| Index: runtime/vm/regexp.cc
|
| diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..6ccdbbe6afbf2c6c2dbf9f28423a3ffd7145aa46
|
| --- /dev/null
|
| +++ b/runtime/vm/regexp.cc
|
| @@ -0,0 +1,4851 @@
|
| +// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +#include "vm/regexp.h"
|
| +
|
| +#include "vm/dart_entry.h"
|
| +#include "vm/regexp_assembler.h"
|
| +#include "vm/regexp_ast.h"
|
| +#include "vm/unibrow-inl.h"
|
| +#include "vm/unicode.h"
|
| +#include "vm/symbols.h"
|
| +
|
| +#define I isolate()
|
| +#define CI compiler->isolate()
|
| +
|
| +namespace dart {
|
| +
|
| +DECLARE_FLAG(bool, trace_irregexp);
|
| +
|
| +#define DEFINE_ACCEPT(Type) \
|
| + void Type##Node::Accept(NodeVisitor* visitor) { \
|
| + visitor->Visit##Type(this); \
|
| + }
|
| +FOR_EACH_NODE_TYPE(DEFINE_ACCEPT)
|
| +#undef DEFINE_ACCEPT
|
| +
|
| +
|
| +// Default to generating optimized regexp code.
|
| +static const bool kRegexpOptimization = true;
|
| +
|
| +// More makes code generation slower, less makes V8 benchmark score lower.
|
| +static const intptr_t kMaxLookaheadForBoyerMoore = 8;
|
| +
|
| +// In a 3-character pattern you can maximally step forwards 3 characters
|
| +// at a time, which is not always enough to pay for the extra logic.
|
| +static const intptr_t kPatternTooShortForBoyerMoore = 2;
|
| +
|
| +// The '2' variant has inclusive from and exclusive to.
|
| +// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
|
| +// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
|
| +static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
|
| + 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
|
| + 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
|
| + 0xFEFF, 0xFF00, 0x10000 };
|
| +static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges);
|
| +static const intptr_t kWordRanges[] = {
|
| + '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
|
| +static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges);
|
| +static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 };
|
| +static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges);
|
| +static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
|
| +static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges);
|
| +static const intptr_t kLineTerminatorRanges[] = {
|
| + 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 };
|
| +static const intptr_t kLineTerminatorRangeCount =
|
| + ARRAY_SIZE(kLineTerminatorRanges);
|
| +
|
| +
|
| +static inline void PrintUtf16(uint16_t c) {
|
| + const char* format = (0x20 <= c && c <= 0x7F) ?
|
| + "%c" : (c <= 0xff) ? "\\x%02x" : "\\u%04x";
|
| + OS::Print(format, c);
|
| +}
|
| +
|
| +
|
| +// We need to check for the following characters: 0x39c 0x3bc 0x178.
|
| +static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
|
| + // TODO(dcarney): this could be a lot more efficient.
|
| + return range.Contains(0x39c) ||
|
| + range.Contains(0x3bc) || range.Contains(0x178);
|
| +}
|
| +
|
| +
|
| +static bool RangesContainLatin1Equivalents(
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| + for (intptr_t i = 0; i < ranges->length(); i++) {
|
| + // TODO(dcarney): this could be a lot more efficient.
|
| + if (RangeContainsLatin1Equivalents(ranges->At(i))) return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) {
|
| + ASSERT(c > Symbols::kMaxOneCharCodeSymbol);
|
| + switch (c) {
|
| + // This are equivalent characters in unicode.
|
| + case 0x39c:
|
| + case 0x3bc:
|
| + return 0xb5;
|
| + // This is an uppercase of a Latin-1 character
|
| + // outside of Latin-1.
|
| + case 0x178:
|
| + return 0xff;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +class VisitMarker : public ValueObject {
|
| + public:
|
| + explicit VisitMarker(NodeInfo* info) : info_(info) {
|
| + ASSERT(!info->visited);
|
| + info->visited = true;
|
| + }
|
| + ~VisitMarker() {
|
| + info_->visited = false;
|
| + }
|
| + private:
|
| + NodeInfo* info_;
|
| +};
|
| +
|
| +
|
| +class FrequencyCollator : public ValueObject {
|
| + public:
|
| + FrequencyCollator() : total_samples_(0) {
|
| + for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
|
| + frequencies_[i] = CharacterFrequency(i);
|
| + }
|
| + }
|
| +
|
| + void CountCharacter(intptr_t character) {
|
| + intptr_t index = (character & RegExpMacroAssembler::kTableMask);
|
| + frequencies_[index].Increment();
|
| + total_samples_++;
|
| + }
|
| +
|
| + // Does not measure in percent, but rather per-128 (the table size from the
|
| + // regexp macro assembler).
|
| + intptr_t Frequency(intptr_t in_character) {
|
| + ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character);
|
| + if (total_samples_ < 1) return 1; // Division by zero.
|
| + intptr_t freq_in_per128 =
|
| + (frequencies_[in_character].counter() * 128) / total_samples_;
|
| + return freq_in_per128;
|
| + }
|
| +
|
| + private:
|
| + class CharacterFrequency {
|
| + public:
|
| + CharacterFrequency() : counter_(0), character_(-1) { }
|
| + explicit CharacterFrequency(intptr_t character)
|
| + : counter_(0), character_(character) { }
|
| +
|
| + void Increment() { counter_++; }
|
| + intptr_t counter() { return counter_; }
|
| + intptr_t character() { return character_; }
|
| +
|
| + private:
|
| + intptr_t counter_;
|
| + intptr_t character_;
|
| +
|
| + DISALLOW_ALLOCATION();
|
| + };
|
| +
|
| +
|
| + private:
|
| + CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
|
| + intptr_t total_samples_;
|
| +};
|
| +
|
| +
|
| +class RegExpCompiler : public ValueObject {
|
| + public:
|
| + RegExpCompiler(intptr_t capture_count,
|
| + bool ignore_case,
|
| + intptr_t specialization_cid);
|
| +
|
| + intptr_t AllocateRegister() {
|
| + return next_register_++;
|
| + }
|
| +
|
| + RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler,
|
| + RegExpNode* start,
|
| + intptr_t capture_count,
|
| + const String& pattern);
|
| +
|
| + inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
|
| +
|
| + static const intptr_t kImplementationOffset = 0;
|
| + static const intptr_t kNumberOfRegistersOffset = 0;
|
| + static const intptr_t kCodeOffset = 1;
|
| +
|
| + IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
|
| + EndNode* accept() { return accept_; }
|
| +
|
| + static const intptr_t kMaxRecursion = 100;
|
| + inline intptr_t recursion_depth() { return recursion_depth_; }
|
| + inline void IncrementRecursionDepth() { recursion_depth_++; }
|
| + inline void DecrementRecursionDepth() { recursion_depth_--; }
|
| +
|
| + void SetRegExpTooBig() { reg_exp_too_big_ = true; }
|
| +
|
| + inline bool ignore_case() { return ignore_case_; }
|
| + inline bool ascii() const {
|
| + return (specialization_cid_ == kOneByteStringCid ||
|
| + specialization_cid_ == kExternalOneByteStringCid);
|
| + }
|
| + inline intptr_t specialization_cid() { return specialization_cid_; }
|
| + FrequencyCollator* frequency_collator() { return &frequency_collator_; }
|
| +
|
| + intptr_t current_expansion_factor() { return current_expansion_factor_; }
|
| + void set_current_expansion_factor(intptr_t value) {
|
| + current_expansion_factor_ = value;
|
| + }
|
| +
|
| + Isolate* isolate() const { return isolate_; }
|
| +
|
| + static const intptr_t kNoRegister = -1;
|
| +
|
| + private:
|
| + EndNode* accept_;
|
| + intptr_t next_register_;
|
| + ZoneGrowableArray<RegExpNode*>* work_list_;
|
| + intptr_t recursion_depth_;
|
| + IRRegExpMacroAssembler* macro_assembler_;
|
| + bool ignore_case_;
|
| + intptr_t specialization_cid_;
|
| + bool reg_exp_too_big_;
|
| + intptr_t current_expansion_factor_;
|
| + FrequencyCollator frequency_collator_;
|
| + Isolate* isolate_;
|
| +};
|
| +
|
| +
|
| +class RecursionCheck : public ValueObject {
|
| + public:
|
| + explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
|
| + compiler->IncrementRecursionDepth();
|
| + }
|
| + ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
|
| + private:
|
| + RegExpCompiler* compiler_;
|
| +};
|
| +
|
| +
|
| +// Scoped object to keep track of how much we unroll quantifier loops in the
|
| +// regexp graph generator.
|
| +class RegExpExpansionLimiter : public ValueObject {
|
| + public:
|
| + static const intptr_t kMaxExpansionFactor = 6;
|
| + RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor)
|
| + : compiler_(compiler),
|
| + saved_expansion_factor_(compiler->current_expansion_factor()),
|
| + ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
|
| + ASSERT(factor > 0);
|
| + if (ok_to_expand_) {
|
| + if (factor > kMaxExpansionFactor) {
|
| + // Avoid integer overflow of the current expansion factor.
|
| + ok_to_expand_ = false;
|
| + compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
|
| + } else {
|
| + intptr_t new_factor = saved_expansion_factor_ * factor;
|
| + ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
|
| + compiler->set_current_expansion_factor(new_factor);
|
| + }
|
| + }
|
| + }
|
| +
|
| + ~RegExpExpansionLimiter() {
|
| + compiler_->set_current_expansion_factor(saved_expansion_factor_);
|
| + }
|
| +
|
| + bool ok_to_expand() { return ok_to_expand_; }
|
| +
|
| + private:
|
| + RegExpCompiler* compiler_;
|
| + intptr_t saved_expansion_factor_;
|
| + bool ok_to_expand_;
|
| +
|
| + DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
|
| +};
|
| +
|
| +
|
| +// Node generation -------------------------------------------------------------
|
| +
|
| +RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + ZoneGrowableArray<TextElement>* elms =
|
| + new(CI) ZoneGrowableArray<TextElement>(1);
|
| + elms->Add(TextElement::Atom(this));
|
| + return new(CI) TextNode(elms, on_success);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + ZoneGrowableArray<TextElement>* elms =
|
| + new(CI) ZoneGrowableArray<TextElement>(1);
|
| + for (intptr_t i = 0; i < elements()->length(); i++) {
|
| + elms->Add(elements()->At(i));
|
| + }
|
| + return new(CI) TextNode(elms, on_success);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + return new(CI) TextNode(this, on_success);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
|
| + intptr_t length = alternatives->length();
|
| + ChoiceNode* result =
|
| + new(CI) ChoiceNode(length, CI);
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + GuardedAlternative alternative(alternatives->At(i)->ToNode(compiler,
|
| + on_success));
|
| + result->AddAlternative(alternative);
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + return ToNode(min(),
|
| + max(),
|
| + is_greedy(),
|
| + body(),
|
| + compiler,
|
| + on_success);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
|
| + intptr_t max,
|
| + bool is_greedy,
|
| + RegExpTree* body,
|
| + RegExpCompiler* compiler,
|
| + RegExpNode* on_success,
|
| + bool not_at_start) {
|
| + // x{f, t} becomes this:
|
| + //
|
| + // (r++)<-.
|
| + // | `
|
| + // | (x)
|
| + // v ^
|
| + // (r=0)-->(?)---/ [if r < t]
|
| + // |
|
| + // [if r >= f] \----> ...
|
| + //
|
| +
|
| + // 15.10.2.5 RepeatMatcher algorithm.
|
| + // The parser has already eliminated the case where max is 0. In the case
|
| + // where max_match is zero the parser has removed the quantifier if min was
|
| + // > 0 and removed the atom if min was 0. See AddQuantifierToAtom.
|
| +
|
| + // If we know that we cannot match zero length then things are a little
|
| + // simpler since we don't need to make the special zero length match check
|
| + // from step 2.1. If the min and max are small we can unroll a little in
|
| + // this case.
|
| + // Unroll (foo)+ and (foo){3,}
|
| + static const intptr_t kMaxUnrolledMinMatches = 3;
|
| + // Unroll (foo)? and (foo){x,3}
|
| + static const intptr_t kMaxUnrolledMaxMatches = 3;
|
| + if (max == 0) return on_success; // This can happen due to recursion.
|
| + bool body_can_be_empty = (body->min_match() == 0);
|
| + intptr_t body_start_reg = RegExpCompiler::kNoRegister;
|
| + Interval capture_registers = body->CaptureRegisters();
|
| + bool needs_capture_clearing = !capture_registers.is_empty();
|
| + Isolate* isolate = compiler->isolate();
|
| +
|
| + if (body_can_be_empty) {
|
| + body_start_reg = compiler->AllocateRegister();
|
| + } else if (kRegexpOptimization && !needs_capture_clearing) {
|
| + // Only unroll if there are no captures and the body can't be
|
| + // empty.
|
| + {
|
| + RegExpExpansionLimiter limiter(
|
| + compiler, min + ((max != min) ? 1 : 0));
|
| + if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
|
| + intptr_t new_max = (max == kInfinity) ? max : max - min;
|
| + // Recurse once to get the loop or optional matches after the fixed
|
| + // ones.
|
| + RegExpNode* answer = ToNode(
|
| + 0, new_max, is_greedy, body, compiler, on_success, true);
|
| + // Unroll the forced matches from 0 to min. This can cause chains of
|
| + // TextNodes (which the parser does not generate). These should be
|
| + // combined if it turns out they hinder good code generation.
|
| + for (intptr_t i = 0; i < min; i++) {
|
| + answer = body->ToNode(compiler, answer);
|
| + }
|
| + return answer;
|
| + }
|
| + }
|
| + if (max <= kMaxUnrolledMaxMatches && min == 0) {
|
| + ASSERT(max > 0); // Due to the 'if' above.
|
| + RegExpExpansionLimiter limiter(compiler, max);
|
| + if (limiter.ok_to_expand()) {
|
| + // Unroll the optional matches up to max.
|
| + RegExpNode* answer = on_success;
|
| + for (intptr_t i = 0; i < max; i++) {
|
| + ChoiceNode* alternation = new(isolate) ChoiceNode(2, isolate);
|
| + if (is_greedy) {
|
| + alternation->AddAlternative(
|
| + GuardedAlternative(body->ToNode(compiler, answer)));
|
| + alternation->AddAlternative(GuardedAlternative(on_success));
|
| + } else {
|
| + alternation->AddAlternative(GuardedAlternative(on_success));
|
| + alternation->AddAlternative(
|
| + GuardedAlternative(body->ToNode(compiler, answer)));
|
| + }
|
| + answer = alternation;
|
| + if (not_at_start) alternation->set_not_at_start();
|
| + }
|
| + return answer;
|
| + }
|
| + }
|
| + }
|
| + bool has_min = min > 0;
|
| + bool has_max = max < RegExpTree::kInfinity;
|
| + bool needs_counter = has_min || has_max;
|
| + intptr_t reg_ctr = needs_counter
|
| + ? compiler->AllocateRegister()
|
| + : RegExpCompiler::kNoRegister;
|
| + LoopChoiceNode* center = new(isolate) LoopChoiceNode(body->min_match() == 0,
|
| + isolate);
|
| + if (not_at_start) center->set_not_at_start();
|
| + RegExpNode* loop_return = needs_counter
|
| + ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
|
| + : static_cast<RegExpNode*>(center);
|
| + if (body_can_be_empty) {
|
| + // If the body can be empty we need to check if it was and then
|
| + // backtrack.
|
| + loop_return = ActionNode::EmptyMatchCheck(body_start_reg,
|
| + reg_ctr,
|
| + min,
|
| + loop_return);
|
| + }
|
| + RegExpNode* body_node = body->ToNode(compiler, loop_return);
|
| + if (body_can_be_empty) {
|
| + // If the body can be empty we need to store the start position
|
| + // so we can bail out if it was empty.
|
| + body_node = ActionNode::StorePosition(body_start_reg, false, body_node);
|
| + }
|
| + if (needs_capture_clearing) {
|
| + // Before entering the body of this loop we need to clear captures.
|
| + body_node = ActionNode::ClearCaptures(capture_registers, body_node);
|
| + }
|
| + GuardedAlternative body_alt(body_node);
|
| + if (has_max) {
|
| + Guard* body_guard =
|
| + new(isolate) Guard(reg_ctr, Guard::LT, max);
|
| + body_alt.AddGuard(body_guard, isolate);
|
| + }
|
| + GuardedAlternative rest_alt(on_success);
|
| + if (has_min) {
|
| + Guard* rest_guard = new(isolate) Guard(reg_ctr, Guard::GEQ, min);
|
| + rest_alt.AddGuard(rest_guard, isolate);
|
| + }
|
| + if (is_greedy) {
|
| + center->AddLoopAlternative(body_alt);
|
| + center->AddContinueAlternative(rest_alt);
|
| + } else {
|
| + center->AddContinueAlternative(rest_alt);
|
| + center->AddLoopAlternative(body_alt);
|
| + }
|
| + if (needs_counter) {
|
| + return ActionNode::SetRegister(reg_ctr, 0, center);
|
| + } else {
|
| + return center;
|
| + }
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + switch (assertion_type()) {
|
| + case START_OF_LINE:
|
| + return AssertionNode::AfterNewline(on_success);
|
| + case START_OF_INPUT:
|
| + return AssertionNode::AtStart(on_success);
|
| + case BOUNDARY:
|
| + return AssertionNode::AtBoundary(on_success);
|
| + case NON_BOUNDARY:
|
| + return AssertionNode::AtNonBoundary(on_success);
|
| + case END_OF_INPUT:
|
| + return AssertionNode::AtEnd(on_success);
|
| + case END_OF_LINE: {
|
| + // Compile $ in multiline regexps as an alternation with a positive
|
| + // lookahead in one side and an end-of-input on the other side.
|
| + // We need two registers for the lookahead.
|
| + intptr_t stack_pointer_register = compiler->AllocateRegister();
|
| + intptr_t position_register = compiler->AllocateRegister();
|
| + // The ChoiceNode to distinguish between a newline and end-of-input.
|
| + ChoiceNode* result = new ChoiceNode(2, on_success->isolate());
|
| + // Create a newline atom.
|
| + ZoneGrowableArray<CharacterRange>* newline_ranges =
|
| + new ZoneGrowableArray<CharacterRange>(3);
|
| + CharacterRange::AddClassEscape('n', newline_ranges);
|
| + RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
|
| + TextNode* newline_matcher = new TextNode(
|
| + newline_atom,
|
| + ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
| + position_register,
|
| + 0, // No captures inside.
|
| + -1, // Ignored if no captures.
|
| + on_success));
|
| + // Create an end-of-input matcher.
|
| + RegExpNode* end_of_line = ActionNode::BeginSubmatch(
|
| + stack_pointer_register,
|
| + position_register,
|
| + newline_matcher);
|
| + // Add the two alternatives to the ChoiceNode.
|
| + GuardedAlternative eol_alternative(end_of_line);
|
| + result->AddAlternative(eol_alternative);
|
| + GuardedAlternative end_alternative(AssertionNode::AtEnd(on_success));
|
| + result->AddAlternative(end_alternative);
|
| + return result;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + return on_success;
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + return new(CI)
|
| + BackReferenceNode(RegExpCapture::StartRegister(index()),
|
| + RegExpCapture::EndRegister(index()),
|
| + on_success);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + return on_success;
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + intptr_t stack_pointer_register = compiler->AllocateRegister();
|
| + intptr_t position_register = compiler->AllocateRegister();
|
| +
|
| + const intptr_t registers_per_capture = 2;
|
| + const intptr_t register_of_first_capture = 2;
|
| + intptr_t register_count = capture_count_ * registers_per_capture;
|
| + intptr_t register_start =
|
| + register_of_first_capture + capture_from_ * registers_per_capture;
|
| +
|
| + RegExpNode* success;
|
| + if (is_positive()) {
|
| + RegExpNode* node = ActionNode::BeginSubmatch(
|
| + stack_pointer_register,
|
| + position_register,
|
| + body()->ToNode(
|
| + compiler,
|
| + ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
| + position_register,
|
| + register_count,
|
| + register_start,
|
| + on_success)));
|
| + return node;
|
| + } else {
|
| + // We use a ChoiceNode for a negative lookahead because it has most of
|
| + // the characteristics we need. It has the body of the lookahead as its
|
| + // first alternative and the expression after the lookahead of the second
|
| + // alternative. If the first alternative succeeds then the
|
| + // NegativeSubmatchSuccess will unwind the stack including everything the
|
| + // choice node set up and backtrack. If the first alternative fails then
|
| + // the second alternative is tried, which is exactly the desired result
|
| + // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
|
| + // ChoiceNode that knows to ignore the first exit when calculating quick
|
| + // checks.
