Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(315)

Side by Side Diff: runtime/vm/regexp.h

Issue 539153002: Port and integrate the irregexp engine from V8 (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Addressed Ivan's comments. Created 6 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « runtime/vm/raw_object_snapshot.cc ('k') | runtime/vm/regexp.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file.
4
5 #ifndef VM_REGEXP_H_
6 #define VM_REGEXP_H_
7
8 #include "vm/assembler.h"
9 #include "vm/intermediate_language.h"
10 #include "vm/object.h"
11 #include "vm/regexp_assembler.h"
12
13 namespace dart {
14
15 // Forward declarations.
16 class AlternativeGeneration;
17 class BoyerMooreLookahead;
18 class NodeVisitor;
19 class QuickCheckDetails;
20 class RegExpAtom;
21 class RegExpCharacterClass;
22 class RegExpCompiler;
23 class RegExpMacroAssembler;
24 class RegExpNode;
25 class RegExpTree;
26 class Trace;
27
28 #define FOR_EACH_NODE_TYPE(VISIT) \
29 VISIT(Action) \
30 VISIT(Assertion) \
31 VISIT(BackReference) \
32 VISIT(Choice) \
33 VISIT(End) \
34 VISIT(Text)
35
36
37 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
38 VISIT(Disjunction) \
39 VISIT(Alternative) \
40 VISIT(BackReference) \
41 VISIT(Assertion) \
42 VISIT(Capture) \
43 VISIT(CharacterClass) \
44 VISIT(Atom) \
45 VISIT(Quantifier) \
46 VISIT(Empty) \
47 VISIT(Lookahead) \
48 VISIT(Text)
49
50
51 struct NodeInfo {
52 NodeInfo()
53 : being_analyzed(false),
54 been_analyzed(false),
55 follows_word_interest(false),
56 follows_newline_interest(false),
57 follows_start_interest(false),
58 at_end(false),
59 visited(false),
60 replacement_calculated(false) { }
61
62 // Returns true if the interests and assumptions of this node
63 // matches the given one.
64 bool Matches(NodeInfo* that) {
65 return (at_end == that->at_end) &&
66 (follows_word_interest == that->follows_word_interest) &&
67 (follows_newline_interest == that->follows_newline_interest) &&
68 (follows_start_interest == that->follows_start_interest);
69 }
70
71 // Updates the interests of this node given the interests of the
72 // node preceding it.
73 void AddFromPreceding(NodeInfo* that) {
74 at_end |= that->at_end;
75 follows_word_interest |= that->follows_word_interest;
76 follows_newline_interest |= that->follows_newline_interest;
77 follows_start_interest |= that->follows_start_interest;
78 }
79
80 bool HasLookbehind() {
81 return follows_word_interest ||
82 follows_newline_interest ||
83 follows_start_interest;
84 }
85
86 // Sets the interests of this node to include the interests of the
87 // following node.
88 void AddFromFollowing(NodeInfo* that) {
89 follows_word_interest |= that->follows_word_interest;
90 follows_newline_interest |= that->follows_newline_interest;
91 follows_start_interest |= that->follows_start_interest;
92 }
93
94 void ResetCompilationState() {
95 being_analyzed = false;
96 been_analyzed = false;
97 }
98
99 bool being_analyzed: 1;
100 bool been_analyzed: 1;
101
102 // These bits are set of this node has to know what the preceding
103 // character was.
104 bool follows_word_interest: 1;
105 bool follows_newline_interest: 1;
106 bool follows_start_interest: 1;
107
108 bool at_end: 1;
109 bool visited: 1;
110 bool replacement_calculated: 1;
111 };
112
113
114 class TextElement {
115 public:
116 enum TextType {
117 ATOM,
118 CHAR_CLASS
119 };
120
121 static TextElement Atom(RegExpAtom* atom);
122 static TextElement CharClass(RegExpCharacterClass* char_class);
123
124 intptr_t cp_offset() const { return cp_offset_; }
125 void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
126 intptr_t length() const;
127
128 TextType text_type() const { return text_type_; }
129
130 RegExpTree* tree() const { return tree_; }
131
132 RegExpAtom* atom() const {
133 ASSERT(text_type() == ATOM);
134 return reinterpret_cast<RegExpAtom*>(tree());
135 }
136
137 RegExpCharacterClass* char_class() const {
138 ASSERT(text_type() == CHAR_CLASS);
139 return reinterpret_cast<RegExpCharacterClass*>(tree());
140 }
141
142 private:
143 TextElement(TextType text_type, RegExpTree* tree)
144 : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
145
146 intptr_t cp_offset_;
147 TextType text_type_;
148 RegExpTree* tree_;
149
150 DISALLOW_ALLOCATION();
151 };
152
153
154 // Represents code units in the range from from_ to to_, both ends are
155 // inclusive.
