| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2011 Google Inc. | 2 * Copyright 2011 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 | 7 |
| 8 #ifndef GrRedBlackTree_DEFINED | 8 #ifndef GrRedBlackTree_DEFINED |
| 9 #define GrRedBlackTree_DEFINED | 9 #define GrRedBlackTree_DEFINED |
| 10 | 10 |
| (...skipping 186 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 197 return fN == i.fN && fTree == i.fTree; | 197 return fN == i.fN && fTree == i.fTree; |
| 198 } | 198 } |
| 199 bool operator !=(const Iter& i) const { return !(*this == i); } | 199 bool operator !=(const Iter& i) const { return !(*this == i); } |
| 200 Iter& operator ++() { | 200 Iter& operator ++() { |
| 201 SkASSERT(*this != fTree->end()); | 201 SkASSERT(*this != fTree->end()); |
| 202 fN = SuccessorNode(fN); | 202 fN = SuccessorNode(fN); |
| 203 return *this; | 203 return *this; |
| 204 } | 204 } |
| 205 Iter& operator --() { | 205 Iter& operator --() { |
| 206 SkASSERT(*this != fTree->begin()); | 206 SkASSERT(*this != fTree->begin()); |
| 207 if (NULL != fN) { | 207 if (fN) { |
| 208 fN = PredecessorNode(fN); | 208 fN = PredecessorNode(fN); |
| 209 } else { | 209 } else { |
| 210 *this = fTree->last(); | 210 *this = fTree->last(); |
| 211 } | 211 } |
| 212 return *this; | 212 return *this; |
| 213 } | 213 } |
| 214 | 214 |
| 215 private: | 215 private: |
| 216 friend class GrRedBlackTree; | 216 friend class GrRedBlackTree; |
| 217 explicit Iter(Node* n, GrRedBlackTree* tree) { | 217 explicit Iter(Node* n, GrRedBlackTree* tree) { |
| (...skipping 29 matching lines...) Expand all Loading... |
| 247 } | 247 } |
| 248 | 248 |
| 249 template <typename T, typename C> | 249 template <typename T, typename C> |
| 250 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() { | 250 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::last() { |
| 251 return Iter(fLast, this); | 251 return Iter(fLast, this); |
| 252 } | 252 } |
| 253 | 253 |
| 254 template <typename T, typename C> | 254 template <typename T, typename C> |
| 255 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) { | 255 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::find(const T& t) { |
| 256 Node* n = fRoot; | 256 Node* n = fRoot; |
| 257 while (NULL != n) { | 257 while (n) { |
| 258 if (fComp(t, n->fItem)) { | 258 if (fComp(t, n->fItem)) { |
| 259 n = n->fChildren[kLeft_Child]; | 259 n = n->fChildren[kLeft_Child]; |
| 260 } else { | 260 } else { |
| 261 if (!fComp(n->fItem, t)) { | 261 if (!fComp(n->fItem, t)) { |
| 262 return Iter(n, this); | 262 return Iter(n, this); |
| 263 } | 263 } |
| 264 n = n->fChildren[kRight_Child]; | 264 n = n->fChildren[kRight_Child]; |
| 265 } | 265 } |
| 266 } | 266 } |
| 267 return end(); | 267 return end(); |
| 268 } | 268 } |
| 269 | 269 |
| 270 template <typename T, typename C> | 270 template <typename T, typename C> |
| 271 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) { | 271 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findFirst(const T& t) { |
| 272 Node* n = fRoot; | 272 Node* n = fRoot; |
| 273 Node* leftMost = NULL; | 273 Node* leftMost = NULL; |
| 274 while (NULL != n) { | 274 while (n) { |
| 275 if (fComp(t, n->fItem)) { | 275 if (fComp(t, n->fItem)) { |
| 276 n = n->fChildren[kLeft_Child]; | 276 n = n->fChildren[kLeft_Child]; |
| 277 } else { | 277 } else { |
| 278 if (!fComp(n->fItem, t)) { | 278 if (!fComp(n->fItem, t)) { |
| 279 // found one. check if another in left subtree. | 279 // found one. check if another in left subtree. |
| 280 leftMost = n; | 280 leftMost = n; |
| 281 n = n->fChildren[kLeft_Child]; | 281 n = n->fChildren[kLeft_Child]; |
| 282 } else { | 282 } else { |
| 283 n = n->fChildren[kRight_Child]; | 283 n = n->fChildren[kRight_Child]; |
| 284 } | 284 } |
| 285 } | 285 } |
| 286 } | 286 } |
| 287 return Iter(leftMost, this); | 287 return Iter(leftMost, this); |
| 288 } | 288 } |
| 289 | 289 |
| 290 template <typename T, typename C> | 290 template <typename T, typename C> |
| 291 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) { | 291 typename GrRedBlackTree<T,C>::Iter GrRedBlackTree<T,C>::findLast(const T& t) { |
| 292 Node* n = fRoot; | 292 Node* n = fRoot; |
| 293 Node* rightMost = NULL; | 293 Node* rightMost = NULL; |
| 294 while (NULL != n) { | 294 while (n) { |
| 295 if (fComp(t, n->fItem)) { | 295 if (fComp(t, n->fItem)) { |
| 296 n = n->fChildren[kLeft_Child]; | 296 n = n->fChildren[kLeft_Child]; |
| 297 } else { | 297 } else { |
| 298 if (!fComp(n->fItem, t)) { | 298 if (!fComp(n->fItem, t)) { |
| 299 // found one. check if another in right subtree. | 299 // found one. check if another in right subtree. |
| 300 rightMost = n; | 300 rightMost = n; |
| 301 } | 301 } |
| 302 n = n->fChildren[kRight_Child]; | 302 n = n->fChildren[kRight_Child]; |
| 303 } | 303 } |
| 304 } | 304 } |
| 305 return Iter(rightMost, this); | 305 return Iter(rightMost, this); |
| 306 } | 306 } |
| 307 | 307 |
| 308 template <typename T, typename C> | 308 template <typename T, typename C> |
