Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(982)

Unified Diff: runtime/vm/regexp.cc

Issue 539153002: Port and integrate the irregexp engine from V8 (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Port remaining V8 regexp tests and fix exposed bugs. Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: runtime/vm/regexp.cc
diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc
index db1015f908432eb417ffd841eea6edbdac7e996d..fc4b06ffddba7dbd46b552c8369d264c6a6754f5 100644
--- a/runtime/vm/regexp.cc
+++ b/runtime/vm/regexp.cc
@@ -4,7 +4,10 @@
#include "vm/regexp.h"
+#include "vm/dart_entry.h"
+#include "vm/regexp_assembler.h"
#include "vm/regexp_ast.h"
+#include "vm/unibrow-inl.h"
#include "vm/unicode.h"
#include "vm/symbols.h"
@@ -13,6 +16,7 @@
namespace dart {
+DECLARE_FLAG(bool, trace_irregexp);
#define DEFINE_ACCEPT(Type) \
void Type##Node::Accept(NodeVisitor* visitor) { \
@@ -45,6 +49,8 @@ static const intptr_t kWordRanges[] = {
static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges);
static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 };
static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges);
+static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
+static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges);
static const intptr_t kLineTerminatorRanges[] = {
0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 };
static const intptr_t kLineTerminatorRangeCount =
@@ -105,24 +111,75 @@ class VisitMarker {
};
+class FrequencyCollator : public ValueObject {
+ public:
+ FrequencyCollator() : total_samples_(0) {
+ for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
+ frequencies_[i] = CharacterFrequency(i);
+ }
+ }
+
+ void CountCharacter(intptr_t character) {
+ intptr_t index = (character & RegExpMacroAssembler::kTableMask);
+ frequencies_[index].Increment();
+ total_samples_++;
+ }
+
+ // Does not measure in percent, but rather per-128 (the table size from the
+ // regexp macro assembler).
+ intptr_t Frequency(intptr_t in_character) {
+ ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character);
+ if (total_samples_ < 1) return 1; // Division by zero.
+ intptr_t freq_in_per128 =
+ (frequencies_[in_character].counter() * 128) / total_samples_;
+ return freq_in_per128;
+ }
+
+ private:
+ class CharacterFrequency {
+ public:
+ CharacterFrequency() : counter_(0), character_(-1) { }
+ explicit CharacterFrequency(intptr_t character)
+ : counter_(0), character_(character) { }
+
+ void Increment() { counter_++; }
+ intptr_t counter() { return counter_; }
+ intptr_t character() { return character_; }
+
+ private:
+ intptr_t counter_;
+ intptr_t character_;
+ };
+
+
+ private:
+ CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
+ intptr_t total_samples_;
+};
+
+
class RegExpCompiler {
public:
- RegExpCompiler(intptr_t capture_count, bool ignore_case, bool is_ascii);
+ RegExpCompiler(intptr_t capture_count,
+ bool ignore_case,
+ intptr_t specialization_cid);
intptr_t AllocateRegister() {
return next_register_++;
}
- RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
+ RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler,
RegExpNode* start,
intptr_t capture_count,
const String& pattern);
+ inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
+
static const intptr_t kImplementationOffset = 0;
static const intptr_t kNumberOfRegistersOffset = 0;
static const intptr_t kCodeOffset = 1;
- RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+ IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
EndNode* accept() { return accept_; }
static const intptr_t kMaxRecursion = 100;
@@ -133,7 +190,12 @@ class RegExpCompiler {
void SetRegExpTooBig() { reg_exp_too_big_ = true; }
inline bool ignore_case() { return ignore_case_; }
- inline bool ascii() { return ascii_; }
+ inline bool ascii() const {
+ return (specialization_cid_ == kOneByteStringCid ||
+ specialization_cid_ == kExternalOneByteStringCid);
+ }
+ inline intptr_t specialization_cid() { return specialization_cid_; }
+ FrequencyCollator* frequency_collator() { return &frequency_collator_; }
intptr_t current_expansion_factor() { return current_expansion_factor_; }
void set_current_expansion_factor(intptr_t value) {
@@ -147,19 +209,32 @@ class RegExpCompiler {
private:
EndNode* accept_;
intptr_t next_register_;
+ ZoneGrowableArray<RegExpNode*>* work_list_;
intptr_t recursion_depth_;
- RegExpMacroAssembler* macro_assembler_;
+ IRRegExpMacroAssembler* macro_assembler_;
bool ignore_case_;
- bool ascii_;
+ intptr_t specialization_cid_;
bool reg_exp_too_big_;
intptr_t current_expansion_factor_;
+ FrequencyCollator frequency_collator_;
Isolate* isolate_;
};
+class RecursionCheck : public ValueObject {
+ public:
+ explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
+ compiler->IncrementRecursionDepth();
+ }
+ ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
+ private:
+ RegExpCompiler* compiler_;
+};
+
+
// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
-class RegExpExpansionLimiter {
+class RegExpExpansionLimiter : public ValueObject {
public:
static const intptr_t kMaxExpansionFactor = 6;
RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor)
@@ -708,45 +783,2039 @@ RegExpNode* NegativeLookaheadChoiceNode::FilterASCII(intptr_t depth,
}
-// Code emission ---------------------------------------------------------------
+// Code emission ---------------------------------------------------------------
+
+
+void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
+ Guard* guard,
+ Trace* trace) {
+ switch (guard->op()) {
+ case Guard::LT:
+ ASSERT(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterGE(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ case Guard::GEQ:
+ ASSERT(!trace->mentions_reg(guard->reg()));
+ macro_assembler->IfRegisterLT(guard->reg(),
+ guard->value(),
+ trace->backtrack());
+ break;
+ }
+}
+
+
+void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ // Omit flushing the trace. We discard the entire stack frame anyway.
+
+ if (!label()->IsBound()) {
+ // We are completely independent of the trace, since we ignore it,
+ // so this code can be used as the generic version.
+ assembler->BindBlock(label());
+ }
+
+ // Throw away everything on the backtrack stack since the start
+ // of the negative submatch and restore the character position.
+ assembler->ReadCurrentPositionFromRegister(current_position_register_);
+ assembler->ReadStackPointerFromRegister(stack_pointer_register_);
+ if (clear_capture_count_ > 0) {
+ // Clear any captures that might have been performed during the success
+ // of the body of the negative look-ahead.
+ intptr_t clear_capture_end =
+ clear_capture_start_ + clear_capture_count_ - 1;
+ assembler->ClearRegisters(clear_capture_start_, clear_capture_end);
+ }
+ // Now that we have unwound the stack we find at the top of the stack the
+ // backtrack that the BeginSubmatch node got.
+ assembler->Backtrack();
+}
+
+
+bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
+ ASSERT(*cp_offset == 0);
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ if (action->action_type() == ActionNode::STORE_POSITION) {
+ *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset();
+ return true;
+ } else {
+ return false;
+ }
+ }
+ }
+ return false;
+}
+
+
+// This is called as we come into a loop choice node and some other tricky
+// nodes. It normalizes the state of the code generator to ensure we can
+// generate generic code.
+intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers,
+ Isolate* isolate) {
+ intptr_t max_register = RegExpCompiler::kNoRegister;
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(action)->range();
+ for (intptr_t i = range.from(); i <= range.to(); i++)
+ affected_registers->Set(i, isolate);
+ if (range.to() > max_register) max_register = range.to();
+ } else {
+ affected_registers->Set(action->reg(), isolate);
+ if (action->reg() > max_register) max_register = action->reg();
+ }
+ }
+ return max_register;
+}
+
+
+bool Trace::DeferredAction::Mentions(intptr_t that) {
+ if (action_type() == ActionNode::CLEAR_CAPTURES) {
+ Interval range = static_cast<DeferredClearCaptures*>(this)->range();
+ return range.Contains(that);
+ } else {
+ return reg() == that;
+ }
+}
+
+
+bool Trace::mentions_reg(intptr_t reg) {
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg))
+ return true;
+ }
+ return false;
+}
+
+
+void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
+ intptr_t max_register,
+ const OutSet& registers_to_pop,
+ const OutSet& registers_to_clear) {
+ for (intptr_t reg = max_register; reg >= 0; reg--) {
+ if (registers_to_pop.Get(reg)) {
+ assembler->PopRegister(reg);
+ } else if (registers_to_clear.Get(reg)) {
+ intptr_t clear_to = reg;
+ while (reg > 0 && registers_to_clear.Get(reg - 1)) {
+ reg--;
+ }
+ assembler->ClearRegisters(reg, clear_to);
+ }
+ }
+}
+
+
+void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
+ intptr_t max_register,
+ const OutSet& affected_registers,
+ OutSet* registers_to_pop,
+ OutSet* registers_to_clear,
+ Isolate* isolate) {
+ // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
+ const intptr_t push_limit = (assembler->stack_limit_slack() + 1) / 2;
+
+ // Count pushes performed to force a stack limit check occasionally.
+ intptr_t pushes = 0;
+
+ for (intptr_t reg = 0; reg <= max_register; reg++) {
+ if (!affected_registers.Get(reg)) {
+ continue;
+ }
+
+ // The chronologically first deferred action in the trace
+ // is used to infer the action needed to restore a register
+ // to its previous state (or not, if it's safe to ignore it).
+ enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
+ DeferredActionUndoType undo_action = IGNORE;
+
+ intptr_t value = 0;
+ bool absolute = false;
+ bool clear = false;
+ intptr_t store_position = -1;
+ // This is a little tricky because we are scanning the actions in reverse
+ // historical order (newest first).
+ for (DeferredAction* action = actions_;
+ action != NULL;
+ action = action->next()) {
+ if (action->Mentions(reg)) {
+ switch (action->action_type()) {
+ case ActionNode::SET_REGISTER: {
+ Trace::DeferredSetRegister* psr =
+ static_cast<Trace::DeferredSetRegister*>(action);
+ if (!absolute) {
+ value += psr->value();
+ absolute = true;
+ }
+ // SET_REGISTER is currently only used for newly introduced loop
+ // counters. They can have a significant previous value if they
+ // occour in a loop. TODO(lrn): Propagate this information, so
+ // we can set undo_action to IGNORE if we know there is no value to
+ // restore.
+ undo_action = RESTORE;
+ ASSERT(store_position == -1);
+ ASSERT(!clear);
+ break;
+ }
+ case ActionNode::INCREMENT_REGISTER:
+ if (!absolute) {
+ value++;
+ }
+ ASSERT(store_position == -1);
+ ASSERT(!clear);
+ undo_action = RESTORE;
+ break;
+ case ActionNode::STORE_POSITION: {
+ Trace::DeferredCapture* pc =
+ static_cast<Trace::DeferredCapture*>(action);
+ if (!clear && store_position == -1) {
+ store_position = pc->cp_offset();
+ }
+
+ // For captures we know that stores and clears alternate.
+ // Other register, are never cleared, and if the occur
+ // inside a loop, they might be assigned more than once.
+ if (reg <= 1) {
+ // Registers zero and one, aka "capture zero", is
+ // always set correctly if we succeed. There is no
+ // need to undo a setting on backtrack, because we
+ // will set it again or fail.
+ undo_action = IGNORE;
+ } else {
+ undo_action = pc->is_capture() ? CLEAR : RESTORE;
+ }
+ ASSERT(!absolute);
+ ASSERT(value == 0);
+ break;
+ }
+ case ActionNode::CLEAR_CAPTURES: {
+ // Since we're scanning in reverse order, if we've already
+ // set the position we have to ignore historically earlier
+ // clearing operations.
+ if (store_position == -1) {
+ clear = true;
+ }
+ undo_action = RESTORE;
+ ASSERT(!absolute);
+ ASSERT(value == 0);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ // Prepare for the undo-action (e.g., push if it's going to be popped).
+ if (undo_action == RESTORE) {
+ pushes++;
+ RegExpMacroAssembler::StackCheckFlag stack_check =
+ RegExpMacroAssembler::kNoStackLimitCheck;
+ if (pushes == push_limit) {
+ stack_check = RegExpMacroAssembler::kCheckStackLimit;
+ pushes = 0;
+ }
+
+ assembler->PushRegister(reg, stack_check);
+ registers_to_pop->Set(reg, isolate);
+ } else if (undo_action == CLEAR) {
+ registers_to_clear->Set(reg, isolate);
+ }
+ // Perform the chronologically last action (or accumulated increment)
+ // for the register.
