Index: runtime/vm/regexp_parser.cc |
diff --git a/runtime/vm/regexp_parser.cc b/runtime/vm/regexp_parser.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..1b2df30ede8e0f975d76892182c6bad062b08fdf |
--- /dev/null |
+++ b/runtime/vm/regexp_parser.cc |
@@ -0,0 +1,1070 @@ |
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+#include "vm/longjump.h" |
+#include "vm/object_store.h" |
+#include "vm/regexp_parser.h" |
+ |
+namespace dart { |
+ |
+#define I isolate() |
+ |
+// Enables possessive quantifier syntax for testing. |
+static const bool FLAG_regexp_possessive_quantifier = false; |
+ |
+RegExpBuilder::RegExpBuilder() |
+ : isolate_(Isolate::Current()), |
+ pending_empty_(false), |
+ characters_(NULL), |
+ terms_(), |
+ text_(), |
+ alternatives_() |
+#ifdef DEBUG |
+ , last_added_(ADD_NONE) |
+#endif |
+ {} |
+ |
+ |
+void RegExpBuilder::FlushCharacters() { |
+ pending_empty_ = false; |
+ if (characters_ != NULL) { |
+ RegExpTree* atom = new(I) RegExpAtom(characters_); |
+ characters_ = NULL; |
+ text_.Add(atom); |
+ LAST(ADD_ATOM); |
+ } |
+} |
+ |
+ |
+void RegExpBuilder::FlushText() { |
+ FlushCharacters(); |
+ intptr_t num_text = text_.length(); |
+ if (num_text == 0) { |
+ return; |
+ } else if (num_text == 1) { |
+ terms_.Add(text_.Last()); |
+ } else { |
+ RegExpText* text = new(I) RegExpText(); |
+ for (intptr_t i = 0; i < num_text; i++) |
+ text_[i]->AppendToText(text); |
+ terms_.Add(text); |
+ } |
+ text_.Clear(); |
+} |
+ |
+ |
+void RegExpBuilder::AddCharacter(uint16_t c) { |
+ pending_empty_ = false; |
+ if (characters_ == NULL) { |
+ characters_ = new(I) ZoneGrowableArray<uint16_t>(4); |
+ } |
+ characters_->Add(c); |
+ LAST(ADD_CHAR); |
+} |
+ |
+ |
+void RegExpBuilder::AddEmpty() { |
+ pending_empty_ = true; |
+} |
+ |
+ |
+void RegExpBuilder::AddAtom(RegExpTree* term) { |
+ if (term->IsEmpty()) { |
+ AddEmpty(); |
+ return; |
+ } |
+ if (term->IsTextElement()) { |
+ FlushCharacters(); |
+ text_.Add(term); |
+ } else { |
+ FlushText(); |
+ terms_.Add(term); |
+ } |
+ LAST(ADD_ATOM); |
+} |
+ |
+ |
+void RegExpBuilder::AddAssertion(RegExpTree* assert) { |
+ FlushText(); |
+ terms_.Add(assert); |
+ LAST(ADD_ASSERT); |
+} |
+ |
+ |
+void RegExpBuilder::NewAlternative() { |
+ FlushTerms(); |
+} |
+ |
+ |
+void RegExpBuilder::FlushTerms() { |
+ FlushText(); |
+ intptr_t num_terms = terms_.length(); |
+ RegExpTree* alternative; |
+ if (num_terms == 0) { |
+ alternative = RegExpEmpty::GetInstance(); |
+ } else if (num_terms == 1) { |
+ alternative = terms_.Last(); |
+ } else { |
+ ZoneGrowableArray<RegExpTree*>* terms = |
+ new(I) ZoneGrowableArray<RegExpTree*>(); |
+ for (intptr_t i = 0; i < terms_.length(); i++) { |
+ terms->Add(terms_[i]); |
+ } |
+ alternative = new(I) RegExpAlternative(terms); |
+ } |
+ alternatives_.Add(alternative); |
+ terms_.Clear(); |
+ LAST(ADD_NONE); |
+} |
+ |
+ |
+RegExpTree* RegExpBuilder::ToRegExp() { |
+ FlushTerms(); |
+ intptr_t num_alternatives = alternatives_.length(); |
+ if (num_alternatives == 0) { |
+ return RegExpEmpty::GetInstance(); |
+ } |
+ if (num_alternatives == 1) { |
+ return alternatives_.Last(); |
+ } |
+ ZoneGrowableArray<RegExpTree*>* alternatives = |
+ new(I) ZoneGrowableArray<RegExpTree*>(); |
+ for (intptr_t i = 0; i < alternatives_.length(); i++) { |
+ alternatives->Add(alternatives_[i]); |
+ } |
+ return new(I) RegExpDisjunction(alternatives); |
+} |
+ |
+ |
+void RegExpBuilder::AddQuantifierToAtom( |
+ intptr_t min, |
+ intptr_t max, |
+ RegExpQuantifier::QuantifierType quantifier_type) { |
+ if (pending_empty_) { |