| 309 int GrRedBlackTree<T,C>::countOf(const T& t) const { | 309 int GrRedBlackTree<T,C>::countOf(const T& t) const { |
| 310 return onCountOf(fRoot, t); | 310 return onCountOf(fRoot, t); |
| 311 } | 311 } |
| 312 | 312 |
| 313 template <typename T, typename C> | 313 template <typename T, typename C> |
| 314 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const { | 314 int GrRedBlackTree<T,C>::onCountOf(const Node* n, const T& t) const { |
| 315 // this is count*log(n) :( | 315 // this is count*log(n) :( |
| 316 while (NULL != n) { | 316 while (n) { |
| 317 if (fComp(t, n->fItem)) { | 317 if (fComp(t, n->fItem)) { |
| 318 n = n->fChildren[kLeft_Child]; | 318 n = n->fChildren[kLeft_Child]; |
| 319 } else { | 319 } else { |
| 320 if (!fComp(n->fItem, t)) { | 320 if (!fComp(n->fItem, t)) { |
| 321 int count = 1; | 321 int count = 1; |
| 322 count += onCountOf(n->fChildren[kLeft_Child], t); | 322 count += onCountOf(n->fChildren[kLeft_Child], t); |
| 323 count += onCountOf(n->fChildren[kRight_Child], t); | 323 count += onCountOf(n->fChildren[kRight_Child], t); |
| 324 return count; | 324 return count; |
| 325 } | 325 } |
| 326 n = n->fChildren[kRight_Child]; | 326 n = n->fChildren[kRight_Child]; |
| (...skipping 26 matching lines...) Expand all Loading... |
| 353 Node* returnNode = x; | 353 Node* returnNode = x; |
| 354 | 354 |
| 355 Node* gp = NULL; | 355 Node* gp = NULL; |
| 356 Node* p = NULL; | 356 Node* p = NULL; |
| 357 Node* n = fRoot; | 357 Node* n = fRoot; |
| 358 Child pc = kLeft_Child; // suppress uninit warning | 358 Child pc = kLeft_Child; // suppress uninit warning |
| 359 Child gpc = kLeft_Child; | 359 Child gpc = kLeft_Child; |
| 360 | 360 |
| 361 bool first = true; | 361 bool first = true; |
| 362 bool last = true; | 362 bool last = true; |
| 363 while (NULL != n) { | 363 while (n) { |
| 364 gpc = pc; | 364 gpc = pc; |
| 365 pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; | 365 pc = fComp(x->fItem, n->fItem) ? kLeft_Child : kRight_Child; |
| 366 first = first && kLeft_Child == pc; | 366 first = first && kLeft_Child == pc; |
| 367 last = last && kRight_Child == pc; | 367 last = last && kRight_Child == pc; |
| 368 gp = p; | 368 gp = p; |
| 369 p = n; | 369 p = n; |
| 370 n = p->fChildren[pc]; | 370 n = p->fChildren[pc]; |
| 371 } | 371 } |
| 372 if (last) { | 372 if (last) { |
| 373 fLast = x; | 373 fLast = x; |
| 374 } | 374 } |
| 375 if (first) { | 375 if (first) { |
| 376 fFirst = x; | 376 fFirst = x; |
| 377 } | 377 } |
| 378 | 378 |
| 379 if (NULL == p) { | 379 if (NULL == p) { |
| 380 fRoot = x; | 380 fRoot = x; |
| 381 x->fColor = kBlack_Color; | 381 x->fColor = kBlack_Color; |
| 382 x->fParent = NULL; | 382 x->fParent = NULL; |
| 383 SkASSERT(1 == fCount); | 383 SkASSERT(1 == fCount); |
| 384 return Iter(returnNode, this); | 384 return Iter(returnNode, this); |
| 385 } | 385 } |
| 386 p->fChildren[pc] = x; | 386 p->fChildren[pc] = x; |
| 387 x->fColor = kRed_Color; | 387 x->fColor = kRed_Color; |
| 388 x->fParent = p; | 388 x->fParent = p; |
| 389 | 389 |
| 390 do { | 390 do { |
| 391 // assumptions at loop start. | 391 // assumptions at loop start. |
| 392 SkASSERT(NULL != x); | 392 SkASSERT(x); |
| 393 SkASSERT(kRed_Color == x->fColor); | 393 SkASSERT(kRed_Color == x->fColor); |
| 394 // can't have a grandparent but no parent. | 394 // can't have a grandparent but no parent. |
| 395 SkASSERT(!(NULL != gp && NULL == p)); | 395 SkASSERT(!(gp && NULL == p)); |
| 396 // make sure pc and gpc are correct | 396 // make sure pc and gpc are correct |
| 397 SkASSERT(NULL == p || p->fChildren[pc] == x); | 397 SkASSERT(NULL == p || p->fChildren[pc] == x); |
| 398 SkASSERT(NULL == gp || gp->fChildren[gpc] == p); | 398 SkASSERT(NULL == gp || gp->fChildren[gpc] == p); |
| 399 | 399 |
| 400 // if x's parent is black then we didn't violate any of the | 400 // if x's parent is black then we didn't violate any of the |
| 401 // red/black properties when we added x as red. | 401 // red/black properties when we added x as red. |
| 402 if (kBlack_Color == p->fColor) { | 402 if (kBlack_Color == p->fColor) { |
| 403 return Iter(returnNode, this); | 403 return Iter(returnNode, this); |
| 404 } | 404 } |
| 405 // gp must be valid because if p was the root then it is black | 405 // gp must be valid because if p was the root then it is black |
| 406 SkASSERT(NULL != gp); | 406 SkASSERT(gp); |
| 407 // gp must be black since it's child, p, is red. | 407 // gp must be black since it's child, p, is red. |
| 408 SkASSERT(kBlack_Color == gp->fColor); | 408 SkASSERT(kBlack_Color == gp->fColor); |
| 409 | 409 |
| 410 | 410 |
| 411 // x and its parent are red, violating red-black property. | 411 // x and its parent are red, violating red-black property. |
| 412 Node* u = gp->fChildren[1-gpc]; | 412 Node* u = gp->fChildren[1-gpc]; |
| 413 // if x's uncle (p's sibling) is also red then we can flip | 413 // if x's uncle (p's sibling) is also red then we can flip |