+ if (store_position != -1) {
+ assembler->WriteCurrentPositionToRegister(reg, store_position);
+ } else if (clear) {
+ assembler->ClearRegisters(reg, reg);
+ } else if (absolute) {
+ assembler->SetRegister(reg, value);
+ } else if (value != 0) {
+ assembler->AdvanceRegister(reg, value);
+ }
+ }
+}
+
+
+void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ ASSERT(!is_trivial());
+
+ if (actions_ == NULL && backtrack() == NULL) {
+ // Here we just have some deferred cp advances to fix and we are back to
+ // a normal situation. We may also have to forget some information gained
+ // through a quick check that was already performed.
+ if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_);
+ // Create a new trivial state and generate the node with that.
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+ return;
+ }
+
+ // Generate deferred actions here along with code to undo them again.
+ OutSet affected_registers;
+
+ if (backtrack() != NULL) {
+ // Here we have a concrete backtrack location. These are set up by choice
+ // nodes and so they indicate that we have a deferred save of the current
+ // position which we may need to emit here.
+ assembler->PushCurrentPosition();
+ }
+
+ intptr_t max_register = FindAffectedRegisters(&affected_registers, CI);
+ OutSet registers_to_pop;
+ OutSet registers_to_clear;
+ PerformDeferredActions(assembler,
+ max_register,
+ affected_registers,
+ &registers_to_pop,
+ &registers_to_clear,
+ CI);
+ if (cp_offset_ != 0) {
+ assembler->AdvanceCurrentPosition(cp_offset_);
+ }
+
+ // Create a new trivial state and generate the node with that.
+ BlockLabel undo;
+ assembler->PushBacktrack(&undo);
+ Trace new_state;
+ successor->Emit(compiler, &new_state);
+
+ // On backtrack we need to restore state.
+ assembler->BindBlock(&undo);
+ RestoreAffectedRegisters(assembler,
+ max_register,
+ registers_to_pop,
+ registers_to_clear);
+ if (backtrack() == NULL) {
+ assembler->Backtrack();
+ } else {
+ assembler->PopCurrentPosition();
+ assembler->GoTo(backtrack());
+ }
+}
+
+
+void Trace::InvalidateCurrentCharacter() {
+ characters_preloaded_ = 0;
+}
+
+
+void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
+ RegExpCompiler* compiler) {
+ ASSERT(by > 0);
+ // We don't have an instruction for shifting the current character register
+ // down or for using a shifted value for anything so lets just forget that
+ // we preloaded any characters into it.
+ characters_preloaded_ = 0;
+ // Adjust the offsets of the quick check performed information. This
+ // information is used to find out what we already determined about the
+ // characters by means of mask and compare.
+ quick_check_performed_.Advance(by, compiler->ascii());
+ cp_offset_ += by;
+ if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ cp_offset_ = 0;
+ }
+ bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0),
+ bound_checked_up_to_ - by);
+}
+
+
+void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!label()->IsBound()) {
+ assembler->BindBlock(label());
+ }
+ switch (action_) {
+ case ACCEPT:
+ assembler->Succeed();
+ return;
+ case BACKTRACK:
+ assembler->GoTo(trace->backtrack());
+ return;
+ case NEGATIVE_SUBMATCH_SUCCESS:
+ // This case is handled in a different virtual method.
+ UNREACHABLE();
+ }
+ UNIMPLEMENTED();
+}
+
+
+bool QuickCheckDetails::Rationalize(bool asc) {
+ bool found_useful_op = false;
+ uint32_t char_mask;
+ if (asc) {
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
+ } else {
+ char_mask = Utf16::kMaxCodeUnit;
+ }
+ mask_ = 0;
+ value_ = 0;
+ intptr_t char_shift = 0;
+ for (intptr_t i = 0; i < characters_; i++) {
+ Position* pos = &positions_[i];
+ if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) {
+ found_useful_op = true;
+ }
+ mask_ |= (pos->mask & char_mask) << char_shift;
+ value_ |= (pos->value & char_mask) << char_shift;
+ char_shift += asc ? 8 : 16;
+ }
+ return found_useful_op;
+}
+
+
+bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
+ Trace* trace,
+ bool preload_has_checked_bounds,
+ BlockLabel* on_possible_success,
+ QuickCheckDetails* details,
+ bool fall_through_on_failure) {
+ if (details->characters() == 0) return false;
+ GetQuickCheckDetails(
+ details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
+ if (details->cannot_match()) return false;
+ if (!details->Rationalize(compiler->ascii())) return false;
+ ASSERT(details->characters() == 1 ||
+ compiler->macro_assembler()->CanReadUnaligned());
+ uint32_t mask = details->mask();
+ uint32_t value = details->value();
+
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+
+ if (trace->characters_preloaded() != details->characters()) {
+ assembler->LoadCurrentCharacter(trace->cp_offset(),
+ trace->backtrack(),
+ !preload_has_checked_bounds,
+ details->characters());
+ }
+
+
+ bool need_mask = true;
+
+ if (details->characters() == 1) {
+ // If number of characters preloaded is 1 then we used a byte or 16 bit
+ // load so the value is already masked down.
+ uint32_t char_mask;
+ if (compiler->ascii()) {
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
+ } else {
+ char_mask = Utf16::kMaxCodeUnit;
+ }
+ if ((mask & char_mask) == char_mask) need_mask = false;
+ mask &= char_mask;
+ } else {
+ // For 2-character preloads in ASCII mode or 1-character preloads in
+ // TWO_BYTE mode we also use a 16 bit load with zero extend.
+ if (details->characters() == 2 && compiler->ascii()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else if (details->characters() == 1 && !compiler->ascii()) {
+ if ((mask & 0xffff) == 0xffff) need_mask = false;
+ } else {
+ if (mask == 0xffffffff) need_mask = false;
+ }
+ }
+
+ if (fall_through_on_failure) {
+ if (need_mask) {
+ assembler->CheckCharacterAfterAnd(value, mask, on_possible_success);
+ } else {
+ assembler->CheckCharacter(value, on_possible_success);
+ }
+ } else {
+ if (need_mask) {
+ assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack());
+ } else {
+ assembler->CheckNotCharacter(value, trace->backtrack());
+ }
+ }
+ return true;
+}
+
+
+// Emit the code to check for a ^ in multiline mode (1-character lookbehind
+// that matches newline or the start of input).
+static void EmitHat(RegExpCompiler* compiler,
+ RegExpNode* on_success,
+ Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ // We will be loading the previous character into the current character
+ // register.
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ BlockLabel ok;
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a newline in this context, so skip to
+ // ok if we are at the start.
+ assembler->CheckAtStart(&ok);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() -1,
+ new_trace.backtrack(),
+ false);
+ if (!assembler->CheckSpecialCharacterClass('n',
+ new_trace.backtrack())) {
+ // Newline means \n, \r, 0x2028 or 0x2029.
+ if (!compiler->ascii()) {
+ assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok);
+ }
+ assembler->CheckCharacter('\n', &ok);
+ assembler->CheckNotCharacter('\r', new_trace.backtrack());
+ }
+ assembler->BindBlock(&ok);
+ on_success->Emit(compiler, &new_trace);
+}
+
+
+void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ switch (assertion_type_) {
+ case AT_END: {
+ BlockLabel ok;
+ assembler->CheckPosition(trace->cp_offset(), &ok);
+ assembler->GoTo(trace->backtrack());
+ assembler->BindBlock(&ok);
+ break;
+ }
+ case AT_START: {
+ if (trace->at_start() == Trace::FALSE_VALUE) {
+ assembler->GoTo(trace->backtrack());
+ return;
+ }
+ if (trace->at_start() == Trace::UNKNOWN) {
+ assembler->CheckNotAtStart(trace->backtrack());
+ Trace at_start_trace = *trace;
+ at_start_trace.set_at_start(true);
+ on_success()->Emit(compiler, &at_start_trace);
+ return;
+ }
+ }
+ break;
+ case AFTER_NEWLINE:
+ EmitHat(compiler, on_success(), trace);
+ return;
+ case AT_BOUNDARY:
+ case AT_NON_BOUNDARY: {
+ EmitBoundaryCheck(compiler, trace);
+ return;
+ }
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
+ Trace* trace) {
+ // If we are generating a greedy loop then don't stop and don't reuse code.
+ if (trace->stop_node() != NULL) {
+ return CONTINUE;
+ }
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->is_trivial()) {
+ if (label_.IsBound()) {
+ // We are being asked to generate a generic version, but that's already
+ // been done so just go to it.
+ macro_assembler->GoTo(&label_);
+ return DONE;
+ }
+ if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) {
+ // To avoid too deep recursion we push the node to the work queue and just
+ // generate a goto here.
+ compiler->AddWork(this);
+ macro_assembler->GoTo(&label_);
+ return DONE;
+ }
+ // Generate generic version of the node and bind the label for later use.
+ macro_assembler->BindBlock(&label_);
+ return CONTINUE;
+ }
+
+ // We are being asked to make a non-generic version. Keep track of how many
+ // non-generic versions we generate so as not to overdo it.
+ trace_count_++;
+ if (kRegexpOptimization &&
+ trace_count_ < kMaxCopiesCodeGenerated &&
+ compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
+ return CONTINUE;
+ }
+
+ // If we get here code has been generated for this node too many times or
+ // recursion is too deep. Time to switch to a generic version. The code for
+ // generic versions above can handle deep recursion properly.
+ trace->Flush(compiler, this);
+ return DONE;
+}
+
+
+// This generates the code to match a text node. A text node can contain
+// straight character sequences (possibly to be matched in a case-independent
+// way) and character classes. For efficiency we do not do this in a single
+// pass from left to right. Instead we pass over the text node several times,
+// emitting code for some character positions every time. See the comment on
+// TextEmitPass for details.
+void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
+ compiler->SetRegExpTooBig();
+ return;
+ }
+
+ if (compiler->ascii()) {
+ intptr_t dummy = 0;
+ TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy);
+ }
+
+ bool first_elt_done = false;
+ intptr_t bound_checked_to = trace->cp_offset() - 1;
+ bound_checked_to += trace->bound_checked_up_to();
+
+ // If a character is preloaded into the current character register then
+ // check that now.
+ if (trace->characters_preloaded() == 1) {
+ for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ true,
+ trace,
+ false,
+ &bound_checked_to);
+ }
+ }
+ first_elt_done = true;
+ }
+
+ for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ if (!SkipPass(pass, compiler->ignore_case())) {
+ TextEmitPass(compiler,
+ static_cast<TextEmitPassType>(pass),
+ false,
+ trace,
+ first_elt_done,
+ &bound_checked_to);
+ }
+ }
+
+ Trace successor_trace(*trace);
+ successor_trace.set_at_start(false);
+ successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler);
+ RecursionCheck rc(compiler);
+ on_success()->Emit(compiler, &successor_trace);
+}
+
+
+void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ if (trace->stop_node() == this) {
+ intptr_t text_length =
+ GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
+ ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
+ // Update the counter-based backtracking info on the stack. This is an
+ // optimization for greedy loops (see below).
+ ASSERT(trace->cp_offset() == text_length);
+ macro_assembler->AdvanceCurrentPosition(text_length);
+ macro_assembler->GoTo(trace->loop_label());
+ return;
+ }
+ ASSERT(trace->stop_node() == NULL);
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ ChoiceNode::Emit(compiler, trace);
+}
+
+
+// This class is used when generating the alternatives in a choice node. It
+// records the way the alternative is being code generated.
+class AlternativeGeneration {
+ public:
+ AlternativeGeneration()
+ : possible_success(),
+ expects_preload(false),
+ after(),
+ quick_check_details() { }
+ BlockLabel possible_success;
+ bool expects_preload;
+ BlockLabel after;
+ QuickCheckDetails quick_check_details;
+};
+
+
+// Creates a list of AlternativeGenerations. If the list has a reasonable
+// size then it is on the stack, otherwise the excess is on the heap.