156 class CharacterRange {
157 public:
158 CharacterRange() : from_(0), to_(0) { }
159 CharacterRange(uint16_t from, uint16_t to) : from_(from), to_(to) { }
160
161 static void AddClassEscape(uint16_t type,
162 ZoneGrowableArray<CharacterRange>* ranges);
163 static GrowableArray<const intptr_t> GetWordBounds();
164 static inline CharacterRange Singleton(uint16_t value) {
165 return CharacterRange(value, value);
166 }
167 static inline CharacterRange Range(uint16_t from, uint16_t to) {
168 ASSERT(from <= to);
169 return CharacterRange(from, to);
170 }
171 static inline CharacterRange Everything() {
172 return CharacterRange(0, 0xFFFF);
173 }
174 bool Contains(uint16_t i) const { return from_ <= i && i <= to_; }
175 uint16_t from() const { return from_; }
176 void set_from(uint16_t value) { from_ = value; }
177 uint16_t to() const { return to_; }
178 void set_to(uint16_t value) { to_ = value; }
179 bool is_valid() const { return from_ <= to_; }
180 bool IsEverything(uint16_t max) const { return from_ == 0 && to_ >= max; }
181 bool IsSingleton() const { return (from_ == to_); }
182 void AddCaseEquivalents(ZoneGrowableArray<CharacterRange>* ranges,
183 bool is_ascii,
184 Isolate* isolate);
185 static void Split(ZoneGrowableArray<CharacterRange>* base,
186 GrowableArray<const intptr_t> overlay,
187 ZoneGrowableArray<CharacterRange>** included,
188 ZoneGrowableArray<CharacterRange>** excluded,
189 Isolate* isolate);
190 // Whether a range list is in canonical form: Ranges ordered by from value,
191 // and ranges non-overlapping and non-adjacent.
192 static bool IsCanonical(ZoneGrowableArray<CharacterRange>* ranges);
193 // Convert range list to canonical form. The characters covered by the ranges
194 // will still be the same, but no character is in more than one range, and
195 // adjacent ranges are merged. The resulting list may be shorter than the
196 // original, but cannot be longer.
197 static void Canonicalize(ZoneGrowableArray<CharacterRange>* ranges);
198 // Negate the contents of a character range in canonical form.
199 static void Negate(ZoneGrowableArray<CharacterRange>* src,
200 ZoneGrowableArray<CharacterRange>* dst);
201 static const intptr_t kStartMarker = (1 << 24);
202 static const intptr_t kPayloadMask = (1 << 24) - 1;
203
204 private:
205 uint16_t from_;
206 uint16_t to_;
207
208 DISALLOW_ALLOCATION();
209 };
210
211
212 class RegExpNode: public ZoneAllocated {
213 public:
214 explicit RegExpNode(Isolate* isolate)
215 : replacement_(NULL), trace_count_(0), isolate_(isolate) {
216 bm_info_[0] = bm_info_[1] = NULL;
217 }
218 virtual ~RegExpNode() { }
219 virtual void Accept(NodeVisitor* visitor) = 0;
220 // Generates a goto to this node or actually generates the code at this point.
221 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
222 // How many characters must this node consume at a minimum in order to
223 // succeed. If we have found at least 'still_to_find' characters that
224 // must be consumed there is no need to ask any following nodes whether
225 // they are sure to eat any more characters. The not_at_start argument is
226 // used to indicate that we know we are not at the start of the input. In
227 // this case anchored branches will always fail and can be ignored when
228 // determining how many characters are consumed on success.
229 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
230 bool not_at_start) = 0;
231 // Emits some quick code that checks whether the preloaded characters match.
232 // Falls through on certain failure, jumps to the label on possible success.
233 // If the node cannot make a quick check it does nothing and returns false.
234 bool EmitQuickCheck(RegExpCompiler* compiler,
235 Trace* trace,
236 bool preload_has_checked_bounds,
237 BlockLabel* on_possible_success,
238 QuickCheckDetails* details_return,
239 bool fall_through_on_failure);
240 // For a given number of characters this returns a mask and a value. The
241 // next n characters are anded with the mask and compared with the value.
242 // A comparison failure indicates the node cannot match the next n characters.
243 // A comparison success indicates the node may match.
244 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
245 RegExpCompiler* compiler,
246 intptr_t characters_filled_in,
247 bool not_at_start) = 0;
248 static const intptr_t kNodeIsTooComplexForGreedyLoops = -1;
249 virtual intptr_t GreedyLoopTextLength() {
250 return kNodeIsTooComplexForGreedyLoops;
251 }
252 // Only returns the successor for a text node of length 1 that matches any
253 // character and that has no guards on it.
254 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
255 RegExpCompiler* compiler) {
256 return NULL;
257 }
258
259 // Collects information on the possible code units (mod 128) that can match if
260 // we look forward. This is used for a Boyer-Moore-like string searching
261 // implementation. TODO(erikcorry): This should share more code with
262 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
263 // the number of nodes we are willing to look at in order to create this data.