| 414 // p and u to black and make gp red. But then we have to recurse | 414 // p and u to black and make gp red. But then we have to recurse |
| 415 // up to gp since it's parent may also be red. | 415 // up to gp since it's parent may also be red. |
| 416 if (NULL != u && kRed_Color == u->fColor) { | 416 if (u && kRed_Color == u->fColor) { |
| 417 p->fColor = kBlack_Color; | 417 p->fColor = kBlack_Color; |
| 418 u->fColor = kBlack_Color; | 418 u->fColor = kBlack_Color; |
| 419 gp->fColor = kRed_Color; | 419 gp->fColor = kRed_Color; |
| 420 x = gp; | 420 x = gp; |
| 421 p = x->fParent; | 421 p = x->fParent; |
| 422 if (NULL == p) { | 422 if (NULL == p) { |
| 423 // x (prev gp) is the root, color it black and be done. | 423 // x (prev gp) is the root, color it black and be done. |
| 424 SkASSERT(fRoot == x); | 424 SkASSERT(fRoot == x); |
| 425 x->fColor = kBlack_Color; | 425 x->fColor = kBlack_Color; |
| 426 validate(); | 426 validate(); |
| 427 return Iter(returnNode, this); | 427 return Iter(returnNode, this); |
| 428 } | 428 } |
| 429 gp = p->fParent; | 429 gp = p->fParent; |
| 430 pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : | 430 pc = (p->fChildren[kLeft_Child] == x) ? kLeft_Child : |
| 431 kRight_Child; | 431 kRight_Child; |
| 432 if (NULL != gp) { | 432 if (gp) { |
| 433 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : | 433 gpc = (gp->fChildren[kLeft_Child] == p) ? kLeft_Child : |
| 434 kRight_Child; | 434 kRight_Child; |
| 435 } | 435 } |
| 436 continue; | 436 continue; |
| 437 } break; | 437 } break; |
| 438 } while (true); | 438 } while (true); |
| 439 // Here p is red but u is black and we still have to resolve the fact | 439 // Here p is red but u is black and we still have to resolve the fact |
| 440 // that x and p are both red. | 440 // that x and p are both red. |
| 441 SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc
]->fColor); | 441 SkASSERT(NULL == gp->fChildren[1-gpc] || kBlack_Color == gp->fChildren[1-gpc
]->fColor); |
| 442 SkASSERT(kRed_Color == x->fColor); | 442 SkASSERT(kRed_Color == x->fColor); |
| (...skipping 43 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 486 /* d? d? | 486 /* d? d? |
| 487 * / / | 487 * / / |
| 488 * n s | 488 * n s |
| 489 * / \ ---> / \ | 489 * / \ ---> / \ |
| 490 * s a? c? n | 490 * s a? c? n |
| 491 * / \ / \ | 491 * / \ / \ |
| 492 * c? b? b? a? | 492 * c? b? b? a? |
| 493 */ | 493 */ |
| 494 Node* d = n->fParent; | 494 Node* d = n->fParent; |
| 495 Node* s = n->fChildren[kLeft_Child]; | 495 Node* s = n->fChildren[kLeft_Child]; |
| 496 SkASSERT(NULL != s); | 496 SkASSERT(s); |
| 497 Node* b = s->fChildren[kRight_Child]; | 497 Node* b = s->fChildren[kRight_Child]; |
| 498 | 498 |
| 499 if (NULL != d) { | 499 if (d) { |
| 500 Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : | 500 Child c = d->fChildren[kLeft_Child] == n ? kLeft_Child : |
| 501 kRight_Child; | 501 kRight_Child; |
| 502 d->fChildren[c] = s; | 502 d->fChildren[c] = s; |
| 503 } else { | 503 } else { |
| 504 SkASSERT(fRoot == n); | 504 SkASSERT(fRoot == n); |
| 505 fRoot = s; | 505 fRoot = s; |
| 506 } | 506 } |
| 507 s->fParent = d; | 507 s->fParent = d; |
| 508 s->fChildren[kRight_Child] = n; | 508 s->fChildren[kRight_Child] = n; |
| 509 n->fParent = s; | 509 n->fParent = s; |
| 510 n->fChildren[kLeft_Child] = b; | 510 n->fChildren[kLeft_Child] = b; |
| 511 if (NULL != b) { | 511 if (b) { |
| 512 b->fParent = n; | 512 b->fParent = n; |
| 513 } | 513 } |
| 514 | 514 |
| 515 GR_DEBUGASSERT(validateChildRelations(d, true)); | 515 GR_DEBUGASSERT(validateChildRelations(d, true)); |
| 516 GR_DEBUGASSERT(validateChildRelations(s, true)); | 516 GR_DEBUGASSERT(validateChildRelations(s, true)); |
| 517 GR_DEBUGASSERT(validateChildRelations(n, false)); | 517 GR_DEBUGASSERT(validateChildRelations(n, false)); |
| 518 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); | 518 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kRight_Child], true)); |
| 519 GR_DEBUGASSERT(validateChildRelations(b, true)); | 519 GR_DEBUGASSERT(validateChildRelations(b, true)); |
| 520 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); | 520 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kLeft_Child], true)); |
| 521 } | 521 } |
| 522 | 522 |
| 523 template <typename T, typename C> | 523 template <typename T, typename C> |
| 524 void GrRedBlackTree<T,C>::rotateLeft(Node* n) { | 524 void GrRedBlackTree<T,C>::rotateLeft(Node* n) { |
| 525 | 525 |
| 526 Node* d = n->fParent; | 526 Node* d = n->fParent; |
| 527 Node* s = n->fChildren[kRight_Child]; | 527 Node* s = n->fChildren[kRight_Child]; |
| 528 SkASSERT(NULL != s); | 528 SkASSERT(s); |
| 529 Node* b = s->fChildren[kLeft_Child]; | 529 Node* b = s->fChildren[kLeft_Child]; |
| 530 | 530 |
| 531 if (NULL != d) { | 531 if (d) { |
| 532 Child c = d->fChildren[kRight_Child] == n ? kRight_Child : | 532 Child c = d->fChildren[kRight_Child] == n ? kRight_Child : |
| 533 kLeft_Child; | 533 kLeft_Child; |
| 534 d->fChildren[c] = s; | 534 d->fChildren[c] = s; |
| 535 } else { | 535 } else { |