|
| +
|
| + GuardedAlternative body_alt(
|
| + body()->ToNode(
|
| + compiler,
|
| + success = new(CI) NegativeSubmatchSuccess(stack_pointer_register,
|
| + position_register,
|
| + register_count,
|
| + register_start,
|
| + CI)));
|
| + ChoiceNode* choice_node =
|
| + new(CI) NegativeLookaheadChoiceNode(body_alt,
|
| + GuardedAlternative(on_success),
|
| + CI);
|
| + return ActionNode::BeginSubmatch(stack_pointer_register,
|
| + position_register,
|
| + choice_node);
|
| + }
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + return ToNode(body(), index(), compiler, on_success);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
|
| + intptr_t index,
|
| + RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + intptr_t start_reg = RegExpCapture::StartRegister(index);
|
| + intptr_t end_reg = RegExpCapture::EndRegister(index);
|
| + RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
|
| + RegExpNode* body_node = body->ToNode(compiler, store_end);
|
| + return ActionNode::StorePosition(start_reg, true, body_node);
|
| +}
|
| +
|
| +
|
| +RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
|
| + RegExpNode* on_success) {
|
| + ZoneGrowableArray<RegExpTree*>* children = nodes();
|
| + RegExpNode* current = on_success;
|
| + for (intptr_t i = children->length() - 1; i >= 0; i--) {
|
| + current = children->At(i)->ToNode(compiler, current);
|
| + }
|
| + return current;
|
| +}
|
| +
|
| +
|
| +// ASCII filtering -------------------------------------------------------------
|
| +
|
| +
|
| +RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth, bool ignore_case) {
|
| + RegExpNode* next = on_success_->FilterASCII(depth - 1, ignore_case);
|
| + if (next == NULL) return set_replacement(NULL);
|
| + on_success_ = next;
|
| + return set_replacement(this);
|
| +}
|
| +
|
| +
|
| +RegExpNode* SeqRegExpNode::FilterASCII(intptr_t depth, bool ignore_case) {
|
| + if (info()->replacement_calculated) return replacement();
|
| + if (depth < 0) return this;
|
| + ASSERT(!info()->visited);
|
| + VisitMarker marker(info());
|
| + return FilterSuccessor(depth - 1, ignore_case);
|
| +}
|
| +
|
| +
|
| +RegExpNode* TextNode::FilterASCII(intptr_t depth, bool ignore_case) {
|
| + if (info()->replacement_calculated) return replacement();
|
| + if (depth < 0) return this;
|
| + ASSERT(!info()->visited);
|
| + VisitMarker marker(info());
|
| + intptr_t element_count = elms_->length();
|
| + for (intptr_t i = 0; i < element_count; i++) {
|
| + TextElement elm = elms_->At(i);
|
| + if (elm.text_type() == TextElement::ATOM) {
|
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
|
| + for (intptr_t j = 0; j < quarks->length(); j++) {
|
| + uint16_t c = quarks->At(j);
|
| + if (c <= Symbols::kMaxOneCharCodeSymbol) continue;
|
| + if (!ignore_case) return set_replacement(NULL);
|
| + // Here, we need to check for characters whose upper and lower cases
|
| + // are outside the Latin-1 range.
|
| + uint16_t converted = ConvertNonLatin1ToLatin1(c);
|
| + // Character is outside Latin-1 completely
|
| + if (converted == 0) return set_replacement(NULL);
|
| + // Convert quark to Latin-1 in place.
|
| + (*quarks)[0] = converted;
|
| + }
|
| + } else {
|
| + ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
|
| + RegExpCharacterClass* cc = elm.char_class();
|
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
|
| + if (!CharacterRange::IsCanonical(ranges)) {
|
| + CharacterRange::Canonicalize(ranges);
|
| + }
|
| + // Now they are in order so we only need to look at the first.
|
| + intptr_t range_count = ranges->length();
|
| + if (cc->is_negated()) {
|
| + if (range_count != 0 &&
|
| + ranges->At(0).from() == 0 &&
|
| + ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) {
|
| + // This will be handled in a later filter.
|
| + if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
|
| + return set_replacement(NULL);
|
| + }
|
| + } else {
|
| + if (range_count == 0 ||
|
| + ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) {
|
| + // This will be handled in a later filter.
|
| + if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
|
| + return set_replacement(NULL);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return FilterSuccessor(depth - 1, ignore_case);
|
| +}
|
| +
|
| +
|
| +RegExpNode* LoopChoiceNode::FilterASCII(intptr_t depth, bool ignore_case) {
|
| + if (info()->replacement_calculated) return replacement();
|
| + if (depth < 0) return this;
|
| + if (info()->visited) return this;
|
| + {
|
| + VisitMarker marker(info());
|
| +
|
| + RegExpNode* continue_replacement =
|
| + continue_node_->FilterASCII(depth - 1, ignore_case);
|
| + // If we can't continue after the loop then there is no sense in doing the
|
| + // loop.
|
| + if (continue_replacement == NULL) return set_replacement(NULL);
|
| + }
|
| +
|
| + return ChoiceNode::FilterASCII(depth - 1, ignore_case);
|
| +}
|
| +
|
| +
|
| +RegExpNode* ChoiceNode::FilterASCII(intptr_t depth, bool ignore_case) {
|
| + if (info()->replacement_calculated) return replacement();
|
| + if (depth < 0) return this;
|
| + if (info()->visited) return this;
|
| + VisitMarker marker(info());
|
| + intptr_t choice_count = alternatives_->length();
|
| +
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| + if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
|
| + set_replacement(this);
|
| + return this;
|
| + }
|
| + }
|
| +
|
| + intptr_t surviving = 0;
|
| + RegExpNode* survivor = NULL;
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| + RegExpNode* replacement =
|
| + alternative.node()->FilterASCII(depth - 1, ignore_case);
|
| + ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK.
|
| + if (replacement != NULL) {
|
| + (*alternatives_)[i].set_node(replacement);
|
| + surviving++;
|
| + survivor = replacement;
|
| + }
|
| + }
|
| + if (surviving < 2) return set_replacement(survivor);
|
| +
|
| + set_replacement(this);
|
| + if (surviving == choice_count) {
|
| + return this;
|
| + }
|
| + // Only some of the nodes survived the filtering. We need to rebuild the
|
| + // alternatives list.
|
| + ZoneGrowableArray<GuardedAlternative>* new_alternatives =
|
| + new(I) ZoneGrowableArray<GuardedAlternative>(surviving);
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + RegExpNode* replacement =
|
| + (*alternatives_)[i].node()->FilterASCII(depth - 1, ignore_case);
|
| + if (replacement != NULL) {
|
| + (*alternatives_)[i].set_node(replacement);
|
| + new_alternatives->Add((*alternatives_)[i]);
|
| + }
|
| + }
|
| + alternatives_ = new_alternatives;
|
| + return this;
|
| +}
|
| +
|
| +
|
| +RegExpNode* NegativeLookaheadChoiceNode::FilterASCII(intptr_t depth,
|
| + bool ignore_case) {
|
| + if (info()->replacement_calculated) return replacement();
|
| + if (depth < 0) return this;
|
| + if (info()->visited) return this;
|
| + VisitMarker marker(info());
|
| + // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| + // afterwards.
|
| + RegExpNode* node = (*alternatives_)[1].node();
|
| + RegExpNode* replacement = node->FilterASCII(depth - 1, ignore_case);
|
| + if (replacement == NULL) return set_replacement(NULL);
|
| + (*alternatives_)[1].set_node(replacement);
|
| +
|
| + RegExpNode* neg_node = (*alternatives_)[0].node();
|
| + RegExpNode* neg_replacement = neg_node->FilterASCII(depth - 1, ignore_case);
|
| + // If the negative lookahead is always going to fail then
|
| + // we don't need to check it.
|
| + if (neg_replacement == NULL) return set_replacement(replacement);
|
| + (*alternatives_)[0].set_node(neg_replacement);
|
| + return set_replacement(this);
|
| +}
|
| +
|
| +
|
| +// Code emission ---------------------------------------------------------------
|
| +
|
| +
|
| +void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
| + Guard* guard,
|
| + Trace* trace) {
|
| + switch (guard->op()) {
|
| + case Guard::LT:
|
| + ASSERT(!trace->mentions_reg(guard->reg()));
|
| + macro_assembler->IfRegisterGE(guard->reg(),
|
| + guard->value(),
|
| + trace->backtrack());
|
| + break;
|
| + case Guard::GEQ:
|
| + ASSERT(!trace->mentions_reg(guard->reg()));
|
| + macro_assembler->IfRegisterLT(guard->reg(),
|
| + guard->value(),
|
| + trace->backtrack());
|
| + break;
|
| + }
|
| +}
|
| +
|
| +
|
| +void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| +
|
| + // Omit flushing the trace. We discard the entire stack frame anyway.
|
| +
|
| + if (!label()->IsBound()) {
|
| + // We are completely independent of the trace, since we ignore it,
|
| + // so this code can be used as the generic version.
|
| + assembler->BindBlock(label());
|
| + }
|
| +
|
| + // Throw away everything on the backtrack stack since the start
|
| + // of the negative submatch and restore the character position.
|
| + assembler->ReadCurrentPositionFromRegister(current_position_register_);
|
| + assembler->ReadStackPointerFromRegister(stack_pointer_register_);
|
| + if (clear_capture_count_ > 0) {
|
| + // Clear any captures that might have been performed during the success
|
| + // of the body of the negative look-ahead.
|
| + intptr_t clear_capture_end =
|
| + clear_capture_start_ + clear_capture_count_ - 1;
|
| + assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
|
| + }
|
| + // Now that we have unwound the stack we find at the top of the stack the
|
| + // backtrack that the BeginSubmatch node got.
|
| + assembler->Backtrack();
|
| +}
|
| +
|
| +
|
| +bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
|
| + ASSERT(*cp_offset == 0);
|
| + for (DeferredAction* action = actions_;
|
| + action != NULL;
|
| + action = action->next()) {
|
| + if (action->Mentions(reg)) {
|
| + if (action->action_type() == ActionNode::STORE_POSITION) {
|
| + *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
|
| + return true;
|
| + } else {
|
| + return false;
|
| + }
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +// This is called as we come into a loop choice node and some other tricky
|
| +// nodes. It normalizes the state of the code generator to ensure we can
|
| +// generate generic code.
|
| +intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers,
|
| + Isolate* isolate) {
|
| + intptr_t max_register = RegExpCompiler::kNoRegister;
|
| + for (DeferredAction* action = actions_;
|
| + action != NULL;
|
| + action = action->next()) {
|
| + if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
|
| + Interval range = static_cast<DeferredClearCaptures*>(action)->range();
|
| + for (intptr_t i = range.from(); i <= range.to(); i++)
|
| + affected_registers->Set(i, isolate);
|
| + if (range.to() > max_register) max_register = range.to();
|
| + } else {
|
| + affected_registers->Set(action->reg(), isolate);
|
| + if (action->reg() > max_register) max_register = action->reg();
|
| + }
|
| + }
|
| + return max_register;
|
| +}
|
| +
|
| +
|
| +bool Trace::DeferredAction::Mentions(intptr_t that) {
|
| + if (action_type() == ActionNode::CLEAR_CAPTURES) {
|
| + Interval range = static_cast<DeferredClearCaptures*>(this)->range();
|
| + return range.Contains(that);
|
| + } else {
|
| + return reg() == that;
|
| + }
|
| +}
|
| +
|
| +
|
| +bool Trace::mentions_reg(intptr_t reg) {
|
| + for (DeferredAction* action = actions_;
|
| + action != NULL;
|
| + action = action->next()) {
|
| + if (action->Mentions(reg))
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
|
| + intptr_t max_register,
|
| + const OutSet& registers_to_pop,
|
| + const OutSet& registers_to_clear) {
|
| + for (intptr_t reg = max_register; reg >= 0; reg--) {
|
| + if (registers_to_pop.Get(reg)) {
|
| + assembler->PopRegister(reg);
|
| + } else if (registers_to_clear.Get(reg)) {
|
| + intptr_t clear_to = reg;
|
| + while (reg > 0 && registers_to_clear.Get(reg - 1)) {
|
| + reg--;
|
| + }
|
| + assembler->ClearRegisters(reg, clear_to);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| + intptr_t max_register,
|
| + const OutSet& affected_registers,
|
| + OutSet* registers_to_pop,
|
| + OutSet* registers_to_clear,
|
| + Isolate* isolate) {
|
| + for (intptr_t reg = 0; reg <= max_register; reg++) {
|
| + if (!affected_registers.Get(reg)) {
|
| + continue;
|
| + }
|
| +
|
| + // The chronologically first deferred action in the trace
|
| + // is used to infer the action needed to restore a register
|
| + // to its previous state (or not, if it's safe to ignore it).
|
| + enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
|
| + DeferredActionUndoType undo_action = IGNORE;
|
| +
|
| + intptr_t value = 0;
|
| + bool absolute = false;
|
| + bool clear = false;
|
| + intptr_t store_position = -1;
|
| + // This is a little tricky because we are scanning the actions in reverse
|
| + // historical order (newest first).
|
| + for (DeferredAction* action = actions_;
|
| + action != NULL;
|
| + action = action->next()) {
|
| + if (action->Mentions(reg)) {
|
| + switch (action->action_type()) {
|
| + case ActionNode::SET_REGISTER: {
|
| + Trace::DeferredSetRegister* psr =
|
| + static_cast<Trace::DeferredSetRegister*>(action);
|
| + if (!absolute) {
|
| + value += psr->value();
|
| + absolute = true;
|
| + }
|
| + // SET_REGISTER is currently only used for newly introduced loop
|
| + // counters. They can have a significant previous value if they
|
| + // occour in a loop. TODO(lrn): Propagate this information, so
|
| + // we can set undo_action to IGNORE if we know there is no value to
|
| + // restore.
|
| + undo_action = RESTORE;
|
| + ASSERT(store_position == -1);
|
| + ASSERT(!clear);
|
| + break;
|
| + }
|
| + case ActionNode::INCREMENT_REGISTER:
|
| + if (!absolute) {
|
| + value++;
|
| + }
|
| + ASSERT(store_position == -1);
|
| + ASSERT(!clear);
|
| + undo_action = RESTORE;
|
| + break;
|
| + case ActionNode::STORE_POSITION: {
|
| + Trace::DeferredCapture* pc =
|
| + static_cast<Trace::DeferredCapture*>(action);
|
| + if (!clear && store_position == -1) {
|
| + store_position = pc->cp_offset();
|
| + }
|
| +
|
| + // For captures we know that stores and clears alternate.
|
| + // Other register, are never cleared, and if the occur
|
| + // inside a loop, they might be assigned more than once.
|
| + if (reg <= 1) {
|
| + // Registers zero and one, aka "capture zero", is
|
| + // always set correctly if we succeed. There is no
|
| + // need to undo a setting on backtrack, because we
|
| + // will set it again or fail.
|
| + undo_action = IGNORE;
|
| + } else {
|
| + undo_action = pc->is_capture() ? CLEAR : RESTORE;
|
| + }
|
| + ASSERT(!absolute);
|
| + ASSERT(value == 0);
|
| + break;
|
| + }
|
| + case ActionNode::CLEAR_CAPTURES: {
|
| + // Since we're scanning in reverse order, if we've already
|
| + // set the position we have to ignore historically earlier
|
| + // clearing operations.
|
| + if (store_position == -1) {
|
| + clear = true;
|
| + }
|
| + undo_action = RESTORE;
|
| + ASSERT(!absolute);
|
| + ASSERT(value == 0);
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + // Prepare for the undo-action (e.g., push if it's going to be popped).
|
| + if (undo_action == RESTORE) {
|
| + assembler->PushRegister(reg);
|
| + registers_to_pop->Set(reg, isolate);
|
| + } else if (undo_action == CLEAR) {
|
| + registers_to_clear->Set(reg, isolate);
|
| + }
|
| + // Perform the chronologically last action (or accumulated increment)
|
| + // for the register.
|
| + if (store_position != -1) {
|
| + assembler->WriteCurrentPositionToRegister(reg, store_position);
|
| + } else if (clear) {
|
| + assembler->ClearRegisters(reg, reg);
|
| + } else if (absolute) {
|
| + assembler->SetRegister(reg, value);
|
| + } else if (value != 0) {
|
| + assembler->AdvanceRegister(reg, value);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| +
|
| + ASSERT(!is_trivial());
|
| +
|
| + if (actions_ == NULL && backtrack() == NULL) {
|
| + // Here we just have some deferred cp advances to fix and we are back to
|
| + // a normal situation. We may also have to forget some information gained
|
| + // through a quick check that was already performed.
|
| + if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
|
| + // Create a new trivial state and generate the node with that.
|
| + Trace new_state;
|
| + successor->Emit(compiler, &new_state);
|
| + return;
|
| + }
|
| +
|
| + // Generate deferred actions here along with code to undo them again.
|
| + OutSet affected_registers;
|
| +
|
| + if (backtrack() != NULL) {
|
| + // Here we have a concrete backtrack location. These are set up by choice
|
| + // nodes and so they indicate that we have a deferred save of the current
|
| + // position which we may need to emit here.
|
| + assembler->PushCurrentPosition();
|
| + }
|
| +
|
| + intptr_t max_register = FindAffectedRegisters(&affected_registers, CI);
|
| + OutSet registers_to_pop;
|
| + OutSet registers_to_clear;
|
| + PerformDeferredActions(assembler,
|
| + max_register,
|
| + affected_registers,
|
| + ®isters_to_pop,
|
| + ®isters_to_clear,
|
| + CI);
|
| + if (cp_offset_ != 0) {
|
| + assembler->AdvanceCurrentPosition(cp_offset_);
|
| + }
|
| +
|
| + // Create a new trivial state and generate the node with that.
|
| + BlockLabel undo;
|
| + assembler->PushBacktrack(&undo);
|
| + Trace new_state;
|
| + successor->Emit(compiler, &new_state);
|
| +
|
| + // On backtrack we need to restore state.
|
| + assembler->BindBlock(&undo);
|
| + RestoreAffectedRegisters(assembler,
|
| + max_register,
|
| + registers_to_pop,
|
| + registers_to_clear);
|
| + if (backtrack() == NULL) {
|
| + assembler->Backtrack();
|
| + } else {
|
| + assembler->PopCurrentPosition();
|
| + assembler->GoTo(backtrack());
|
| + }
|
| +}
|
| +
|
| +
|
| +void Trace::InvalidateCurrentCharacter() {
|
| + characters_preloaded_ = 0;
|
| +}
|
| +
|
| +
|
| +void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
|
| + RegExpCompiler* compiler) {
|
| + ASSERT(by > 0);
|
| + // We don't have an instruction for shifting the current character register
|
| + // down or for using a shifted value for anything so lets just forget that
|
| + // we preloaded any characters into it.
|
| + characters_preloaded_ = 0;
|
| + // Adjust the offsets of the quick check performed information. This
|
| + // information is used to find out what we already determined about the
|
| + // characters by means of mask and compare.
|
| + quick_check_performed_.Advance(by, compiler->ascii());
|
| + cp_offset_ += by;
|
| + if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
|
| + compiler->SetRegExpTooBig();
|
| + cp_offset_ = 0;
|
| + }
|
| + bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0),
|
| + bound_checked_up_to_ - by);
|
| +}
|
| +
|
| +
|
| +void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + if (!trace->is_trivial()) {
|
| + trace->Flush(compiler, this);
|
| + return;
|
| + }
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + if (!label()->IsBound()) {
|
| + assembler->BindBlock(label());
|
| + }
|
| + switch (action_) {
|
| + case ACCEPT:
|
| + assembler->Succeed();
|
| + return;
|
| + case BACKTRACK:
|
| + assembler->GoTo(trace->backtrack());
|
| + return;
|
| + case NEGATIVE_SUBMATCH_SUCCESS:
|
| + // This case is handled in a different virtual method.
|
| + UNREACHABLE();
|
| + }
|
| + UNIMPLEMENTED();
|
| +}
|
| +
|
| +
|
| +bool QuickCheckDetails::Rationalize(bool asc) {
|
| + bool found_useful_op = false;
|
| + uint32_t char_mask;
|
| + if (asc) {
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| + }
|
| + mask_ = 0;
|
| + value_ = 0;
|
| + intptr_t char_shift = 0;
|
| + for (intptr_t i = 0; i < characters_; i++) {
|
| + Position* pos = &positions_[i];
|
| + if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) {
|
| + found_useful_op = true;
|
| + }
|
| + mask_ |= (pos->mask & char_mask) << char_shift;
|
| + value_ |= (pos->value & char_mask) << char_shift;
|
| + char_shift += asc ? 8 : 16;
|
| + }
|
| + return found_useful_op;
|
| +}
|
| +
|
| +
|
| +bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| + Trace* trace,
|
| + bool preload_has_checked_bounds,
|
| + BlockLabel* on_possible_success,
|
| + QuickCheckDetails* details,
|
| + bool fall_through_on_failure) {
|
| + if (details->characters() == 0) return false;
|
| + GetQuickCheckDetails(
|
| + details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
|
| + if (details->cannot_match()) return false;
|
| + if (!details->Rationalize(compiler->ascii())) return false;
|
| + ASSERT(details->characters() == 1 ||
|
| + compiler->macro_assembler()->CanReadUnaligned());
|
| + uint32_t mask = details->mask();
|
| + uint32_t value = details->value();
|
| +
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| +
|
| + if (trace->characters_preloaded() != details->characters()) {
|
| + assembler->LoadCurrentCharacter(trace->cp_offset(),
|
| + trace->backtrack(),
|
| + !preload_has_checked_bounds,
|
| + details->characters());
|
| + }
|
| +
|
| +
|
| + bool need_mask = true;
|
| +
|
| + if (details->characters() == 1) {
|
| + // If number of characters preloaded is 1 then we used a byte or 16 bit
|
| + // load so the value is already masked down.
|
| + uint32_t char_mask;
|
| + if (compiler->ascii()) {
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| + }
|
| + if ((mask & char_mask) == char_mask) need_mask = false;
|
| + mask &= char_mask;
|
| + } else {
|
| + // For 2-character preloads in ASCII mode or 1-character preloads in
|
| + // TWO_BYTE mode we also use a 16 bit load with zero extend.