+ pending_empty_ = false; |
+ return; |
+ } |
+ RegExpTree* atom; |
+ if (characters_ != NULL) { |
+ DEBUG_ASSERT(last_added_ == ADD_CHAR); |
+ // Last atom was character. |
+ |
+ ZoneGrowableArray<uint16_t> *char_vector = |
+ new(I) ZoneGrowableArray<uint16_t>(); |
+ char_vector->AddArray(*characters_); |
+ intptr_t num_chars = char_vector->length(); |
+ if (num_chars > 1) { |
+ ZoneGrowableArray<uint16_t> *prefix = |
+ new(I) ZoneGrowableArray<uint16_t>(); |
+ for (intptr_t i = 0; i < num_chars - 1; i++) { |
+ prefix->Add(char_vector->At(i)); |
+ } |
+ text_.Add(new(I) RegExpAtom(prefix)); |
+ ZoneGrowableArray<uint16_t> *tail = new(I) ZoneGrowableArray<uint16_t>(); |
+ tail->Add(char_vector->At(num_chars - 1)); |
+ char_vector = tail; |
+ } |
+ characters_ = NULL; |
+ atom = new(I) RegExpAtom(char_vector); |
+ FlushText(); |
+ } else if (text_.length() > 0) { |
+ DEBUG_ASSERT(last_added_ == ADD_ATOM); |
+ atom = text_.RemoveLast(); |
+ FlushText(); |
+ } else if (terms_.length() > 0) { |
+ DEBUG_ASSERT(last_added_ == ADD_ATOM); |
+ atom = terms_.RemoveLast(); |
+ if (atom->max_match() == 0) { |
+ // Guaranteed to only match an empty string. |
+ LAST(ADD_TERM); |
+ if (min == 0) { |
+ return; |
+ } |
+ terms_.Add(atom); |
+ return; |
+ } |
+ } else { |
+ // Only call immediately after adding an atom or character! |
+ UNREACHABLE(); |
+ return; |
+ } |
+ terms_.Add(new(I) RegExpQuantifier(min, max, quantifier_type, atom)); |
+ LAST(ADD_TERM); |
+} |
+ |
+// ---------------------------------------------------------------------------- |
+// Implementation of Parser |
+ |
+RegExpParser::RegExpParser(const String& in, |
+ String* error, |
+ bool multiline) |
+ : isolate_(Isolate::Current()), |
+ error_(error), |
+ captures_(NULL), |
+ in_(in), |
+ current_(kEndMarker), |
+ next_pos_(0), |
+ capture_count_(0), |
+ has_more_(true), |
+ multiline_(multiline), |
+ simple_(false), |
+ contains_anchor_(false), |
+ is_scanned_for_captures_(false), |
+ failed_(false) { |
+ Advance(); |
+} |
+ |
+ |
+uint32_t RegExpParser::Next() { |
+ if (has_next()) { |
+ return in().CharAt(next_pos_); |
+ } else { |
+ return kEndMarker; |
+ } |
+} |
+ |
+ |
+void RegExpParser::Advance() { |
+ if (next_pos_ < in().Length()) { |
+ current_ = in().CharAt(next_pos_); |
+ next_pos_++; |
+ } else { |
+ current_ = kEndMarker; |
+ has_more_ = false; |
+ } |
+} |
+ |
+ |
+void RegExpParser::Advance(intptr_t dist) { |
+ next_pos_ += dist - 1; |
+ Advance(); |
+} |
+ |
+ |
+void RegExpParser::Reset(intptr_t pos) { |
+ next_pos_ = pos; |
+ has_more_ = (pos < in().Length()); |
+ Advance(); |
+} |
+ |
+ |
+bool RegExpParser::ParseFunction(ParsedFunction *parsed_function) { |
+ Isolate* isolate = parsed_function->isolate(); |
+ JSRegExp& regexp = JSRegExp::Handle(parsed_function->function().regexp()); |
+ |
+ const String& pattern = String::Handle(regexp.pattern()); |
+ const bool multiline = regexp.is_multi_line(); |
+ |
+ RegExpCompileData* compile_data = new(isolate) RegExpCompileData(); |
+ if (!RegExpParser::ParseRegExp(pattern, multiline, compile_data)) { |
+ // Parsing failures are handled in the JSRegExp factory constructor. |
+ UNREACHABLE(); |
+ } |
+ |
+ regexp.set_num_bracket_expressions(compile_data->capture_count); |
+ if (compile_data->simple) { |
+ regexp.set_is_simple(); |
+ } else { |
+ regexp.set_is_complex(); |
+ } |
+ |
+ parsed_function->SetRegExpCompileData(compile_data); |
+ |
+ return true; |
+} |
+ |
+ |
+bool RegExpParser::ParseRegExp(const String& input, |
+ bool multiline, |
