| Index: pkg/math/test/bigint_test.dart
|
| diff --git a/pkg/math/test/bigint_test.dart b/pkg/math/test/bigint_test.dart
|
| deleted file mode 100644
|
| index 8de74761debb843028baa7efbba0f50cda2d2f0d..0000000000000000000000000000000000000000
|
| --- a/pkg/math/test/bigint_test.dart
|
| +++ /dev/null
|
| @@ -1,141 +0,0 @@
|
| -// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -library math_test;
|
| -import "package:expect/expect.dart";
|
| -import 'dart:math';
|
| -import 'package:math/math.dart';
|
| -
|
| -// See gcd_test.dart first. This file contains only the tests that need Bigint
|
| -// or would fail in dart2js compatibility mode.
|
| -
|
| -class BigintTest {
|
| - // 8 random primes less within [2^60, 2^64]
|
| - final int p1 = 6714601027348841563;
|
| - final int p2 = 13464639003769154407;
|
| - final int p3 = 9519493673324441563;
|
| - final int p4 = 7064784879742017229;
|
| - final int p5 = 18364232533526122157;
|
| - final int p6 = 2099437422495963203;
|
| - final int p7 = 10166792634765954647;
|
| - final int p8 = 2745073355742392083;
|
| -
|
| - void testGcdWithBigints() {
|
| - Expect.equals(pow(2, 63)*3, gcd(pow(2, 64)*3*5, pow(2, 63)*3*7));
|
| - // 595056260442243647 is the first prime after 2**64 / 31.
|
| - Expect.equals(595056260442243647,
|
| - gcd(31*595056260442243647, 37*595056260442243647));
|
| - Expect.equals(p2, gcd(p1*p2, p2*p3));
|
| - Expect.equals(1, gcd(p1*p2, p3*p4));
|
| -
|
| - // Negatives
|
| - Expect.equals(pow(2, 63)*3, gcd(-pow(2, 64)*3*5, pow(2, 63)*3*7));
|
| - Expect.equals(pow(2, 63)*3, gcd(pow(2, 64)*3*5, -pow(2, 63)*3*7));
|
| - Expect.equals(pow(2, 63)*3, gcd(-pow(2, 64)*3*5, -pow(2, 63)*3*7));
|
| - Expect.equals(1, gcd(-p1, p2));
|
| - Expect.equals(1, gcd(p1, -p2));
|
| - Expect.equals(1, gcd(-p1, -p2));
|
| - }
|
| -
|
| - void testGcdextWithBigints() {
|
| - Expect.listEquals([pow(2, 63)*3, -2, 3],
|
| - gcdext(pow(2, 64)*3*5, pow(2, 63)*3*7));
|
| - // 595056260442243647 is the first prime after 2**64 / 31.
|
| - Expect.listEquals([595056260442243647, 6, -5],
|
| - gcdext(31*595056260442243647, 37*595056260442243647));
|
| - Expect.listEquals([1, 970881267037344823, -970881267037344822],
|
| - gcdext(73786976294838206473, 73786976294838206549));
|
| - Expect.listEquals([1, 796993873408264695, -397448151389712212],
|
| - gcdext(p1, p2));
|
| - Expect.listEquals([1, -397448151389712212, 796993873408264695],
|
| - gcdext(p2, p1));
|
| -
|
| - // Negatives
|
| - Expect.listEquals([1, -796993873408264695, -397448151389712212],
|
| - gcdext(-p1, p2));
|
| - Expect.listEquals([1, 796993873408264695, 397448151389712212],
|
| - gcdext(p1, -p2));
|
| - Expect.listEquals([1, -796993873408264695, 397448151389712212],
|
| - gcdext(-p1, -p2));
|
| - }
|
| -
|
| - void testInvertWithBigints() {
|
| - // 9223372036854775837 is the first prime after 2^63.