| 536 SkASSERT(fRoot == n); | 536 SkASSERT(fRoot == n); |
| 537 fRoot = s; | 537 fRoot = s; |
| 538 } | 538 } |
| 539 s->fParent = d; | 539 s->fParent = d; |
| 540 s->fChildren[kLeft_Child] = n; | 540 s->fChildren[kLeft_Child] = n; |
| 541 n->fParent = s; | 541 n->fParent = s; |
| 542 n->fChildren[kRight_Child] = b; | 542 n->fChildren[kRight_Child] = b; |
| 543 if (NULL != b) { | 543 if (b) { |
| 544 b->fParent = n; | 544 b->fParent = n; |
| 545 } | 545 } |
| 546 | 546 |
| 547 GR_DEBUGASSERT(validateChildRelations(d, true)); | 547 GR_DEBUGASSERT(validateChildRelations(d, true)); |
| 548 GR_DEBUGASSERT(validateChildRelations(s, true)); | 548 GR_DEBUGASSERT(validateChildRelations(s, true)); |
| 549 GR_DEBUGASSERT(validateChildRelations(n, true)); | 549 GR_DEBUGASSERT(validateChildRelations(n, true)); |
| 550 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); | 550 GR_DEBUGASSERT(validateChildRelations(n->fChildren[kLeft_Child], true)); |
| 551 GR_DEBUGASSERT(validateChildRelations(b, true)); | 551 GR_DEBUGASSERT(validateChildRelations(b, true)); |
| 552 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); | 552 GR_DEBUGASSERT(validateChildRelations(s->fChildren[kRight_Child], true)); |
| 553 } | 553 } |
| 554 | 554 |
| 555 template <typename T, typename C> | 555 template <typename T, typename C> |
| 556 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x)
{ | 556 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::SuccessorNode(Node* x)
{ |
| 557 SkASSERT(NULL != x); | 557 SkASSERT(x); |
| 558 if (NULL != x->fChildren[kRight_Child]) { | 558 if (x->fChildren[kRight_Child]) { |
| 559 x = x->fChildren[kRight_Child]; | 559 x = x->fChildren[kRight_Child]; |
| 560 while (NULL != x->fChildren[kLeft_Child]) { | 560 while (x->fChildren[kLeft_Child]) { |
| 561 x = x->fChildren[kLeft_Child]; | 561 x = x->fChildren[kLeft_Child]; |
| 562 } | 562 } |
| 563 return x; | 563 return x; |
| 564 } | 564 } |
| 565 while (NULL != x->fParent && x == x->fParent->fChildren[kRight_Child]) { | 565 while (x->fParent && x == x->fParent->fChildren[kRight_Child]) { |
| 566 x = x->fParent; | 566 x = x->fParent; |
| 567 } | 567 } |
| 568 return x->fParent; | 568 return x->fParent; |
| 569 } | 569 } |
| 570 | 570 |
| 571 template <typename T, typename C> | 571 template <typename T, typename C> |
| 572 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x
) { | 572 typename GrRedBlackTree<T,C>::Node* GrRedBlackTree<T,C>::PredecessorNode(Node* x
) { |
| 573 SkASSERT(NULL != x); | 573 SkASSERT(x); |
| 574 if (NULL != x->fChildren[kLeft_Child]) { | 574 if (x->fChildren[kLeft_Child]) { |
| 575 x = x->fChildren[kLeft_Child]; | 575 x = x->fChildren[kLeft_Child]; |
| 576 while (NULL != x->fChildren[kRight_Child]) { | 576 while (x->fChildren[kRight_Child]) { |
| 577 x = x->fChildren[kRight_Child]; | 577 x = x->fChildren[kRight_Child]; |
| 578 } | 578 } |
| 579 return x; | 579 return x; |
| 580 } | 580 } |
| 581 while (NULL != x->fParent && x == x->fParent->fChildren[kLeft_Child]) { | 581 while (x->fParent && x == x->fParent->fChildren[kLeft_Child]) { |
| 582 x = x->fParent; | 582 x = x->fParent; |
| 583 } | 583 } |
| 584 return x->fParent; | 584 return x->fParent; |
| 585 } | 585 } |
| 586 | 586 |
| 587 template <typename T, typename C> | 587 template <typename T, typename C> |
| 588 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { | 588 void GrRedBlackTree<T,C>::deleteAtNode(Node* x) { |
| 589 SkASSERT(NULL != x); | 589 SkASSERT(x); |
| 590 validate(); | 590 validate(); |
| 591 --fCount; | 591 --fCount; |
| 592 | 592 |
| 593 bool hasLeft = NULL != x->fChildren[kLeft_Child]; | 593 bool hasLeft = SkToBool(x->fChildren[kLeft_Child]); |
| 594 bool hasRight = NULL != x->fChildren[kRight_Child]; | 594 bool hasRight = SkToBool(x->fChildren[kRight_Child]); |
| 595 Child c = hasLeft ? kLeft_Child : kRight_Child; | 595 Child c = hasLeft ? kLeft_Child : kRight_Child; |
| 596 | 596 |
| 597 if (hasLeft && hasRight) { | 597 if (hasLeft && hasRight) { |
| 598 // first and last can't have two children. | 598 // first and last can't have two children. |
| 599 SkASSERT(fFirst != x); | 599 SkASSERT(fFirst != x); |
| 600 SkASSERT(fLast != x); | 600 SkASSERT(fLast != x); |
| 601 // if x is an interior node then we find it's successor | 601 // if x is an interior node then we find it's successor |
| 602 // and swap them. | 602 // and swap them. |
| 603 Node* s = x->fChildren[kRight_Child]; | 603 Node* s = x->fChildren[kRight_Child]; |
| 604 while (NULL != s->fChildren[kLeft_Child]) { | 604 while (s->fChildren[kLeft_Child]) { |
| 605 s = s->fChildren[kLeft_Child]; | 605 s = s->fChildren[kLeft_Child]; |
| 606 } | 606 } |
| 607 SkASSERT(NULL != s); | 607 SkASSERT(s); |
| 608 // this might be expensive relative to swapping node ptrs around. | 608 // this might be expensive relative to swapping node ptrs around. |
| 609 // depends on T. | 609 // depends on T. |
| 610 x->fItem = s->fItem; | 610 x->fItem = s->fItem; |
| 611 x = s; | 611 x = s; |