+ RegExpCompileData* result) { |
+ ASSERT(result != NULL); |
+ LongJumpScope jump; |
+ RegExpParser parser(input, &result->error, multiline); |
+ if (setjmp(*jump.Set()) == 0) { |
+ RegExpTree* tree = parser.ParsePattern(); |
+ ASSERT(tree != NULL); |
+ ASSERT(result->error.IsNull()); |
+ result->tree = tree; |
+ intptr_t capture_count = parser.captures_started(); |
+ result->simple = tree->IsAtom() && parser.simple() && capture_count == 0; |
+ result->contains_anchor = parser.contains_anchor(); |
+ result->capture_count = capture_count; |
+ } else { |
+ ASSERT(!result->error.IsNull()); |
+ Isolate::Current()->object_store()->clear_sticky_error(); |
+ |
+ // Throw a FormatException on parsing failures. |
+ const String& message = String::Handle( |
+ String::Concat(result->error, input)); |
+ const Array& args = Array::Handle(Array::New(1)); |
+ args.SetAt(0, message); |
+ |
+ Exceptions::ThrowByType(Exceptions::kFormat, args); |
+ } |
+ return !parser.failed(); |
+} |
+ |
+ |
+void RegExpParser::ReportError(const char* message) { |
+ failed_ = true; |
+ *error_ = String::New(message); |
+ // Zip to the end to make sure the no more input is read. |
+ current_ = kEndMarker; |
+ next_pos_ = in().Length(); |
+ |
+ const Error& error = Error::Handle(LanguageError::New(*error_)); |
+ Report::LongJump(error); |
+ UNREACHABLE(); |
+} |
+ |
+ |
+// Pattern :: |
+// Disjunction |
+RegExpTree* RegExpParser::ParsePattern() { |
+ RegExpTree* result = ParseDisjunction(); |
+ ASSERT(!has_more()); |
+ // If the result of parsing is a literal string atom, and it has the |
+ // same length as the input, then the atom is identical to the input. |
+ if (result->IsAtom() && result->AsAtom()->length() == in().Length()) { |
+ simple_ = true; |
+ } |
+ return result; |
+} |
+ |
+ |
+// Disjunction :: |
+// Alternative |
+// Alternative | Disjunction |
+// Alternative :: |
+// [empty] |
+// Term Alternative |
+// Term :: |
+// Assertion |
+// Atom |
+// Atom Quantifier |
+RegExpTree* RegExpParser::ParseDisjunction() { |
+ // Used to store current state while parsing subexpressions. |
+ RegExpParserState initial_state(NULL, INITIAL, 0, I); |
+ RegExpParserState* stored_state = &initial_state; |
+ // Cache the builder in a local variable for quick access. |
+ RegExpBuilder* builder = initial_state.builder(); |
+ while (true) { |
+ switch (current()) { |
+ case kEndMarker: |
+ if (stored_state->IsSubexpression()) { |
+ // Inside a parenthesized group when hitting end of input. |
+ ReportError("Unterminated group"); |
+ UNREACHABLE(); |
+ } |
+ ASSERT(INITIAL == stored_state->group_type()); |
+ // Parsing completed successfully. |
+ return builder->ToRegExp(); |
+ case ')': { |
+ if (!stored_state->IsSubexpression()) { |
+ ReportError("Unmatched ')'"); |
+ UNREACHABLE(); |
+ } |
+ ASSERT(INITIAL != stored_state->group_type()); |
+ |
+ Advance(); |
+ // End disjunction parsing and convert builder content to new single |
+ // regexp atom. |
+ RegExpTree* body = builder->ToRegExp(); |
+ |
+ intptr_t end_capture_index = captures_started(); |
+ |
+ intptr_t capture_index = stored_state->capture_index(); |
+ SubexpressionType group_type = stored_state->group_type(); |
+ |
+ // Restore previous state. |
+ stored_state = stored_state->previous_state(); |
+ builder = stored_state->builder(); |
+ |
+ // Build result of subexpression. |
+ if (group_type == CAPTURE) { |
+ RegExpCapture* capture = new(I) RegExpCapture(body, capture_index); |
+ (*captures_)[capture_index - 1] = capture; |
+ body = capture; |
+ } else if (group_type != GROUPING) { |