|
| + if (details->characters() == 2 && compiler->ascii()) {
|
| + if ((mask & 0xffff) == 0xffff) need_mask = false;
|
| + } else if (details->characters() == 1 && !compiler->ascii()) {
|
| + if ((mask & 0xffff) == 0xffff) need_mask = false;
|
| + } else {
|
| + if (mask == 0xffffffff) need_mask = false;
|
| + }
|
| + }
|
| +
|
| + if (fall_through_on_failure) {
|
| + if (need_mask) {
|
| + assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
|
| + } else {
|
| + assembler->CheckCharacter(value, on_possible_success);
|
| + }
|
| + } else {
|
| + if (need_mask) {
|
| + assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
|
| + } else {
|
| + assembler->CheckNotCharacter(value, trace->backtrack());
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Emit the code to check for a ^ in multiline mode (1-character lookbehind
|
| +// that matches newline or the start of input).
|
| +static void EmitHat(RegExpCompiler* compiler,
|
| + RegExpNode* on_success,
|
| + Trace* trace) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + // We will be loading the previous character into the current character
|
| + // register.
|
| + Trace new_trace(*trace);
|
| + new_trace.InvalidateCurrentCharacter();
|
| +
|
| + BlockLabel ok;
|
| + if (new_trace.cp_offset() == 0) {
|
| + // The start of input counts as a newline in this context, so skip to
|
| + // ok if we are at the start.
|
| + assembler->CheckAtStart(&ok);
|
| + }
|
| + // We already checked that we are not at the start of input so it must be
|
| + // OK to load the previous character.
|
| + assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
|
| + new_trace.backtrack(),
|
| + false);
|
| + if (!assembler->CheckSpecialCharacterClass('n',
|
| + new_trace.backtrack())) {
|
| + // Newline means \n, \r, 0x2028 or 0x2029.
|
| + if (!compiler->ascii()) {
|
| + assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
|
| + }
|
| + assembler->CheckCharacter('\n', &ok);
|
| + assembler->CheckNotCharacter('\r', new_trace.backtrack());
|
| + }
|
| + assembler->BindBlock(&ok);
|
| + on_success->Emit(compiler, &new_trace);
|
| +}
|
| +
|
| +
|
| +void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + switch (assertion_type_) {
|
| + case AT_END: {
|
| + BlockLabel ok;
|
| + assembler->CheckPosition(trace->cp_offset(), &ok);
|
| + assembler->GoTo(trace->backtrack());
|
| + assembler->BindBlock(&ok);
|
| + break;
|
| + }
|
| + case AT_START: {
|
| + if (trace->at_start() == Trace::FALSE_VALUE) {
|
| + assembler->GoTo(trace->backtrack());
|
| + return;
|
| + }
|
| + if (trace->at_start() == Trace::UNKNOWN) {
|
| + assembler->CheckNotAtStart(trace->backtrack());
|
| + Trace at_start_trace = *trace;
|
| + at_start_trace.set_at_start(true);
|
| + on_success()->Emit(compiler, &at_start_trace);
|
| + return;
|
| + }
|
| + }
|
| + break;
|
| + case AFTER_NEWLINE:
|
| + EmitHat(compiler, on_success(), trace);
|
| + return;
|
| + case AT_BOUNDARY:
|
| + case AT_NON_BOUNDARY: {
|
| + EmitBoundaryCheck(compiler, trace);
|
| + return;
|
| + }
|
| + }
|
| + on_success()->Emit(compiler, trace);
|
| +}
|
| +
|
| +
|
| +RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
|
| + Trace* trace) {
|
| + // If we are generating a greedy loop then don't stop and don't reuse code.
|
| + if (trace->stop_node() != NULL) {
|
| + return CONTINUE;
|
| + }
|
| +
|
| + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| + if (trace->is_trivial()) {
|
| + if (label_.IsBound()) {
|
| + // We are being asked to generate a generic version, but that's already
|
| + // been done so just go to it.
|
| + macro_assembler->GoTo(&label_);
|
| + return DONE;
|
| + }
|
| + if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
|
| + // To avoid too deep recursion we push the node to the work queue and just
|
| + // generate a goto here.
|
| + compiler->AddWork(this);
|
| + macro_assembler->GoTo(&label_);
|
| + return DONE;
|
| + }
|
| + // Generate generic version of the node and bind the label for later use.
|
| + macro_assembler->BindBlock(&label_);
|
| + return CONTINUE;
|
| + }
|
| +
|
| + // We are being asked to make a non-generic version. Keep track of how many
|
| + // non-generic versions we generate so as not to overdo it.
|
| + trace_count_++;
|
| + if (kRegexpOptimization &&
|
| + trace_count_ < kMaxCopiesCodeGenerated &&
|
| + compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
|
| + return CONTINUE;
|
| + }
|
| +
|
| + // If we get here code has been generated for this node too many times or
|
| + // recursion is too deep. Time to switch to a generic version. The code for
|
| + // generic versions above can handle deep recursion properly.
|
| + trace->Flush(compiler, this);
|
| + return DONE;
|
| +}
|
| +
|
| +
|
| +// This generates the code to match a text node. A text node can contain
|
| +// straight character sequences (possibly to be matched in a case-independent
|
| +// way) and character classes. For efficiency we do not do this in a single
|
| +// pass from left to right. Instead we pass over the text node several times,
|
| +// emitting code for some character positions every time. See the comment on
|
| +// TextEmitPass for details.
|
| +void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + LimitResult limit_result = LimitVersions(compiler, trace);
|
| + if (limit_result == DONE) return;
|
| + ASSERT(limit_result == CONTINUE);
|
| +
|
| + if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
|
| + compiler->SetRegExpTooBig();
|
| + return;
|
| + }
|
| +
|
| + if (compiler->ascii()) {
|
| + intptr_t dummy = 0;
|
| + TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy);
|
| + }
|
| +
|
| + bool first_elt_done = false;
|
| + intptr_t bound_checked_to = trace->cp_offset() - 1;
|
| + bound_checked_to += trace->bound_checked_up_to();
|
| +
|
| + // If a character is preloaded into the current character register then
|
| + // check that now.
|
| + if (trace->characters_preloaded() == 1) {
|
| + for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| + if (!SkipPass(pass, compiler->ignore_case())) {
|
| + TextEmitPass(compiler,
|
| + static_cast<TextEmitPassType>(pass),
|
| + true,
|
| + trace,
|
| + false,
|
| + &bound_checked_to);
|
| + }
|
| + }
|
| + first_elt_done = true;
|
| + }
|
| +
|
| + for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| + if (!SkipPass(pass, compiler->ignore_case())) {
|
| + TextEmitPass(compiler,
|
| + static_cast<TextEmitPassType>(pass),
|
| + false,
|
| + trace,
|
| + first_elt_done,
|
| + &bound_checked_to);
|
| + }
|
| + }
|
| +
|
| + Trace successor_trace(*trace);
|
| + successor_trace.set_at_start(false);
|
| + successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
|
| + RecursionCheck rc(compiler);
|
| + on_success()->Emit(compiler, &successor_trace);
|
| +}
|
| +
|
| +
|
| +void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| + if (trace->stop_node() == this) {
|
| + intptr_t text_length =
|
| + GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
|
| + ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
|
| + // Update the counter-based backtracking info on the stack. This is an
|
| + // optimization for greedy loops (see below).
|
| + ASSERT(trace->cp_offset() == text_length);
|
| + macro_assembler->AdvanceCurrentPosition(text_length);
|
| + macro_assembler->GoTo(trace->loop_label());
|
| + return;
|
| + }
|
| + ASSERT(trace->stop_node() == NULL);
|
| + if (!trace->is_trivial()) {
|
| + trace->Flush(compiler, this);
|
| + return;
|
| + }
|
| + ChoiceNode::Emit(compiler, trace);
|
| +}
|
| +
|
| +
|
| +// This class is used when generating the alternatives in a choice node. It
|
| +// records the way the alternative is being code generated.
|
| +struct AlternativeGeneration {
|
| + AlternativeGeneration()
|
| + : possible_success(),
|
| + expects_preload(false),
|
| + after(),
|
| + quick_check_details() { }
|
| + BlockLabel possible_success;
|
| + bool expects_preload;
|
| + BlockLabel after;
|
| + QuickCheckDetails quick_check_details;
|
| +};
|
| +
|
| +
|
| +// Creates a list of AlternativeGenerations. If the list has a reasonable
|
| +// size then it is on the stack, otherwise the excess is on the heap.
|
| +class AlternativeGenerationList {
|
| + public:
|
| + explicit AlternativeGenerationList(intptr_t count)
|
| + : alt_gens_(count) {
|
| + for (intptr_t i = 0; i < count && i < kAFew; i++) {
|
| + alt_gens_.Add(a_few_alt_gens_ + i);
|
| + }
|
| + for (intptr_t i = kAFew; i < count; i++) {
|
| + alt_gens_.Add(new AlternativeGeneration());
|
| + }
|
| + }
|
| + ~AlternativeGenerationList() {
|
| + for (intptr_t i = kAFew; i < alt_gens_.length(); i++) {
|
| + delete alt_gens_[i];
|
| + alt_gens_[i] = NULL;
|
| + }
|
| + }
|
| +
|
| + AlternativeGeneration* at(intptr_t i) {
|
| + return alt_gens_[i];
|
| + }
|
| +
|
| + private:
|
| + static const intptr_t kAFew = 10;
|
| + GrowableArray<AlternativeGeneration*> alt_gens_;
|
| + AlternativeGeneration a_few_alt_gens_[kAFew];
|
| +
|
| + DISALLOW_ALLOCATION();
|
| +};
|
| +
|
| +
|
| +void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| + intptr_t choice_count = alternatives_->length();
|
| +
|
| +#ifdef DEBUG
|
| + for (intptr_t i = 0; i < choice_count - 1; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| + ZoneGrowableArray<Guard*>* guards = alternative.guards();
|
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + ASSERT(!trace->mentions_reg(guards->At(j)->reg()));
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + LimitResult limit_result = LimitVersions(compiler, trace);
|
| + if (limit_result == DONE) return;
|
| + ASSERT(limit_result == CONTINUE);
|
| +
|
| + intptr_t new_flush_budget = trace->flush_budget() / choice_count;
|
| + if (trace->flush_budget() == 0 && trace->actions() != NULL) {
|
| + trace->Flush(compiler, this);
|
| + return;
|
| + }
|
| +
|
| + RecursionCheck rc(compiler);
|
| +
|
| + Trace* current_trace = trace;
|
| +
|
| + intptr_t text_length =
|
| + GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
|
| + bool greedy_loop = false;
|
| + BlockLabel greedy_loop_label;
|
| + Trace counter_backtrack_trace;
|
| + counter_backtrack_trace.set_backtrack(&greedy_loop_label);
|
| + if (not_at_start()) counter_backtrack_trace.set_at_start(false);
|
| +
|
| + if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
|
| + // Here we have special handling for greedy loops containing only text nodes
|
| + // and other simple nodes. These are handled by pushing the current
|
| + // position on the stack and then incrementing the current position each
|
| + // time around the switch. On backtrack we decrement the current position
|
| + // and check it against the pushed value. This avoids pushing backtrack
|
| + // information for each iteration of the loop, which could take up a lot of
|
| + // space.
|
| + greedy_loop = true;
|
| + ASSERT(trace->stop_node() == NULL);
|
| + macro_assembler->PushCurrentPosition();
|
| + current_trace = &counter_backtrack_trace;
|
| + BlockLabel greedy_match_failed;
|
| + Trace greedy_match_trace;
|
| + if (not_at_start()) greedy_match_trace.set_at_start(false);
|
| + greedy_match_trace.set_backtrack(&greedy_match_failed);
|
| + BlockLabel loop_label;
|
| + macro_assembler->BindBlock(&loop_label);
|
| + greedy_match_trace.set_stop_node(this);
|
| + greedy_match_trace.set_loop_label(&loop_label);
|
| + (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace);
|
| + macro_assembler->BindBlock(&greedy_match_failed);
|
| + }
|
| +
|
| + BlockLabel second_choice; // For use in greedy matches.
|
| + macro_assembler->BindBlock(&second_choice);
|
| +
|
| + intptr_t first_normal_choice = greedy_loop ? 1 : 0;
|
| +
|
| + bool not_at_start = current_trace->at_start() == Trace::FALSE_VALUE;
|
| + const intptr_t kEatsAtLeastNotYetInitialized = -1;
|
| + intptr_t eats_at_least = kEatsAtLeastNotYetInitialized;
|
| +
|
| + bool skip_was_emitted = false;
|
| +
|
| + if (!greedy_loop && choice_count == 2) {
|
| + GuardedAlternative alt1 = (*alternatives_)[1];
|
| + if (alt1.guards() == NULL || alt1.guards()->length() == 0) {
|
| + RegExpNode* eats_anything_node = alt1.node();
|
| + if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) ==
|
| + this) {
|
| + // At this point we know that we are at a non-greedy loop that will eat
|
| + // any character one at a time. Any non-anchored regexp has such a
|
| + // loop prepended to it in order to find where it starts. We look for
|
| + // a pattern of the form ...abc... where we can look 6 characters ahead
|
| + // and step forwards 3 if the character is not one of abc. Abc need
|
| + // not be atoms, they can be any reasonably limited character class or
|
| + // small alternation.
|
| + ASSERT(trace->is_trivial()); // This is the case on LoopChoiceNodes.
|
| + BoyerMooreLookahead* lookahead = bm_info(not_at_start);
|
| + if (lookahead == NULL) {
|
| + eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore,
|
| + EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| + kRecursionBudget,
|
| + not_at_start));
|
| + if (eats_at_least >= 1) {
|
| + BoyerMooreLookahead* bm =
|
| + new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
|
| + GuardedAlternative alt0 = alternatives_->At(0);
|
| + alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
|
| + skip_was_emitted = bm->EmitSkipInstructions(macro_assembler);
|
| + }
|
| + } else {
|
| + skip_was_emitted = lookahead->EmitSkipInstructions(macro_assembler);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + if (eats_at_least == kEatsAtLeastNotYetInitialized) {
|
| + // Save some time by looking at most one machine word ahead.
|
| + eats_at_least =
|
| + EatsAtLeast(compiler->ascii() ? 4 : 2, kRecursionBudget, not_at_start);
|
| + }
|
| + intptr_t preload_characters =
|
| + CalculatePreloadCharacters(compiler, eats_at_least);
|
| +
|
| + bool preload_is_current = !skip_was_emitted &&
|
| + (current_trace->characters_preloaded() == preload_characters);
|
| + bool preload_has_checked_bounds = preload_is_current;
|
| +
|
| + AlternativeGenerationList alt_gens(choice_count);
|
| +
|
| + // For now we just call all choices one after the other. The idea ultimately
|
| + // is to use the Dispatch table to try only the relevant ones.
|
| + for (intptr_t i = first_normal_choice; i < choice_count; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| + AlternativeGeneration* alt_gen = alt_gens.at(i);
|
| + alt_gen->quick_check_details.set_characters(preload_characters);
|
| + ZoneGrowableArray<Guard*>* guards = alternative.guards();
|
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
|
| + Trace new_trace(*current_trace);
|
| + new_trace.set_characters_preloaded(preload_is_current ?
|
| + preload_characters :
|
| + 0);
|
| + if (preload_has_checked_bounds) {
|
| + new_trace.set_bound_checked_up_to(preload_characters);
|
| + }
|
| + new_trace.quick_check_performed()->Clear();
|
| + if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
|
| + alt_gen->expects_preload = preload_is_current;
|
| + bool generate_full_check_inline = false;
|
| + if (kRegexpOptimization &&
|
| + try_to_emit_quick_check_for_alternative(i) &&
|
| + alternative.node()->EmitQuickCheck(compiler,
|
| + &new_trace,
|
| + preload_has_checked_bounds,
|
| + &alt_gen->possible_success,
|
| + &alt_gen->quick_check_details,
|
| + i < choice_count - 1)) {
|
| + // Quick check was generated for this choice.
|
| + preload_is_current = true;
|
| + preload_has_checked_bounds = true;
|
| + // On the last choice in the ChoiceNode we generated the quick
|
| + // check to fall through on possible success. So now we need to
|
| + // generate the full check inline.
|
| + if (i == choice_count - 1) {
|
| + macro_assembler->BindBlock(&alt_gen->possible_success);
|
| + new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
| + new_trace.set_characters_preloaded(preload_characters);
|
| + new_trace.set_bound_checked_up_to(preload_characters);
|
| + generate_full_check_inline = true;
|
| + }
|
| + } else if (alt_gen->quick_check_details.cannot_match()) {
|
| + if (i == choice_count - 1 && !greedy_loop) {
|
| + macro_assembler->GoTo(trace->backtrack());
|
| + }
|
| + continue;
|
| + } else {
|
| + // No quick check was generated. Put the full code here.
|
| + // If this is not the first choice then there could be slow checks from
|
| + // previous cases that go here when they fail. There's no reason to
|
| + // insist that they preload characters since the slow check we are about
|
| + // to generate probably can't use it.
|
| + if (i != first_normal_choice) {
|
| + alt_gen->expects_preload = false;
|
| + new_trace.InvalidateCurrentCharacter();
|
| + }
|
| + if (i < choice_count - 1) {
|
| + new_trace.set_backtrack(&alt_gen->after);
|
| + }
|
| + generate_full_check_inline = true;
|
| + }
|
| + if (generate_full_check_inline) {
|
| + if (new_trace.actions() != NULL) {
|
| + new_trace.set_flush_budget(new_flush_budget);
|
| + }
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + GenerateGuard(macro_assembler, guards->At(j), &new_trace);
|
| + }
|
| + alternative.node()->Emit(compiler, &new_trace);
|
| + preload_is_current = false;
|
| + }
|
| + macro_assembler->BindBlock(&alt_gen->after);
|
| + }
|
| + if (greedy_loop) {
|
| + macro_assembler->BindBlock(&greedy_loop_label);
|
| + // If we have unwound to the bottom then backtrack.
|
| + macro_assembler->CheckGreedyLoop(trace->backtrack());
|
| + // Otherwise try the second priority at an earlier position.
|
| + macro_assembler->AdvanceCurrentPosition(-text_length);
|
| + macro_assembler->GoTo(&second_choice);
|
| + }
|
| +
|
| + // At this point we need to generate slow checks for the alternatives where
|
| + // the quick check was inlined. We can recognize these because the associated
|
| + // label was bound.
|
| + for (intptr_t i = first_normal_choice; i < choice_count - 1; i++) {
|
| + AlternativeGeneration* alt_gen = alt_gens.at(i);
|
| + Trace new_trace(*current_trace);
|
| + // If there are actions to be flushed we have to limit how many times
|
| + // they are flushed. Take the budget of the parent trace and distribute
|
| + // it fairly amongst the children.
|
| + if (new_trace.actions() != NULL) {
|
| + new_trace.set_flush_budget(new_flush_budget);
|
| + }
|
| + EmitOutOfLineContinuation(compiler,
|
| + &new_trace,
|
| + alternatives_->At(i),
|
| + alt_gen,
|
| + preload_characters,
|
| + alt_gens.at(i + 1)->expects_preload);
|
| + }
|
| +}
|
| +
|
| +
|
| +void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
| + Trace* trace,
|
| + GuardedAlternative alternative,
|
| + AlternativeGeneration* alt_gen,
|
| + intptr_t preload_characters,
|
| + bool next_expects_preload) {
|
| + if (!alt_gen->possible_success.IsLinked()) return;
|
| +
|
| + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| + macro_assembler->BindBlock(&alt_gen->possible_success);
|
| + Trace out_of_line_trace(*trace);
|
| + out_of_line_trace.set_characters_preloaded(preload_characters);
|
| + out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
| + if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
|
| + ZoneGrowableArray<Guard*>* guards = alternative.guards();
|
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
|
| + if (next_expects_preload) {
|
| + BlockLabel reload_current_char;
|
| + out_of_line_trace.set_backtrack(&reload_current_char);
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
|
| + }
|
| + alternative.node()->Emit(compiler, &out_of_line_trace);
|
| + macro_assembler->BindBlock(&reload_current_char);
|
| + // Reload the current character, since the next quick check expects that.
|
| + // We don't need to check bounds here because we only get into this
|
| + // code through a quick check which already did the checked load.
|
| + macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
|
| + NULL,
|
| + false,
|
| + preload_characters);
|
| + macro_assembler->GoTo(&(alt_gen->after));
|
| + } else {
|
| + out_of_line_trace.set_backtrack(&(alt_gen->after));
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
|
| + }
|
| + alternative.node()->Emit(compiler, &out_of_line_trace);
|
| + }
|
| +}
|
| +
|
| +
|
| +void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + LimitResult limit_result = LimitVersions(compiler, trace);
|
| + if (limit_result == DONE) return;
|
| + ASSERT(limit_result == CONTINUE);
|
| +
|
| + RecursionCheck rc(compiler);
|
| +
|
| + switch (action_type_) {
|
| + case STORE_POSITION: {
|
| + Trace::DeferredCapture
|
| + new_capture(data_.u_position_register.reg,
|
| + data_.u_position_register.is_capture,
|
| + trace);
|
| + Trace new_trace = *trace;
|
| + new_trace.add_action(&new_capture);
|
| + on_success()->Emit(compiler, &new_trace);
|
| + break;
|
| + }
|
| + case INCREMENT_REGISTER: {
|
| + Trace::DeferredIncrementRegister
|
| + new_increment(data_.u_increment_register.reg);
|
| + Trace new_trace = *trace;
|
| + new_trace.add_action(&new_increment);
|
| + on_success()->Emit(compiler, &new_trace);
|
| + break;
|
| + }
|
| + case SET_REGISTER: {
|
| + Trace::DeferredSetRegister
|
| + new_set(data_.u_store_register.reg, data_.u_store_register.value);
|
| + Trace new_trace = *trace;
|
| + new_trace.add_action(&new_set);
|
| + on_success()->Emit(compiler, &new_trace);
|
| + break;
|
| + }
|
| + case CLEAR_CAPTURES: {
|
| + Trace::DeferredClearCaptures
|
| + new_capture(Interval(data_.u_clear_captures.range_from,
|
| + data_.u_clear_captures.range_to));
|
| + Trace new_trace = *trace;
|
| + new_trace.add_action(&new_capture);
|
| + on_success()->Emit(compiler, &new_trace);
|
| + break;
|
| + }
|
| + case BEGIN_SUBMATCH:
|
| + if (!trace->is_trivial()) {
|
| + trace->Flush(compiler, this);
|
| + } else {
|
| + assembler->WriteCurrentPositionToRegister(
|
| + data_.u_submatch.current_position_register, 0);
|
| + assembler->WriteStackPointerToRegister(
|
| + data_.u_submatch.stack_pointer_register);
|
| + on_success()->Emit(compiler, trace);
|
| + }
|
| + break;
|
| + case EMPTY_MATCH_CHECK: {
|
| + intptr_t start_pos_reg = data_.u_empty_match_check.start_register;
|
| + intptr_t stored_pos = 0;
|
| + intptr_t rep_reg = data_.u_empty_match_check.repetition_register;
|
| + bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
|
| + bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
|
| + if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
|
| + // If we know we haven't advanced and there is no minimum we
|
| + // can just backtrack immediately.