| 612 c = kRight_Child; | 612 c = kRight_Child; |
| 613 } else if (NULL == x->fParent) { | 613 } else if (NULL == x->fParent) { |
| 614 // if x was the root we just replace it with its child and make | 614 // if x was the root we just replace it with its child and make |
| 615 // the new root (if the tree is not empty) black. | 615 // the new root (if the tree is not empty) black. |
| 616 SkASSERT(fRoot == x); | 616 SkASSERT(fRoot == x); |
| 617 fRoot = x->fChildren[c]; | 617 fRoot = x->fChildren[c]; |
| 618 if (NULL != fRoot) { | 618 if (fRoot) { |
| 619 fRoot->fParent = NULL; | 619 fRoot->fParent = NULL; |
| 620 fRoot->fColor = kBlack_Color; | 620 fRoot->fColor = kBlack_Color; |
| 621 if (x == fLast) { | 621 if (x == fLast) { |
| 622 SkASSERT(c == kLeft_Child); | 622 SkASSERT(c == kLeft_Child); |
| 623 fLast = fRoot; | 623 fLast = fRoot; |
| 624 } else if (x == fFirst) { | 624 } else if (x == fFirst) { |
| 625 SkASSERT(c == kRight_Child); | 625 SkASSERT(c == kRight_Child); |
| 626 fFirst = fRoot; | 626 fFirst = fRoot; |
| 627 } | 627 } |
| 628 } else { | 628 } else { |
| (...skipping 29 matching lines...) Expand all Loading... |
| 658 if (kRed_Color == xcolor) { | 658 if (kRed_Color == xcolor) { |
| 659 validate(); | 659 validate(); |
| 660 return; | 660 return; |
| 661 } | 661 } |
| 662 // s is p's other child (x's sibling) | 662 // s is p's other child (x's sibling) |
| 663 Node* s = p->fChildren[1-pc]; | 663 Node* s = p->fChildren[1-pc]; |
| 664 | 664 |
| 665 //s cannot be an implicit black node because the original | 665 //s cannot be an implicit black node because the original |
| 666 // black-height at x was >= 2 and s's black-height must equal the | 666 // black-height at x was >= 2 and s's black-height must equal the |
| 667 // initial black height of x. | 667 // initial black height of x. |
| 668 SkASSERT(NULL != s); | 668 SkASSERT(s); |
| 669 SkASSERT(p == s->fParent); | 669 SkASSERT(p == s->fParent); |
| 670 | 670 |
| 671 // assigned in loop | 671 // assigned in loop |
| 672 Node* sl; | 672 Node* sl; |
| 673 Node* sr; | 673 Node* sr; |
| 674 bool slRed; | 674 bool slRed; |
| 675 bool srRed; | 675 bool srRed; |
| 676 | 676 |
| 677 do { | 677 do { |
| 678 // When we start this loop x may already be deleted it is/was | 678 // When we start this loop x may already be deleted it is/was |
| 679 // p's child on its pc side. x's children are/were black. The | 679 // p's child on its pc side. x's children are/were black. The |
| 680 // first time through the loop they are implict children. | 680 // first time through the loop they are implict children. |
| 681 // On later passes we will be walking up the tree and they will | 681 // On later passes we will be walking up the tree and they will |
| 682 // be real nodes. | 682 // be real nodes. |
| 683 // The x side of p has a black-height that is one less than the | 683 // The x side of p has a black-height that is one less than the |
| 684 // s side. It must be rebalanced. | 684 // s side. It must be rebalanced. |
| 685 SkASSERT(NULL != s); | 685 SkASSERT(s); |
| 686 SkASSERT(p == s->fParent); | 686 SkASSERT(p == s->fParent); |
| 687 SkASSERT(NULL == x || x->fParent == p); | 687 SkASSERT(NULL == x || x->fParent == p); |
| 688 | 688 |
| 689 //sl and sr are s's children, which may be implicit. | 689 //sl and sr are s's children, which may be implicit. |
| 690 sl = s->fChildren[kLeft_Child]; | 690 sl = s->fChildren[kLeft_Child]; |
| 691 sr = s->fChildren[kRight_Child]; | 691 sr = s->fChildren[kRight_Child]; |
| 692 | 692 |
| 693 // if the s is red we will rotate s and p, swap their colors so | 693 // if the s is red we will rotate s and p, swap their colors so |
| 694 // that x's new sibling is black | 694 // that x's new sibling is black |
| 695 if (kRed_Color == s->fColor) { | 695 if (kRed_Color == s->fColor) { |
| 696 // if s is red then it's parent must be black. | 696 // if s is red then it's parent must be black. |
| 697 SkASSERT(kBlack_Color == p->fColor); | 697 SkASSERT(kBlack_Color == p->fColor); |
| 698 // s's children must also be black since s is red. They can't | 698 // s's children must also be black since s is red. They can't |
| 699 // be implicit since s is red and it's black-height is >= 2. | 699 // be implicit since s is red and it's black-height is >= 2. |
| 700 SkASSERT(NULL != sl && kBlack_Color == sl->fColor); | 700 SkASSERT(sl && kBlack_Color == sl->fColor); |
| 701 SkASSERT(NULL != sr && kBlack_Color == sr->fColor); | 701 SkASSERT(sr && kBlack_Color == sr->fColor); |
| 702 p->fColor = kRed_Color; | 702 p->fColor = kRed_Color; |
| 703 s->fColor = kBlack_Color; | 703 s->fColor = kBlack_Color; |
| 704 if (kLeft_Child == pc) { | 704 if (kLeft_Child == pc) { |
| 705 rotateLeft(p); | 705 rotateLeft(p); |
| 706 s = sl; | 706 s = sl; |
| 707 } else { | 707 } else { |
| 708 rotateRight(p); | 708 rotateRight(p); |
| 709 s = sr; | 709 s = sr; |
| 710 } | 710 } |
| 711 sl = s->fChildren[kLeft_Child]; | 711 sl = s->fChildren[kLeft_Child]; |