+ ASSERT(group_type == POSITIVE_LOOKAHEAD || |
+ group_type == NEGATIVE_LOOKAHEAD); |
+ bool is_positive = (group_type == POSITIVE_LOOKAHEAD); |
+ body = new(I) RegExpLookahead(body, |
+ is_positive, |
+ end_capture_index - capture_index, |
+ capture_index); |
+ } |
+ builder->AddAtom(body); |
+ // For compatibility with JSC and ES3, we allow quantifiers after |
+ // lookaheads, and break in all cases. |
+ break; |
+ } |
+ case '|': { |
+ Advance(); |
+ builder->NewAlternative(); |
+ continue; |
+ } |
+ case '*': |
+ case '+': |
+ case '?': |
+ ReportError("Nothing to repeat"); |
+ UNREACHABLE(); |
+ case '^': { |
+ Advance(); |
+ if (multiline_) { |
+ builder->AddAssertion( |
+ new(I) RegExpAssertion(RegExpAssertion::START_OF_LINE)); |
+ } else { |
+ builder->AddAssertion( |
+ new(I) RegExpAssertion(RegExpAssertion::START_OF_INPUT)); |
+ set_contains_anchor(); |
+ } |
+ continue; |
+ } |
+ case '$': { |
+ Advance(); |
+ RegExpAssertion::AssertionType assertion_type = |
+ multiline_ ? RegExpAssertion::END_OF_LINE : |
+ RegExpAssertion::END_OF_INPUT; |
+ builder->AddAssertion(new RegExpAssertion(assertion_type)); |
+ continue; |
+ } |
+ case '.': { |
+ Advance(); |
+ // everything except \x0a, \x0d, \u2028 and \u2029 |
+ ZoneGrowableArray<CharacterRange>* ranges = |
+ new ZoneGrowableArray<CharacterRange>(2); |
+ CharacterRange::AddClassEscape('.', ranges); |
+ RegExpTree* atom = new RegExpCharacterClass(ranges, false); |
+ builder->AddAtom(atom); |
+ break; |
+ } |
+ case '(': { |
+ SubexpressionType subexpr_type = CAPTURE; |
+ Advance(); |
+ if (current() == '?') { |
+ switch (Next()) { |
+ case ':': |
+ subexpr_type = GROUPING; |
+ break; |
+ case '=': |
+ subexpr_type = POSITIVE_LOOKAHEAD; |
+ break; |
+ case '!': |
+ subexpr_type = NEGATIVE_LOOKAHEAD; |
+ break; |
+ default: |
+ ReportError("Invalid group"); |
+ UNREACHABLE(); |
+ } |
+ Advance(2); |
+ } else { |
+ if (captures_ == NULL) { |
+ captures_ = new ZoneGrowableArray<RegExpCapture*>(2); |
+ } |
+ if (captures_started() >= kMaxCaptures) { |
+ ReportError("Too many captures"); |
+ UNREACHABLE(); |
+ } |
+ captures_->Add(NULL); |
+ } |
+ // Store current state and begin new disjunction parsing. |
+ stored_state = new RegExpParserState(stored_state, subexpr_type, |
+ captures_started(), I); |
+ builder = stored_state->builder(); |
+ continue; |
+ } |
+ case '[': { |
+ RegExpTree* atom = ParseCharacterClass(); |
+ builder->AddAtom(atom); |
+ break; |
+ } |
+ // Atom :: |
+ // \ AtomEscape |
+ case '\\': |
+ switch (Next()) { |
+ case kEndMarker: |
+ ReportError("\\ at end of pattern"); |
+ UNREACHABLE(); |
+ case 'b': |
+ Advance(2); |
+ builder->AddAssertion( |
+ new RegExpAssertion(RegExpAssertion::BOUNDARY)); |
+ continue; |
+ case 'B': |
+ Advance(2); |
+ builder->AddAssertion( |
+ new RegExpAssertion(RegExpAssertion::NON_BOUNDARY)); |
+ continue; |
+ // AtomEscape :: |
+ // CharacterClassEscape |
+ // |
+ // CharacterClassEscape :: one of |
+ // d D s S w W |
+ case 'd': case 'D': case 's': case 'S': case 'w': case 'W': { |
+ uint32_t c = Next(); |
+ Advance(2); |
+ ZoneGrowableArray<CharacterRange>* ranges = |
+ new ZoneGrowableArray<CharacterRange>(2); |
+ CharacterRange::AddClassEscape(c, ranges); |
+ RegExpTree* atom = new RegExpCharacterClass(ranges, false); |
+ builder->AddAtom(atom); |
+ break; |
+ } |
+ case '1': case '2': case '3': case '4': case '5': case '6': |
+ case '7': case '8': case '9': { |
+ intptr_t index = 0; |
+ if (ParseBackReferenceIndex(&index)) { |
+ RegExpCapture* capture = NULL; |