|
| + assembler->GoTo(trace->backtrack());
|
| + } else if (know_dist && stored_pos < trace->cp_offset()) {
|
| + // If we know we've advanced we can generate the continuation
|
| + // immediately.
|
| + on_success()->Emit(compiler, trace);
|
| + } else if (!trace->is_trivial()) {
|
| + trace->Flush(compiler, this);
|
| + } else {
|
| + BlockLabel skip_empty_check;
|
| + // If we have a minimum number of repetitions we check the current
|
| + // number first and skip the empty check if it's not enough.
|
| + if (has_minimum) {
|
| + intptr_t limit = data_.u_empty_match_check.repetition_limit;
|
| + assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
|
| + }
|
| + // If the match is empty we bail out, otherwise we fall through
|
| + // to the on-success continuation.
|
| + assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
|
| + trace->backtrack());
|
| + assembler->BindBlock(&skip_empty_check);
|
| + on_success()->Emit(compiler, trace);
|
| + }
|
| + break;
|
| + }
|
| + case POSITIVE_SUBMATCH_SUCCESS: {
|
| + if (!trace->is_trivial()) {
|
| + trace->Flush(compiler, this);
|
| + return;
|
| + }
|
| + assembler->ReadCurrentPositionFromRegister(
|
| + data_.u_submatch.current_position_register);
|
| + assembler->ReadStackPointerFromRegister(
|
| + data_.u_submatch.stack_pointer_register);
|
| + intptr_t clear_register_count = data_.u_submatch.clear_register_count;
|
| + if (clear_register_count == 0) {
|
| + on_success()->Emit(compiler, trace);
|
| + return;
|
| + }
|
| + intptr_t clear_registers_from = data_.u_submatch.clear_register_from;
|
| + BlockLabel clear_registers_backtrack;
|
| + Trace new_trace = *trace;
|
| + new_trace.set_backtrack(&clear_registers_backtrack);
|
| + on_success()->Emit(compiler, &new_trace);
|
| +
|
| + assembler->BindBlock(&clear_registers_backtrack);
|
| + intptr_t clear_registers_to =
|
| + clear_registers_from + clear_register_count - 1;
|
| + assembler->ClearRegisters(clear_registers_from, clear_registers_to);
|
| +
|
| + ASSERT(trace->backtrack() == NULL);
|
| + assembler->Backtrack();
|
| + return;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + if (!trace->is_trivial()) {
|
| + trace->Flush(compiler, this);
|
| + return;
|
| + }
|
| +
|
| + LimitResult limit_result = LimitVersions(compiler, trace);
|
| + if (limit_result == DONE) return;
|
| + ASSERT(limit_result == CONTINUE);
|
| +
|
| + RecursionCheck rc(compiler);
|
| +
|
| + ASSERT(start_reg_ + 1 == end_reg_);
|
| + if (compiler->ignore_case()) {
|
| + assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
|
| + trace->backtrack());
|
| + } else {
|
| + assembler->CheckNotBackReference(start_reg_, trace->backtrack());
|
| + }
|
| + on_success()->Emit(compiler, trace);
|
| +}
|
| +
|
| +
|
| +void ActionNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + if (action_type_ == BEGIN_SUBMATCH) {
|
| + bm->SetRest(offset);
|
| + } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
|
| + on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
|
| + }
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| +}
|
| +
|
| +
|
| +void AssertionNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + // Match the behaviour of EatsAtLeast on this node.
|
| + if (assertion_type() == AT_START && not_at_start) return;
|
| + on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| +}
|
| +
|
| +
|
| +void BackReferenceNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + // Working out the set of characters that a backreference can match is too
|
| + // hard, so we just say that any character can match.
|
| + bm->SetRest(offset);
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| +}
|
| +
|
| +
|
| +// Returns the number of characters in the equivalence class, omitting those
|
| +// that cannot occur in the source string because it is ASCII.
|
| +static intptr_t GetCaseIndependentLetters(uint16_t character,
|
| + bool ascii_subject,
|
| + int32_t* letters) {
|
| + unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
|
| + intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters);
|
| + // Unibrow returns 0 or 1 for characters where case independence is
|
| + // trivial.
|
| + if (length == 0) {
|
| + letters[0] = character;
|
| + length = 1;
|
| + }
|
| + if (!ascii_subject || character <= Symbols::kMaxOneCharCodeSymbol) {
|
| + return length;
|
| + }
|
| + // The standard requires that non-ASCII characters cannot have ASCII
|
| + // character codes in their equivalence class.
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +void ChoiceNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + ZoneGrowableArray<GuardedAlternative>* alts = alternatives();
|
| + budget = (budget - 1) / alts->length();
|
| + for (intptr_t i = 0; i < alts->length(); i++) {
|
| + GuardedAlternative& alt = (*alts)[i];
|
| + if (alt.guards() != NULL && alt.guards()->length() != 0) {
|
| + bm->SetRest(offset); // Give up trying to fill in info.
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| + return;
|
| + }
|
| + alt.node()->FillInBMInfo(offset, budget, bm, not_at_start);
|
| + }
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| +}
|
| +
|
| +
|
| +void EndNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + // Returning 0 from EatsAtLeast should ensure we never get here.
|
| + UNREACHABLE();
|
| +}
|
| +
|
| +
|
| +void LoopChoiceNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + if (body_can_be_zero_length_ || budget <= 0) {
|
| + bm->SetRest(offset);
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| + return;
|
| + }
|
| + ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start);
|
| + SaveBMInfo(bm, not_at_start, offset);
|
| +}
|
| +
|
| +
|
| +void TextNode::FillInBMInfo(intptr_t initial_offset,
|
| + intptr_t budget,
|
| + BoyerMooreLookahead* bm,
|
| + bool not_at_start) {
|
| + if (initial_offset >= bm->length()) return;
|
| + intptr_t offset = initial_offset;
|
| + intptr_t max_char = bm->max_char();
|
| + for (intptr_t i = 0; i < elements()->length(); i++) {
|
| + if (offset >= bm->length()) {
|
| + if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| + return;
|
| + }
|
| + TextElement text = elements()->At(i);
|
| + if (text.text_type() == TextElement::ATOM) {
|
| + RegExpAtom* atom = text.atom();
|
| + for (intptr_t j = 0; j < atom->length(); j++, offset++) {
|
| + if (offset >= bm->length()) {
|
| + if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| + return;
|
| + }
|
| + uint16_t character = atom->data()->At(j);
|
| + if (bm->compiler()->ignore_case()) {
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length = GetCaseIndependentLetters(
|
| + character,
|
| + bm->max_char() == Symbols::kMaxOneCharCodeSymbol,
|
| + chars);
|
| + for (intptr_t j = 0; j < length; j++) {
|
| + bm->Set(offset, chars[j]);
|
| + }
|
| + } else {
|
| + if (character <= max_char) bm->Set(offset, character);
|
| + }
|
| + }
|
| + } else {
|
| + ASSERT(text.text_type() == TextElement::CHAR_CLASS);
|
| + RegExpCharacterClass* char_class = text.char_class();
|
| + ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges();
|
| + if (char_class->is_negated()) {
|
| + bm->SetAll(offset);
|
| + } else {
|
| + for (intptr_t k = 0; k < ranges->length(); k++) {
|
| + CharacterRange& range = (*ranges)[k];
|
| + if (range.from() > max_char) continue;
|
| + intptr_t to = Utils::Minimum(max_char,
|
| + static_cast<intptr_t>(range.to()));
|
| + bm->SetInterval(offset, Interval(range.from(), to));
|
| + }
|
| + }
|
| + offset++;
|
| + }
|
| + }
|
| + if (offset >= bm->length()) {
|
| + if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| + return;
|
| + }
|
| + on_success()->FillInBMInfo(offset,
|
| + budget - 1,
|
| + bm,
|
| + true); // Not at start after a text node.
|
| + if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| +}
|
| +
|
| +
|
| +// Check for [0-9A-Z_a-z].
|
| +static void EmitWordCheck(RegExpMacroAssembler* assembler,
|
| + BlockLabel* word,
|
| + BlockLabel* non_word,
|
| + bool fall_through_on_word) {
|
| + if (assembler->CheckSpecialCharacterClass(
|
| + fall_through_on_word ? 'w' : 'W',
|
| + fall_through_on_word ? non_word : word)) {
|
| + // Optimized implementation available.
|
| + return;
|
| + }
|
| + assembler->CheckCharacterGT('z', non_word);
|
| + assembler->CheckCharacterLT('0', non_word);
|
| + assembler->CheckCharacterGT('a' - 1, word);
|
| + assembler->CheckCharacterLT('9' + 1, word);
|
| + assembler->CheckCharacterLT('A', non_word);
|
| + assembler->CheckCharacterLT('Z' + 1, word);
|
| + if (fall_through_on_word) {
|
| + assembler->CheckNotCharacter('_', non_word);
|
| + } else {
|
| + assembler->CheckCharacter('_', word);
|
| + }
|
| +}
|
| +
|
| +
|
| +// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
|
| +void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + Trace::TriBool next_is_word_character = Trace::UNKNOWN;
|
| + bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
|
| + BoyerMooreLookahead* lookahead = bm_info(not_at_start);
|
| + if (lookahead == NULL) {
|
| + intptr_t eats_at_least =
|
| + Utils::Minimum(kMaxLookaheadForBoyerMoore,
|
| + EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| + kRecursionBudget,
|
| + not_at_start));
|
| + if (eats_at_least >= 1) {
|
| + BoyerMooreLookahead* bm =
|
| + new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
|
| + FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
|
| + if (bm->at(0)->is_non_word())
|
| + next_is_word_character = Trace::FALSE_VALUE;
|
| + if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
|
| + }
|
| + } else {
|
| + if (lookahead->at(0)->is_non_word())
|
| + next_is_word_character = Trace::FALSE_VALUE;
|
| + if (lookahead->at(0)->is_word())
|
| + next_is_word_character = Trace::TRUE_VALUE;
|
| + }
|
| + bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
|
| + if (next_is_word_character == Trace::UNKNOWN) {
|
| + BlockLabel before_non_word;
|
| + BlockLabel before_word;
|
| + if (trace->characters_preloaded() != 1) {
|
| + assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
|
| + }
|
| + // Fall through on non-word.
|
| + EmitWordCheck(assembler, &before_word, &before_non_word, false);
|
| + // Next character is not a word character.
|
| + assembler->BindBlock(&before_non_word);
|
| + BlockLabel ok;
|
| + // Backtrack on \B (non-boundary check) if previous is a word,
|
| + // since we know next *is not* a word and this would be a boundary.
|
| + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
|
| +
|
| + if (!assembler->IsClosed()) {
|
| + assembler->GoTo(&ok);
|
| + }
|
| +
|
| + assembler->BindBlock(&before_word);
|
| + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
|
| + assembler->BindBlock(&ok);
|
| + } else if (next_is_word_character == Trace::TRUE_VALUE) {
|
| + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
|
| + } else {
|
| + ASSERT(next_is_word_character == Trace::FALSE_VALUE);
|
| + BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
|
| + }
|
| +}
|
| +
|
| +
|
| +void AssertionNode::BacktrackIfPrevious(
|
| + RegExpCompiler* compiler,
|
| + Trace* trace,
|
| + AssertionNode::IfPrevious backtrack_if_previous) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + Trace new_trace(*trace);
|
| + new_trace.InvalidateCurrentCharacter();
|
| +
|
| + BlockLabel fall_through, dummy;
|
| +
|
| + BlockLabel* non_word = backtrack_if_previous == kIsNonWord ?
|
| + new_trace.backtrack() :
|
| + &fall_through;
|
| + BlockLabel* word = backtrack_if_previous == kIsNonWord ?
|
| + &fall_through :
|
| + new_trace.backtrack();
|
| +
|
| + if (new_trace.cp_offset() == 0) {
|
| + // The start of input counts as a non-word character, so the question is
|
| + // decided if we are at the start.
|
| + assembler->CheckAtStart(non_word);
|
| + }
|
| + // We already checked that we are not at the start of input so it must be
|
| + // OK to load the previous character.
|
| + assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
|
| + EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
|
| +
|
| + assembler->BindBlock(&fall_through);
|
| + on_success()->Emit(compiler, &new_trace);
|
| +}
|
| +
|
| +
|
| +static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) {
|
| + if (quick_check == NULL) return false;
|
| + if (offset >= quick_check->characters()) return false;
|
| + return quick_check->positions(offset)->determines_perfectly;
|
| +}
|
| +
|
| +
|
| +static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) {
|
| + if (index > *checked_up_to) {
|
| + *checked_up_to = index;
|
| + }
|
| +}
|
| +
|
| +
|
| +typedef bool EmitCharacterFunction(Isolate* isolate,
|
| + RegExpCompiler* compiler,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| + bool check,
|
| + bool preloaded);
|
| +
|
| +
|
| +static inline bool EmitSimpleCharacter(Isolate* isolate,
|
| + RegExpCompiler* compiler,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| + bool check,
|
| + bool preloaded) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + bool bound_checked = false;
|
| + if (!preloaded) {
|
| + assembler->LoadCurrentCharacter(
|
| + cp_offset,
|
| + on_failure,
|
| + check);
|
| + bound_checked = true;
|
| + }
|
| + assembler->CheckNotCharacter(c, on_failure);
|
| + return bound_checked;
|
| +}
|
| +
|
| +
|
| +static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
|
| + bool ascii,
|
| + uint16_t c1,
|
| + uint16_t c2,
|
| + BlockLabel* on_failure) {
|
| + uint16_t char_mask;
|
| + if (ascii) {
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| + }
|
| + uint16_t exor = c1 ^ c2;
|
| + // Check whether exor has only one bit set.
|
| + if (((exor - 1) & exor) == 0) {
|
| + // If c1 and c2 differ only by one bit.
|
| + // Ecma262UnCanonicalize always gives the highest number last.
|
| + ASSERT(c2 > c1);
|
| + uint16_t mask = char_mask ^ exor;
|
| + macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
|
| + return true;
|
| + }
|
| + ASSERT(c2 > c1);
|
| + uint16_t diff = c2 - c1;
|
| + if (((diff - 1) & diff) == 0 && c1 >= diff) {
|
| + // If the characters differ by 2^n but don't differ by one bit then
|
| + // subtract the difference from the found character, then do the or
|
| + // trick. We avoid the theoretical case where negative numbers are
|
| + // involved in order to simplify code generation.
|
| + uint16_t mask = char_mask ^ diff;
|
| + macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
|
| + diff,
|
| + mask,
|
| + on_failure);
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// Only emits letters (things that have case). Only used for case independent
|
| +// matches.
|
| +static inline bool EmitAtomLetter(Isolate* isolate,
|
| + RegExpCompiler* compiler,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| + bool check,
|
| + bool preloaded) {
|
| + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| + bool ascii = compiler->ascii();
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length = GetCaseIndependentLetters(c, ascii, chars);
|
| + if (length <= 1) return false;
|
| + // We may not need to check against the end of the input string
|
| + // if this character lies before a character that matched.
|
| + if (!preloaded) {
|
| + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
| + }
|
| + BlockLabel ok;
|
| + ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
|
| + switch (length) {
|
| + case 2: {
|
| + if (ShortCutEmitCharacterPair(macro_assembler,
|
| + ascii,
|
| + chars[0],
|
| + chars[1],
|
| + on_failure)) {
|
| + } else {
|
| + macro_assembler->CheckCharacter(chars[0], &ok);
|
| + macro_assembler->CheckNotCharacter(chars[1], on_failure);
|
| + macro_assembler->BindBlock(&ok);
|
| + }
|
| + break;
|
| + }
|
| + case 4:
|
| + macro_assembler->CheckCharacter(chars[3], &ok);
|
| + // Fall through!
|
| + case 3:
|
| + macro_assembler->CheckCharacter(chars[0], &ok);
|
| + macro_assembler->CheckCharacter(chars[1], &ok);
|
| + macro_assembler->CheckNotCharacter(chars[2], on_failure);
|
| + macro_assembler->BindBlock(&ok);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + break;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Only emits non-letters (things that don't have case). Only used for case
|
| +// independent matches.
|
| +static inline bool EmitAtomNonLetter(Isolate* isolate,
|
| + RegExpCompiler* compiler,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| + bool check,
|
| + bool preloaded) {
|
| + RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| + bool ascii = compiler->ascii();
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length = GetCaseIndependentLetters(c, ascii, chars);
|
| + if (length < 1) {
|
| + // This can't match. Must be an ASCII subject and a non-ASCII character.
|
| + // We do not need to do anything since the ASCII pass already handled this.
|
| + return false; // Bounds not checked.
|
| + }
|
| + bool checked = false;
|
| + // We handle the length > 1 case in a later pass.
|
| + if (length == 1) {
|
| + if (ascii && c > Symbols::kMaxOneCharCodeSymbol) {
|
| + // Can't match - see above.
|
| + return false; // Bounds not checked.
|
| + }
|
| + if (!preloaded) {
|
| + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
| + checked = check;
|
| + }
|
| + macro_assembler->CheckNotCharacter(c, on_failure);
|
| + }
|
| + return checked;
|
| +}
|
| +
|
| +
|
| +static void EmitBoundaryTest(RegExpMacroAssembler* masm,
|
| + intptr_t border,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* above_or_equal,
|
| + BlockLabel* below) {
|
| + if (below != fall_through) {
|
| + masm->CheckCharacterLT(border, below);
|
| + if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
|
| + } else {
|
| + masm->CheckCharacterGT(border - 1, above_or_equal);
|
| + }
|
| +}
|
| +
|
| +
|
| +static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
|
| + intptr_t first,
|
| + intptr_t last,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* in_range,
|
| + BlockLabel* out_of_range) {
|
| + if (in_range == fall_through) {
|
| + if (first == last) {
|
| + masm->CheckNotCharacter(first, out_of_range);
|
| + } else {
|
| + masm->CheckCharacterNotInRange(first, last, out_of_range);
|
| + }
|
| + } else {
|
| + if (first == last) {
|
| + masm->CheckCharacter(first, in_range);
|
| + } else {
|
| + masm->CheckCharacterInRange(first, last, in_range);
|
| + }
|
| + if (out_of_range != fall_through) masm->GoTo(out_of_range);
|
| + }
|
| +}
|
| +
|
| +
|
| +static void CutOutRange(RegExpMacroAssembler* masm,
|
| + ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + intptr_t cut_index,
|
| + BlockLabel* even_label,
|
| + BlockLabel* odd_label) {
|
| + bool odd = (((cut_index - start_index) & 1) == 1);
|
| + BlockLabel* in_range_label = odd ? odd_label : even_label;
|
| + BlockLabel dummy;
|
| + EmitDoubleBoundaryTest(masm,
|
| + ranges->At(cut_index),
|
| + ranges->At(cut_index + 1) - 1,
|
| + &dummy,
|
| + in_range_label,
|
| + &dummy);
|
| + ASSERT(!dummy.IsLinked());
|
| + // Cut out the single range by rewriting the array. This creates a new
|
| + // range that is a merger of the two ranges on either side of the one we
|
| + // are cutting out. The oddity of the labels is preserved.
|
| + for (intptr_t j = cut_index; j > start_index; j--) {
|
| + (*ranges)[j] = ranges->At(j - 1);
|
| + }
|
| + for (intptr_t j = cut_index + 1; j < end_index; j++) {
|
| + (*ranges)[j] = ranges->At(j + 1);
|
| + }
|
| +}
|
| +
|
| +
|
| +// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
|
| +// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
|
| +static void EmitUseLookupTable(
|
| + RegExpMacroAssembler* masm,
|
| + ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + intptr_t min_char,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* even_label,
|
| + BlockLabel* odd_label) {
|
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| + static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
|
| +
|
| + intptr_t base = (min_char & ~kMask);
|
| +
|
| + // Assert that everything is on one kTableSize page.