|
| - Expect.equals(2093705452366034115, invert(1000, 9223372036854775837));
|
| - Expect.equals(970547769322117497, invert(1000000, 9223372036854775837));
|
| -
|
| - Expect.equals(796993873408264695, invert(p1, p2));
|
| - Expect.equals(2302612976619580647501352961102487476, invert(p3*p4, p5*p6));
|
| -
|
| - Expect.throws(() => invert(p1 * p2, p2 * p3),
|
| - (e) => e is IntegerDivisionByZeroException);
|
| -
|
| - // Negatives
|
| - Expect.equals(12667645130360889712, invert(-p1, p2));
|
| - Expect.equals(796993873408264695, invert(p1, -p2));
|
| - Expect.equals(12667645130360889712, invert(-p1, -p2));
|
| - }
|
| -
|
| - void testLcmWithBigints() {
|
| - Expect.equals(pow(2, 64)*3*5*7, lcm(pow(2, 64)*3*5, pow(2,63)*3*7));
|
| - // 595056260442243647 is the first prime after 2**64 / 31.
|
| - Expect.equals(31*37*595056260442243647,
|
| - lcm(31*595056260442243647, 37*595056260442243647));
|
| -
|
| - Expect.equals(p1 * p2, lcm(p1, p2));
|
| - Expect.equals(p1 * p2 * p3, lcm(p1 * p2, p2 * p3));
|
| - Expect.equals(p4 * p5, lcm(p4 * p5, p4));
|
| -
|
| - // Negative
|
| - Expect.equals(p1 * p2, lcm(-p1, p2));
|
| - Expect.equals(p1 * p2, lcm(p1, -p2));
|
| - Expect.equals(p1 * p2, lcm(-p1, -p2));
|
| - }
|
| -
|
| - void testPowmodWithBigints() {
|
| - // A modulus value greater than 94906265 can result in an intermediate step
|
| - // evaluating to a bigint (base * base).
|
| - // 9079837958533 is the first prime after 2**48 / 31.
|
| - Expect.equals(1073741824, powmod(pow(2, 30), 1, 9079837958533));
|
| - Expect.equals(9079822119301, powmod(pow(2, 30), 2, 9079837958533));
|
| - Expect.equals(8370475851674, powmod(pow(2, 30), 3, 9079837958533));
|
| - Expect.equals(5725645469433, powmod(pow(2, 30), 4, 9079837958533));
|
| -
|
| - // bigint base
|
| - Expect.equals(10435682577172878912, powmod(p1, 31, p2));
|
| - Expect.equals(2171334335785523204, powmod(p1 * p2, 5, p3));
|
| - Expect.equals(2075559997960884603, powmod(p1 * 120, 8, p2));
|
| -
|
| - // bigint exponent
|
| - Expect.equals(236325130834703514, powmod(pow(2, 64), p1, p4));
|
| - Expect.equals(1733635560285390571, powmod(1000000, p5, p6));
|
| -
|
| - // bigint modulus
|
| - Expect.equals(4740839599282053976, powmod(p7, p8, p1));
|
| - Expect.equals(13037487407831899228197227177643459429,
|
| - powmod(p2, p3, p4 * p5));
|
| -
|
| - // Negative
|
| - Expect.equals(3028956426596275495, powmod(-p1, 31, p2));
|
| - Expect.equals(5719988737977477486, powmod(p1, -31, p2));
|
| - Expect.equals(10435682577172878912, powmod(p1, 31, -p2));
|
| - Expect.equals(7744650265791676921, powmod(-p1, -31, p2));
|
| - Expect.equals(3028956426596275495, powmod(-p1, 31, -p2));
|
| - Expect.equals(5719988737977477486, powmod(p1, -31, -p2));
|
| - Expect.equals(7744650265791676921, powmod(-p1, -31, -p2));
|
| - }
|
| -
|
| - testMain() {
|
| - // Source for expected values is Wolfram Alpha (presumably just GMP).
|
| - testGcdWithBigints();
|
| - testGcdextWithBigints();
|
| - testInvertWithBigints();
|
| - testLcmWithBigints();
|
| - testPowmodWithBigints();
|
| - }
|
| -}
|
| -
|
| -main() {
|
| - new BigintTest().testMain();
|
| -}
|
|
|