+ if (captures_ != NULL && index <= captures_->length()) { |
+ capture = captures_->At(index - 1); |
+ } |
+ if (capture == NULL) { |
+ builder->AddEmpty(); |
+ break; |
+ } |
+ RegExpTree* atom = new RegExpBackReference(capture); |
+ builder->AddAtom(atom); |
+ break; |
+ } |
+ uint32_t first_digit = Next(); |
+ if (first_digit == '8' || first_digit == '9') { |
+ // Treat as identity escape |
+ builder->AddCharacter(first_digit); |
+ Advance(2); |
+ break; |
+ } |
+ } |
+ // FALLTHROUGH |
+ case '0': { |
+ Advance(); |
+ uint32_t octal = ParseOctalLiteral(); |
+ builder->AddCharacter(octal); |
+ break; |
+ } |
+ // ControlEscape :: one of |
+ // f n r t v |
+ case 'f': |
+ Advance(2); |
+ builder->AddCharacter('\f'); |
+ break; |
+ case 'n': |
+ Advance(2); |
+ builder->AddCharacter('\n'); |
+ break; |
+ case 'r': |
+ Advance(2); |
+ builder->AddCharacter('\r'); |
+ break; |
+ case 't': |
+ Advance(2); |
+ builder->AddCharacter('\t'); |
+ break; |
+ case 'v': |
+ Advance(2); |
+ builder->AddCharacter('\v'); |
+ break; |
+ case 'c': { |
+ Advance(); |
+ uint32_t controlLetter = Next(); |
+ // Special case if it is an ASCII letter. |
+ // Convert lower case letters to uppercase. |
+ uint32_t letter = controlLetter & ~('a' ^ 'A'); |
+ if (letter < 'A' || 'Z' < letter) { |
+ // controlLetter is not in range 'A'-'Z' or 'a'-'z'. |
+ // This is outside the specification. We match JSC in |
+ // reading the backslash as a literal character instead |
+ // of as starting an escape. |
+ builder->AddCharacter('\\'); |
+ } else { |
+ Advance(2); |
+ builder->AddCharacter(controlLetter & 0x1f); |
+ } |
+ break; |
+ } |
+ case 'x': { |
+ Advance(2); |
+ uint32_t value; |
+ if (ParseHexEscape(2, &value)) { |
+ builder->AddCharacter(value); |
+ } else { |
+ builder->AddCharacter('x'); |
+ } |
+ break; |
+ } |
+ case 'u': { |
+ Advance(2); |
+ uint32_t value; |
+ if (ParseHexEscape(4, &value)) { |
+ builder->AddCharacter(value); |
+ } else { |
+ builder->AddCharacter('u'); |
+ } |
+ break; |
+ } |
+ default: |
+ // Identity escape. |
+ builder->AddCharacter(Next()); |
+ Advance(2); |
+ break; |
+ } |
+ break; |
+ case '{': { |
+ intptr_t dummy; |
+ if (ParseIntervalQuantifier(&dummy, &dummy)) { |
+ ReportError("Nothing to repeat"); |
+ UNREACHABLE(); |
+ } |
+ // fallthrough |
+ } |
+ default: |
+ builder->AddCharacter(current()); |
+ Advance(); |
+ break; |
+ } // end switch(current()) |
+ |
+ intptr_t min; |
+ intptr_t max; |
+ switch (current()) { |
+ // QuantifierPrefix :: |
+ // * |
+ // + |
+ // ? |
+ // { |
+ case '*': |
+ min = 0; |
+ max = RegExpTree::kInfinity; |
+ Advance(); |
+ break; |
+ case '+': |
+ min = 1; |
+ max = RegExpTree::kInfinity; |
+ Advance(); |
+ break; |
+ case '?': |
+ min = 0; |
+ max = 1; |
+ Advance(); |
+ break; |
+ case '{': |
+ if (ParseIntervalQuantifier(&min, &max)) { |
+ if (max < min) { |
+ ReportError("numbers out of order in {} quantifier."); |
+ UNREACHABLE(); |
+ } |
+ break; |
+ } else { |
+ continue; |
+ } |
+ default: |
+ continue; |
+ } |
+ RegExpQuantifier::QuantifierType quantifier_type = RegExpQuantifier::GREEDY; |
+ if (current() == '?') { |
+ quantifier_type = RegExpQuantifier::NON_GREEDY; |
+ Advance(); |
+ } else if (FLAG_regexp_possessive_quantifier && current() == '+') { |
+ // FLAG_regexp_possessive_quantifier is a debug-only flag. |
+ quantifier_type = RegExpQuantifier::POSSESSIVE; |
+ Advance(); |
+ } |
+ builder->AddQuantifierToAtom(min, max, quantifier_type); |
+ } |
+} |
+ |
+ |
+static const uint16_t kNoCharClass = 0; |
+ |