+class AlternativeGenerationList {
+ public:
+ explicit AlternativeGenerationList(intptr_t count)
+ : alt_gens_(count) {
+ for (intptr_t i = 0; i < count && i < kAFew; i++) {
+ alt_gens_.Add(a_few_alt_gens_ + i);
+ }
+ for (intptr_t i = kAFew; i < count; i++) {
+ alt_gens_.Add(new AlternativeGeneration());
+ }
+ }
+ ~AlternativeGenerationList() {
+ for (intptr_t i = kAFew; i < alt_gens_.length(); i++) {
+ delete alt_gens_[i];
+ alt_gens_[i] = NULL;
+ }
+ }
+
+ AlternativeGeneration* at(intptr_t i) {
+ return alt_gens_[i];
+ }
+
+ private:
+ static const intptr_t kAFew = 10;
+ GrowableArray<AlternativeGeneration*> alt_gens_;
+ AlternativeGeneration a_few_alt_gens_[kAFew];
+};
+
+
+void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ intptr_t choice_count = alternatives_->length();
+
+#ifdef DEBUG
+ for (intptr_t i = 0; i < choice_count - 1; i++) {
+ GuardedAlternative alternative = alternatives_->At(i);
+ ZoneGrowableArray<Guard*>* guards = alternative.guards();
+ intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
+ for (intptr_t j = 0; j < guard_count; j++) {
+ ASSERT(!trace->mentions_reg(guards->At(j)->reg()));
+ }
+ }
+#endif
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ intptr_t new_flush_budget = trace->flush_budget() / choice_count;
+ if (trace->flush_budget() == 0 && trace->actions() != NULL) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ RecursionCheck rc(compiler);
+
+ Trace* current_trace = trace;
+
+ intptr_t text_length =
+ GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
+ bool greedy_loop = false;
+ BlockLabel greedy_loop_label;
+ Trace counter_backtrack_trace;
+ counter_backtrack_trace.set_backtrack(&greedy_loop_label);
+ if (not_at_start()) counter_backtrack_trace.set_at_start(false);
+
+ if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
+ // Here we have special handling for greedy loops containing only text nodes
+ // and other simple nodes. These are handled by pushing the current
+ // position on the stack and then incrementing the current position each
+ // time around the switch. On backtrack we decrement the current position
+ // and check it against the pushed value. This avoids pushing backtrack
+ // information for each iteration of the loop, which could take up a lot of
+ // space.
+ greedy_loop = true;
+ ASSERT(trace->stop_node() == NULL);
+ macro_assembler->PushCurrentPosition();
+ current_trace = &counter_backtrack_trace;
+ BlockLabel greedy_match_failed;
+ Trace greedy_match_trace;
+ if (not_at_start()) greedy_match_trace.set_at_start(false);
+ greedy_match_trace.set_backtrack(&greedy_match_failed);
+ BlockLabel loop_label;
+ macro_assembler->BindBlock(&loop_label);
+ greedy_match_trace.set_stop_node(this);
+ greedy_match_trace.set_loop_label(&loop_label);
+ (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace);
+ macro_assembler->BindBlock(&greedy_match_failed);
+ }
+
+ BlockLabel second_choice; // For use in greedy matches.
+ macro_assembler->BindBlock(&second_choice);
+
+ intptr_t first_normal_choice = greedy_loop ? 1 : 0;
+
+ bool not_at_start = current_trace->at_start() == Trace::FALSE_VALUE;
+ const intptr_t kEatsAtLeastNotYetInitialized = -1;
+ intptr_t eats_at_least = kEatsAtLeastNotYetInitialized;
+
+ bool skip_was_emitted = false;
+
+ if (!greedy_loop && choice_count == 2) {
+ GuardedAlternative alt1 = (*alternatives_)[1];
+ if (alt1.guards() == NULL || alt1.guards()->length() == 0) {
+ RegExpNode* eats_anything_node = alt1.node();
+ if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) ==
+ this) {
+ // At this point we know that we are at a non-greedy loop that will eat
+ // any character one at a time. Any non-anchored regexp has such a
+ // loop prepended to it in order to find where it starts. We look for
+ // a pattern of the form ...abc... where we can look 6 characters ahead
+ // and step forwards 3 if the character is not one of abc. Abc need
+ // not be atoms, they can be any reasonably limited character class or
+ // small alternation.
+ ASSERT(trace->is_trivial()); // This is the case on LoopChoiceNodes.
+ BoyerMooreLookahead* lookahead = bm_info(not_at_start);
+ if (lookahead == NULL) {
+ eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore,
+ EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ not_at_start));
+ if (eats_at_least >= 1) {
+ BoyerMooreLookahead* bm =
+ new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
+ GuardedAlternative alt0 = alternatives_->At(0);
+ alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
+ skip_was_emitted = bm->EmitSkipInstructions(macro_assembler);
+ }
+ } else {
+ skip_was_emitted = lookahead->EmitSkipInstructions(macro_assembler);
+ }
+ }
+ }
+ }
+
+ if (eats_at_least == kEatsAtLeastNotYetInitialized) {
+ // Save some time by looking at most one machine word ahead.
+ eats_at_least =
+ EatsAtLeast(compiler->ascii() ? 4 : 2, kRecursionBudget, not_at_start);
+ }
+ intptr_t preload_characters =
+ CalculatePreloadCharacters(compiler, eats_at_least);
+
+ bool preload_is_current = !skip_was_emitted &&
+ (current_trace->characters_preloaded() == preload_characters);
+ bool preload_has_checked_bounds = preload_is_current;
+
+ AlternativeGenerationList alt_gens(choice_count);
+
+ // For now we just call all choices one after the other. The idea ultimately
+ // is to use the Dispatch table to try only the relevant ones.
+ for (intptr_t i = first_normal_choice; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->At(i);
+ AlternativeGeneration* alt_gen = alt_gens.at(i);
+ alt_gen->quick_check_details.set_characters(preload_characters);
+ ZoneGrowableArray<Guard*>* guards = alternative.guards();
+ intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
+ Trace new_trace(*current_trace);
+ new_trace.set_characters_preloaded(preload_is_current ?
+ preload_characters :
+ 0);
+ if (preload_has_checked_bounds) {
+ new_trace.set_bound_checked_up_to(preload_characters);
+ }
+ new_trace.quick_check_performed()->Clear();
+ if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE);
+ alt_gen->expects_preload = preload_is_current;
+ bool generate_full_check_inline = false;
+ if (kRegexpOptimization &&
+ try_to_emit_quick_check_for_alternative(i) &&
+ alternative.node()->EmitQuickCheck(compiler,
+ &new_trace,
+ preload_has_checked_bounds,
+ &alt_gen->possible_success,
+ &alt_gen->quick_check_details,
+ i < choice_count - 1)) {
+ // Quick check was generated for this choice.
+ preload_is_current = true;
+ preload_has_checked_bounds = true;
+ // On the last choice in the ChoiceNode we generated the quick
+ // check to fall through on possible success. So now we need to
+ // generate the full check inline.
+ if (i == choice_count - 1) {
+ macro_assembler->BindBlock(&alt_gen->possible_success);
+ new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ new_trace.set_characters_preloaded(preload_characters);
+ new_trace.set_bound_checked_up_to(preload_characters);
+ generate_full_check_inline = true;
+ }
+ } else if (alt_gen->quick_check_details.cannot_match()) {
+ if (i == choice_count - 1 && !greedy_loop) {
+ macro_assembler->GoTo(trace->backtrack());
+ }
+ continue;
+ } else {
+ // No quick check was generated. Put the full code here.
+ // If this is not the first choice then there could be slow checks from
+ // previous cases that go here when they fail. There's no reason to
+ // insist that they preload characters since the slow check we are about
+ // to generate probably can't use it.
+ if (i != first_normal_choice) {
+ alt_gen->expects_preload = false;
+ new_trace.InvalidateCurrentCharacter();
+ }
+ if (i < choice_count - 1) {
+ new_trace.set_backtrack(&alt_gen->after);
+ }
+ generate_full_check_inline = true;
+ }
+ if (generate_full_check_inline) {
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ for (intptr_t j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->At(j), &new_trace);
+ }
+ alternative.node()->Emit(compiler, &new_trace);
+ preload_is_current = false;
+ }
+ macro_assembler->BindBlock(&alt_gen->after);
+ }
+ if (greedy_loop) {
+ macro_assembler->BindBlock(&greedy_loop_label);
+ // If we have unwound to the bottom then backtrack.
+ macro_assembler->CheckGreedyLoop(trace->backtrack());
+ // Otherwise try the second priority at an earlier position.
+ macro_assembler->AdvanceCurrentPosition(-text_length);
+ macro_assembler->GoTo(&second_choice);
+ }
+
+ // At this point we need to generate slow checks for the alternatives where
+ // the quick check was inlined. We can recognize these because the associated
+ // label was bound.
+ for (intptr_t i = first_normal_choice; i < choice_count - 1; i++) {
+ AlternativeGeneration* alt_gen = alt_gens.at(i);
+ Trace new_trace(*current_trace);
+ // If there are actions to be flushed we have to limit how many times
+ // they are flushed. Take the budget of the parent trace and distribute
+ // it fairly amongst the children.
+ if (new_trace.actions() != NULL) {
+ new_trace.set_flush_budget(new_flush_budget);
+ }
+ EmitOutOfLineContinuation(compiler,
+ &new_trace,
+ alternatives_->At(i),
+ alt_gen,
+ preload_characters,
+ alt_gens.at(i + 1)->expects_preload);
+ }
+}
+
+
+void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
+ Trace* trace,
+ GuardedAlternative alternative,
+ AlternativeGeneration* alt_gen,
+ intptr_t preload_characters,
+ bool next_expects_preload) {
+ if (!alt_gen->possible_success.IsLinked()) return;
+
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ macro_assembler->BindBlock(&alt_gen->possible_success);
+ Trace out_of_line_trace(*trace);
+ out_of_line_trace.set_characters_preloaded(preload_characters);
+ out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
+ if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
+ ZoneGrowableArray<Guard*>* guards = alternative.guards();
+ intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
+ if (next_expects_preload) {
+ BlockLabel reload_current_char;
+ out_of_line_trace.set_backtrack(&reload_current_char);
+ for (intptr_t j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ macro_assembler->BindBlock(&reload_current_char);
+ // Reload the current character, since the next quick check expects that.
+ // We don't need to check bounds here because we only get into this
+ // code through a quick check which already did the checked load.
+ macro_assembler->LoadCurrentCharacter(trace->cp_offset(),
+ NULL,
+ false,
+ preload_characters);
+ macro_assembler->GoTo(&(alt_gen->after));
+ } else {
+ out_of_line_trace.set_backtrack(&(alt_gen->after));
+ for (intptr_t j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
+ }
+ alternative.node()->Emit(compiler, &out_of_line_trace);
+ }
+}
+
+
+void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ switch (action_type_) {
+ case STORE_POSITION: {
+ Trace::DeferredCapture
+ new_capture(data_.u_position_register.reg,
+ data_.u_position_register.is_capture,
+ trace);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case INCREMENT_REGISTER: {
+ Trace::DeferredIncrementRegister
+ new_increment(data_.u_increment_register.reg);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_increment);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case SET_REGISTER: {
+ Trace::DeferredSetRegister
+ new_set(data_.u_store_register.reg, data_.u_store_register.value);
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_set);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case CLEAR_CAPTURES: {
+ Trace::DeferredClearCaptures
+ new_capture(Interval(data_.u_clear_captures.range_from,
+ data_.u_clear_captures.range_to));
+ Trace new_trace = *trace;
+ new_trace.add_action(&new_capture);
+ on_success()->Emit(compiler, &new_trace);
+ break;
+ }
+ case BEGIN_SUBMATCH:
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ assembler->WriteCurrentPositionToRegister(
+ data_.u_submatch.current_position_register, 0);
+ assembler->WriteStackPointerToRegister(
+ data_.u_submatch.stack_pointer_register);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ case EMPTY_MATCH_CHECK: {
+ intptr_t start_pos_reg = data_.u_empty_match_check.start_register;
+ intptr_t stored_pos = 0;
+ intptr_t rep_reg = data_.u_empty_match_check.repetition_register;
+ bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
+ bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
+ if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
+ // If we know we haven't advanced and there is no minimum we
+ // can just backtrack immediately.
+ assembler->GoTo(trace->backtrack());
+ } else if (know_dist && stored_pos < trace->cp_offset()) {
+ // If we know we've advanced we can generate the continuation
+ // immediately.