| 712 sr = s->fChildren[kRight_Child]; | 712 sr = s->fChildren[kRight_Child]; |
| 713 } | 713 } |
| 714 // x and s are now both black. | 714 // x and s are now both black. |
| 715 SkASSERT(kBlack_Color == s->fColor); | 715 SkASSERT(kBlack_Color == s->fColor); |
| 716 SkASSERT(NULL == x || kBlack_Color == x->fColor); | 716 SkASSERT(NULL == x || kBlack_Color == x->fColor); |
| 717 SkASSERT(p == s->fParent); | 717 SkASSERT(p == s->fParent); |
| 718 SkASSERT(NULL == x || p == x->fParent); | 718 SkASSERT(NULL == x || p == x->fParent); |
| 719 | 719 |
| 720 // when x is deleted its subtree will have reduced black-height. | 720 // when x is deleted its subtree will have reduced black-height. |
| 721 slRed = (NULL != sl && kRed_Color == sl->fColor); | 721 slRed = (sl && kRed_Color == sl->fColor); |
| 722 srRed = (NULL != sr && kRed_Color == sr->fColor); | 722 srRed = (sr && kRed_Color == sr->fColor); |
| 723 if (!slRed && !srRed) { | 723 if (!slRed && !srRed) { |
| 724 // if s can be made red that will balance out x's removal | 724 // if s can be made red that will balance out x's removal |
| 725 // to make both subtrees of p have the same black-height. | 725 // to make both subtrees of p have the same black-height. |
| 726 if (kBlack_Color == p->fColor) { | 726 if (kBlack_Color == p->fColor) { |
| 727 s->fColor = kRed_Color; | 727 s->fColor = kRed_Color; |
| 728 // now subtree at p has black-height of one less than | 728 // now subtree at p has black-height of one less than |
| 729 // p's parent's other child's subtree. We move x up to | 729 // p's parent's other child's subtree. We move x up to |
| 730 // p and go through the loop again. At the top of loop | 730 // p and go through the loop again. At the top of loop |
| 731 // we assumed x and x's children are black, which holds | 731 // we assumed x and x's children are black, which holds |
| 732 // by above ifs. | 732 // by above ifs. |
| 733 // if p is the root there is no other subtree to balance | 733 // if p is the root there is no other subtree to balance |
| 734 // against. | 734 // against. |
| 735 x = p; | 735 x = p; |
| 736 p = x->fParent; | 736 p = x->fParent; |
| 737 if (NULL == p) { | 737 if (NULL == p) { |
| 738 SkASSERT(fRoot == x); | 738 SkASSERT(fRoot == x); |
| 739 validate(); | 739 validate(); |
| 740 return; | 740 return; |
| 741 } else { | 741 } else { |
| 742 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : | 742 pc = p->fChildren[kLeft_Child] == x ? kLeft_Child : |
| 743 kRight_Child; | 743 kRight_Child; |
| 744 | 744 |
| 745 } | 745 } |
| 746 s = p->fChildren[1-pc]; | 746 s = p->fChildren[1-pc]; |
| 747 SkASSERT(NULL != s); | 747 SkASSERT(s); |
| 748 SkASSERT(p == s->fParent); | 748 SkASSERT(p == s->fParent); |
| 749 continue; | 749 continue; |
| 750 } else if (kRed_Color == p->fColor) { | 750 } else if (kRed_Color == p->fColor) { |
| 751 // we can make p black and s red. This balance out p's | 751 // we can make p black and s red. This balance out p's |
| 752 // two subtrees and keep the same black-height as it was | 752 // two subtrees and keep the same black-height as it was |
| 753 // before the delete. | 753 // before the delete. |
| 754 s->fColor = kRed_Color; | 754 s->fColor = kRed_Color; |
| 755 p->fColor = kBlack_Color; | 755 p->fColor = kBlack_Color; |
| 756 validate(); | 756 validate(); |
| 757 return; | 757 return; |
| (...skipping 24 matching lines...) Expand all Loading... |
| 782 // child is red. | 782 // child is red. |
| 783 // We rotate p towards x, pulling s up to replace p. We make | 783 // We rotate p towards x, pulling s up to replace p. We make |
| 784 // p be black and s takes p's old color. | 784 // p be black and s takes p's old color. |
| 785 // Whether p was red or black, we've increased its pc subtree | 785 // Whether p was red or black, we've increased its pc subtree |
| 786 // rooted at x by 1 (balancing the imbalance at the start) and | 786 // rooted at x by 1 (balancing the imbalance at the start) and |
| 787 // we've also its subtree rooted at s's black-height by 1. This | 787 // we've also its subtree rooted at s's black-height by 1. This |
| 788 // can be balanced by making s's red child be black. | 788 // can be balanced by making s's red child be black. |
| 789 s->fColor = p->fColor; | 789 s->fColor = p->fColor; |
| 790 p->fColor = kBlack_Color; | 790 p->fColor = kBlack_Color; |
| 791 if (kLeft_Child == pc) { | 791 if (kLeft_Child == pc) { |
| 792 SkASSERT(NULL != sr && kRed_Color == sr->fColor); | 792 SkASSERT(sr && kRed_Color == sr->fColor); |
| 793 sr->fColor = kBlack_Color; | 793 sr->fColor = kBlack_Color; |
| 794 rotateLeft(p); | 794 rotateLeft(p); |
| 795 } else { | 795 } else { |
| 796 SkASSERT(NULL != sl && kRed_Color == sl->fColor); | 796 SkASSERT(sl && kRed_Color == sl->fColor); |
| 797 sl->fColor = kBlack_Color; | 797 sl->fColor = kBlack_Color; |
| 798 rotateRight(p); | 798 rotateRight(p); |
| 799 } | 799 } |
| 800 } | 800 } |
| 801 else { | 801 else { |