+// Adds range or pre-defined character class to character ranges. |
+// If char_class is not kInvalidClass, it's interpreted as a class |
+// escape (i.e., 's' means whitespace, from '\s'). |
+static inline void AddRangeOrEscape(ZoneGrowableArray<CharacterRange>* ranges, |
+ uint16_t char_class, |
+ CharacterRange range) { |
+ if (char_class != kNoCharClass) { |
+ CharacterRange::AddClassEscape(char_class, ranges); |
+ } else { |
+ ranges->Add(range); |
+ } |
+} |
+ |
+ |
+RegExpTree* RegExpParser::ParseCharacterClass() { |
+ static const char* kUnterminated = "Unterminated character class"; |
+ static const char* kRangeOutOfOrder = "Range out of order in character class"; |
+ |
+ ASSERT(current() == '['); |
+ Advance(); |
+ bool is_negated = false; |
+ if (current() == '^') { |
+ is_negated = true; |
+ Advance(); |
+ } |
+ ZoneGrowableArray<CharacterRange>* ranges = |
+ new(I) ZoneGrowableArray<CharacterRange>(2); |
+ while (has_more() && current() != ']') { |
+ uint16_t char_class = kNoCharClass; |
+ CharacterRange first = ParseClassAtom(&char_class); |
+ if (current() == '-') { |
+ Advance(); |
+ if (current() == kEndMarker) { |
+ // If we reach the end we break out of the loop and let the |
+ // following code report an error. |
+ break; |
+ } else if (current() == ']') { |
+ AddRangeOrEscape(ranges, char_class, first); |
+ ranges->Add(CharacterRange::Singleton('-')); |
+ break; |
+ } |
+ uint16_t char_class_2 = kNoCharClass; |
+ CharacterRange next = ParseClassAtom(&char_class_2); |
+ if (char_class != kNoCharClass || char_class_2 != kNoCharClass) { |
+ // Either end is an escaped character class. Treat the '-' verbatim. |
+ AddRangeOrEscape(ranges, char_class, first); |
+ ranges->Add(CharacterRange::Singleton('-')); |
+ AddRangeOrEscape(ranges, char_class_2, next); |
+ continue; |
+ } |
+ if (first.from() > next.to()) { |
+ ReportError(kRangeOutOfOrder); |
+ UNREACHABLE(); |
+ } |
+ ranges->Add(CharacterRange::Range(first.from(), next.to())); |
+ } else { |
+ AddRangeOrEscape(ranges, char_class, first); |
+ } |
+ } |
+ if (!has_more()) { |
+ ReportError(kUnterminated); |
+ UNREACHABLE(); |
+ } |
+ Advance(); |
+ if (ranges->length() == 0) { |
+ ranges->Add(CharacterRange::Everything()); |
+ is_negated = !is_negated; |
+ } |
+ return new(I) RegExpCharacterClass(ranges, is_negated); |
+} |
+ |
+ |
+#ifdef DEBUG |
+// Currently only used in an ASSERT. |
+static bool IsSpecialClassEscape(uint32_t c) { |
+ switch (c) { |
+ case 'd': case 'D': |
+ case 's': case 'S': |
+ case 'w': case 'W': |
+ return true; |
+ default: |
+ return false; |
+ } |
+} |
+#endif |
+ |
+ |
+// In order to know whether an escape is a backreference or not we have to scan |
+// the entire regexp and find the number of capturing parentheses. However we |
+// don't want to scan the regexp twice unless it is necessary. This mini-parser |
+// is called when needed. It can see the difference between capturing and |
+// noncapturing parentheses and can skip character classes and backslash-escaped |
+// characters. |
+void RegExpParser::ScanForCaptures() { |
+ // Start with captures started previous to current position |
+ intptr_t capture_count = captures_started(); |
+ // Add count of captures after this position. |
+ intptr_t n; |
+ while ((n = current()) != kEndMarker) { |
+ Advance(); |
+ switch (n) { |
+ case '\\': |
+ Advance(); |
+ break; |
+ case '[': { |
+ intptr_t c; |
+ while ((c = current()) != kEndMarker) { |
+ Advance(); |
+ if (c == '\\') { |
+ Advance(); |
+ } else { |
+ if (c == ']') break; |
+ } |
+ } |
+ break; |
+ } |