+ on_success()->Emit(compiler, trace);
+ } else if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ } else {
+ BlockLabel skip_empty_check;
+ // If we have a minimum number of repetitions we check the current
+ // number first and skip the empty check if it's not enough.
+ if (has_minimum) {
+ intptr_t limit = data_.u_empty_match_check.repetition_limit;
+ assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
+ }
+ // If the match is empty we bail out, otherwise we fall through
+ // to the on-success continuation.
+ assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
+ trace->backtrack());
+ assembler->BindBlock(&skip_empty_check);
+ on_success()->Emit(compiler, trace);
+ }
+ break;
+ }
+ case POSITIVE_SUBMATCH_SUCCESS: {
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+ assembler->ReadCurrentPositionFromRegister(
+ data_.u_submatch.current_position_register);
+ assembler->ReadStackPointerFromRegister(
+ data_.u_submatch.stack_pointer_register);
+ intptr_t clear_register_count = data_.u_submatch.clear_register_count;
+ if (clear_register_count == 0) {
+ on_success()->Emit(compiler, trace);
+ return;
+ }
+ intptr_t clear_registers_from = data_.u_submatch.clear_register_from;
+ BlockLabel clear_registers_backtrack;
+ Trace new_trace = *trace;
+ new_trace.set_backtrack(&clear_registers_backtrack);
+ on_success()->Emit(compiler, &new_trace);
+
+ assembler->BindBlock(&clear_registers_backtrack);
+ intptr_t clear_registers_to =
+ clear_registers_from + clear_register_count - 1;
+ assembler->ClearRegisters(clear_registers_from, clear_registers_to);
+
+ ASSERT(trace->backtrack() == NULL);
+ assembler->Backtrack();
+ return;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ if (!trace->is_trivial()) {
+ trace->Flush(compiler, this);
+ return;
+ }
+
+ LimitResult limit_result = LimitVersions(compiler, trace);
+ if (limit_result == DONE) return;
+ ASSERT(limit_result == CONTINUE);
+
+ RecursionCheck rc(compiler);
+
+ ASSERT(start_reg_ + 1 == end_reg_);
+ if (compiler->ignore_case()) {
+ assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
+ trace->backtrack());
+ } else {
+ assembler->CheckNotBackReference(start_reg_, trace->backtrack());
+ }
+ on_success()->Emit(compiler, trace);
+}
+
+
+void ActionNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ if (action_type_ == BEGIN_SUBMATCH) {
+ bm->SetRest(offset);
+ } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) {
+ on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
+ }
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void AssertionNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ // Match the behaviour of EatsAtLeast on this node.
+ if (assertion_type() == AT_START && not_at_start) return;
+ on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void BackReferenceNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ // Working out the set of characters that a backreference can match is too
+ // hard, so we just say that any character can match.
+ bm->SetRest(offset);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+// Returns the number of characters in the equivalence class, omitting those
+// that cannot occur in the source string because it is ASCII.
+static intptr_t GetCaseIndependentLetters(uint16_t character,
+ bool ascii_subject,
+ int32_t* letters) {
+ unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
+ intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters);
+ // Unibrow returns 0 or 1 for characters where case independence is
+ // trivial.
+ if (length == 0) {
+ letters[0] = character;
+ length = 1;
+ }
+ if (!ascii_subject || character <= Symbols::kMaxOneCharCodeSymbol) {
+ return length;
+ }
+ // The standard requires that non-ASCII characters cannot have ASCII
+ // character codes in their equivalence class.
+ return 0;
+}
+
+
+void ChoiceNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ ZoneGrowableArray<GuardedAlternative>* alts = alternatives();
+ budget = (budget - 1) / alts->length();
+ for (intptr_t i = 0; i < alts->length(); i++) {
+ GuardedAlternative& alt = (*alts)[i];
+ if (alt.guards() != NULL && alt.guards()->length() != 0) {
+ bm->SetRest(offset); // Give up trying to fill in info.
+ SaveBMInfo(bm, not_at_start, offset);
+ return;
+ }
+ alt.node()->FillInBMInfo(offset, budget, bm, not_at_start);
+ }
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void EndNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ // Returning 0 from EatsAtLeast should ensure we never get here.
+ UNREACHABLE();
+}
+
+
+void LoopChoiceNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ if (body_can_be_zero_length_ || budget <= 0) {
+ bm->SetRest(offset);
+ SaveBMInfo(bm, not_at_start, offset);
+ return;
+ }
+ ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start);
+ SaveBMInfo(bm, not_at_start, offset);
+}
+
+
+void TextNode::FillInBMInfo(intptr_t initial_offset,
+ intptr_t budget,
+ BoyerMooreLookahead* bm,
+ bool not_at_start) {
+ if (initial_offset >= bm->length()) return;
+ intptr_t offset = initial_offset;
+ intptr_t max_char = bm->max_char();
+ for (intptr_t i = 0; i < elements()->length(); i++) {
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ TextElement text = elements()->At(i);
+ if (text.text_type() == TextElement::ATOM) {
+ RegExpAtom* atom = text.atom();
+ for (intptr_t j = 0; j < atom->length(); j++, offset++) {
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ uint16_t character = atom->data()->At(j);
+ if (bm->compiler()->ignore_case()) {
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length = GetCaseIndependentLetters(
+ character,
+ bm->max_char() == Symbols::kMaxOneCharCodeSymbol,
+ chars);
+ for (intptr_t j = 0; j < length; j++) {
+ bm->Set(offset, chars[j]);
+ }
+ } else {
+ if (character <= max_char) bm->Set(offset, character);
+ }
+ }
+ } else {
+ ASSERT(text.text_type() == TextElement::CHAR_CLASS);
+ RegExpCharacterClass* char_class = text.char_class();
+ ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges();
+ if (char_class->is_negated()) {
+ bm->SetAll(offset);
+ } else {
+ for (intptr_t k = 0; k < ranges->length(); k++) {
+ CharacterRange& range = (*ranges)[k];
+ if (range.from() > max_char) continue;
+ intptr_t to = Utils::Minimum(max_char,
+ static_cast<intptr_t>(range.to()));
+ bm->SetInterval(offset, Interval(range.from(), to));
+ }
+ }
+ offset++;
+ }
+ }
+ if (offset >= bm->length()) {
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+ return;
+ }
+ on_success()->FillInBMInfo(offset,
+ budget - 1,
+ bm,
+ true); // Not at start after a text node.
+ if (initial_offset == 0) set_bm_info(not_at_start, bm);
+}
+
+
+// Check for [0-9A-Z_a-z].
+static void EmitWordCheck(RegExpMacroAssembler* assembler,
+ BlockLabel* word,
+ BlockLabel* non_word,
+ bool fall_through_on_word) {
+ if (assembler->CheckSpecialCharacterClass(
+ fall_through_on_word ? 'w' : 'W',
+ fall_through_on_word ? non_word : word)) {
+ // Optimized implementation available.
+ return;
+ }
+ assembler->CheckCharacterGT('z', non_word);
+ assembler->CheckCharacterLT('0', non_word);
+ assembler->CheckCharacterGT('a' - 1, word);
+ assembler->CheckCharacterLT('9' + 1, word);
+ assembler->CheckCharacterLT('A', non_word);
+ assembler->CheckCharacterLT('Z' + 1, word);
+ if (fall_through_on_word) {
+ assembler->CheckNotCharacter('_', non_word);
+ } else {
+ assembler->CheckCharacter('_', word);
+ }
+}
+
+
+// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
+void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Trace::TriBool next_is_word_character = Trace::UNKNOWN;
+ bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
+ BoyerMooreLookahead* lookahead = bm_info(not_at_start);
+ if (lookahead == NULL) {
+ intptr_t eats_at_least =
+ Utils::Minimum(kMaxLookaheadForBoyerMoore,
+ EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ not_at_start));
+ if (eats_at_least >= 1) {
+ BoyerMooreLookahead* bm =
+ new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
+ FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
+ if (bm->at(0)->is_non_word())
+ next_is_word_character = Trace::FALSE_VALUE;
+ if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE;
+ }
+ } else {
+ if (lookahead->at(0)->is_non_word())
+ next_is_word_character = Trace::FALSE_VALUE;
+ if (lookahead->at(0)->is_word())
+ next_is_word_character = Trace::TRUE_VALUE;
+ }
+ bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
+ if (next_is_word_character == Trace::UNKNOWN) {
+ BlockLabel before_non_word;
+ BlockLabel before_word;
+ if (trace->characters_preloaded() != 1) {
+ assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
+ }
+ // Fall through on non-word.
+ EmitWordCheck(assembler, &before_word, &before_non_word, false);
+ // Next character is not a word character.
+ assembler->BindBlock(&before_non_word);
+ BlockLabel ok;
+ // Backtrack on \B (non-boundary check) if previous is a word,
+ // since we know next *is not* a word and this would be a boundary.
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+
+ if (!assembler->IsClosed()) {
+ assembler->GoTo(&ok);
+ }
+
+ assembler->BindBlock(&before_word);
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+ assembler->BindBlock(&ok);
+ } else if (next_is_word_character == Trace::TRUE_VALUE) {
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
+ } else {
+ ASSERT(next_is_word_character == Trace::FALSE_VALUE);
+ BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+ }
+}
+
+
+void AssertionNode::BacktrackIfPrevious(
+ RegExpCompiler* compiler,
+ Trace* trace,
+ AssertionNode::IfPrevious backtrack_if_previous) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Trace new_trace(*trace);
+ new_trace.InvalidateCurrentCharacter();
+
+ BlockLabel fall_through, dummy;
+
+ BlockLabel* non_word = backtrack_if_previous == kIsNonWord ?
+ new_trace.backtrack() :
+ &fall_through;
+ BlockLabel* word = backtrack_if_previous == kIsNonWord ?
+ &fall_through :
+ new_trace.backtrack();
+
+ if (new_trace.cp_offset() == 0) {
+ // The start of input counts as a non-word character, so the question is
+ // decided if we are at the start.
+ assembler->CheckAtStart(non_word);
+ }
+ // We already checked that we are not at the start of input so it must be
+ // OK to load the previous character.
+ assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
+ EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
+
+ assembler->BindBlock(&fall_through);
+ on_success()->Emit(compiler, &new_trace);
+}
+
+
+static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) {
+ if (quick_check == NULL) return false;
+ if (offset >= quick_check->characters()) return false;
+ return quick_check->positions(offset)->determines_perfectly;
+}
+
+
+static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) {
+ if (index > *checked_up_to) {
+ *checked_up_to = index;
+ }
+}
+
+
+typedef bool EmitCharacterFunction(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
+ bool check,
+ bool preloaded);
+
+
+static inline bool EmitSimpleCharacter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ bool bound_checked = false;
+ if (!preloaded) {
+ assembler->LoadCurrentCharacter(
+ cp_offset,
+ on_failure,
+ check);
+ bound_checked = true;
+ }
+ assembler->CheckNotCharacter(c, on_failure);
+ return bound_checked;
+}
+
+
+static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
+ bool ascii,
+ uint16_t c1,
+ uint16_t c2,
+ BlockLabel* on_failure) {
+ uint16_t char_mask;
+ if (ascii) {
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
+ } else {
+ char_mask = Utf16::kMaxCodeUnit;
+ }
+ uint16_t exor = c1 ^ c2;
+ // Check whether exor has only one bit set.
+ if (((exor - 1) & exor) == 0) {
+ // If c1 and c2 differ only by one bit.
+ // Ecma262UnCanonicalize always gives the highest number last.
+ ASSERT(c2 > c1);
+ uint16_t mask = char_mask ^ exor;
+ macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
+ return true;
+ }
+ ASSERT(c2 > c1);
+ uint16_t diff = c2 - c1;
+ if (((diff - 1) & diff) == 0 && c1 >= diff) {
+ // If the characters differ by 2^n but don't differ by one bit then
+ // subtract the difference from the found character, then do the or
+ // trick. We avoid the theoretical case where negative numbers are
+ // involved in order to simplify code generation.
+ uint16_t mask = char_mask ^ diff;
+ macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
+ diff,
+ mask,
+ on_failure);
+ return true;
+ }
+ return false;
+}
+
+// Only emits letters (things that have case). Only used for case independent
+// matches.