|
| + for (intptr_t i = start_index; i <= end_index; i++) {
|
| + ASSERT((ranges->At(i) & ~kMask) == base);
|
| + }
|
| + ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base);
|
| +
|
| + char templ[kSize];
|
| + BlockLabel* on_bit_set;
|
| + BlockLabel* on_bit_clear;
|
| + intptr_t bit;
|
| + if (even_label == fall_through) {
|
| + on_bit_set = odd_label;
|
| + on_bit_clear = even_label;
|
| + bit = 1;
|
| + } else {
|
| + on_bit_set = even_label;
|
| + on_bit_clear = odd_label;
|
| + bit = 0;
|
| + }
|
| + for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize;
|
| + i++) {
|
| + templ[i] = bit;
|
| + }
|
| + intptr_t j = 0;
|
| + bit ^= 1;
|
| + for (intptr_t i = start_index; i < end_index; i++) {
|
| + for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) {
|
| + templ[j] = bit;
|
| + }
|
| + bit ^= 1;
|
| + }
|
| + for (intptr_t i = j; i < kSize; i++) {
|
| + templ[i] = bit;
|
| + }
|
| + // TODO(erikcorry): Cache these.
|
| + const TypedData& ba = TypedData::ZoneHandle(
|
| + masm->isolate(),
|
| + TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
|
| + for (intptr_t i = 0; i < kSize; i++) {
|
| + ba.SetUint8(i, templ[i]);
|
| + }
|
| + masm->CheckBitInTable(ba, on_bit_set);
|
| + if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
|
| +}
|
| +
|
| +
|
| +// Unicode case. Split the search space into kSize spaces that are handled
|
| +// with recursion.
|
| +static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + intptr_t* new_start_index,
|
| + intptr_t* new_end_index,
|
| + intptr_t* border) {
|
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| + static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
|
| +
|
| + intptr_t first = ranges->At(start_index);
|
| + intptr_t last = ranges->At(end_index) - 1;
|
| +
|
| + *new_start_index = start_index;
|
| + *border = (ranges->At(start_index) & ~kMask) + kSize;
|
| + while (*new_start_index < end_index) {
|
| + if (ranges->At(*new_start_index) > *border) break;
|
| + (*new_start_index)++;
|
| + }
|
| + // new_start_index is the index of the first edge that is beyond the
|
| + // current kSize space.
|
| +
|
| + // For very large search spaces we do a binary chop search of the non-ASCII
|
| + // space instead of just going to the end of the current kSize space. The
|
| + // heuristics are complicated a little by the fact that any 128-character
|
| + // encoding space can be quickly tested with a table lookup, so we don't
|
| + // wish to do binary chop search at a smaller granularity than that. A
|
| + // 128-character space can take up a lot of space in the ranges array if,
|
| + // for example, we only want to match every second character (eg. the lower
|
| + // case characters on some Unicode pages).
|
| + intptr_t binary_chop_index = (end_index + start_index) / 2;
|
| + // The first test ensures that we get to the code that handles the ASCII
|
| + // range with a single not-taken branch, speeding up this important
|
| + // character range (even non-ASCII charset-based text has spaces and
|
| + // punctuation).
|
| + if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // ASCII case.
|
| + end_index - start_index > (*new_start_index - start_index) * 2 &&
|
| + last - first > kSize * 2 &&
|
| + binary_chop_index > *new_start_index &&
|
| + ranges->At(binary_chop_index) >= first + 2 * kSize) {
|
| + intptr_t scan_forward_for_section_border = binary_chop_index;;
|
| + intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1;
|
| +
|
| + while (scan_forward_for_section_border < end_index) {
|
| + if (ranges->At(scan_forward_for_section_border) > new_border) {
|
| + *new_start_index = scan_forward_for_section_border;
|
| + *border = new_border;
|
| + break;
|
| + }
|
| + scan_forward_for_section_border++;
|
| + }
|
| + }
|
| +
|
| + ASSERT(*new_start_index > start_index);
|
| + *new_end_index = *new_start_index - 1;
|
| + if (ranges->At(*new_end_index) == *border) {
|
| + (*new_end_index)--;
|
| + }
|
| + if (*border >= ranges->At(end_index)) {
|
| + *border = ranges->At(end_index);
|
| + *new_start_index = end_index; // Won't be used.
|
| + *new_end_index = end_index - 1;
|
| + }
|
| +}
|
| +
|
| +
|
| +// Gets a series of segment boundaries representing a character class. If the
|
| +// character is in the range between an even and an odd boundary (counting from
|
| +// start_index) then go to even_label, otherwise go to odd_label. We already
|
| +// know that the character is in the range of min_char to max_char inclusive.
|
| +// Either label can be NULL indicating backtracking. Either label can also be
|
| +// equal to the fall_through label.
|
| +static void GenerateBranches(RegExpMacroAssembler* masm,
|
| + ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + uint16_t min_char,
|
| + uint16_t max_char,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* even_label,
|
| + BlockLabel* odd_label) {
|
| + intptr_t first = ranges->At(start_index);
|
| + intptr_t last = ranges->At(end_index) - 1;
|
| +
|
| + ASSERT(min_char < first);
|
| +
|
| + // Just need to test if the character is before or on-or-after
|
| + // a particular character.
|
| + if (start_index == end_index) {
|
| + EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
|
| + return;
|
| + }
|
| +
|
| + // Another almost trivial case: There is one interval in the middle that is
|
| + // different from the end intervals.
|
| + if (start_index + 1 == end_index) {
|
| + EmitDoubleBoundaryTest(
|
| + masm, first, last, fall_through, even_label, odd_label);
|
| + return;
|
| + }
|
| +
|
| + // It's not worth using table lookup if there are very few intervals in the
|
| + // character class.
|
| + if (end_index - start_index <= 6) {
|
| + // It is faster to test for individual characters, so we look for those
|
| + // first, then try arbitrary ranges in the second round.
|
| + static intptr_t kNoCutIndex = -1;
|
| + intptr_t cut = kNoCutIndex;
|
| + for (intptr_t i = start_index; i < end_index; i++) {
|
| + if (ranges->At(i) == ranges->At(i + 1) - 1) {
|
| + cut = i;
|
| + break;
|
| + }
|
| + }
|
| + if (cut == kNoCutIndex) cut = start_index;
|
| + CutOutRange(
|
| + masm, ranges, start_index, end_index, cut, even_label, odd_label);
|
| + ASSERT(end_index - start_index >= 2);
|
| + GenerateBranches(masm,
|
| + ranges,
|
| + start_index + 1,
|
| + end_index - 1,
|
| + min_char,
|
| + max_char,
|
| + fall_through,
|
| + even_label,
|
| + odd_label);
|
| + return;
|
| + }
|
| +
|
| + // If there are a lot of intervals in the regexp, then we will use tables to
|
| + // determine whether the character is inside or outside the character class.
|
| + static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits;
|
| +
|
| + if ((max_char >> kBits) == (min_char >> kBits)) {
|
| + EmitUseLookupTable(masm,
|
| + ranges,
|
| + start_index,
|
| + end_index,
|
| + min_char,
|
| + fall_through,
|
| + even_label,
|
| + odd_label);
|
| + return;
|
| + }
|
| +
|
| + if ((min_char >> kBits) != (first >> kBits)) {
|
| + masm->CheckCharacterLT(first, odd_label);
|
| + GenerateBranches(masm,
|
| + ranges,
|
| + start_index + 1,
|
| + end_index,
|
| + first,
|
| + max_char,
|
| + fall_through,
|
| + odd_label,
|
| + even_label);
|
| + return;
|
| + }
|
| +
|
| + intptr_t new_start_index = 0;
|
| + intptr_t new_end_index = 0;
|
| + intptr_t border = 0;
|
| +
|
| + SplitSearchSpace(ranges,
|
| + start_index,
|
| + end_index,
|
| + &new_start_index,
|
| + &new_end_index,
|
| + &border);
|
| +
|
| + BlockLabel handle_rest;
|
| + BlockLabel* above = &handle_rest;
|
| + if (border == last + 1) {
|
| + // We didn't find any section that started after the limit, so everything
|
| + // above the border is one of the terminal labels.
|
| + above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
|
| + ASSERT(new_end_index == end_index - 1);
|
| + }
|
| +
|
| + ASSERT(start_index <= new_end_index);
|
| + ASSERT(new_start_index <= end_index);
|
| + ASSERT(start_index < new_start_index);
|
| + ASSERT(new_end_index < end_index);
|
| + ASSERT(new_end_index + 1 == new_start_index ||
|
| + (new_end_index + 2 == new_start_index &&
|
| + border == ranges->At(new_end_index + 1)));
|
| + ASSERT(min_char < border - 1);
|
| + ASSERT(border < max_char);
|
| + ASSERT(ranges->At(new_end_index) < border);
|
| + ASSERT(border < ranges->At(new_start_index) ||
|
| + (border == ranges->At(new_start_index) &&
|
| + new_start_index == end_index &&
|
| + new_end_index == end_index - 1 &&
|
| + border == last + 1));
|
| + ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1));
|
| +
|
| + masm->CheckCharacterGT(border - 1, above);
|
| + BlockLabel dummy;
|
| + GenerateBranches(masm,
|
| + ranges,
|
| + start_index,
|
| + new_end_index,
|
| + min_char,
|
| + border - 1,
|
| + &dummy,
|
| + even_label,
|
| + odd_label);
|
| +
|
| + if (handle_rest.IsLinked()) {
|
| + masm->BindBlock(&handle_rest);
|
| + bool flip = (new_start_index & 1) != (start_index & 1);
|
| + GenerateBranches(masm,
|
| + ranges,
|
| + new_start_index,
|
| + end_index,
|
| + border,
|
| + max_char,
|
| + &dummy,
|
| + flip ? odd_label : even_label,
|
| + flip ? even_label : odd_label);
|
| + }
|
| +}
|
| +
|
| +
|
| +static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| + RegExpCharacterClass* cc,
|
| + bool ascii,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| + bool check_offset,
|
| + bool preloaded,
|
| + Isolate* isolate) {
|
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
|
| + if (!CharacterRange::IsCanonical(ranges)) {
|
| + CharacterRange::Canonicalize(ranges);
|
| + }
|
| +
|
| + intptr_t max_char;
|
| + if (ascii) {
|
| + max_char = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + max_char = Utf16::kMaxCodeUnit;
|
| + }
|
| +
|
| + intptr_t range_count = ranges->length();
|
| +
|
| + intptr_t last_valid_range = range_count - 1;
|
| + while (last_valid_range >= 0) {
|
| + CharacterRange& range = (*ranges)[last_valid_range];
|
| + if (range.from() <= max_char) {
|
| + break;
|
| + }
|
| + last_valid_range--;
|
| + }
|
| +
|
| + if (last_valid_range < 0) {
|
| + if (!cc->is_negated()) {
|
| + macro_assembler->GoTo(on_failure);
|
| + }
|
| + if (check_offset) {
|
| + macro_assembler->CheckPosition(cp_offset, on_failure);
|
| + }
|
| + return;
|
| + }
|
| +
|
| + if (last_valid_range == 0 &&
|
| + ranges->At(0).IsEverything(max_char)) {
|
| + if (cc->is_negated()) {
|
| + macro_assembler->GoTo(on_failure);
|
| + } else {
|
| + // This is a common case hit by non-anchored expressions.
|
| + if (check_offset) {
|
| + macro_assembler->CheckPosition(cp_offset, on_failure);
|
| + }
|
| + }
|
| + return;
|
| + }
|
| + if (last_valid_range == 0 &&
|
| + !cc->is_negated() &&
|
| + ranges->At(0).IsEverything(max_char)) {
|
| + // This is a common case hit by non-anchored expressions.
|
| + if (check_offset) {
|
| + macro_assembler->CheckPosition(cp_offset, on_failure);
|
| + }
|
| + return;
|
| + }
|
| +
|
| + if (!preloaded) {
|
| + macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
|
| + }
|
| +
|
| + if (cc->is_standard() &&
|
| + macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
|
| + on_failure)) {
|
| + return;
|
| + }
|
| +
|
| +
|
| + // A new list with ascending entries. Each entry is a code unit
|
| + // where there is a boundary between code units that are part of
|
| + // the class and code units that are not. Normally we insert an
|
| + // entry at zero which goes to the failure label, but if there
|
| + // was already one there we fall through for success on that entry.
|
| + // Subsequent entries have alternating meaning (success/failure).
|
| + ZoneGrowableArray<int>* range_boundaries =
|
| + new(isolate) ZoneGrowableArray<int>(last_valid_range);
|
| +
|
| + bool zeroth_entry_is_failure = !cc->is_negated();
|
| +
|
| + for (intptr_t i = 0; i <= last_valid_range; i++) {
|
| + CharacterRange& range = (*ranges)[i];
|
| + if (range.from() == 0) {
|
| + ASSERT(i == 0);
|
| + zeroth_entry_is_failure = !zeroth_entry_is_failure;
|
| + } else {
|
| + range_boundaries->Add(range.from());
|
| + }
|
| + range_boundaries->Add(range.to() + 1);
|
| + }
|
| + intptr_t end_index = range_boundaries->length() - 1;
|
| + if (range_boundaries->At(end_index) > max_char) {
|
| + end_index--;
|
| + }
|
| +
|
| + BlockLabel fall_through;
|
| + GenerateBranches(macro_assembler,
|
| + range_boundaries,
|
| + 0, // start_index.
|
| + end_index,
|
| + 0, // min_char.
|
| + max_char,
|
| + &fall_through,
|
| + zeroth_entry_is_failure ? &fall_through : on_failure,
|
| + zeroth_entry_is_failure ? on_failure : &fall_through);
|
| + macro_assembler->BindBlock(&fall_through);
|
| +}
|
| +
|
| +
|
| +// We call this repeatedly to generate code for each pass over the text node.
|
| +// The passes are in increasing order of difficulty because we hope one
|
| +// of the first passes will fail in which case we are saved the work of the
|
| +// later passes. for example for the case independent regexp /%[asdfghjkl]a/
|
| +// we will check the '%' in the first pass, the case independent 'a' in the
|
| +// second pass and the character class in the last pass.
|
| +//
|
| +// The passes are done from right to left, so for example to test for /bar/
|
| +// we will first test for an 'r' with offset 2, then an 'a' with offset 1
|
| +// and then a 'b' with offset 0. This means we can avoid the end-of-input
|
| +// bounds check most of the time. In the example we only need to check for
|
| +// end-of-input when loading the putative 'r'.
|
| +//
|
| +// A slight complication involves the fact that the first character may already
|
| +// be fetched into a register by the previous node. In this case we want to
|
| +// do the test for that character first. We do this in separate passes. The
|
| +// 'preloaded' argument indicates that we are doing such a 'pass'. If such a
|
| +// pass has been performed then subsequent passes will have true in
|
| +// first_element_checked to indicate that that character does not need to be
|
| +// checked again.
|
| +//
|
| +// In addition to all this we are passed a Trace, which can
|
| +// contain an AlternativeGeneration object. In this AlternativeGeneration
|
| +// object we can see details of any quick check that was already passed in
|
| +// order to get to the code we are now generating. The quick check can involve
|
| +// loading characters, which means we do not need to recheck the bounds
|
| +// up to the limit the quick check already checked. In addition the quick
|
| +// check can have involved a mask and compare operation which may simplify
|
| +// or obviate the need for further checks at some character positions.
|
| +void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
| + TextEmitPassType pass,
|
| + bool preloaded,
|
| + Trace* trace,
|
| + bool first_element_checked,
|
| + intptr_t* checked_up_to) {
|
| + RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| + bool ascii = compiler->ascii();
|
| + BlockLabel* backtrack = trace->backtrack();
|
| + QuickCheckDetails* quick_check = trace->quick_check_performed();
|
| + intptr_t element_count = elms_->length();
|
| + for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
|
| + TextElement elm = elms_->At(i);
|
| + intptr_t cp_offset = trace->cp_offset() + elm.cp_offset();
|
| + if (elm.text_type() == TextElement::ATOM) {
|
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
|
| + for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) {
|
| + if (first_element_checked && i == 0 && j == 0) continue;
|
| + if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
|
| + EmitCharacterFunction* emit_function = NULL;
|
| + switch (pass) {
|
| + case NON_ASCII_MATCH:
|
| + ASSERT(ascii);
|
| + if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) {
|
| + assembler->GoTo(backtrack);
|
| + return;
|
| + }
|
| + break;
|
| + case NON_LETTER_CHARACTER_MATCH:
|
| + emit_function = &EmitAtomNonLetter;
|
| + break;
|
| + case SIMPLE_CHARACTER_MATCH:
|
| + emit_function = &EmitSimpleCharacter;
|
| + break;
|
| + case CASE_CHARACTER_MATCH:
|
| + emit_function = &EmitAtomLetter;
|
| + break;
|
| + default:
|
| + break;
|
| + }
|
| + if (emit_function != NULL) {
|
| + bool bound_checked = emit_function(I,
|
| + compiler,
|
| + quarks->At(j),
|
| + backtrack,
|
| + cp_offset + j,
|
| + *checked_up_to < cp_offset + j,
|
| + preloaded);
|
| + if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
|
| + }
|
| + }
|
| + } else {
|
| + ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
|
| + if (pass == CHARACTER_CLASS_MATCH) {
|
| + if (first_element_checked && i == 0) continue;
|
| + if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
|
| + RegExpCharacterClass* cc = elm.char_class();
|
| + EmitCharClass(assembler,
|
| + cc,
|
| + ascii,
|
| + backtrack,
|
| + cp_offset,
|
| + *checked_up_to < cp_offset,
|
| + preloaded,
|
| + I);
|
| + UpdateBoundsCheck(cp_offset, checked_up_to);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
|
| + intptr_t eats_at_least) {
|
| + intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4),
|
| + eats_at_least);
|
| + if (compiler->macro_assembler()->CanReadUnaligned()) {
|
| + bool ascii = compiler->ascii();
|
| + if (ascii) {
|
| + if (preload_characters > 4) preload_characters = 4;
|
| + // We can't preload 3 characters because there is no machine instruction
|
| + // to do that. We can't just load 4 because we could be reading
|
| + // beyond the end of the string, which could cause a memory fault.
|
| + if (preload_characters == 3) preload_characters = 2;
|
| + } else {
|
| + if (preload_characters > 2) preload_characters = 2;
|
| + }
|
| + } else {
|
| + if (preload_characters > 1) preload_characters = 1;
|
| + }
|
| + return preload_characters;
|
| +}
|
| +
|
| +
|
| +intptr_t TextNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + intptr_t answer = Length();
|
| + if (answer >= still_to_find) return answer;
|
| + if (budget <= 0) return answer;
|
| + // We are not at start after this node so we set the last argument to 'true'.
|
| + return answer + on_success()->EatsAtLeast(still_to_find - answer,
|
| + budget - 1,
|
| + true);
|
| +}
|
| +
|
| +
|
| +intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + if (budget <= 0) return 0;
|
| + if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
|
| + return on_success()->EatsAtLeast(still_to_find,
|
| + budget - 1,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + if (budget <= 0) return 0;
|
| + // If we know we are not at the start and we are asked "how many characters
|
| + // will you match if you succeed?" then we can answer anything since false
|
| + // implies false. So lets just return the max answer (still_to_find) since
|
| + // that won't prevent us from preloading a lot of characters for the other
|
| + // branches in the node graph.
|
| + if (assertion_type() == AT_START && not_at_start) return still_to_find;
|
| + return on_success()->EatsAtLeast(still_to_find,
|
| + budget - 1,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + if (budget <= 0) return 0;
|
| + return on_success()->EatsAtLeast(still_to_find,
|
| + budget - 1,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + RegExpNode* ignore_this_node,
|
| + bool not_at_start) {
|
| + if (budget <= 0) return 0;
|
| + intptr_t min = 100;
|
| + intptr_t choice_count = alternatives_->length();
|
| + budget = (budget - 1) / choice_count;
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + RegExpNode* node = (*alternatives_)[i].node();
|
| + if (node == ignore_this_node) continue;
|
| + intptr_t node_eats_at_least =
|
| + node->EatsAtLeast(still_to_find, budget, not_at_start);
|
| + if (node_eats_at_least < min) min = node_eats_at_least;
|
| + if (min == 0) return 0;
|
| + }
|
| + return min;
|
| +}
|
| +
|
| +
|
| +intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + return EatsAtLeastHelper(still_to_find,
|
| + budget,
|
| + NULL,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + if (budget <= 0) return 0;
|
| + // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| + // afterwards.
|
| + RegExpNode* node = (*alternatives_)[1].node();
|
| + return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
|
| +}
|
| +
|
| +
|
| +// Takes the left-most 1-bit and smears it out, setting all bits to its right.
|
| +static inline uint32_t SmearBitsRight(uint32_t v) {
|
| + v |= v >> 1;
|
| + v |= v >> 2;
|
| + v |= v >> 4;
|
| + v |= v >> 8;
|
| + v |= v >> 16;
|
| + return v;
|
| +}
|
| +
|
| +
|
| +// Here is the meat of GetQuickCheckDetails (see also the comment on the
|
| +// super-class in the .h file).
|
| +//
|
| +// We iterate along the text object, building up for each character a
|
| +// mask and value that can be used to test for a quick failure to match.
|
| +// The masks and values for the positions will be combined into a single
|
| +// machine word for the current character width in order to be used in
|
| +// generating a quick check.
|
| +void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + intptr_t characters_filled_in,
|
| + bool not_at_start) {
|
| + ASSERT(characters_filled_in < details->characters());
|
| + intptr_t characters = details->characters();
|
| + intptr_t char_mask;
|
| + if (compiler->ascii()) {
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| + }
|
| + for (intptr_t k = 0; k < elms_->length(); k++) {
|
| + TextElement elm = elms_->At(k);
|
| + if (elm.text_type() == TextElement::ATOM) {
|
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
|
| + for (intptr_t i = 0; i < characters && i < quarks->length(); i++) {
|
| + QuickCheckDetails::Position* pos =
|
| + details->positions(characters_filled_in);
|
| + uint16_t c = quarks->At(i);
|
| + if (c > char_mask) {
|
| + // If we expect a non-ASCII character from an ASCII string,
|
| + // there is no way we can match. Not even case independent
|
| + // matching can turn an ASCII character into non-ASCII or
|
| + // vice versa.
