control to MIPS simulator.\n");
|
| +// asm("break");
|
| +// When running with the simulator transition into simulated execution at this
|
| +// point.
|
| +#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
|
| + reinterpret_cast<Object*>( \
|
| + assembler::mips::Simulator::current()->Call(FUNCTION_ADDR(entry), 5, \
|
| + p0, p1, p2, p3, p4))
|
| +
|
| +#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6) \
|
| + assembler::mips::Simulator::current()->Call( \
|
| + FUNCTION_ADDR(entry), 7, p0, p1, p2, p3, p4, p5, p6)
|
| +
|
| +
|
| +namespace assembler {
|
| +namespace mips {
|
| +
|
| +class Simulator {
|
| + public:
|
| + friend class Debugger;
|
| +
|
| + // Registers are declared in order. See SMRL chapter 2.
|
| + enum Register {
|
| + no_reg = -1,
|
| + zero_reg = 0,
|
| + at,
|
| + v0, v1,
|
| + a0, a1, a2, a3,
|
| + t0, t1, t2, t3, t4, t5, t6, t7,
|
| + s0, s1, s2, s3, s4, s5, s6, s7,
|
| + t8, t9,
|
| + k0, k1,
|
| + gp,
|
| + sp,
|
| + s8,
|
| + ra,
|
| + // HI, LO, and pc
|
| + HI,
|
| + LO,
|
| + pc,
|
| + num_registers,
|
| + // aliases
|
| + fp = s8
|
| + };
|
| +
|
| + // Coprocessor registers.
|
| + // Generated code will always use doubles. So we will only use even registers.
|
| + enum CRegister {
|
| + f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
|
| + f12, f13, f14, f15, // f12 and f14 are arguments CRegisters
|
| + f16, f17, f18, f19, f20, f21, f22, f23, f24, f25,
|
| + f26, f27, f28, f29, f30, f31,
|
| + num_Cregisters
|
| + };
|
| +
|
| + Simulator();
|
| + ~Simulator();
|
| +
|
| + // The currently executing Simulator instance. Potentially there can be one
|
| + // for each native thread.
|
| + static Simulator* current();
|
| +
|
| + // Accessors for register state. Reading the pc value adheres to the ARM
|
| + // architecture specification and is off by a 8 from the currently executing
|
| + // instruction.
|
| + void set_register(int reg, int32_t value);
|
| + int32_t get_register(int reg) const;
|
| + // Same for CRegisters
|
| + void set_Cregister(int creg, double value);
|
| + double get_Cregister(int creg) const;
|
| + // Get 16 high or low bits of the Cregister
|
| + int32_t get_CregisterHI(int creg) const;
|
| + int32_t get_CregisterLO(int creg) const;
|
| +
|
| + // Special case of set_register and get_register to access the raw PC value.
|
| + void set_pc(int32_t value);
|
| + int32_t get_pc() const;
|
| +
|
| + // Accessor to the internal simulator stack area.
|
| + uintptr_t StackLimit() const;
|
| +
|
| + // Executes MIPS instructions until the PC reaches end_sim_pc.
|
| + void Execute();
|
| +
|
| + // Call on program start.
|
| + static void Initialize();
|
| +
|
| + // V8 generally calls into generated JS code with 5 parameters and into
|
| + // generated RegExp code with 7 parameters. This is a convenience function,
|
| + // which sets up the simulator state and grabs the result on return.
|
| + int32_t Call(byte* entry, int argument_count, ...);
|
| +
|
| + private:
|
| + enum special_values {
|
| + // Known bad pc value to ensure that the simulator does not execute
|
| + // without being properly setup.
|
| + bad_ra = -1,
|
| + // A pc value used to signal the simulator to stop execution. Generally
|
| + // the ra is set to this value on transition from native C code to
|
| + // simulated execution, so that the simulator can "return" to the native
|
| + // C code.
|
| + end_sim_pc = -2
|
| + };
|
| +
|
| + // Unsupported instructions use Format to print an error and stop execution.
|
| + void Format(Instruction* instr, const char* format);
|
| +
|
| + // Read and write memory.
|
| + inline uint32_t ReadBU(int32_t addr);
|
| + inline int32_t ReadB(int32_t addr);
|
| + inline void WriteB(int32_t addr, uint8_t value);
|
| + inline void WriteB(int32_t addr, int8_t value);
|
| +
|
| + inline uint16_t ReadHU(int32_t addr, Instruction* instr);
|
| + inline int16_t ReadH(int32_t addr, Instruction* instr);
|
| + // Note: Overloaded on the sign of the value.
|
| + inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
|
| + inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
|
| +
|
| + inline int ReadW(int32_t addr, Instruction* instr);
|
| + inline void WriteW(int32_t addr, int value, Instruction* instr);
|
| +
|
| + // Executing is handled based on the instruction type.
|
| + void DecodeType1(Instruction* instr);
|
| + void DecodeType3(Instruction* instr);
|
| + void DecodeType2(Instruction* instr);
|
| +
|
| + // Executes one instruction.
|
| + void InstructionDecode(Instruction* instr);
|
| + // Execute one instruction placed in a branch delay slot.
|
| + void BranchDelayInstructionDecode(Instruction* instr) {
|
| + if(instr->isForbiddenInBranchDelay()) {
|
| + V8_Fatal(__FILE__, __LINE__,
|
| + "Eror:Unexpected %i opcode in a branch delay slot.",
|
| + instr->OpcodeField());
|
| + }
|
| + InstructionDecode(instr);
|
| + }
|
| +
|
| + enum Exception {
|
| + none,
|
| + integer_overflow,
|
| + integer_underflow,
|
| + num_exceptions
|
| + };
|
| + int16_t exceptions[num_exceptions];
|
| +
|
| + // Exceptions
|
| + void SignalExceptions();
|
| +
|
| + // Runtime call support.
|
| + static void* RedirectExternalReference(void* external_function,
|
| + bool fp_return);
|
| +
|
| + // architecture state
|
| + // Registers
|
| + int32_t registers_[num_registers];
|
| + // Coprocessor Registers
|
| + double Cregisters_[num_Cregisters];
|
| +
|
| + // simulator support
|
| + char* stack_;
|
| + bool pc_modified_;
|
| + int icount_;
|
| + static bool initialized_;
|
| +
|
| + // registered breakpoints
|
| + Instruction* break_pc_;
|
| + Instr break_instr_;
|
| +};
|
| +
|
| +} } // namespace assembler::mips
|
| +
|
| +
|
| +// The simulator has its own stack. Thus it has a different stack limit from
|
| +// the C-based native code. Setting the c_limit to indicate a very small
|
| +// stack cause stack overflow errors, since the simulator ignores the input.
|
| +// This is unlikely to be an issue in practice, though it might cause testing
|
| +// trouble down the line.
|
| +class SimulatorStack : public v8::internal::AllStatic {
|
| + public:
|
| + static inline uintptr_t JsLimitFromCLimit(uintptr_t c_limit) {
|
| + return assembler::mips::Simulator::current()->StackLimit();
|
| + }
|
| +};
|
| +
|
| +#endif // defined(__mips)
|
| +
|
| +#endif // V8_MIPS_SIMULATOR_MIPS_H_
|
|
|