+static inline bool EmitAtomLetter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool ascii = compiler->ascii();
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length = GetCaseIndependentLetters(c, ascii, chars);
+ if (length <= 1) return false;
+ // We may not need to check against the end of the input string
+ // if this character lies before a character that matched.
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ }
+ BlockLabel ok;
+ ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+ switch (length) {
+ case 2: {
+ if (ShortCutEmitCharacterPair(macro_assembler,
+ ascii,
+ chars[0],
+ chars[1],
+ on_failure)) {
+ } else {
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckNotCharacter(chars[1], on_failure);
+ macro_assembler->BindBlock(&ok);
+ }
+ break;
+ }
+ case 4:
+ macro_assembler->CheckCharacter(chars[3], &ok);
+ // Fall through!
+ case 3:
+ macro_assembler->CheckCharacter(chars[0], &ok);
+ macro_assembler->CheckCharacter(chars[1], &ok);
+ macro_assembler->CheckNotCharacter(chars[2], on_failure);
+ macro_assembler->BindBlock(&ok);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ return true;
+}
+
+
+// Only emits non-letters (things that don't have case). Only used for case
+// independent matches.
+static inline bool EmitAtomNonLetter(Isolate* isolate,
+ RegExpCompiler* compiler,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
+ bool check,
+ bool preloaded) {
+ RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
+ bool ascii = compiler->ascii();
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length = GetCaseIndependentLetters(c, ascii, chars);
+ if (length < 1) {
+ // This can't match. Must be an ASCII subject and a non-ASCII character.
+ // We do not need to do anything since the ASCII pass already handled this.
+ return false; // Bounds not checked.
+ }
+ bool checked = false;
+ // We handle the length > 1 case in a later pass.
+ if (length == 1) {
+ if (ascii && c > Symbols::kMaxOneCharCodeSymbol) {
+ // Can't match - see above.
+ return false; // Bounds not checked.
+ }
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
+ checked = check;
+ }
+ macro_assembler->CheckNotCharacter(c, on_failure);
+ }
+ return checked;
+}
+
+
+static void EmitBoundaryTest(RegExpMacroAssembler* masm,
+ intptr_t border,
+ BlockLabel* fall_through,
+ BlockLabel* above_or_equal,
+ BlockLabel* below) {
+ if (below != fall_through) {
+ masm->CheckCharacterLT(border, below);
+ if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
+ } else {
+ masm->CheckCharacterGT(border - 1, above_or_equal);
+ }
+}
+
+
+static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
+ intptr_t first,
+ intptr_t last,
+ BlockLabel* fall_through,
+ BlockLabel* in_range,
+ BlockLabel* out_of_range) {
+ if (in_range == fall_through) {
+ if (first == last) {
+ masm->CheckNotCharacter(first, out_of_range);
+ } else {
+ masm->CheckCharacterNotInRange(first, last, out_of_range);
+ }
+ } else {
+ if (first == last) {
+ masm->CheckCharacter(first, in_range);
+ } else {
+ masm->CheckCharacterInRange(first, last, in_range);
+ }
+ if (out_of_range != fall_through) masm->GoTo(out_of_range);
+ }
+}
+
+
+static void CutOutRange(RegExpMacroAssembler* masm,
+ ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ intptr_t cut_index,
+ BlockLabel* even_label,
+ BlockLabel* odd_label) {
+ bool odd = (((cut_index - start_index) & 1) == 1);
+ BlockLabel* in_range_label = odd ? odd_label : even_label;
+ BlockLabel dummy;
+ EmitDoubleBoundaryTest(masm,
+ ranges->At(cut_index),
+ ranges->At(cut_index + 1) - 1,
+ &dummy,
+ in_range_label,
+ &dummy);
+ ASSERT(!dummy.IsLinked());
+ // Cut out the single range by rewriting the array. This creates a new
+ // range that is a merger of the two ranges on either side of the one we
+ // are cutting out. The oddity of the labels is preserved.
+ for (intptr_t j = cut_index; j > start_index; j--) {
+ (*ranges)[j] = ranges->At(j - 1);
+ }
+ for (intptr_t j = cut_index + 1; j < end_index; j++) {
+ (*ranges)[j] = ranges->At(j + 1);
+ }
+}
+
+
+// even_label is for ranges[i] to ranges[i + 1] where i - start_index is even.
+// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
+static void EmitUseLookupTable(
+ RegExpMacroAssembler* masm,
+ ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ intptr_t min_char,
+ BlockLabel* fall_through,
+ BlockLabel* even_label,
+ BlockLabel* odd_label) {
+ static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
+
+ intptr_t base = (min_char & ~kMask);
+
+ // Assert that everything is on one kTableSize page.
+ for (intptr_t i = start_index; i <= end_index; i++) {
+ ASSERT((ranges->At(i) & ~kMask) == base);
+ }
+ ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base);
+
+ char templ[kSize];
+ BlockLabel* on_bit_set;
+ BlockLabel* on_bit_clear;
+ intptr_t bit;
+ if (even_label == fall_through) {
+ on_bit_set = odd_label;
+ on_bit_clear = even_label;
+ bit = 1;
+ } else {
+ on_bit_set = even_label;
+ on_bit_clear = odd_label;
+ bit = 0;
+ }
+ for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize;
+ i++) {
+ templ[i] = bit;
+ }
+ intptr_t j = 0;
+ bit ^= 1;
+ for (intptr_t i = start_index; i < end_index; i++) {
+ for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) {
+ templ[j] = bit;
+ }
+ bit ^= 1;
+ }
+ for (intptr_t i = j; i < kSize; i++) {
+ templ[i] = bit;
+ }
+ // TODO(erikcorry): Cache these.
+ TypedData& ba = TypedData::ZoneHandle(
Florian Schneider 2014/10/01 17:04:14 const TypedData&
jgruber1 2014/10/03 18:59:52 Done.
+ masm->isolate(),
+ TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
+ for (intptr_t i = 0; i < kSize; i++) {
+ ba.SetUint8(i, templ[i]);
+ }
+ masm->CheckBitInTable(ba, on_bit_set);
+ if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
+}
+
+
+// Unicode case. Split the search space into kSize spaces that are handled
+// with recursion.
+static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ intptr_t* new_start_index,
+ intptr_t* new_end_index,
+ intptr_t* border) {
+ static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
+
+ intptr_t first = ranges->At(start_index);
+ intptr_t last = ranges->At(end_index) - 1;
+
+ *new_start_index = start_index;
+ *border = (ranges->At(start_index) & ~kMask) + kSize;
+ while (*new_start_index < end_index) {
+ if (ranges->At(*new_start_index) > *border) break;
+ (*new_start_index)++;
+ }
+ // new_start_index is the index of the first edge that is beyond the
+ // current kSize space.
+
+ // For very large search spaces we do a binary chop search of the non-ASCII
+ // space instead of just going to the end of the current kSize space. The
+ // heuristics are complicated a little by the fact that any 128-character
+ // encoding space can be quickly tested with a table lookup, so we don't
+ // wish to do binary chop search at a smaller granularity than that. A
+ // 128-character space can take up a lot of space in the ranges array if,
+ // for example, we only want to match every second character (eg. the lower
+ // case characters on some Unicode pages).
+ intptr_t binary_chop_index = (end_index + start_index) / 2;
+ // The first test ensures that we get to the code that handles the ASCII
+ // range with a single not-taken branch, speeding up this important
+ // character range (even non-ASCII charset-based text has spaces and
+ // punctuation).
+ if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // ASCII case.
+ end_index - start_index > (*new_start_index - start_index) * 2 &&
+ last - first > kSize * 2 &&
+ binary_chop_index > *new_start_index &&
+ ranges->At(binary_chop_index) >= first + 2 * kSize) {
+ intptr_t scan_forward_for_section_border = binary_chop_index;;
+ intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1;
+
+ while (scan_forward_for_section_border < end_index) {
+ if (ranges->At(scan_forward_for_section_border) > new_border) {
+ *new_start_index = scan_forward_for_section_border;
+ *border = new_border;
+ break;
+ }
+ scan_forward_for_section_border++;
+ }
+ }
+
+ ASSERT(*new_start_index > start_index);
+ *new_end_index = *new_start_index - 1;
+ if (ranges->At(*new_end_index) == *border) {
+ (*new_end_index)--;
+ }
+ if (*border >= ranges->At(end_index)) {
+ *border = ranges->At(end_index);
+ *new_start_index = end_index; // Won't be used.
+ *new_end_index = end_index - 1;
+ }
+}
+
+
+// Gets a series of segment boundaries representing a character class. If the
+// character is in the range between an even and an odd boundary (counting from
+// start_index) then go to even_label, otherwise go to odd_label. We already
+// know that the character is in the range of min_char to max_char inclusive.
+// Either label can be NULL indicating backtracking. Either label can also be
+// equal to the fall_through label.
+static void GenerateBranches(RegExpMacroAssembler* masm,
+ ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ uint16_t min_char,
+ uint16_t max_char,
+ BlockLabel* fall_through,
+ BlockLabel* even_label,
+ BlockLabel* odd_label) {
+ intptr_t first = ranges->At(start_index);
+ intptr_t last = ranges->At(end_index) - 1;
+
+ ASSERT(min_char < first);
+
+ // Just need to test if the character is before or on-or-after
+ // a particular character.
+ if (start_index == end_index) {
+ EmitBoundaryTest(masm, first, fall_through, even_label, odd_label);
+ return;
+ }
+
+ // Another almost trivial case: There is one interval in the middle that is
+ // different from the end intervals.
+ if (start_index + 1 == end_index) {
+ EmitDoubleBoundaryTest(
+ masm, first, last, fall_through, even_label, odd_label);
+ return;
+ }
+
+ // It's not worth using table lookup if there are very few intervals in the
+ // character class.
+ if (end_index - start_index <= 6) {
+ // It is faster to test for individual characters, so we look for those
+ // first, then try arbitrary ranges in the second round.
+ static intptr_t kNoCutIndex = -1;
+ intptr_t cut = kNoCutIndex;
+ for (intptr_t i = start_index; i < end_index; i++) {
+ if (ranges->At(i) == ranges->At(i + 1) - 1) {
+ cut = i;
+ break;
+ }
+ }
+ if (cut == kNoCutIndex) cut = start_index;
+ CutOutRange(
+ masm, ranges, start_index, end_index, cut, even_label, odd_label);
+ ASSERT(end_index - start_index >= 2);
+ GenerateBranches(masm,
+ ranges,
+ start_index + 1,
+ end_index - 1,
+ min_char,
+ max_char,
+ fall_through,
+ even_label,
+ odd_label);
+ return;
+ }
+
+ // If there are a lot of intervals in the regexp, then we will use tables to
+ // determine whether the character is inside or outside the character class.
+ static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits;
+
+ if ((max_char >> kBits) == (min_char >> kBits)) {
+ EmitUseLookupTable(masm,
+ ranges,
+ start_index,
+ end_index,
+ min_char,
+ fall_through,
+ even_label,
+ odd_label);
+ return;
+ }
+
+ if ((min_char >> kBits) != (first >> kBits)) {
+ masm->CheckCharacterLT(first, odd_label);
+ GenerateBranches(masm,
+ ranges,
+ start_index + 1,
+ end_index,
+ first,
+ max_char,
+ fall_through,
+ odd_label,
+ even_label);
+ return;
+ }
+
+ intptr_t new_start_index = 0;
+ intptr_t new_end_index = 0;
+ intptr_t border = 0;
+
+ SplitSearchSpace(ranges,
+ start_index,
+ end_index,
+ &new_start_index,
+ &new_end_index,
+ &border);
+
+ BlockLabel handle_rest;
+ BlockLabel* above = &handle_rest;
+ if (border == last + 1) {
+ // We didn't find any section that started after the limit, so everything
+ // above the border is one of the terminal labels.