+ case '(': |
+ if (current() != '?') capture_count++; |
+ break; |
+ } |
+ } |
+ capture_count_ = capture_count; |
+ is_scanned_for_captures_ = true; |
+} |
+ |
+ |
+static inline bool IsDecimalDigit(int32_t c) { |
+ return '0' <= c && c <= '9'; |
+} |
+ |
+ |
+bool RegExpParser::ParseBackReferenceIndex(intptr_t* index_out) { |
+ ASSERT('\\' == current()); |
+ ASSERT('1' <= Next() && Next() <= '9'); |
+ // Try to parse a decimal literal that is no greater than the total number |
+ // of left capturing parentheses in the input. |
+ intptr_t start = position(); |
+ intptr_t value = Next() - '0'; |
+ Advance(2); |
+ while (true) { |
+ uint32_t c = current(); |
+ if (IsDecimalDigit(c)) { |
+ value = 10 * value + (c - '0'); |
+ if (value > kMaxCaptures) { |
+ Reset(start); |
+ return false; |
+ } |
+ Advance(); |
+ } else { |
+ break; |
+ } |
+ } |
+ if (value > captures_started()) { |
+ if (!is_scanned_for_captures_) { |
+ intptr_t saved_position = position(); |
+ ScanForCaptures(); |
+ Reset(saved_position); |
+ } |
+ if (value > capture_count_) { |
+ Reset(start); |
+ return false; |
+ } |
+ } |
+ *index_out = value; |
+ return true; |
+} |
+ |
+ |
+// QuantifierPrefix :: |
+// { DecimalDigits } |
+// { DecimalDigits , } |
+// { DecimalDigits , DecimalDigits } |
+// |
+// Returns true if parsing succeeds, and set the min_out and max_out |
+// values. Values are truncated to RegExpTree::kInfinity if they overflow. |
+bool RegExpParser::ParseIntervalQuantifier(intptr_t* min_out, |
+ intptr_t* max_out) { |
+ ASSERT(current() == '{'); |
+ intptr_t start = position(); |
+ Advance(); |
+ intptr_t min = 0; |
+ if (!IsDecimalDigit(current())) { |
+ Reset(start); |
+ return false; |
+ } |
+ while (IsDecimalDigit(current())) { |
+ intptr_t next = current() - '0'; |
+ if (min > (RegExpTree::kInfinity - next) / 10) { |
+ // Overflow. Skip past remaining decimal digits and return -1. |
+ do { |
+ Advance(); |
+ } while (IsDecimalDigit(current())); |
+ min = RegExpTree::kInfinity; |
+ break; |
+ } |
+ min = 10 * min + next; |
+ Advance(); |
+ } |
+ intptr_t max = 0; |
+ if (current() == '}') { |
+ max = min; |
+ Advance(); |
+ } else if (current() == ',') { |
+ Advance(); |
+ if (current() == '}') { |
+ max = RegExpTree::kInfinity; |
+ Advance(); |
+ } else { |
+ while (IsDecimalDigit(current())) { |
+ intptr_t next = current() - '0'; |
+ if (max > (RegExpTree::kInfinity - next) / 10) { |
+ do { |
+ Advance(); |
+ } while (IsDecimalDigit(current())); |
+ max = RegExpTree::kInfinity; |
+ break; |
+ } |
+ max = 10 * max + next; |
+ Advance(); |
+ } |
+ if (current() != '}') { |
+ Reset(start); |
+ return false; |
+ } |
+ Advance(); |
+ } |
+ } else { |
+ Reset(start); |
+ return false; |
+ } |
+ *min_out = min; |
+ *max_out = max; |
+ return true; |
+} |
+ |
+ |
+uint32_t RegExpParser::ParseOctalLiteral() { |
+ ASSERT(('0' <= current() && current() <= '7') || current() == kEndMarker); |
+ // For compatibility with some other browsers (not all), we parse |
+ // up to three octal digits with a value below 256. |
+ uint32_t value = current() - '0'; |
+ Advance(); |
+ if ('0' <= current() && current() <= '7') { |
+ value = value * 8 + current() - '0'; |
+ Advance(); |
+ if (value < 32 && '0' <= current() && current() <= '7') { |
+ value = value * 8 + current() - '0'; |
+ Advance(); |
+ } |
+ } |
+ return value; |
+} |
+ |
+ |
+// Returns the value (0 .. 15) of a hexadecimal character c. |
+// If c is not a legal hexadecimal character, returns a value < 0. |
+static inline intptr_t HexValue(uint32_t c) { |
+ c -= '0'; |