|
| + details->set_cannot_match();
|
| + pos->determines_perfectly = false;
|
| + return;
|
| + }
|
| + if (compiler->ignore_case()) {
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length =
|
| + GetCaseIndependentLetters(c, compiler->ascii(), chars);
|
| + ASSERT(length != 0); // Can only happen if c > char_mask (see above).
|
| + if (length == 1) {
|
| + // This letter has no case equivalents, so it's nice and simple
|
| + // and the mask-compare will determine definitely whether we have
|
| + // a match at this character position.
|
| + pos->mask = char_mask;
|
| + pos->value = c;
|
| + pos->determines_perfectly = true;
|
| + } else {
|
| + uint32_t common_bits = char_mask;
|
| + uint32_t bits = chars[0];
|
| + for (intptr_t j = 1; j < length; j++) {
|
| + uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
|
| + common_bits ^= differing_bits;
|
| + bits &= common_bits;
|
| + }
|
| + // If length is 2 and common bits has only one zero in it then
|
| + // our mask and compare instruction will determine definitely
|
| + // whether we have a match at this character position. Otherwise
|
| + // it can only be an approximate check.
|
| + uint32_t one_zero = (common_bits | ~char_mask);
|
| + if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
|
| + pos->determines_perfectly = true;
|
| + }
|
| + pos->mask = common_bits;
|
| + pos->value = bits;
|
| + }
|
| + } else {
|
| + // Don't ignore case. Nice simple case where the mask-compare will
|
| + // determine definitely whether we have a match at this character
|
| + // position.
|
| + pos->mask = char_mask;
|
| + pos->value = c;
|
| + pos->determines_perfectly = true;
|
| + }
|
| + characters_filled_in++;
|
| + ASSERT(characters_filled_in <= details->characters());
|
| + if (characters_filled_in == details->characters()) {
|
| + return;
|
| + }
|
| + }
|
| + } else {
|
| + QuickCheckDetails::Position* pos =
|
| + details->positions(characters_filled_in);
|
| + RegExpCharacterClass* tree = elm.char_class();
|
| + ZoneGrowableArray<CharacterRange>* ranges = tree->ranges();
|
| + if (tree->is_negated()) {
|
| + // A quick check uses multi-character mask and compare. There is no
|
| + // useful way to incorporate a negative char class into this scheme
|
| + // so we just conservatively create a mask and value that will always
|
| + // succeed.
|
| + pos->mask = 0;
|
| + pos->value = 0;
|
| + } else {
|
| + intptr_t first_range = 0;
|
| + while (ranges->At(first_range).from() > char_mask) {
|
| + first_range++;
|
| + if (first_range == ranges->length()) {
|
| + details->set_cannot_match();
|
| + pos->determines_perfectly = false;
|
| + return;
|
| + }
|
| + }
|
| + CharacterRange range = ranges->At(first_range);
|
| + uint16_t from = range.from();
|
| + uint16_t to = range.to();
|
| + if (to > char_mask) {
|
| + to = char_mask;
|
| + }
|
| + uint32_t differing_bits = (from ^ to);
|
| + // A mask and compare is only perfect if the differing bits form a
|
| + // number like 00011111 with one single block of trailing 1s.
|
| + if ((differing_bits & (differing_bits + 1)) == 0 &&
|
| + from + differing_bits == to) {
|
| + pos->determines_perfectly = true;
|
| + }
|
| + uint32_t common_bits = ~SmearBitsRight(differing_bits);
|
| + uint32_t bits = (from & common_bits);
|
| + for (intptr_t i = first_range + 1; i < ranges->length(); i++) {
|
| + CharacterRange range = ranges->At(i);
|
| + uint16_t from = range.from();
|
| + uint16_t to = range.to();
|
| + if (from > char_mask) continue;
|
| + if (to > char_mask) to = char_mask;
|
| + // Here we are combining more ranges into the mask and compare
|
| + // value. With each new range the mask becomes more sparse and
|
| + // so the chances of a false positive rise. A character class
|
| + // with multiple ranges is assumed never to be equivalent to a
|
| + // mask and compare operation.
|
| + pos->determines_perfectly = false;
|
| + uint32_t new_common_bits = (from ^ to);
|
| + new_common_bits = ~SmearBitsRight(new_common_bits);
|
| + common_bits &= new_common_bits;
|
| + bits &= new_common_bits;
|
| + uint32_t differing_bits = (from & common_bits) ^ bits;
|
| + common_bits ^= differing_bits;
|
| + bits &= common_bits;
|
| + }
|
| + pos->mask = common_bits;
|
| + pos->value = bits;
|
| + }
|
| + characters_filled_in++;
|
| + ASSERT(characters_filled_in <= details->characters());
|
| + if (characters_filled_in == details->characters()) {
|
| + return;
|
| + }
|
| + }
|
| + }
|
| + ASSERT(characters_filled_in != details->characters());
|
| + if (!details->cannot_match()) {
|
| + on_success()-> GetQuickCheckDetails(details,
|
| + compiler,
|
| + characters_filled_in,
|
| + true);
|
| + }
|
| +}
|
| +
|
| +
|
| +void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + intptr_t characters_filled_in,
|
| + bool not_at_start) {
|
| + if (body_can_be_zero_length_ || info()->visited) return;
|
| + VisitMarker marker(info());
|
| + return ChoiceNode::GetQuickCheckDetails(details,
|
| + compiler,
|
| + characters_filled_in,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +intptr_t TextNode::Length() {
|
| + TextElement elm = elms_->Last();
|
| + ASSERT(elm.cp_offset() >= 0);
|
| + return elm.cp_offset() + elm.length();
|
| +}
|
| +
|
| +
|
| +bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) {
|
| + TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass);
|
| + if (ignore_case) {
|
| + return pass == SIMPLE_CHARACTER_MATCH;
|
| + } else {
|
| + return pass == NON_LETTER_CHARACTER_MATCH || pass == CASE_CHARACTER_MATCH;
|
| + }
|
| +}
|
| +
|
| +
|
| +static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges,
|
| + const intptr_t* special_class,
|
| + intptr_t length) {
|
| + length--; // Remove final 0x10000.
|
| + ASSERT(special_class[length] == 0x10000);
|
| + ASSERT(ranges->length() != 0);
|
| + ASSERT(length != 0);
|
| + ASSERT(special_class[0] != 0);
|
| + if (ranges->length() != (length >> 1) + 1) {
|
| + return false;
|
| + }
|
| + CharacterRange range = ranges->At(0);
|
| + if (range.from() != 0) {
|
| + return false;
|
| + }
|
| + for (intptr_t i = 0; i < length; i += 2) {
|
| + if (special_class[i] != (range.to() + 1)) {
|
| + return false;
|
| + }
|
| + range = ranges->At((i >> 1) + 1);
|
| + if (special_class[i+1] != range.from()) {
|
| + return false;
|
| + }
|
| + }
|
| + if (range.to() != 0xffff) {
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges,
|
| + const intptr_t* special_class,
|
| + intptr_t length) {
|
| + length--; // Remove final 0x10000.
|
| + ASSERT(special_class[length] == 0x10000);
|
| + if (ranges->length() * 2 != length) {
|
| + return false;
|
| + }
|
| + for (intptr_t i = 0; i < length; i += 2) {
|
| + CharacterRange range = ranges->At(i >> 1);
|
| + if (range.from() != special_class[i] ||
|
| + range.to() != special_class[i + 1] - 1) {
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool RegExpCharacterClass::is_standard() {
|
| + // TODO(lrn): Remove need for this function, by not throwing away information
|
| + // along the way.
|
| + if (is_negated_) {
|
| + return false;
|
| + }
|
| + if (set_.is_standard()) {
|
| + return true;
|
| + }
|
| + if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
|
| + set_.set_standard_set_type('s');
|
| + return true;
|
| + }
|
| + if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
|
| + set_.set_standard_set_type('S');
|
| + return true;
|
| + }
|
| + if (CompareInverseRanges(set_.ranges(),
|
| + kLineTerminatorRanges,
|
| + kLineTerminatorRangeCount)) {
|
| + set_.set_standard_set_type('.');
|
| + return true;
|
| + }
|
| + if (CompareRanges(set_.ranges(),
|
| + kLineTerminatorRanges,
|
| + kLineTerminatorRangeCount)) {
|
| + set_.set_standard_set_type('n');
|
| + return true;
|
| + }
|
| + if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
|
| + set_.set_standard_set_type('w');
|
| + return true;
|
| + }
|
| + if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
|
| + set_.set_standard_set_type('W');
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +void TextNode::MakeCaseIndependent(bool is_ascii) {
|
| + intptr_t element_count = elms_->length();
|
| + for (intptr_t i = 0; i < element_count; i++) {
|
| + TextElement elm = elms_->At(i);
|
| + if (elm.text_type() == TextElement::CHAR_CLASS) {
|
| + RegExpCharacterClass* cc = elm.char_class();
|
| + // None of the standard character classes is different in the case
|
| + // independent case and it slows us down if we don't know that.
|
| + if (cc->is_standard()) continue;
|
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
|
| + intptr_t range_count = ranges->length();
|
| + for (intptr_t j = 0; j < range_count; j++) {
|
| + (*ranges)[j].AddCaseEquivalents(ranges, is_ascii, I);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +intptr_t TextNode::GreedyLoopTextLength() {
|
| + TextElement elm = elms_->At(elms_->length() - 1);
|
| + return elm.cp_offset() + elm.length();
|
| +}
|
| +
|
| +
|
| +RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
|
| + RegExpCompiler* compiler) {
|
| + if (elms_->length() != 1) return NULL;
|
| + TextElement elm = elms_->At(0);
|
| + if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
|
| + RegExpCharacterClass* node = elm.char_class();
|
| + ZoneGrowableArray<CharacterRange>* ranges = node->ranges();
|
| + if (!CharacterRange::IsCanonical(ranges)) {
|
| + CharacterRange::Canonicalize(ranges);
|
| + }
|
| + if (node->is_negated()) {
|
| + return ranges->length() == 0 ? on_success() : NULL;
|
| + }
|
| + if (ranges->length() != 1) return NULL;
|
| + uint32_t max_char;
|
| + if (compiler->ascii()) {
|
| + max_char = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + max_char = Utf16::kMaxCodeUnit;
|
| + }
|
| + return ranges->At(0).IsEverything(max_char) ? on_success() : NULL;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::SetRegister(intptr_t reg,
|
| + intptr_t val,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(SET_REGISTER, on_success);
|
| + result->data_.u_store_register.reg = reg;
|
| + result->data_.u_store_register.value = val;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::IncrementRegister(intptr_t reg,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(INCREMENT_REGISTER, on_success);
|
| + result->data_.u_increment_register.reg = reg;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::StorePosition(intptr_t reg,
|
| + bool is_capture,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(STORE_POSITION, on_success);
|
| + result->data_.u_position_register.reg = reg;
|
| + result->data_.u_position_register.is_capture = is_capture;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::ClearCaptures(Interval range,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(CLEAR_CAPTURES, on_success);
|
| + result->data_.u_clear_captures.range_from = range.from();
|
| + result->data_.u_clear_captures.range_to = range.to();
|
| + return result;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg,
|
| + intptr_t position_reg,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(BEGIN_SUBMATCH, on_success);
|
| + result->data_.u_submatch.stack_pointer_register = stack_reg;
|
| + result->data_.u_submatch.current_position_register = position_reg;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg,
|
| + intptr_t position_reg,
|
| + intptr_t clear_register_count,
|
| + intptr_t clear_register_from,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(POSITIVE_SUBMATCH_SUCCESS,
|
| + on_success);
|
| + result->data_.u_submatch.stack_pointer_register = stack_reg;
|
| + result->data_.u_submatch.current_position_register = position_reg;
|
| + result->data_.u_submatch.clear_register_count = clear_register_count;
|
| + result->data_.u_submatch.clear_register_from = clear_register_from;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register,
|
| + intptr_t repetition_register,
|
| + intptr_t repetition_limit,
|
| + RegExpNode* on_success) {
|
| + ActionNode* result =
|
| + new(on_success->isolate()) ActionNode(EMPTY_MATCH_CHECK, on_success);
|
| + result->data_.u_empty_match_check.start_register = start_register;
|
| + result->data_.u_empty_match_check.repetition_register = repetition_register;
|
| + result->data_.u_empty_match_check.repetition_limit = repetition_limit;
|
| + return result;
|
| +}
|
| +
|
| +
|
| +TextElement TextElement::Atom(RegExpAtom* atom) {
|
| + return TextElement(ATOM, atom);
|
| +}
|
| +
|
| +
|
| +TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
|
| + return TextElement(CHAR_CLASS, char_class);
|
| +}
|
| +
|
| +
|
| +intptr_t TextElement::length() const {
|
| + switch (text_type()) {
|
| + case ATOM:
|
| + return atom()->length();
|
| +
|
| + case CHAR_CLASS:
|
| + return 1;
|
| + }
|
| + UNREACHABLE();
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +static void AddClass(const intptr_t* elmv,
|
| + intptr_t elmc,
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| + elmc--;
|
| + ASSERT(elmv[elmc] == 0x10000);
|
| + for (intptr_t i = 0; i < elmc; i += 2) {
|
| + ASSERT(elmv[i] < elmv[i + 1]);
|
| + ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1));
|
| + }
|
| +}
|
| +
|
| +
|
| +static void AddClassNegated(const intptr_t *elmv,
|
| + intptr_t elmc,
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| + elmc--;
|
| + ASSERT(elmv[elmc] == 0x10000);
|
| + ASSERT(elmv[0] != 0x0000);
|
| + ASSERT(elmv[elmc-1] != Utf16::kMaxCodeUnit);
|
| + uint16_t last = 0x0000;
|
| + for (intptr_t i = 0; i < elmc; i += 2) {
|
| + ASSERT(last <= elmv[i] - 1);
|
| + ASSERT(elmv[i] < elmv[i + 1]);
|
| + ranges->Add(CharacterRange(last, elmv[i] - 1));
|
| + last = elmv[i + 1];
|
| + }
|
| + ranges->Add(CharacterRange(last, Utf16::kMaxCodeUnit));
|
| +}
|
| +
|
| +
|
| +void CharacterRange::AddClassEscape(uint16_t type,
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| + switch (type) {
|
| + case 's':
|
| + AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
|
| + break;
|
| + case 'S':
|
| + AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
|
| + break;
|
| + case 'w':
|
| + AddClass(kWordRanges, kWordRangeCount, ranges);
|
| + break;
|
| + case 'W':
|
| + AddClassNegated(kWordRanges, kWordRangeCount, ranges);
|
| + break;
|
| + case 'd':
|
| + AddClass(kDigitRanges, kDigitRangeCount, ranges);
|
| + break;
|
| + case 'D':
|
| + AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
|
| + break;
|
| + case '.':
|
| + AddClassNegated(kLineTerminatorRanges,
|
| + kLineTerminatorRangeCount,
|
| + ranges);
|
| + break;
|
| + // This is not a character range as defined by the spec but a
|
| + // convenient shorthand for a character class that matches any
|
| + // character.
|
| + case '*':
|
| + ranges->Add(CharacterRange::Everything());
|
| + break;
|
| + // This is the set of characters matched by the $ and ^ symbols
|
| + // in multiline mode.
|
| + case 'n':
|
| + AddClass(kLineTerminatorRanges,
|
| + kLineTerminatorRangeCount,
|
| + ranges);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| +}
|
| +
|
| +
|
| +// Move a number of elements in a zonelist to another position
|
| +// in the same list. Handles overlapping source and target areas.
|
| +static void MoveRanges(ZoneGrowableArray<CharacterRange>* list,
|
| + intptr_t from,
|
| + intptr_t to,
|
| + intptr_t count) {
|
| + // Ranges are potentially overlapping.
|
| + if (from < to) {
|
| + for (intptr_t i = count - 1; i >= 0; i--) {
|
| + (*list)[to + i] = list->At(from + i);
|
| + }
|
| + } else {
|
| + for (intptr_t i = 0; i < count; i++) {
|
| + (*list)[to + i] = list->At(from + i);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +static intptr_t InsertRangeInCanonicalList(
|
| + ZoneGrowableArray<CharacterRange>* list,
|
| + intptr_t count,
|
| + CharacterRange insert) {
|
| + // Inserts a range into list[0..count[, which must be sorted
|
| + // by from value and non-overlapping and non-adjacent, using at most
|
| + // list[0..count] for the result. Returns the number of resulting
|
| + // canonicalized ranges. Inserting a range may collapse existing ranges into
|
| + // fewer ranges, so the return value can be anything in the range 1..count+1.
|
| + uint16_t from = insert.from();
|
| + uint16_t to = insert.to();
|
| + intptr_t start_pos = 0;
|
| + intptr_t end_pos = count;
|
| + for (intptr_t i = count - 1; i >= 0; i--) {
|
| + CharacterRange current = list->At(i);
|
| + if (current.from() > to + 1) {
|
| + end_pos = i;
|
| + } else if (current.to() + 1 < from) {
|
| + start_pos = i + 1;
|
| + break;
|
| + }
|
| + }
|
| +
|
| + // Inserted range overlaps, or is adjacent to, ranges at positions
|
| + // [start_pos..end_pos[. Ranges before start_pos or at or after end_pos are
|
| + // not affected by the insertion.
|
| + // If start_pos == end_pos, the range must be inserted before start_pos.
|
| + // if start_pos < end_pos, the entire range from start_pos to end_pos
|
| + // must be merged with the insert range.
|
| +
|
| + if (start_pos == end_pos) {
|
| + // Insert between existing ranges at position start_pos.
|
| + if (start_pos < count) {
|
| + MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
|
| + }
|
| + (*list)[start_pos] = insert;
|
| + return count + 1;
|
| + }
|
| + if (start_pos + 1 == end_pos) {
|
| + // Replace single existing range at position start_pos.
|
| + CharacterRange to_replace = list->At(start_pos);
|
| + intptr_t new_from = Utils::Minimum(to_replace.from(), from);
|
| + intptr_t new_to = Utils::Maximum(to_replace.to(), to);
|
| + (*list)[start_pos] = CharacterRange(new_from, new_to);
|
| + return count;
|
| + }
|
| + // Replace a number of existing ranges from start_pos to end_pos - 1.
|
| + // Move the remaining ranges down.
|
| +
|
| + intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from);
|
| + intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to);
|
| + if (end_pos < count) {
|
| + MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
|
| + }
|
| + (*list)[start_pos] = CharacterRange(new_from, new_to);
|
| + return count - (end_pos - start_pos) + 1;
|
| +}
|
| +
|
| +
|
| +bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) {
|
| + ASSERT(ranges != NULL);
|
| + intptr_t n = ranges->length();
|
| + if (n <= 1) return true;
|
| + intptr_t max = ranges->At(0).to();
|
| + for (intptr_t i = 1; i < n; i++) {
|
| + CharacterRange next_range = ranges->At(i);
|
| + if (next_range.from() <= max + 1) return false;
|
| + max = next_range.to();
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +
|
| +void CharacterRange::Canonicalize(
|
| + ZoneGrowableArray<CharacterRange>* character_ranges) {
|
| + if (character_ranges->length() <= 1) return;
|
| + // Check whether ranges are already canonical (increasing, non-overlapping,
|
| + // non-adjacent).
|
| + intptr_t n = character_ranges->length();
|
| + intptr_t max = character_ranges->At(0).to();
|
| + intptr_t i = 1;
|
| + while (i < n) {
|
| + CharacterRange current = character_ranges->At(i);
|
| + if (current.from() <= max + 1) {
|
| + break;
|
| + }
|
| + max = current.to();
|
| + i++;
|
| + }
|
| + // Canonical until the i'th range. If that's all of them, we are done.
|
| + if (i == n) return;
|
| +
|
| + // The ranges at index i and forward are not canonicalized. Make them so by
|
| + // doing the equivalent of insertion sort (inserting each into the previous
|
| + // list, in order).
|
| + // Notice that inserting a range can reduce the number of ranges in the
|
| + // result due to combining of adjacent and overlapping ranges.
|
| + intptr_t read = i; // Range to insert.
|
| + intptr_t num_canonical = i; // Length of canonicalized part of list.
|
| + do {
|
| + num_canonical = InsertRangeInCanonicalList(character_ranges,
|
| + num_canonical,
|
| + character_ranges->At(read));
|
| + read++;
|
| + } while (read < n);
|
| + character_ranges->TruncateTo(num_canonical);
|
| +
|
| + ASSERT(CharacterRange::IsCanonical(character_ranges));
|
| +}
|
| +
|
| +
|
| +void CharacterSet::Canonicalize() {
|
| + // Special/default classes are always considered canonical. The result
|
| + // of calling ranges() will be sorted.