+ above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
+ ASSERT(new_end_index == end_index - 1);
+ }
+
+ ASSERT(start_index <= new_end_index);
+ ASSERT(new_start_index <= end_index);
+ ASSERT(start_index < new_start_index);
+ ASSERT(new_end_index < end_index);
+ ASSERT(new_end_index + 1 == new_start_index ||
+ (new_end_index + 2 == new_start_index &&
+ border == ranges->At(new_end_index + 1)));
+ ASSERT(min_char < border - 1);
+ ASSERT(border < max_char);
+ ASSERT(ranges->At(new_end_index) < border);
+ ASSERT(border < ranges->At(new_start_index) ||
+ (border == ranges->At(new_start_index) &&
+ new_start_index == end_index &&
+ new_end_index == end_index - 1 &&
+ border == last + 1));
+ ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1));
+
+ masm->CheckCharacterGT(border - 1, above);
+ BlockLabel dummy;
+ GenerateBranches(masm,
+ ranges,
+ start_index,
+ new_end_index,
+ min_char,
+ border - 1,
+ &dummy,
+ even_label,
+ odd_label);
+
+ if (handle_rest.IsLinked()) {
+ masm->BindBlock(&handle_rest);
+ bool flip = (new_start_index & 1) != (start_index & 1);
+ GenerateBranches(masm,
+ ranges,
+ new_start_index,
+ end_index,
+ border,
+ max_char,
+ &dummy,
+ flip ? odd_label : even_label,
+ flip ? even_label : odd_label);
+ }
+}
+
+
+static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
+ RegExpCharacterClass* cc,
+ bool ascii,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
+ bool check_offset,
+ bool preloaded,
+ Isolate* isolate) {
+ ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
+ if (!CharacterRange::IsCanonical(ranges)) {
+ CharacterRange::Canonicalize(ranges);
+ }
+
+ intptr_t max_char;
+ if (ascii) {
+ max_char = Symbols::kMaxOneCharCodeSymbol;
+ } else {
+ max_char = Utf16::kMaxCodeUnit;
+ }
+ intptr_t range_count = ranges->length();
-#define DEFINE_EMIT(Type) \
- void Type##Node::Emit(RegExpCompiler* compiler, Trace* trace) { \
- UNIMPLEMENTED(); \
+ intptr_t last_valid_range = range_count - 1;
+ while (last_valid_range >= 0) {
+ CharacterRange& range = (*ranges)[last_valid_range];
+ if (range.from() <= max_char) {
+ break;
+ }
+ last_valid_range--;
}
-FOR_EACH_NODE_TYPE(DEFINE_EMIT)
-DEFINE_EMIT(LoopChoice)
-void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler,
- Trace* trace) {
- UNIMPLEMENTED();
-}
-#undef DEFINE_EMIT
+ if (last_valid_range < 0) {
+ if (!cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ }
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
+ }
-#define DEFINE_BMINFO(Type) \
- void Type##Node::FillInBMInfo(intptr_t initial_offset, \
- intptr_t budget, \
- BoyerMooreLookahead* bm, \
- bool not_at_start) { \
- UNIMPLEMENTED(); \
+ if (last_valid_range == 0 &&
+ ranges->At(0).IsEverything(max_char)) {
+ if (cc->is_negated()) {
+ macro_assembler->GoTo(on_failure);
+ } else {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ }
+ return;
+ }
+ if (last_valid_range == 0 &&
+ !cc->is_negated() &&
+ ranges->At(0).IsEverything(max_char)) {
+ // This is a common case hit by non-anchored expressions.
+ if (check_offset) {
+ macro_assembler->CheckPosition(cp_offset, on_failure);
+ }
+ return;
}
-FOR_EACH_NODE_TYPE(DEFINE_BMINFO)
-DEFINE_BMINFO(LoopChoice)
-#undef DEFINE_BMINFO
+ if (!preloaded) {
+ macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
+ }
-// Emit the code to handle \b and \B (word-boundary or non-word-boundary).
-void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
- UNIMPLEMENTED();
-}
+ if (cc->is_standard() &&
+ macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
+ on_failure)) {
+ return;
+ }
-void AssertionNode::BacktrackIfPrevious(
- RegExpCompiler* compiler,
- Trace* trace,
- AssertionNode::IfPrevious backtrack_if_previous) {
- UNIMPLEMENTED();
+ // A new list with ascending entries. Each entry is a code unit
+ // where there is a boundary between code units that are part of
+ // the class and code units that are not. Normally we insert an
+ // entry at zero which goes to the failure label, but if there
+ // was already one there we fall through for success on that entry.
+ // Subsequent entries have alternating meaning (success/failure).
+ ZoneGrowableArray<int>* range_boundaries =
+ new(isolate) ZoneGrowableArray<int>(last_valid_range);
+
+ bool zeroth_entry_is_failure = !cc->is_negated();
+
+ for (intptr_t i = 0; i <= last_valid_range; i++) {
+ CharacterRange& range = (*ranges)[i];
+ if (range.from() == 0) {
+ ASSERT(i == 0);
+ zeroth_entry_is_failure = !zeroth_entry_is_failure;
+ } else {
+ range_boundaries->Add(range.from());
+ }
+ range_boundaries->Add(range.to() + 1);
+ }
+ intptr_t end_index = range_boundaries->length() - 1;
+ if (range_boundaries->At(end_index) > max_char) {
+ end_index--;
+ }
+
+ BlockLabel fall_through;
+ GenerateBranches(macro_assembler,
+ range_boundaries,
+ 0, // start_index.
+ end_index,
+ 0, // min_char.
+ max_char,
+ &fall_through,
+ zeroth_entry_is_failure ? &fall_through : on_failure,
+ zeroth_entry_is_failure ? on_failure : &fall_through);
+ macro_assembler->BindBlock(&fall_through);
}
@@ -785,24 +2854,91 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
Trace* trace,
bool first_element_checked,
intptr_t* checked_up_to) {
- UNIMPLEMENTED();
+ RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ bool ascii = compiler->ascii();
+ BlockLabel* backtrack = trace->backtrack();
+ QuickCheckDetails* quick_check = trace->quick_check_performed();
+ intptr_t element_count = elms_->length();
+ for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+ TextElement elm = elms_->At(i);
+ intptr_t cp_offset = trace->cp_offset() + elm.cp_offset();
+ if (elm.text_type() == TextElement::ATOM) {
+ ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
+ for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) {
+ if (first_element_checked && i == 0 && j == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
+ EmitCharacterFunction* emit_function = NULL;
+ switch (pass) {
+ case NON_ASCII_MATCH:
+ ASSERT(ascii);
+ if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) {
+ assembler->GoTo(backtrack);
+ return;
+ }
+ break;
+ case NON_LETTER_CHARACTER_MATCH:
+ emit_function = &EmitAtomNonLetter;
+ break;
+ case SIMPLE_CHARACTER_MATCH:
+ emit_function = &EmitSimpleCharacter;
+ break;
+ case CASE_CHARACTER_MATCH:
+ emit_function = &EmitAtomLetter;
+ break;
+ default:
+ break;
+ }
+ if (emit_function != NULL) {
+ bool bound_checked = emit_function(I,
+ compiler,
+ quarks->At(j),
+ backtrack,
+ cp_offset + j,
+ *checked_up_to < cp_offset + j,
+ preloaded);
+ if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to);
+ }
+ }
+ } else {
+ ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
+ if (pass == CHARACTER_CLASS_MATCH) {
+ if (first_element_checked && i == 0) continue;
+ if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
+ RegExpCharacterClass* cc = elm.char_class();
+ EmitCharClass(assembler,
+ cc,
+ ascii,
+ backtrack,
+ cp_offset,
+ *checked_up_to < cp_offset,
+ preloaded,
+ I);
+ UpdateBoundsCheck(cp_offset, checked_up_to);
+ }
+ }
+ }
}
intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
- intptr_t eats_at_least) {
- UNIMPLEMENTED();
- return NULL;
-}
-
-
-void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
- Trace* trace,
- GuardedAlternative alternative,
- AlternativeGeneration* alt_gen,
- intptr_t preload_characters,
- bool next_expects_preload) {
- UNIMPLEMENTED();
+ intptr_t eats_at_least) {
+ intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4),
+ eats_at_least);
+ if (compiler->macro_assembler()->CanReadUnaligned()) {
+ bool ascii = compiler->ascii();
+ if (ascii) {
+ if (preload_characters > 4) preload_characters = 4;
+ // We can't preload 3 characters because there is no machine instruction
+ // to do that. We can't just load 4 because we could be reading
+ // beyond the end of the string, which could cause a memory fault.
+ if (preload_characters == 3) preload_characters = 2;
+ } else {
+ if (preload_characters > 2) preload_characters = 2;
+ }
+ } else {
+ if (preload_characters > 1) preload_characters = 1;
+ }
+ return preload_characters;
}
@@ -897,6 +3033,17 @@ intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find,
}
+// Takes the left-most 1-bit and smears it out, setting all bits to its right.
+static inline uint32_t SmearBitsRight(uint32_t v) {
+ v |= v >> 1;
+ v |= v >> 2;
+ v |= v >> 4;
+ v |= v >> 8;
+ v |= v >> 16;
+ return v;
+}
+
+
// Here is the meat of GetQuickCheckDetails (see also the comment on the
// super-class in the .h file).
//
@@ -909,7 +3056,150 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
- UNIMPLEMENTED();
+ ASSERT(characters_filled_in < details->characters());
+ intptr_t characters = details->characters();
+ intptr_t char_mask;
+ if (compiler->ascii()) {
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
+ } else {
+ char_mask = Utf16::kMaxCodeUnit;
+ }
+ for (intptr_t k = 0; k < elms_->length(); k++) {
+ TextElement elm = elms_->At(k);
+ if (elm.text_type() == TextElement::ATOM) {
+ ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
+ for (intptr_t i = 0; i < characters && i < quarks->length(); i++) {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ uint16_t c = quarks->At(i);
+ if (c > char_mask) {
+ // If we expect a non-ASCII character from an ASCII string,
+ // there is no way we can match. Not even case independent
+ // matching can turn an ASCII character into non-ASCII or
+ // vice versa.
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ if (compiler->ignore_case()) {
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length =
+ GetCaseIndependentLetters(c, compiler->ascii(), chars);
+ ASSERT(length != 0); // Can only happen if c > char_mask (see above).
+ if (length == 1) {
+ // This letter has no case equivalents, so it's nice and simple
+ // and the mask-compare will determine definitely whether we have
+ // a match at this character position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ } else {
+ uint32_t common_bits = char_mask;
+ uint32_t bits = chars[0];
+ for (intptr_t j = 1; j < length; j++) {
+ uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ // If length is 2 and common bits has only one zero in it then
+ // our mask and compare instruction will determine definitely
+ // whether we have a match at this character position. Otherwise
+ // it can only be an approximate check.
+ uint32_t one_zero = (common_bits | ~char_mask);
+ if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) {
+ pos->determines_perfectly = true;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ } else {
+ // Don't ignore case. Nice simple case where the mask-compare will
+ // determine definitely whether we have a match at this character
+ // position.
+ pos->mask = char_mask;
+ pos->value = c;
+ pos->determines_perfectly = true;
+ }
+ characters_filled_in++;
+ ASSERT(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ } else {
+ QuickCheckDetails::Position* pos =
+ details->positions(characters_filled_in);
+ RegExpCharacterClass* tree = elm.char_class();
+ ZoneGrowableArray<CharacterRange>* ranges = tree->ranges();
+ if (tree->is_negated()) {
+ // A quick check uses multi-character mask and compare. There is no
+ // useful way to incorporate a negative char class into this scheme
+ // so we just conservatively create a mask and value that will always
+ // succeed.
+ pos->mask = 0;
+ pos->value = 0;
+ } else {
+ intptr_t first_range = 0;
+ while (ranges->At(first_range).from() > char_mask) {
+ first_range++;
+ if (first_range == ranges->length()) {
+ details->set_cannot_match();
+ pos->determines_perfectly = false;
+ return;
+ }
+ }
+ CharacterRange range = ranges->At(first_range);
+ uint16_t from = range.from();
+ uint16_t to = range.to();
+ if (to > char_mask) {
+ to = char_mask;
+ }
+ uint32_t differing_bits = (from ^ to);
+ // A mask and compare is only perfect if the differing bits form a
+ // number like 00011111 with one single block of trailing 1s.
+ if ((differing_bits & (differing_bits + 1)) == 0 &&
+ from + differing_bits == to) {
+ pos->determines_perfectly = true;
+ }
+ uint32_t common_bits = ~SmearBitsRight(differing_bits);
+ uint32_t bits = (from & common_bits);
+ for (intptr_t i = first_range + 1; i < ranges->length(); i++) {
+ CharacterRange range = ranges->At(i);
+ uint16_t from = range.from();
+ uint16_t to = range.to();
+ if (from > char_mask) continue;
+ if (to > char_mask) to = char_mask;
+ // Here we are combining more ranges into the mask and compare
+ // value. With each new range the mask becomes more sparse and
+ // so the chances of a false positive rise. A character class
+ // with multiple ranges is assumed never to be equivalent to a
+ // mask and compare operation.