| 802 // x has exactly one implicit black child. x cannot be red. | 802 // x has exactly one implicit black child. x cannot be red. |
| 803 // Proof by contradiction: Assume X is red. Let c0 be x's implicit | 803 // Proof by contradiction: Assume X is red. Let c0 be x's implicit |
| 804 // child and c1 be its non-implicit child. c1 must be black because | 804 // child and c1 be its non-implicit child. c1 must be black because |
| 805 // red nodes always have two black children. Then the two subtrees | 805 // red nodes always have two black children. Then the two subtrees |
| 806 // of x rooted at c0 and c1 will have different black-heights. | 806 // of x rooted at c0 and c1 will have different black-heights. |
| 807 SkASSERT(kBlack_Color == x->fColor); | 807 SkASSERT(kBlack_Color == x->fColor); |
| 808 // So we know x is black and has one implicit black child, c0. c1 | 808 // So we know x is black and has one implicit black child, c0. c1 |
| 809 // must be red, otherwise the subtree at c1 will have a different | 809 // must be red, otherwise the subtree at c1 will have a different |
| 810 // black-height than the subtree rooted at c0. | 810 // black-height than the subtree rooted at c0. |
| 811 SkASSERT(kRed_Color == x->fChildren[c]->fColor); | 811 SkASSERT(kRed_Color == x->fChildren[c]->fColor); |
| 812 // replace x with c1, making c1 black, preserves all red-black tree | 812 // replace x with c1, making c1 black, preserves all red-black tree |
| 813 // props. | 813 // props. |
| 814 Node* c1 = x->fChildren[c]; | 814 Node* c1 = x->fChildren[c]; |
| 815 if (x == fFirst) { | 815 if (x == fFirst) { |
| 816 SkASSERT(c == kRight_Child); | 816 SkASSERT(c == kRight_Child); |
| 817 fFirst = c1; | 817 fFirst = c1; |
| 818 while (NULL != fFirst->fChildren[kLeft_Child]) { | 818 while (fFirst->fChildren[kLeft_Child]) { |
| 819 fFirst = fFirst->fChildren[kLeft_Child]; | 819 fFirst = fFirst->fChildren[kLeft_Child]; |
| 820 } | 820 } |
| 821 SkASSERT(fFirst == SuccessorNode(x)); | 821 SkASSERT(fFirst == SuccessorNode(x)); |
| 822 } else if (x == fLast) { | 822 } else if (x == fLast) { |
| 823 SkASSERT(c == kLeft_Child); | 823 SkASSERT(c == kLeft_Child); |
| 824 fLast = c1; | 824 fLast = c1; |
| 825 while (NULL != fLast->fChildren[kRight_Child]) { | 825 while (fLast->fChildren[kRight_Child]) { |
| 826 fLast = fLast->fChildren[kRight_Child]; | 826 fLast = fLast->fChildren[kRight_Child]; |
| 827 } | 827 } |
| 828 SkASSERT(fLast == PredecessorNode(x)); | 828 SkASSERT(fLast == PredecessorNode(x)); |
| 829 } | 829 } |
| 830 c1->fParent = p; | 830 c1->fParent = p; |
| 831 p->fChildren[pc] = c1; | 831 p->fChildren[pc] = c1; |
| 832 c1->fColor = kBlack_Color; | 832 c1->fColor = kBlack_Color; |
| 833 delete x; | 833 delete x; |
| 834 validate(); | 834 validate(); |
| 835 } | 835 } |
| 836 validate(); | 836 validate(); |
| 837 } | 837 } |
| 838 | 838 |
| 839 template <typename T, typename C> | 839 template <typename T, typename C> |
| 840 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { | 840 void GrRedBlackTree<T,C>::RecursiveDelete(Node* x) { |
| 841 if (NULL != x) { | 841 if (x) { |
| 842 RecursiveDelete(x->fChildren[kLeft_Child]); | 842 RecursiveDelete(x->fChildren[kLeft_Child]); |
| 843 RecursiveDelete(x->fChildren[kRight_Child]); | 843 RecursiveDelete(x->fChildren[kRight_Child]); |
| 844 delete x; | 844 delete x; |
| 845 } | 845 } |
| 846 } | 846 } |
| 847 | 847 |
| 848 #ifdef SK_DEBUG | 848 #ifdef SK_DEBUG |
| 849 template <typename T, typename C> | 849 template <typename T, typename C> |
| 850 void GrRedBlackTree<T,C>::validate() const { | 850 void GrRedBlackTree<T,C>::validate() const { |
| 851 if (fCount) { | 851 if (fCount) { |
| 852 SkASSERT(NULL == fRoot->fParent); | 852 SkASSERT(NULL == fRoot->fParent); |
| 853 SkASSERT(NULL != fFirst); | 853 SkASSERT(fFirst); |
| 854 SkASSERT(NULL != fLast); | 854 SkASSERT(fLast); |
| 855 | 855 |
| 856 SkASSERT(kBlack_Color == fRoot->fColor); | 856 SkASSERT(kBlack_Color == fRoot->fColor); |
| 857 if (1 == fCount) { | 857 if (1 == fCount) { |
| 858 SkASSERT(fFirst == fRoot); | 858 SkASSERT(fFirst == fRoot); |
| 859 SkASSERT(fLast == fRoot); | 859 SkASSERT(fLast == fRoot); |
| 860 SkASSERT(0 == fRoot->fChildren[kLeft_Child]); | 860 SkASSERT(0 == fRoot->fChildren[kLeft_Child]); |
| 861 SkASSERT(0 == fRoot->fChildren[kRight_Child]); | 861 SkASSERT(0 == fRoot->fChildren[kRight_Child]); |
| 862 } | 862 } |
| 863 } else { | 863 } else { |
| 864 SkASSERT(NULL == fRoot); | 864 SkASSERT(NULL == fRoot); |
| 865 SkASSERT(NULL == fFirst); | 865 SkASSERT(NULL == fFirst); |
| 866 SkASSERT(NULL == fLast); | 866 SkASSERT(NULL == fLast); |
| 867 } | 867 } |
| 868 #if DEEP_VALIDATE | 868 #if DEEP_VALIDATE |
| 869 int bh; | 869 int bh; |
| 870 int count = checkNode(fRoot, &bh); | 870 int count = checkNode(fRoot, &bh); |
| 871 SkASSERT(count == fCount); | 871 SkASSERT(count == fCount); |
| 872 #endif | 872 #endif |
| 873 } | 873 } |
| 874 | 874 |
| 875 template <typename T, typename C> | 875 template <typename T, typename C> |