|
| + if (ranges_ == NULL) return;
|
| + CharacterRange::Canonicalize(ranges_);
|
| +}
|
| +
|
| +
|
| +ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() {
|
| + if (ranges_ == NULL) {
|
| + ranges_ = new ZoneGrowableArray<CharacterRange>(2);
|
| + CharacterRange::AddClassEscape(standard_set_type_, ranges_);
|
| + }
|
| + return ranges_;
|
| +}
|
| +
|
| +
|
| +void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges,
|
| + ZoneGrowableArray<CharacterRange>* negated_ranges) {
|
| + ASSERT(CharacterRange::IsCanonical(ranges));
|
| + ASSERT(negated_ranges->length() == 0);
|
| + intptr_t range_count = ranges->length();
|
| + uint16_t from = 0;
|
| + intptr_t i = 0;
|
| + if (range_count > 0 && ranges->At(0).from() == 0) {
|
| + from = ranges->At(0).to();
|
| + i = 1;
|
| + }
|
| + while (i < range_count) {
|
| + CharacterRange range = ranges->At(i);
|
| + negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
|
| + from = range.to();
|
| + i++;
|
| + }
|
| + if (from < Utf16::kMaxCodeUnit) {
|
| + negated_ranges->Add(CharacterRange(from + 1, Utf16::kMaxCodeUnit));
|
| + }
|
| +}
|
| +
|
| +
|
| +void CharacterRange::AddCaseEquivalents(
|
| + ZoneGrowableArray<CharacterRange>* ranges,
|
| + bool is_ascii,
|
| + Isolate* isolate) {
|
| + uint16_t bottom = from();
|
| + uint16_t top = to();
|
| + if (is_ascii && !RangeContainsLatin1Equivalents(*this)) {
|
| + if (bottom > Symbols::kMaxOneCharCodeSymbol) return;
|
| + if (top > Symbols::kMaxOneCharCodeSymbol) {
|
| + top = Symbols::kMaxOneCharCodeSymbol;
|
| + }
|
| + }
|
| +
|
| + unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
|
| + unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange;
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + if (top == bottom) {
|
| + // If this is a singleton we just expand the one character.
|
| + intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + uint32_t chr = chars[i];
|
| + if (chr != bottom) {
|
| + ranges->Add(CharacterRange::Singleton(chars[i]));
|
| + }
|
| + }
|
| + } else {
|
| + // If this is a range we expand the characters block by block,
|
| + // expanding contiguous subranges (blocks) one at a time.
|
| + // The approach is as follows. For a given start character we
|
| + // look up the remainder of the block that contains it (represented
|
| + // by the end point), for instance we find 'z' if the character
|
| + // is 'c'. A block is characterized by the property
|
| + // that all characters uncanonicalize in the same way, except that
|
| + // each entry in the result is incremented by the distance from the first
|
| + // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and // NOLINT
|
| + // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
|
| + // Once we've found the end point we look up its uncanonicalization
|
| + // and produce a range for each element. For instance for [c-f]
|
| + // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
|
| + // add a range if it is not already contained in the input, so [c-f]
|
| + // will be skipped but [C-F] will be added. If this range is not
|
| + // completely contained in a block we do this for all the blocks
|
| + // covered by the range (handling characters that is not in a block
|
| + // as a "singleton block").
|
| + int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t pos = bottom;
|
| + while (pos <= top) {
|
| + intptr_t length = jsregexp_canonrange.get(pos, '\0', range);
|
| + uint16_t block_end;
|
| + if (length == 0) {
|
| + block_end = pos;
|
| + } else {
|
| + ASSERT(length == 1);
|
| + block_end = range[0];
|
| + }
|
| + intptr_t end = (block_end > top) ? top : block_end;
|
| + length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + uint32_t c = range[i];
|
| + uint16_t range_from = c - (block_end - pos);
|
| + uint16_t range_to = c - (block_end - end);
|
| + if (!(bottom <= range_from && range_to <= top)) {
|
| + ranges->Add(CharacterRange(range_from, range_to));
|
| + }
|
| + }
|
| + pos = end + 1;
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +// -------------------------------------------------------------------
|
| +// Splay tree
|
| +
|
| +
|
| +// Workaround for the fact that ZoneGrowableArray does not have contains().
|
| +static bool ArrayContains(ZoneGrowableArray<unsigned>* array,
|
| + unsigned value) {
|
| + for (intptr_t i = 0; i < array->length(); i++) {
|
| + if (array->At(i) == value) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +
|
| +void OutSet::Set(unsigned value, Isolate* isolate) {
|
| + if (value < kFirstLimit) {
|
| + first_ |= (1 << value);
|
| + } else {
|
| + if (remaining_ == NULL)
|
| + remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1);
|
| +
|
| + bool remaining_contains_value = ArrayContains(remaining_, value);
|
| + if (remaining_->is_empty() || !remaining_contains_value) {
|
| + remaining_->Add(value);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +bool OutSet::Get(unsigned value) const {
|
| + if (value < kFirstLimit) {
|
| + return (first_ & (1 << value)) != 0;
|
| + } else if (remaining_ == NULL) {
|
| + return false;
|
| + } else {
|
| + return ArrayContains(remaining_, value);
|
| + }
|
| +}
|
| +
|
| +void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + intptr_t filled_in,
|
| + bool not_at_start) {
|
| + if (assertion_type_ == AT_START && not_at_start) {
|
| + details->set_cannot_match();
|
| + return;
|
| + }
|
| + return on_success()->GetQuickCheckDetails(details,
|
| + compiler,
|
| + filled_in,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +void GuardedAlternative::AddGuard(Guard* guard, Isolate* isolate) {
|
| + if (guards_ == NULL)
|
| + guards_ = new(isolate) ZoneGrowableArray<Guard*>(1);
|
| + guards_->Add(guard);
|
| +}
|
| +
|
| +
|
| +void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
|
| + ASSERT(loop_node_ == NULL);
|
| + AddAlternative(alt);
|
| + loop_node_ = alt.node();
|
| +}
|
| +
|
| +
|
| +void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
|
| + ASSERT(continue_node_ == NULL);
|
| + AddAlternative(alt);
|
| + continue_node_ = alt.node();
|
| +}
|
| +
|
| +
|
| +void LoopChoiceNode::Accept(NodeVisitor* visitor) {
|
| + visitor->VisitLoopChoice(this);
|
| +}
|
| +
|
| +
|
| +intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + return EatsAtLeastHelper(still_to_find,
|
| + budget - 1,
|
| + loop_node_,
|
| + not_at_start);
|
| +}
|
| +
|
| +
|
| +void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + intptr_t characters_filled_in,
|
| + bool not_at_start) {
|
| + not_at_start = (not_at_start || not_at_start_);
|
| + intptr_t choice_count = alternatives_->length();
|
| + ASSERT(choice_count > 0);
|
| + (*alternatives_)[0].node()->GetQuickCheckDetails(details,
|
| + compiler,
|
| + characters_filled_in,
|
| + not_at_start);
|
| + for (intptr_t i = 1; i < choice_count; i++) {
|
| + QuickCheckDetails new_details(details->characters());
|
| + RegExpNode* node = (*alternatives_)[i].node();
|
| + node->GetQuickCheckDetails(&new_details, compiler,
|
| + characters_filled_in,
|
| + not_at_start);
|
| + // Here we merge the quick match details of the two branches.
|
| + details->Merge(&new_details, characters_filled_in);
|
| + }
|
| +}
|
| +
|
| +
|
| +void QuickCheckDetails::Clear() {
|
| + for (intptr_t i = 0; i < characters_; i++) {
|
| + positions_[i].mask = 0;
|
| + positions_[i].value = 0;
|
| + positions_[i].determines_perfectly = false;
|
| + }
|
| + characters_ = 0;
|
| +}
|
| +
|
| +
|
| +void QuickCheckDetails::Advance(intptr_t by, bool ascii) {
|
| + ASSERT(by >= 0);
|
| + if (by >= characters_) {
|
| + Clear();
|
| + return;
|
| + }
|
| + for (intptr_t i = 0; i < characters_ - by; i++) {
|
| + positions_[i] = positions_[by + i];
|
| + }
|
| + for (intptr_t i = characters_ - by; i < characters_; i++) {
|
| + positions_[i].mask = 0;
|
| + positions_[i].value = 0;
|
| + positions_[i].determines_perfectly = false;
|
| + }
|
| + characters_ -= by;
|
| + // We could change mask_ and value_ here but we would never advance unless
|
| + // they had already been used in a check and they won't be used again because
|
| + // it would gain us nothing. So there's no point.
|
| +}
|
| +
|
| +
|
| +void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
|
| + ASSERT(characters_ == other->characters_);
|
| + if (other->cannot_match_) {
|
| + return;
|
| + }
|
| + if (cannot_match_) {
|
| + *this = *other;
|
| + return;
|
| + }
|
| + for (intptr_t i = from_index; i < characters_; i++) {
|
| + QuickCheckDetails::Position* pos = positions(i);
|
| + QuickCheckDetails::Position* other_pos = other->positions(i);
|
| + if (pos->mask != other_pos->mask ||
|
| + pos->value != other_pos->value ||
|
| + !other_pos->determines_perfectly) {
|
| + // Our mask-compare operation will be approximate unless we have the
|
| + // exact same operation on both sides of the alternation.
|
| + pos->determines_perfectly = false;
|
| + }
|
| + pos->mask &= other_pos->mask;
|
| + pos->value &= pos->mask;
|
| + other_pos->value &= pos->mask;
|
| + uint16_t differing_bits = (pos->value ^ other_pos->value);
|
| + pos->mask &= ~differing_bits;
|
| + pos->value &= pos->mask;
|
| + }
|
| +}
|
| +
|
| +
|
| +// Finds the fixed match length of a sequence of nodes that goes from
|
| +// this alternative and back to this choice node. If there are variable
|
| +// length nodes or other complications in the way then return a sentinel
|
| +// value indicating that a greedy loop cannot be constructed.
|
| +intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative(
|
| + GuardedAlternative* alternative) {
|
| + intptr_t length = 0;
|
| + RegExpNode* node = alternative->node();
|
| + // Later we will generate code for all these text nodes using recursion
|
| + // so we have to limit the max number.
|
| + intptr_t recursion_depth = 0;
|
| + while (node != this) {
|
| + if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
|
| + return kNodeIsTooComplexForGreedyLoops;
|
| + }
|
| + intptr_t node_length = node->GreedyLoopTextLength();
|
| + if (node_length == kNodeIsTooComplexForGreedyLoops) {
|
| + return kNodeIsTooComplexForGreedyLoops;
|
| + }
|
| + length += node_length;
|
| + SeqRegExpNode* seq_node = static_cast<SeqRegExpNode*>(node);
|
| + node = seq_node->on_success();
|
| + }
|
| + return length;
|
| +}
|
| +
|
| +
|
| +void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
|
| + QuickCheckDetails* details,
|
| + RegExpCompiler* compiler,
|
| + intptr_t filled_in,
|
| + bool not_at_start) {
|
| + // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| + // afterwards.
|
| + RegExpNode* node = (*alternatives_)[1].node();
|
| + return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
|
| +}
|
| +
|
| +
|
| +static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
|
| + return RegExpEngine::CompilationResult("RegExp too big");
|
| +}
|
| +
|
| +
|
| +// Attempts to compile the regexp using an Irregexp code generator. Returns
|
| +// a fixed array or a null handle depending on whether it succeeded.
|
| +RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case,
|
| + intptr_t specialization_cid)
|
| + : next_register_(2 * (capture_count + 1)),
|
| + work_list_(NULL),
|
| + recursion_depth_(0),
|
| + ignore_case_(ignore_case),
|
| + specialization_cid_(specialization_cid),
|
| + reg_exp_too_big_(false),
|
| + current_expansion_factor_(1),
|
| + isolate_(Isolate::Current()) {
|
| + accept_ = new(I) EndNode(EndNode::ACCEPT, I);
|
| +}
|
| +
|
| +
|
| +RegExpEngine::CompilationResult RegExpCompiler::Assemble(
|
| + IRRegExpMacroAssembler* macro_assembler,
|
| + RegExpNode* start,
|
| + intptr_t capture_count,
|
| + const String& pattern) {
|
| + static const bool use_slow_safe_regexp_compiler = false;
|
| +
|
| + macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
|
| + macro_assembler_ = macro_assembler;
|
| +
|
| + ZoneGrowableArray<RegExpNode*> work_list(0);
|
| + work_list_ = &work_list;
|
| + BlockLabel fail;
|
| + macro_assembler_->PushBacktrack(&fail);
|
| + Trace new_trace;
|
| + start->Emit(this, &new_trace);
|
| + macro_assembler_->BindBlock(&fail);
|
| + macro_assembler_->Fail();
|
| + while (!work_list.is_empty()) {
|
| + work_list.RemoveLast()->Emit(this, &new_trace);
|
| + }
|
| + if (reg_exp_too_big_) return IrregexpRegExpTooBig();
|
| +
|
| + macro_assembler->FinalizeIndirectGotos();
|
| +
|
| + return RegExpEngine::CompilationResult(macro_assembler,
|
| + macro_assembler->graph_entry(),
|
| + macro_assembler->num_blocks(),
|
| + macro_assembler->num_stack_locals());
|
| +}
|
| +
|
| +
|
| +RegExpEngine::CompilationResult RegExpEngine::Compile(
|
| + RegExpCompileData* data,
|
| + const ParsedFunction* parsed_function,
|
| + const ZoneGrowableArray<const ICData*>& ic_data_array) {
|
| + Isolate* isolate = Isolate::Current();
|
| +
|
| + const Function& function = parsed_function->function();
|
| + const intptr_t specialization_cid = function.regexp_cid();
|
| + const bool is_ascii = (specialization_cid == kOneByteStringCid ||
|
| + specialization_cid == kExternalOneByteStringCid);
|
| + JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp());
|
| + const String& pattern = String::Handle(isolate, regexp.pattern());
|
| +
|
| + ASSERT(!regexp.IsNull());
|
| + ASSERT(!pattern.IsNull());
|
| +
|
| + const bool ignore_case = regexp.is_ignore_case();
|
| + const bool is_global = regexp.is_global();
|
| +
|
| + RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid);
|
| +
|
| + // TODO(jgruber): Frequency sampling is currently disabled because of several
|
| + // issues. We do not want to store subject strings in the regexp object since
|
| + // they might be long and we should not prevent their garbage collection.
|
| + // Passing them to this function explicitly does not help, since we must
|
| + // generate exactly the same IR for both the unoptimizing and optimizing
|
| + // pipelines (otherwise it gets confused when i.e. deopt id's differ).
|
| + // An option would be to store sampling results in the regexp object, but
|
| + // I'm not sure the performance gains are relevant enough.
|
| +
|
| + // Wrap the body of the regexp in capture #0.
|
| + RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
|
| + 0,
|
| + &compiler,
|
| + compiler.accept());
|
| +
|
| + RegExpNode* node = captured_body;
|
| + bool is_start_anchored = data->tree->IsAnchoredAtStart();
|
| + bool is_end_anchored = data->tree->IsAnchoredAtEnd();
|
| + intptr_t max_length = data->tree->max_match();
|
| + if (!is_start_anchored) {
|
| + // Add a .*? at the beginning, outside the body capture, unless
|
| + // this expression is anchored at the beginning.
|
| + RegExpNode* loop_node =
|
| + RegExpQuantifier::ToNode(0,
|
| + RegExpTree::kInfinity,
|
| + false,
|
| + new(isolate) RegExpCharacterClass('*'),
|
| + &compiler,
|
| + captured_body,
|
| + data->contains_anchor);
|
| +
|
| + if (data->contains_anchor) {
|
| + // Unroll loop once, to take care of the case that might start
|
| + // at the start of input.
|
| + ChoiceNode* first_step_node = new(isolate) ChoiceNode(2, isolate);
|
| + first_step_node->AddAlternative(GuardedAlternative(captured_body));
|
| + first_step_node->AddAlternative(GuardedAlternative(
|
| + new(isolate) TextNode(
|
| + new(isolate) RegExpCharacterClass('*'), loop_node)));
|
| + node = first_step_node;
|
| + } else {
|
| + node = loop_node;
|
| + }
|
| + }
|
| + if (is_ascii) {
|
| + node = node->FilterASCII(RegExpCompiler::kMaxRecursion, ignore_case);
|
| + // Do it again to propagate the new nodes to places where they were not
|
| + // put because they had not been calculated yet.
|
| + if (node != NULL) {
|
| + node = node->FilterASCII(RegExpCompiler::kMaxRecursion, ignore_case);
|
| + }
|
| + }
|
| +
|
| + if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate);
|
| + data->node = node;
|
| + Analysis analysis(ignore_case, is_ascii);
|
| + analysis.EnsureAnalyzed(node);
|
| + if (analysis.has_failed()) {
|
| + const char* error_message = analysis.error_message();
|
| + return CompilationResult(error_message);
|
| + }
|
| +
|
| + // Native regexp implementation.
|
| +
|
| + IRRegExpMacroAssembler* macro_assembler =
|
| + new(isolate) IRRegExpMacroAssembler(specialization_cid,
|
| + data->capture_count,
|
| + parsed_function,
|
| + ic_data_array,
|
| + isolate);
|
| +
|
| + // Inserted here, instead of in Assembler, because it depends on information
|
| + // in the AST that isn't replicated in the Node structure.
|
| + static const intptr_t kMaxBacksearchLimit = 1024;
|
| + if (is_end_anchored &&
|
| + !is_start_anchored &&
|
| + max_length < kMaxBacksearchLimit) {
|
| + macro_assembler->SetCurrentPositionFromEnd(max_length);
|
| + }
|
| +
|
| + if (is_global) {
|
| + macro_assembler->set_global_mode(
|
| + (data->tree->min_match() > 0)
|
| + ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
|
| + : RegExpMacroAssembler::GLOBAL);
|
| + }
|
| +
|
| + RegExpEngine::CompilationResult result =
|
| + compiler.Assemble(macro_assembler,
|
| + node,
|
| + data->capture_count,
|
| + pattern);
|
| +
|
| + if (FLAG_trace_irregexp) {
|
| + macro_assembler->PrintBlocks();
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +
|
| +
|
| +static void CreateSpecializedFunction(Isolate* isolate,
|
| + const JSRegExp& regexp,
|
| + intptr_t specialization_cid,
|
| + const Object& owner) {
|
| + const intptr_t kParamCount = RegExpMacroAssembler::kParamCount;
|
| +
|
| + Function& fn = Function::Handle(isolate,
|
| + Function::New(String::Handle(isolate, Symbols::New("RegExp")),
|
| + RawFunction::kIrregexpFunction,
|
| + true, // Static.
|
| + false, // Not const.
|
| + false, // Not abstract.
|
| + false, // Not external.
|
| + false, // Not native.
|
| + owner,
|
| + 0)); // Requires a non-negative token position.
|
| +
|
| + // TODO(jgruber): Share these arrays between all irregexp functions.
|
| + fn.set_num_fixed_parameters(kParamCount);
|
| + fn.set_parameter_types(Array::Handle(isolate, Array::New(kParamCount,
|
| + Heap::kOld)));
|
| + fn.set_parameter_names(Array::Handle(isolate, Array::New(kParamCount,
|
| + Heap::kOld)));
|
| + fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType()));
|
| + fn.SetParameterNameAt(0, Symbols::string_param_());
|
| + fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType()));
|
| + fn.SetParameterNameAt(1, Symbols::start_index_param_());
|
| + fn.set_result_type(Type::Handle(isolate, Type::ArrayType()));
|
| +
|
| + // Cache the result.
|
| + regexp.set_function(specialization_cid, fn);
|
| +
|
| + fn.set_regexp(regexp);
|
| + fn.set_regexp_cid(specialization_cid);
|
| +
|
| + // The function is compiled lazily during the first call.
|
| +}
|
| +
|
| +
|
| +RawJSRegExp* RegExpEngine::CreateJSRegExp(Isolate* isolate,
|
| + const String& pattern,
|
| + bool multi_line,
|
| + bool ignore_case) {
|
| + const JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0));
|
| +
|
| + regexp.set_pattern(pattern);
|
| +
|
| + if (multi_line) {
|
| + regexp.set_is_multi_line();
|
| + }
|
| + if (ignore_case) {
|
| + regexp.set_is_ignore_case();
|
| + }
|
| +
|
| + // TODO(jgruber): We might want to use normal string searching algorithms
|
| + // for simple patterns.
|
| + regexp.set_is_complex();
|
| + regexp.set_is_global(); // All dart regexps are global.
|
| +
|
| + const Library& lib = Library::Handle(isolate, Library::CoreLibrary());
|
| + const Class& owner = Class::Handle(isolate,
|
| + lib.LookupClass(String::Handle(isolate, Symbols::New("RegExp"))));
|
| +
|
| + CreateSpecializedFunction(isolate, regexp, kOneByteStringCid, owner);
|
| + CreateSpecializedFunction(isolate, regexp, kTwoByteStringCid, owner);
|
| + CreateSpecializedFunction(isolate, regexp, kExternalOneByteStringCid, owner);
|
| + CreateSpecializedFunction(isolate, regexp, kExternalTwoByteStringCid, owner);
|
| +
|
| + return regexp.raw();
|
| +}
|
| +
|
| +
|
| +void BoyerMoorePositionInfo::Set(intptr_t character) {
|
| + SetInterval(Interval(character, character));
|
| +}
|
| +
|
| +
|
| +ContainedInLattice AddRange(ContainedInLattice containment,
|
| + const intptr_t* ranges,
|
| + intptr_t ranges_length,
|
| + Interval new_range) {
|
| + ASSERT((ranges_length & 1) == 1);
|
| + ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1);
|
| + if (containment == kLatticeUnknown) return containment;
|
| + bool inside = false;
|
| + intptr_t last = 0;
|
| + for (intptr_t i = 0; i < ranges_length;
|
| + inside = !inside, last = ranges[i], i++) {
|
| + // Consider the range from last to ranges[i].
|
| + // We haven't got to the new range yet.