+ pos->determines_perfectly = false;
+ uint32_t new_common_bits = (from ^ to);
+ new_common_bits = ~SmearBitsRight(new_common_bits);
+ common_bits &= new_common_bits;
+ bits &= new_common_bits;
+ uint32_t differing_bits = (from & common_bits) ^ bits;
+ common_bits ^= differing_bits;
+ bits &= common_bits;
+ }
+ pos->mask = common_bits;
+ pos->value = bits;
+ }
+ characters_filled_in++;
+ ASSERT(characters_filled_in <= details->characters());
+ if (characters_filled_in == details->characters()) {
+ return;
+ }
+ }
+ }
+ ASSERT(characters_filled_in != details->characters());
+ if (!details->cannot_match()) {
+ on_success()-> GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ true);
+ }
}
@@ -917,7 +3207,12 @@ void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
bool not_at_start) {
- UNIMPLEMENTED();
+ if (body_can_be_zero_length_ || info()->visited) return;
+ VisitMarker marker(info());
+ return ChoiceNode::GetQuickCheckDetails(details,
+ compiler,
+ characters_filled_in,
+ not_at_start);
}
@@ -1456,61 +3751,103 @@ void CharacterRange::AddCaseEquivalents(
}
}
- UNIMPLEMENTED();
+ unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
+ unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange;
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ if (top == bottom) {
+ // If this is a singleton we just expand the one character.
+ intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT
+ for (intptr_t i = 0; i < length; i++) {
+ uint32_t chr = chars[i];
+ if (chr != bottom) {
+ ranges->Add(CharacterRange::Singleton(chars[i]));
+ }
+ }
+ } else {
+ // If this is a range we expand the characters block by block,
+ // expanding contiguous subranges (blocks) one at a time.
+ // The approach is as follows. For a given start character we
+ // look up the remainder of the block that contains it (represented
+ // by the end point), for instance we find 'z' if the character
+ // is 'c'. A block is characterized by the property
+ // that all characters uncanonicalize in the same way, except that
+ // each entry in the result is incremented by the distance from the first
+ // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and // NOLINT
+ // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
+ // Once we've found the end point we look up its uncanonicalization
+ // and produce a range for each element. For instance for [c-f]
+ // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
+ // add a range if it is not already contained in the input, so [c-f]
+ // will be skipped but [C-F] will be added. If this range is not
+ // completely contained in a block we do this for all the blocks
+ // covered by the range (handling characters that is not in a block
+ // as a "singleton block").
+ int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t pos = bottom;
+ while (pos <= top) {
+ intptr_t length = jsregexp_canonrange.get(pos, '\0', range);
+ uint16_t block_end;
+ if (length == 0) {
+ block_end = pos;
+ } else {
+ ASSERT(length == 1);
+ block_end = range[0];
+ }
+ intptr_t end = (block_end > top) ? top : block_end;
+ length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT
+ for (intptr_t i = 0; i < length; i++) {
+ uint32_t c = range[i];
+ uint16_t range_from = c - (block_end - pos);
+ uint16_t range_to = c - (block_end - end);
+ if (!(bottom <= range_from && range_to <= top)) {
+ ranges->Add(CharacterRange(range_from, range_to));
+ }
+ }
+ pos = end + 1;
+ }
+ }
+}
+
+
+// -------------------------------------------------------------------
+// Splay tree
+
+
+// Workaround for the fact that ZoneGrowableArray does not have contains().
+static bool ArrayContains(ZoneGrowableArray<unsigned>* array,
+ unsigned value) {
+ for (intptr_t i = 0; i < array->length(); i++) {
+ if (array->At(i) == value) {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+void OutSet::Set(unsigned value, Isolate* isolate) {
+ if (value < kFirstLimit) {
+ first_ |= (1 << value);
+ } else {
+ if (remaining_ == NULL)
+ remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1);
-// unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
-// if (top == bottom) {
-// // If this is a singleton we just expand the one character.
-// intptr_t length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); // NOLINT
-// for (intptr_t i = 0; i < length; i++) {
-// uint32_t chr = chars[i];
-// if (chr != bottom) {
-// ranges->Add(CharacterRange::Singleton(chars[i]), zone);
-// }
-// }
-// } else {
-// // If this is a range we expand the characters block by block,
-// // expanding contiguous subranges (blocks) one at a time.
-// // The approach is as follows. For a given start character we
-// // look up the remainder of the block that contains it (represented
-// // by the end point), for instance we find 'z' if the character
-// // is 'c'. A block is characterized by the property
-// // that all characters uncanonicalize in the same way, except that
-// // each entry in the result is incremented by the distance from the first
-// // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and // NOLINT
-// // the k'th letter uncanonicalizes to ['a' + k, 'A' + k].
-// // Once we've found the end point we look up its uncanonicalization
-// // and produce a range for each element. For instance for [c-f]
-// // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only
-// // add a range if it is not already contained in the input, so [c-f]
-// // will be skipped but [C-F] will be added. If this range is not
-// // completely contained in a block we do this for all the blocks
-// // covered by the range (handling characters that is not in a block
-// // as a "singleton block").
-// unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
-// intptr_t pos = bottom;
-// while (pos <= top) {
-// intptr_t length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
-// uint16_t block_end;
-// if (length == 0) {
-// block_end = pos;
-// } else {
-// ASSERT(length == 1);
-// block_end = range[0];
-// }
-// intptr_t end = (block_end > top) ? top : block_end;
-// length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range); // NOLINT
-// for (intptr_t i = 0; i < length; i++) {
-// uint32_t c = range[i];
-// uint16_t range_from = c - (block_end - pos);
-// uint16_t range_to = c - (block_end - end);
-// if (!(bottom <= range_from && range_to <= top)) {
-// ranges->Add(CharacterRange(range_from, range_to));
-// }
-// }
-// pos = end + 1;
-// }
-// }
+ bool remaining_contains_value = ArrayContains(remaining_, value);
+ if (remaining_->is_empty() || !remaining_contains_value) {
+ remaining_->Add(value);
+ }
+ }
+}
+
+
+bool OutSet::Get(unsigned value) const {
+ if (value < kFirstLimit) {
+ return (first_ & (1 << value)) != 0;
+ } else if (remaining_ == NULL) {
+ return false;
+ } else {
+ return ArrayContains(remaining_, value);
+ }
}
void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
@@ -1564,23 +3901,6 @@ intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
}
-class RecursionCheck {
- public:
- explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
- compiler->IncrementRecursionDepth();
- }
- ~RecursionCheck() { compiler_->DecrementRecursionDepth(); }
- private:
- RegExpCompiler* compiler_;
-};
-
-
-DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
- UNIMPLEMENTED();
- return NULL;
-}
-
-
void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
intptr_t characters_filled_in,
@@ -1703,14 +4023,20 @@ void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
}
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
+ return RegExpEngine::CompilationResult("RegExp too big");
+}
+
+
// Attempts to compile the regexp using an Irregexp code generator. Returns
// a fixed array or a null handle depending on whether it succeeded.
RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case,
- bool ascii)
+ intptr_t specialization_cid)
: next_register_(2 * (capture_count + 1)),
+ work_list_(NULL),
recursion_depth_(0),
ignore_case_(ignore_case),
- ascii_(ascii),
+ specialization_cid_(specialization_cid),
reg_exp_too_big_(false),
current_expansion_factor_(1),
isolate_(Isolate::Current()) {
@@ -1719,28 +4045,71 @@ RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case,
RegExpEngine::CompilationResult RegExpCompiler::Assemble(
- RegExpMacroAssembler* macro_assembler,
+ IRRegExpMacroAssembler* macro_assembler,
RegExpNode* start,
intptr_t capture_count,
const String& pattern) {
- UNIMPLEMENTED();
- return RegExpEngine::CompilationResult("");
+ static const bool use_slow_safe_regexp_compiler = false;
+
+ macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
+ macro_assembler_ = macro_assembler;
+
+ ZoneGrowableArray<RegExpNode*> work_list(0);
+ work_list_ = &work_list;
+ BlockLabel fail;
+ macro_assembler_->PushBacktrack(&fail);
+ Trace new_trace;
+ start->Emit(this, &new_trace);
+ macro_assembler_->BindBlock(&fail);
+ macro_assembler_->Fail();
+ while (!work_list.is_empty()) {
+ work_list.RemoveLast()->Emit(this, &new_trace);
+ }
+ if (reg_exp_too_big_) return IrregexpRegExpTooBig();
+
+ macro_assembler->FinalizeIndirectGotos();
+
+ return RegExpEngine::CompilationResult(macro_assembler,
+ macro_assembler->graph_entry(),
+ macro_assembler->num_blocks(),
+ macro_assembler->num_stack_locals());
}
RegExpEngine::CompilationResult RegExpEngine::Compile(
RegExpCompileData* data,
- bool ignore_case,
- bool is_global,
- bool is_multiline,
- const String& pattern,
- const String& sample_subject,
- bool is_ascii) {
+ const ParsedFunction* parsed_function,
+ ZoneGrowableArray<const ICData*>* ic_data_array) {
Isolate* isolate = Isolate::Current();
- RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii);
-
- // TODO(jgruber): Character frequency sampling.
+ const Function& function = parsed_function->function();
+ const intptr_t specialization_cid = function.regexp_specialization();
+ const bool is_ascii = (specialization_cid == kOneByteStringCid ||
+ specialization_cid == kExternalOneByteStringCid);
+ JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp());
+ const String& pattern = String::Handle(isolate, regexp.pattern());
+ const String& sample_subject =
+ String::Handle(isolate, regexp.sample_subject(specialization_cid));
+
+ ASSERT(!regexp.IsNull());
+ ASSERT(!pattern.IsNull());
+ ASSERT(!sample_subject.IsNull());
+
+ const bool ignore_case = regexp.is_ignore_case();
+ const bool is_global = regexp.is_global();
+
+ RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid);
+
+ // Sample some characters from the middle of the string.
+ static const intptr_t kSampleSize = 128;
+
+ intptr_t chars_sampled = 0;
+ intptr_t half_way = (sample_subject.Length() - kSampleSize) / 2;
+ for (intptr_t i = Utils::Maximum(static_cast<intptr_t>(0), half_way);
+ i < sample_subject.Length() && chars_sampled < kSampleSize;
+ i++, chars_sampled++) {
+ compiler.frequency_collator()->CountCharacter(sample_subject.CharAt(i));
+ }
// Wrap the body of the regexp in capture #0.
RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
@@ -1750,6 +4119,8 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
RegExpNode* node = captured_body;
bool is_start_anchored = data->tree->IsAnchoredAtStart();
+ bool is_end_anchored = data->tree->IsAnchoredAtEnd();
+ intptr_t max_length = data->tree->max_match();
if (!is_start_anchored) {
// Add a .*? at the beginning, outside the body capture, unless
// this expression is anchored at the beginning.
@@ -1793,9 +4164,366 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
return CompilationResult(error_message);
}
- // TODO(jgruber): Assemble native code.
+ // Native regexp implementation.
+
+ IRRegExpMacroAssembler* macro_assembler =
+ new(isolate) IRRegExpMacroAssembler(specialization_cid,
+ data->capture_count,
+ parsed_function,
+ ic_data_array,
+ isolate);
+
+ // Inserted here, instead of in Assembler, because it depends on information
+ // in the AST that isn't replicated in the Node structure.