| 876 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { | 876 int GrRedBlackTree<T,C>::checkNode(Node* n, int* bh) const { |
| 877 if (NULL != n) { | 877 if (n) { |
| 878 SkASSERT(validateChildRelations(n, false)); | 878 SkASSERT(validateChildRelations(n, false)); |
| 879 if (kBlack_Color == n->fColor) { | 879 if (kBlack_Color == n->fColor) { |
| 880 *bh += 1; | 880 *bh += 1; |
| 881 } | 881 } |
| 882 SkASSERT(!fComp(n->fItem, fFirst->fItem)); | 882 SkASSERT(!fComp(n->fItem, fFirst->fItem)); |
| 883 SkASSERT(!fComp(fLast->fItem, n->fItem)); | 883 SkASSERT(!fComp(fLast->fItem, n->fItem)); |
| 884 int leftBh = *bh; | 884 int leftBh = *bh; |
| 885 int rightBh = *bh; | 885 int rightBh = *bh; |
| 886 int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); | 886 int cl = checkNode(n->fChildren[kLeft_Child], &leftBh); |
| 887 int cr = checkNode(n->fChildren[kRight_Child], &rightBh); | 887 int cr = checkNode(n->fChildren[kRight_Child], &rightBh); |
| 888 SkASSERT(leftBh == rightBh); | 888 SkASSERT(leftBh == rightBh); |
| 889 *bh = leftBh; | 889 *bh = leftBh; |
| 890 return 1 + cl + cr; | 890 return 1 + cl + cr; |
| 891 } | 891 } |
| 892 return 0; | 892 return 0; |
| 893 } | 893 } |
| 894 | 894 |
| 895 template <typename T, typename C> | 895 template <typename T, typename C> |
| 896 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n, | 896 bool GrRedBlackTree<T,C>::validateChildRelations(const Node* n, |
| 897 bool allowRedRed) const { | 897 bool allowRedRed) const { |
| 898 if (NULL != n) { | 898 if (n) { |
| 899 if (NULL != n->fChildren[kLeft_Child] || | 899 if (n->fChildren[kLeft_Child] || |
| 900 NULL != n->fChildren[kRight_Child]) { | 900 n->fChildren[kRight_Child]) { |
| 901 if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { | 901 if (n->fChildren[kLeft_Child] == n->fChildren[kRight_Child]) { |
| 902 return validateChildRelationsFailed(); | 902 return validateChildRelationsFailed(); |
| 903 } | 903 } |
| 904 if (n->fChildren[kLeft_Child] == n->fParent && | 904 if (n->fChildren[kLeft_Child] == n->fParent && |
| 905 NULL != n->fParent) { | 905 n->fParent) { |
| 906 return validateChildRelationsFailed(); | 906 return validateChildRelationsFailed(); |
| 907 } | 907 } |
| 908 if (n->fChildren[kRight_Child] == n->fParent && | 908 if (n->fChildren[kRight_Child] == n->fParent && |
| 909 NULL != n->fParent) { | 909 n->fParent) { |
| 910 return validateChildRelationsFailed(); | 910 return validateChildRelationsFailed(); |
| 911 } | 911 } |
| 912 if (NULL != n->fChildren[kLeft_Child]) { | 912 if (n->fChildren[kLeft_Child]) { |
| 913 if (!allowRedRed && | 913 if (!allowRedRed && |
| 914 kRed_Color == n->fChildren[kLeft_Child]->fColor && | 914 kRed_Color == n->fChildren[kLeft_Child]->fColor && |
| 915 kRed_Color == n->fColor) { | 915 kRed_Color == n->fColor) { |
| 916 return validateChildRelationsFailed(); | 916 return validateChildRelationsFailed(); |
| 917 } | 917 } |
| 918 if (n->fChildren[kLeft_Child]->fParent != n) { | 918 if (n->fChildren[kLeft_Child]->fParent != n) { |
| 919 return validateChildRelationsFailed(); | 919 return validateChildRelationsFailed(); |
| 920 } | 920 } |
| 921 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || | 921 if (!(fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) || |
| 922 (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && | 922 (!fComp(n->fChildren[kLeft_Child]->fItem, n->fItem) && |
| 923 !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { | 923 !fComp(n->fItem, n->fChildren[kLeft_Child]->fItem)))) { |
| 924 return validateChildRelationsFailed(); | 924 return validateChildRelationsFailed(); |
| 925 } | 925 } |
| 926 } | 926 } |
| 927 if (NULL != n->fChildren[kRight_Child]) { | 927 if (n->fChildren[kRight_Child]) { |
| 928 if (!allowRedRed && | 928 if (!allowRedRed && |
| 929 kRed_Color == n->fChildren[kRight_Child]->fColor && | 929 kRed_Color == n->fChildren[kRight_Child]->fColor && |
| 930 kRed_Color == n->fColor) { | 930 kRed_Color == n->fColor) { |
| 931 return validateChildRelationsFailed(); | 931 return validateChildRelationsFailed(); |
| 932 } | 932 } |
| 933 if (n->fChildren[kRight_Child]->fParent != n) { | 933 if (n->fChildren[kRight_Child]->fParent != n) { |
| 934 return validateChildRelationsFailed(); | 934 return validateChildRelationsFailed(); |
| 935 } | 935 } |
| 936 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || | 936 if (!(fComp(n->fItem, n->fChildren[kRight_Child]->fItem) || |
| 937 (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && | 937 (!fComp(n->fChildren[kRight_Child]->fItem, n->fItem) && |
| 938 !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { | 938 !fComp(n->fItem, n->fChildren[kRight_Child]->fItem)))) { |
| 939 return validateChildRelationsFailed(); | 939 return validateChildRelationsFailed(); |
| 940 } | 940 } |
| 941 } | 941 } |
| 942 } | 942 } |
| 943 } | 943 } |
| 944 return true; | 944 return true; |
| 945 } | 945 } |
| 946 #endif | 946 #endif |
| 947 | 947 |
| 948 #endif | 948 #endif |
| OLD | NEW |