|
| + if (ranges[i] <= new_range.from()) continue;
|
| + // New range is wholly inside last-ranges[i]. Note that new_range.to() is
|
| + // inclusive, but the values in ranges are not.
|
| + if (last <= new_range.from() && new_range.to() < ranges[i]) {
|
| + return Combine(containment, inside ? kLatticeIn : kLatticeOut);
|
| + }
|
| + return kLatticeUnknown;
|
| + }
|
| + return containment;
|
| +}
|
| +
|
| +
|
| +void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
|
| + s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
|
| + w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
|
| + d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
|
| + surrogate_ =
|
| + AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
|
| + if (interval.to() - interval.from() >= kMapSize - 1) {
|
| + if (map_count_ != kMapSize) {
|
| + map_count_ = kMapSize;
|
| + for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
|
| + }
|
| + return;
|
| + }
|
| + for (intptr_t i = interval.from(); i <= interval.to(); i++) {
|
| + intptr_t mod_character = (i & kMask);
|
| + if (!map_->At(mod_character)) {
|
| + map_count_++;
|
| + (*map_)[mod_character] = true;
|
| + }
|
| + if (map_count_ == kMapSize) return;
|
| + }
|
| +}
|
| +
|
| +
|
| +void BoyerMoorePositionInfo::SetAll() {
|
| + s_ = w_ = d_ = kLatticeUnknown;
|
| + if (map_count_ != kMapSize) {
|
| + map_count_ = kMapSize;
|
| + for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
|
| + }
|
| +}
|
| +
|
| +
|
| +BoyerMooreLookahead::BoyerMooreLookahead(
|
| + intptr_t length, RegExpCompiler* compiler, Isolate* isolate)
|
| + : length_(length),
|
| + compiler_(compiler) {
|
| + if (compiler->ascii()) {
|
| + max_char_ = Symbols::kMaxOneCharCodeSymbol;
|
| + } else {
|
| + max_char_ = Utf16::kMaxCodeUnit;
|
| + }
|
| + bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length);
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate));
|
| + }
|
| +}
|
| +
|
| +
|
| +// Take all the characters that will not prevent a successful match if they
|
| +// occur in the subject string in the range between min_lookahead and
|
| +// max_lookahead (inclusive) measured from the current position. If the
|
| +// character at max_lookahead offset is not one of these characters, then we
|
| +// can safely skip forwards by the number of characters in the range.
|
| +intptr_t BoyerMooreLookahead::GetSkipTable(
|
| + intptr_t min_lookahead,
|
| + intptr_t max_lookahead,
|
| + const TypedData& boolean_skip_table) {
|
| + const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| +
|
| + const intptr_t kSkipArrayEntry = 0;
|
| + const intptr_t kDontSkipArrayEntry = 1;
|
| +
|
| + for (intptr_t i = 0; i < kSize; i++) {
|
| + boolean_skip_table.SetUint8(i, kSkipArrayEntry);
|
| + }
|
| + intptr_t skip = max_lookahead + 1 - min_lookahead;
|
| +
|
| + for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
|
| + BoyerMoorePositionInfo* map = bitmaps_->At(i);
|
| + for (intptr_t j = 0; j < kSize; j++) {
|
| + if (map->at(j)) {
|
| + boolean_skip_table.SetUint8(j, kDontSkipArrayEntry);
|
| + }
|
| + }
|
| + }
|
| +
|
| + return skip;
|
| +}
|
| +
|
| +
|
| +// Find the longest range of lookahead that has the fewest number of different
|
| +// characters that can occur at a given position. Since we are optimizing two
|
| +// different parameters at once this is a tradeoff.
|
| +bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
|
| + intptr_t biggest_points = 0;
|
| + // If more than 32 characters out of 128 can occur it is unlikely that we can
|
| + // be lucky enough to step forwards much of the time.
|
| + const intptr_t kMaxMax = 32;
|
| + for (intptr_t max_number_of_chars = 4;
|
| + max_number_of_chars < kMaxMax;
|
| + max_number_of_chars *= 2) {
|
| + biggest_points =
|
| + FindBestInterval(max_number_of_chars, biggest_points, from, to);
|
| + }
|
| + if (biggest_points == 0) return false;
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// Find the highest-points range between 0 and length_ where the character
|
| +// information is not too vague. 'Too vague' means that there are more than
|
| +// max_number_of_chars that can occur at this position. Calculates the number
|
| +// of points as the product of width-of-the-range and
|
| +// probability-of-finding-one-of-the-characters, where the probability is
|
| +// calculated using the frequency distribution of the sample subject string.
|
| +intptr_t BoyerMooreLookahead::FindBestInterval(
|
| + intptr_t max_number_of_chars,
|
| + intptr_t old_biggest_points,
|
| + intptr_t* from,
|
| + intptr_t* to) {
|
| + intptr_t biggest_points = old_biggest_points;
|
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| + for (intptr_t i = 0; i < length_; ) {
|
| + while (i < length_ && Count(i) > max_number_of_chars) i++;
|
| + if (i == length_) break;
|
| + intptr_t remembered_from = i;
|
| + bool union_map[kSize];
|
| + for (intptr_t j = 0; j < kSize; j++) union_map[j] = false;
|
| + while (i < length_ && Count(i) <= max_number_of_chars) {
|
| + BoyerMoorePositionInfo* map = bitmaps_->At(i);
|
| + for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j);
|
| + i++;
|
| + }
|
| + intptr_t frequency = 0;
|
| + for (intptr_t j = 0; j < kSize; j++) {
|
| + if (union_map[j]) {
|
| + // Add 1 to the frequency to give a small per-character boost for
|
| + // the cases where our sampling is not good enough and many
|
| + // characters have a frequency of zero. This means the frequency
|
| + // can theoretically be up to 2*kSize though we treat it mostly as
|
| + // a fraction of kSize.
|
| + frequency += compiler_->frequency_collator()->Frequency(j) + 1;
|
| + }
|
| + }
|
| + // We use the probability of skipping times the distance we are skipping to
|
| + // judge the effectiveness of this. Actually we have a cut-off: By
|
| + // dividing by 2 we switch off the skipping if the probability of skipping
|
| + // is less than 50%. This is because the multibyte mask-and-compare
|
| + // skipping in quickcheck is more likely to do well on this case.
|
| + bool in_quickcheck_range = ((i - remembered_from < 4) ||
|
| + (compiler_->ascii() ? remembered_from <= 4 : remembered_from <= 2));
|
| + // Called 'probability' but it is only a rough estimate and can actually
|
| + // be outside the 0-kSize range.
|
| + intptr_t probability =
|
| + (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
|
| + intptr_t points = (i - remembered_from) * probability;
|
| + if (points > biggest_points) {
|
| + *from = remembered_from;
|
| + *to = i - 1;
|
| + biggest_points = points;
|
| + }
|
| + }
|
| + return biggest_points;
|
| +}
|
| +
|
| +
|
| +// See comment above on the implementation of GetSkipTable.
|
| +bool BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
|
| + const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| +
|
| + intptr_t min_lookahead = 0;
|
| + intptr_t max_lookahead = 0;
|
| +
|
| + if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return false;
|
| +
|
| + bool found_single_character = false;
|
| + intptr_t single_character = 0;
|
| + for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
|
| + BoyerMoorePositionInfo* map = bitmaps_->At(i);
|
| + if (map->map_count() > 1 ||
|
| + (found_single_character && map->map_count() != 0)) {
|
| + found_single_character = false;
|
| + break;
|
| + }
|
| + for (intptr_t j = 0; j < kSize; j++) {
|
| + if (map->at(j)) {
|
| + found_single_character = true;
|
| + single_character = j;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + intptr_t lookahead_width = max_lookahead + 1 - min_lookahead;
|
| +
|
| + if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
|
| + // The mask-compare can probably handle this better.
|
| + return false;
|
| + }
|
| +
|
| + if (found_single_character) {
|
| + BlockLabel cont, again;
|
| + masm->BindBlock(&again);
|
| + masm->LoadCurrentCharacter(max_lookahead, &cont, true);
|
| + if (max_char_ > kSize) {
|
| + masm->CheckCharacterAfterAnd(single_character,
|
| + RegExpMacroAssembler::kTableMask,
|
| + &cont);
|
| + } else {
|
| + masm->CheckCharacter(single_character, &cont);
|
| + }
|
| + masm->AdvanceCurrentPosition(lookahead_width);
|
| + masm->GoTo(&again);
|
| + masm->BindBlock(&cont);
|
| + return true;
|
| + }
|
| +
|
| + const TypedData& boolean_skip_table = TypedData::ZoneHandle(
|
| + compiler_->isolate(),
|
| + TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
|
| + intptr_t skip_distance = GetSkipTable(
|
| + min_lookahead, max_lookahead, boolean_skip_table);
|
| + ASSERT(skip_distance != 0);
|
| +
|
| + BlockLabel cont, again;
|
| +
|
| + masm->BindBlock(&again);
|
| + masm->LoadCurrentCharacter(max_lookahead, &cont, true);
|
| + masm->CheckBitInTable(boolean_skip_table, &cont);
|
| + masm->AdvanceCurrentPosition(skip_distance);
|
| + masm->GoTo(&again);
|
| + masm->BindBlock(&cont);
|
| +
|
| + return true;
|
| +}
|
| +
|
| +
|
| +// -------------------------------------------------------------------
|
| +// Analysis
|
| +
|
| +
|
| +void Analysis::EnsureAnalyzed(RegExpNode* that) {
|
| + if (that->info()->been_analyzed || that->info()->being_analyzed)
|
| + return;
|
| + that->info()->being_analyzed = true;
|
| + that->Accept(this);
|
| + that->info()->being_analyzed = false;
|
| + that->info()->been_analyzed = true;
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitEnd(EndNode* that) {
|
| + // nothing to do
|
| +}
|
| +
|
| +
|
| +void TextNode::CalculateOffsets() {
|
| + intptr_t element_count = elements()->length();
|
| + // Set up the offsets of the elements relative to the start. This is a fixed
|
| + // quantity since a TextNode can only contain fixed-width things.
|
| + intptr_t cp_offset = 0;
|
| + for (intptr_t i = 0; i < element_count; i++) {
|
| + TextElement& elm = (*elements())[i];
|
| + elm.set_cp_offset(cp_offset);
|
| + cp_offset += elm.length();
|
| + }
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitText(TextNode* that) {
|
| + if (ignore_case_) {
|
| + that->MakeCaseIndependent(is_ascii_);
|
| + }
|
| + EnsureAnalyzed(that->on_success());
|
| + if (!has_failed()) {
|
| + that->CalculateOffsets();
|
| + }
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitAction(ActionNode* that) {
|
| + RegExpNode* target = that->on_success();
|
| + EnsureAnalyzed(target);
|
| + if (!has_failed()) {
|
| + // If the next node is interested in what it follows then this node
|
| + // has to be interested too so it can pass the information on.
|
| + that->info()->AddFromFollowing(target->info());
|
| + }
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitChoice(ChoiceNode* that) {
|
| + NodeInfo* info = that->info();
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + RegExpNode* node = (*that->alternatives())[i].node();
|
| + EnsureAnalyzed(node);
|
| + if (has_failed()) return;
|
| + // Anything the following nodes need to know has to be known by
|
| + // this node also, so it can pass it on.
|
| + info->AddFromFollowing(node->info());
|
| + }
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
|
| + NodeInfo* info = that->info();
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + RegExpNode* node = (*that->alternatives())[i].node();
|
| + if (node != that->loop_node()) {
|
| + EnsureAnalyzed(node);
|
| + if (has_failed()) return;
|
| + info->AddFromFollowing(node->info());
|
| + }
|
| + }
|
| + // Check the loop last since it may need the value of this node
|
| + // to get a correct result.
|
| + EnsureAnalyzed(that->loop_node());
|
| + if (!has_failed()) {
|
| + info->AddFromFollowing(that->loop_node()->info());
|
| + }
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitBackReference(BackReferenceNode* that) {
|
| + EnsureAnalyzed(that->on_success());
|
| +}
|
| +
|
| +
|
| +void Analysis::VisitAssertion(AssertionNode* that) {
|
| + EnsureAnalyzed(that->on_success());
|
| +}
|
| +
|
| +
|
| +// -------------------------------------------------------------------
|
| +// Dot/dotty output
|
| +
|
| +
|
| +#ifdef DEBUG
|
| +
|
| +
|
| +class DotPrinter: public NodeVisitor {
|
| + public:
|
| + explicit DotPrinter(bool ignore_case)
|
| + : ignore_case_(ignore_case) {}
|
| + void PrintNode(const char* label, RegExpNode* node);
|
| + void Visit(RegExpNode* node);
|
| + void PrintAttributes(RegExpNode* from);
|
| + void PrintOnFailure(RegExpNode* from, RegExpNode* to);
|
| +#define DECLARE_VISIT(Type) \
|
| + virtual void Visit##Type(Type##Node* that);
|
| +FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
| +#undef DECLARE_VISIT
|
| + private:
|
| + bool ignore_case_;
|
| +};
|
| +
|
| +
|
| +void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
|
| + OS::Print("digraph G {\n graph [label=\"");
|
| + for (intptr_t i = 0; label[i]; i++) {
|
| + switch (label[i]) {
|
| + case '\\':
|
| + OS::Print("\\\\");
|
| + break;
|
| + case '"':
|
| + OS::Print("\"");
|
| + break;
|
| + default:
|
| + OS::Print("%c", label[i]);
|
| + break;
|
| + }
|
| + }
|
| + OS::Print("\"];\n");
|
| + Visit(node);
|
| + OS::Print("}\n");
|
| +}
|
| +
|
| +
|
| +void DotPrinter::Visit(RegExpNode* node) {
|
| + if (node->info()->visited) return;
|
| + node->info()->visited = true;
|
| + node->Accept(this);
|
| +}
|
| +
|
| +
|
| +void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
|
| + OS::Print(" n%p -> n%p [style=dotted];\n", from, on_failure);
|
| + Visit(on_failure);
|
| +}
|
| +
|
| +
|
| +class AttributePrinter : public ValueObject {
|
| + public:
|
| + AttributePrinter() : first_(true) {}
|
| + void PrintSeparator() {
|
| + if (first_) {
|
| + first_ = false;
|
| + } else {
|
| + OS::Print("|");
|
| + }
|
| + }
|
| + void PrintBit(const char* name, bool value) {
|
| + if (!value) return;
|
| + PrintSeparator();
|
| + OS::Print("{%s}", name);
|
| + }
|
| + void PrintPositive(const char* name, intptr_t value) {
|
| + if (value < 0) return;
|
| + PrintSeparator();
|
| + OS::Print("{%s|%" Pd "}", name, value);
|
| + }
|
| +
|
| + private:
|
| + bool first_;
|
| +};
|
| +
|
| +
|
| +void DotPrinter::PrintAttributes(RegExpNode* that) {
|
| + OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
|
| + "margin=0.1, fontsize=10, label=\"{", that);
|
| + AttributePrinter printer;
|
| + NodeInfo* info = that->info();
|
| + printer.PrintBit("NI", info->follows_newline_interest);
|
| + printer.PrintBit("WI", info->follows_word_interest);
|
| + printer.PrintBit("SI", info->follows_start_interest);
|
| + BlockLabel* label = that->label();
|
| + if (label->IsBound())
|
| + printer.PrintPositive("@", label->Position());
|
| + OS::Print("}\"];\n"
|
| + " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n",
|
| + that, that);
|
| +}
|
| +
|
| +
|
| +static const bool kPrintDispatchTable = false;
|
| +void DotPrinter::VisitChoice(ChoiceNode* that) {
|
| + if (kPrintDispatchTable) {
|
| + OS::Print(" n%p [shape=Mrecord, label=\"", that);
|
| + UNIMPLEMENTED();
|
| + } else {
|
| + OS::Print(" n%p [shape=Mrecord, label=\"?\"];\n", that);
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + GuardedAlternative alt = that->alternatives()->At(i);
|
| + OS::Print(" n%p -> n%p", that, alt.node());
|
| + }
|
| + }
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + GuardedAlternative alt = that->alternatives()->At(i);
|
| + alt.node()->Accept(this);
|
| + }
|
| +}
|
| +
|
| +
|
| +void DotPrinter::VisitText(TextNode* that) {
|
| + OS::Print(" n%p [label=\"", that);
|
| + for (intptr_t i = 0; i < that->elements()->length(); i++) {
|
| + if (i > 0) OS::Print(" ");
|
| + TextElement elm = that->elements()->At(i);
|
| + switch (elm.text_type()) {
|
| + case TextElement::ATOM: {
|
| + ZoneGrowableArray<uint16_t>* data = elm.atom()->data();
|
| + for (intptr_t i = 0; i < data->length(); i++) {
|
| + OS::Print("%c", static_cast<char>(data->At(i)));
|
| + }
|
| + break;
|
| + }
|
| + case TextElement::CHAR_CLASS: {
|
| + RegExpCharacterClass* node = elm.char_class();
|
| + OS::Print("[");
|
| + if (node->is_negated()) OS::Print("^");
|
| + for (intptr_t j = 0; j < node->ranges()->length(); j++) {
|
| + CharacterRange range = node->ranges()->At(j);
|
| + PrintUtf16(range.from());
|
| + OS::Print("-");
|
| + PrintUtf16(range.to());
|
| + }
|
| + OS::Print("]");
|
| + break;
|
| + }
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + }
|
| + OS::Print("\", shape=box, peripheries=2];\n");
|
| + PrintAttributes(that);
|
| + OS::Print(" n%p -> n%p;\n", that, that->on_success());
|
| + Visit(that->on_success());
|
| +}
|
| +
|
| +
|
| +void DotPrinter::VisitBackReference(BackReferenceNode* that) {
|
| + OS::Print(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n",
|
| + that, that->start_register(), that->end_register());
|
| + PrintAttributes(that);
|
| + OS::Print(" n%p -> n%p;\n", that, that->on_success());
|
| + Visit(that->on_success());
|
| +}
|
| +
|
| +
|
| +void DotPrinter::VisitEnd(EndNode* that) {
|
| + OS::Print(" n%p [style=bold, shape=point];\n", that);
|
| + PrintAttributes(that);
|
| +}
|
| +
|
| +
|
| +void DotPrinter::VisitAssertion(AssertionNode* that) {
|
| + OS::Print(" n%p [", that);
|
| + switch (that->assertion_type()) {
|
| + case AssertionNode::AT_END:
|
| + OS::Print("label=\"$\", shape=septagon");
|
| + break;
|
| + case AssertionNode::AT_START:
|
| + OS::Print("label=\"^\", shape=septagon");
|
| + break;
|
| + case AssertionNode::AT_BOUNDARY:
|
| + OS::Print("label=\"\\b\", shape=septagon");
|
| + break;
|
| + case AssertionNode::AT_NON_BOUNDARY:
|
| + OS::Print("label=\"\\B\", shape=septagon");
|
| + break;
|
| + case AssertionNode::AFTER_NEWLINE:
|
| + OS::Print("label=\"(?<=\\n)\", shape=septagon");
|
| + break;
|
| + }
|
| + OS::Print("];\n");
|
| + PrintAttributes(that);
|
| + RegExpNode* successor = that->on_success();
|
| + OS::Print(" n%p -> n%p;\n", that, successor);
|
| + Visit(successor);
|
| +}
|
| +
|
| +
|
| +void DotPrinter::VisitAction(ActionNode* that) {
|
| + OS::Print(" n%p [", that);
|
| + switch (that->action_type_) {
|
| + case ActionNode::SET_REGISTER:
|
| + OS::Print("label=\"$%" Pd ":=%" Pd "\", shape=octagon",
|
| + that->data_.u_store_register.reg,
|
| + that->data_.u_store_register.value);
|
| + break;
|
| + case ActionNode::INCREMENT_REGISTER:
|
| + OS::Print("label=\"$%" Pd "++\", shape=octagon",
|
| + that->data_.u_increment_register.reg);
|
| + break;
|
| + case ActionNode::STORE_POSITION:
|
| + OS::Print("label=\"$%" Pd ":=$pos\", shape=octagon",
|
| + that->data_.u_position_register.reg);
|
| + break;
|
| + case ActionNode::BEGIN_SUBMATCH:
|
| + OS::Print("label=\"$%" Pd ":=$pos,begin\", shape=septagon",
|
| + that->data_.u_submatch.current_position_register);
|
| + break;
|
| + case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
|
| + OS::Print("label=\"escape\", shape=septagon");
|
| + break;
|
| + case ActionNode::EMPTY_MATCH_CHECK:
|
| + OS::Print("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon",
|
| + that->data_.u_empty_match_check.start_register,
|
| + that->data_.u_empty_match_check.repetition_register,
|
| + that->data_.u_empty_match_check.repetition_limit);
|
| + break;
|
| + case ActionNode::CLEAR_CAPTURES: {
|
| + OS::Print("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon",
|
| + that->data_.u_clear_captures.range_from,
|
| + that->data_.u_clear_captures.range_to);
|
| + break;
|
| + }
|
| + }
|
| + OS::Print("];\n");
|
| + PrintAttributes(that);
|
| + RegExpNode* successor = that->on_success();
|
| + OS::Print(" n%p -> n%p;\n", that, successor);
|
| + Visit(successor);
|
| +}
|
| +
|
| +
|
| +void RegExpEngine::DotPrint(const char* label,
|
| + RegExpNode* node,
|
| + bool ignore_case) {
|
| + DotPrinter printer(ignore_case);
|
| + printer.PrintNode(label, node);
|
| +}
|
| +
|
| +
|
| +#endif // DEBUG
|
| +
|
| +} // namespace dart
|
|
|