+ static const intptr_t kMaxBacksearchLimit = 1024;
+ if (is_end_anchored &&
+ !is_start_anchored &&
+ max_length < kMaxBacksearchLimit) {
+ macro_assembler->SetCurrentPositionFromEnd(max_length);
+ }
+
+ if (is_global) {
+ macro_assembler->set_global_mode(
+ (data->tree->min_match() > 0)
+ ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
+ : RegExpMacroAssembler::GLOBAL);
+ }
+
+ RegExpEngine::CompilationResult result =
+ compiler.Assemble(macro_assembler,
+ node,
+ data->capture_count,
+ pattern);
+
+ if (FLAG_trace_irregexp) {
+ macro_assembler->PrintBlocks();
+ }
+
+ return result;
+}
+
+
+static void CreateSpecializedFunction(Isolate* isolate,
+ JSRegExp* regexp,
+ intptr_t specialization_cid,
+ const Object& owner) {
+ const intptr_t kParamCount = RegExpMacroAssembler::kParamCount;
+
+ Function& fn = Function::Handle(isolate,
+ Function::New(String::Handle(isolate, Symbols::New("RegExp")),
+ RawFunction::kIrregexpFunction,
+ true, // Static.
+ false, // Not const.
+ false, // Not abstract.
+ false, // Not external.
+ false, // Not native.
+ owner,
+ 0)); // Requires a non-negative token position.
+
+ fn.set_num_fixed_parameters(kParamCount);
+ fn.set_parameter_types(
+ Array::Handle(isolate, Array::New(kParamCount, Heap::kOld)));
+ fn.set_parameter_names(
+ Array::Handle(isolate, Array::New(kParamCount, Heap::kOld)));
+ fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType()));
+ fn.SetParameterNameAt(0, Symbols::string_param_());
+ fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType()));
+ fn.SetParameterNameAt(1, Symbols::start_index_param_());
+ fn.set_result_type(Type::Handle(isolate, Type::ArrayType()));
+
+ // Cache the result.
+ regexp->set_function(specialization_cid, fn);
+
+ fn.set_regexp(*regexp);
+ fn.set_regexp_specialization(specialization_cid);
+
+ // The function is compiled lazily during the first call.
+}
+
+
+RawJSRegExp* RegExpEngine::New(Isolate* isolate,
+ const String& pattern,
+ bool multi_line,
+ bool ignore_case) {
+ JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0));
+
+ regexp.set_pattern(pattern);
+
+ if (multi_line) regexp.set_is_multi_line();
+ if (ignore_case) regexp.set_is_ignore_case();
+
+ // TODO(jgruber): We might want to use normal string searching algorithms
+ // for simple patterns.
+ regexp.set_is_complex();
+ regexp.set_is_global(); // All dart regexps are global.
+
+ const Library& lib = Library::Handle(isolate, Library::CoreLibrary());
+ const Class& owner = Class::Handle(isolate,
+ lib.LookupClass(String::Handle(isolate, Symbols::New("RegExp"))));
+
+ CreateSpecializedFunction(isolate, &regexp, kOneByteStringCid, owner);
+ CreateSpecializedFunction(isolate, &regexp, kTwoByteStringCid, owner);
+ CreateSpecializedFunction(isolate, &regexp, kExternalOneByteStringCid, owner);
+ CreateSpecializedFunction(isolate, &regexp, kExternalTwoByteStringCid, owner);
+
+ return regexp.raw();
+}
+
+
+void BoyerMoorePositionInfo::Set(intptr_t character) {
+ SetInterval(Interval(character, character));
+}
+
+
+ContainedInLattice AddRange(ContainedInLattice containment,
+ const intptr_t* ranges,
+ intptr_t ranges_length,
+ Interval new_range) {
+ ASSERT((ranges_length & 1) == 1);
+ ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1);
+ if (containment == kLatticeUnknown) return containment;
+ bool inside = false;
+ intptr_t last = 0;
+ for (intptr_t i = 0; i < ranges_length;
+ inside = !inside, last = ranges[i], i++) {
+ // Consider the range from last to ranges[i].
+ // We haven't got to the new range yet.
+ if (ranges[i] <= new_range.from()) continue;
+ // New range is wholly inside last-ranges[i]. Note that new_range.to() is
+ // inclusive, but the values in ranges are not.
+ if (last <= new_range.from() && new_range.to() < ranges[i]) {
+ return Combine(containment, inside ? kLatticeIn : kLatticeOut);
+ }
+ return kLatticeUnknown;
+ }
+ return containment;
+}
+
+
+void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
+ s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval);
+ w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval);
+ d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval);
+ surrogate_ =
+ AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval);
+ if (interval.to() - interval.from() >= kMapSize - 1) {
+ if (map_count_ != kMapSize) {
+ map_count_ = kMapSize;
+ for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
+ }
+ return;
+ }
+ for (intptr_t i = interval.from(); i <= interval.to(); i++) {
+ intptr_t mod_character = (i & kMask);
+ if (!map_->At(mod_character)) {
+ map_count_++;
+ (*map_)[mod_character] = true;
+ }
+ if (map_count_ == kMapSize) return;
+ }
+}
+
+
+void BoyerMoorePositionInfo::SetAll() {
+ s_ = w_ = d_ = kLatticeUnknown;
+ if (map_count_ != kMapSize) {
+ map_count_ = kMapSize;
+ for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
+ }
+}
+
+
+BoyerMooreLookahead::BoyerMooreLookahead(
+ intptr_t length, RegExpCompiler* compiler, Isolate* isolate)
+ : length_(length),
+ compiler_(compiler) {
+ if (compiler->ascii()) {
+ max_char_ = Symbols::kMaxOneCharCodeSymbol;
+ } else {
+ max_char_ = Utf16::kMaxCodeUnit;
+ }
+ bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length);
+ for (intptr_t i = 0; i < length; i++) {
+ bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate));
+ }
+}
+
+
+// Take all the characters that will not prevent a successful match if they
+// occur in the subject string in the range between min_lookahead and
+// max_lookahead (inclusive) measured from the current position. If the
+// character at max_lookahead offset is not one of these characters, then we
+// can safely skip forwards by the number of characters in the range.
+intptr_t BoyerMooreLookahead::GetSkipTable(intptr_t min_lookahead,
+ intptr_t max_lookahead,
+ TypedData* boolean_skip_table) {
Florian Schneider 2014/10/01 17:04:14 const TypedData& since this will never be NULL.
jgruber1 2014/10/03 18:59:52 Done.
+ const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+
+ const intptr_t kSkipArrayEntry = 0;
+ const intptr_t kDontSkipArrayEntry = 1;
+
+ for (intptr_t i = 0; i < kSize; i++) {
+ boolean_skip_table->SetUint8(i, kSkipArrayEntry);
+ }
+ intptr_t skip = max_lookahead + 1 - min_lookahead;
+
+ for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->At(i);
+ for (intptr_t j = 0; j < kSize; j++) {
+ if (map->at(j)) {
+ boolean_skip_table->SetUint8(j, kDontSkipArrayEntry);
+ }
+ }
+ }
+
+ return skip;
+}
+
+
+// Find the longest range of lookahead that has the fewest number of different
+// characters that can occur at a given position. Since we are optimizing two
+// different parameters at once this is a tradeoff.
+bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
+ intptr_t biggest_points = 0;
+ // If more than 32 characters out of 128 can occur it is unlikely that we can
+ // be lucky enough to step forwards much of the time.
+ const intptr_t kMaxMax = 32;
+ for (intptr_t max_number_of_chars = 4;
+ max_number_of_chars < kMaxMax;
+ max_number_of_chars *= 2) {
+ biggest_points =
+ FindBestInterval(max_number_of_chars, biggest_points, from, to);
+ }
+ if (biggest_points == 0) return false;
+ return true;
+}
+
+
+// Find the highest-points range between 0 and length_ where the character
+// information is not too vague. 'Too vague' means that there are more than
+// max_number_of_chars that can occur at this position. Calculates the number
+// of points as the product of width-of-the-range and
+// probability-of-finding-one-of-the-characters, where the probability is
+// calculated using the frequency distribution of the sample subject string.
+intptr_t BoyerMooreLookahead::FindBestInterval(
+ intptr_t max_number_of_chars,
+ intptr_t old_biggest_points,
+ intptr_t* from,
+ intptr_t* to) {
+ intptr_t biggest_points = old_biggest_points;
+ static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ for (intptr_t i = 0; i < length_; ) {
+ while (i < length_ && Count(i) > max_number_of_chars) i++;
+ if (i == length_) break;
+ intptr_t remembered_from = i;
+ bool union_map[kSize];
+ for (intptr_t j = 0; j < kSize; j++) union_map[j] = false;
+ while (i < length_ && Count(i) <= max_number_of_chars) {
+ BoyerMoorePositionInfo* map = bitmaps_->At(i);
+ for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j);
+ i++;
+ }
+ intptr_t frequency = 0;
+ for (intptr_t j = 0; j < kSize; j++) {
+ if (union_map[j]) {
+ // Add 1 to the frequency to give a small per-character boost for
+ // the cases where our sampling is not good enough and many
+ // characters have a frequency of zero. This means the frequency
+ // can theoretically be up to 2*kSize though we treat it mostly as
+ // a fraction of kSize.
+ frequency += compiler_->frequency_collator()->Frequency(j) + 1;
+ }
+ }
+ // We use the probability of skipping times the distance we are skipping to
+ // judge the effectiveness of this. Actually we have a cut-off: By
+ // dividing by 2 we switch off the skipping if the probability of skipping
+ // is less than 50%. This is because the multibyte mask-and-compare
+ // skipping in quickcheck is more likely to do well on this case.
+ bool in_quickcheck_range = ((i - remembered_from < 4) ||
+ (compiler_->ascii() ? remembered_from <= 4 : remembered_from <= 2));
+ // Called 'probability' but it is only a rough estimate and can actually
+ // be outside the 0-kSize range.
+ intptr_t probability =
+ (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
+ intptr_t points = (i - remembered_from) * probability;
+ if (points > biggest_points) {
+ *from = remembered_from;
+ *to = i - 1;
+ biggest_points = points;
+ }
+ }
+ return biggest_points;
+}
+
+
+// See comment above on the implementation of GetSkipTable.
+bool BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
+ const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+
+ intptr_t min_lookahead = 0;
+ intptr_t max_lookahead = 0;
+
+ if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return false;
+
+ bool found_single_character = false;
+ intptr_t single_character = 0;
+ for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->At(i);
+ if (map->map_count() > 1 ||
+ (found_single_character && map->map_count() != 0)) {
+ found_single_character = false;
+ break;
+ }
+ for (intptr_t j = 0; j < kSize; j++) {
+ if (map->at(j)) {
+ found_single_character = true;
+ single_character = j;
+ break;
+ }
+ }
+ }
+
+ intptr_t lookahead_width = max_lookahead + 1 - min_lookahead;
+
+ if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
+ // The mask-compare can probably handle this better.
+ return false;
+ }
+
+ if (found_single_character) {
+ BlockLabel cont, again;
+ masm->BindBlock(&again);
+ masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+ if (max_char_ > kSize) {
+ masm->CheckCharacterAfterAnd(single_character,
+ RegExpMacroAssembler::kTableMask,
+ &cont);
+ } else {
+ masm->CheckCharacter(single_character, &cont);
+ }
+ masm->AdvanceCurrentPosition(lookahead_width);
+ masm->GoTo(&again);
+ masm->BindBlock(&cont);
+ return true;
+ }
- return RegExpEngine::CompilationResult("");
+ TypedData& boolean_skip_table = TypedData::ZoneHandle(
Florian Schneider 2014/10/01 17:04:14 const TypedData&
jgruber1 2014/10/03 18:59:52 Done.
+ compiler_->isolate(),
+ TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
+ intptr_t skip_distance = GetSkipTable(
+ min_lookahead, max_lookahead, &boolean_skip_table);
+ ASSERT(skip_distance != 0);
+
+ BlockLabel cont, again;
+
+ masm->BindBlock(&again);
+ masm->LoadCurrentCharacter(max_lookahead, &cont, true);
+ masm->CheckBitInTable(boolean_skip_table, &cont);
+ masm->AdvanceCurrentPosition(skip_distance);
+ masm->GoTo(&again);
+ masm->BindBlock(&cont);
+
+ return true;
}
@@ -1987,7 +4715,7 @@ void DotPrinter::PrintAttributes(RegExpNode* that) {
printer.PrintBit("NI", info->follows_newline_interest);
printer.PrintBit("WI", info->follows_word_interest);
printer.PrintBit("SI", info->follows_start_interest);
- Label* label = that->label();
+ BlockLabel* label = that->label();
if (label->IsBound())
printer.PrintPositive("@", label->Position());
OS::Print("}\"];\n"

Powered by Google App Engine
This is Rietveld 408576698