+ if (static_cast<unsigned>(c) <= 9) return c; |
+ c = (c | 0x20) - ('a' - '0'); // detect 0x11..0x16 and 0x31..0x36. |
+ if (static_cast<unsigned>(c) <= 5) return c + 10; |
+ return -1; |
+} |
+ |
+ |
+bool RegExpParser::ParseHexEscape(intptr_t length, uint32_t *value) { |
+ intptr_t start = position(); |
+ uint32_t val = 0; |
+ bool done = false; |
+ for (intptr_t i = 0; !done; i++) { |
+ uint32_t c = current(); |
+ intptr_t d = HexValue(c); |
+ if (d < 0) { |
+ Reset(start); |
+ return false; |
+ } |
+ val = val * 16 + d; |
+ Advance(); |
+ if (i == length - 1) { |
+ done = true; |
+ } |
+ } |
+ *value = val; |
+ return true; |
+} |
+ |
+ |
+uint32_t RegExpParser::ParseClassCharacterEscape() { |
+ ASSERT(current() == '\\'); |
+ DEBUG_ASSERT(has_next() && !IsSpecialClassEscape(Next())); |
+ Advance(); |
+ switch (current()) { |
+ case 'b': |
+ Advance(); |
+ return '\b'; |
+ // ControlEscape :: one of |
+ // f n r t v |
+ case 'f': |
+ Advance(); |
+ return '\f'; |
+ case 'n': |
+ Advance(); |
+ return '\n'; |
+ case 'r': |
+ Advance(); |
+ return '\r'; |
+ case 't': |
+ Advance(); |
+ return '\t'; |
+ case 'v': |
+ Advance(); |
+ return '\v'; |
+ case 'c': { |
+ uint32_t controlLetter = Next(); |
+ uint32_t letter = controlLetter & ~('A' ^ 'a'); |
+ // For compatibility with JSC, inside a character class |
+ // we also accept digits and underscore as control characters. |
+ if ((controlLetter >= '0' && controlLetter <= '9') || |
+ controlLetter == '_' || |
+ (letter >= 'A' && letter <= 'Z')) { |
+ Advance(2); |
+ // Control letters mapped to ASCII control characters in the range |
+ // 0x00-0x1f. |
+ return controlLetter & 0x1f; |
+ } |
+ // We match JSC in reading the backslash as a literal |
+ // character instead of as starting an escape. |
+ return '\\'; |
+ } |
+ case '0': case '1': case '2': case '3': case '4': case '5': |
+ case '6': case '7': |
+ // For compatibility, we interpret a decimal escape that isn't |
+ // a back reference (and therefore either \0 or not valid according |
+ // to the specification) as a 1..3 digit octal character code. |
+ return ParseOctalLiteral(); |
+ case 'x': { |
+ Advance(); |
+ uint32_t value; |
+ if (ParseHexEscape(2, &value)) { |
+ return value; |
+ } |
+ // If \x is not followed by a two-digit hexadecimal, treat it |
+ // as an identity escape. |
+ return 'x'; |
+ } |
+ case 'u': { |
+ Advance(); |
+ uint32_t value; |
+ if (ParseHexEscape(4, &value)) { |
+ return value; |
+ } |
+ // If \u is not followed by a four-digit hexadecimal, treat it |
+ // as an identity escape. |
+ return 'u'; |
+ } |
+ default: { |
+ // Extended identity escape. We accept any character that hasn't |
+ // been matched by a more specific case, not just the subset required |
+ // by the ECMAScript specification. |
+ uint32_t result = current(); |
+ Advance(); |
+ return result; |
+ } |
+ } |
+ return 0; |
+} |
+ |
+ |
+CharacterRange RegExpParser::ParseClassAtom(uint16_t* char_class) { |
+ ASSERT(0 == *char_class); |
+ uint32_t first = current(); |
+ if (first == '\\') { |
+ switch (Next()) { |
+ case 'w': case 'W': case 'd': case 'D': case 's': case 'S': { |
+ *char_class = Next(); |
+ Advance(2); |
+ return CharacterRange::Singleton(0); // Return dummy value. |
+ } |
+ case kEndMarker: |
+ ReportError("\\ at end of pattern"); |
+ UNREACHABLE(); |
+ default: |
+ uint32_t c = ParseClassCharacterEscape(); |
+ return CharacterRange::Singleton(c); |
+ } |
+ } else { |
+ Advance(); |
+ return CharacterRange::Singleton(first); |
+ } |
+} |
+ |
+} // namespace dart |