264 static const intptr_t kRecursionBudget = 200;
265 virtual void FillInBMInfo(intptr_t offset,
266 intptr_t budget,
267 BoyerMooreLookahead* bm,
268 bool not_at_start) {
269 UNREACHABLE();
270 }
271
272 // If we know that the input is ASCII then there are some nodes that can
273 // never match. This method returns a node that can be substituted for
274 // itself, or NULL if the node can never match.
275 virtual RegExpNode* FilterASCII(intptr_t depth, bool ignore_case) {
276 return this;
277 }
278 // Helper for FilterASCII.
279 RegExpNode* replacement() {
280 ASSERT(info()->replacement_calculated);
281 return replacement_;
282 }
283 RegExpNode* set_replacement(RegExpNode* replacement) {
284 info()->replacement_calculated = true;
285 replacement_ = replacement;
286 return replacement; // For convenience.
287 }
288
289 // We want to avoid recalculating the lookahead info, so we store it on the
290 // node. Only info that is for this node is stored. We can tell that the
291 // info is for this node when offset == 0, so the information is calculated
292 // relative to this node.
293 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, intptr_t offset) {
294 if (offset == 0) set_bm_info(not_at_start, bm);
295 }
296
297 BlockLabel* label() { return &label_; }
298 // If non-generic code is generated for a node (i.e. the node is not at the
299 // start of the trace) then it cannot be reused. This variable sets a limit
300 // on how often we allow that to happen before we insist on starting a new
301 // trace and generating generic code for a node that can be reused by flushing
302 // the deferred actions in the current trace and generating a goto.
303 static const intptr_t kMaxCopiesCodeGenerated = 10;
304
305 NodeInfo* info() { return &info_; }
306
307 BoyerMooreLookahead* bm_info(bool not_at_start) {
308 return bm_info_[not_at_start ? 1 : 0];
309 }
310
311 Isolate* isolate() const { return isolate_; }
312
313 protected:
314 enum LimitResult { DONE, CONTINUE };
315 RegExpNode* replacement_;
316
317 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
318
319 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
320 bm_info_[not_at_start ? 1 : 0] = bm;
321 }
322
323 private:
324 static const intptr_t kFirstCharBudget = 10;
325 BlockLabel label_;
326 NodeInfo info_;
327 // This variable keeps track of how many times code has been generated for
328 // this node (in different traces). We don't keep track of where the
329 // generated code is located unless the code is generated at the start of
330 // a trace, in which case it is generic and can be reused by flushing the
331 // deferred operations in the current trace and generating a goto.
332 intptr_t trace_count_;
333 BoyerMooreLookahead* bm_info_[2];
334 Isolate* isolate_;
335 };
336
337
338 class SeqRegExpNode: public RegExpNode {
339 public:
340 explicit SeqRegExpNode(RegExpNode* on_success)
341 : RegExpNode(on_success->isolate()), on_success_(on_success) { }
342 RegExpNode* on_success() { return on_success_; }
343 void set_on_success(RegExpNode* node) { on_success_ = node; }
344 virtual RegExpNode* FilterASCII(intptr_t depth, bool ignore_case);
345 virtual void FillInBMInfo(intptr_t offset,
346 intptr_t budget,
347 BoyerMooreLookahead* bm,
348 bool not_at_start) {
349 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
350 if (offset == 0) set_bm_info(not_at_start, bm);
351 }
352
353 protected:
354 RegExpNode* FilterSuccessor(intptr_t depth, bool ignore_case);
355
356 private:
357 RegExpNode* on_success_;
358 };
359
360
361 class BackReferenceNode: public SeqRegExpNode {
362 public:
363 BackReferenceNode(intptr_t start_reg,
364 intptr_t end_reg,
365 RegExpNode* on_success)
366 : SeqRegExpNode(on_success),
367 start_reg_(start_reg),
368 end_reg_(end_reg) { }
369 virtual void Accept(NodeVisitor* visitor);
370 intptr_t start_register() { return start_reg_; }
371 intptr_t end_register() { return end_reg_; }
372 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
373 virtual intptr_t EatsAtLeast(intptr_t still_to_find,
374 intptr_t recursion_depth,
375 bool not_at_start);
376 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
377 RegExpCompiler* compiler,
378 intptr_t characters_filled_in,
379 bool not_at_start) {
380 return;
381 }
382 virtual void FillInBMInfo(intptr_t offset,
383 intptr_t budget,
384 BoyerMooreLookahead* bm,
385 bool not_at_start);
386
387 private:
388 intptr_t start_reg_;
389 intptr_t end_reg_;
390 };
391
392
393 class TextNode: public SeqRegExpNode {
394 public:
395 TextNode(ZoneGrowableArray<TextElement>* elms,
396 RegExpNode* on_success)
397 : SeqRegExpNode(on_success),
398 elms_(elms) { }
399 TextNode(RegExpCharacterClass* that,
400 RegExpNode* on_success)
401 : SeqRegExpNode(on_success),
402 elms_(new(isolate()) ZoneGrowableArray<TextElement>(1)) {
403 elms_->Add(TextElement::CharClass(that));
404 }
405 virtual void Accept(NodeVisitor* visitor);
406 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
407 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
408 bool not_at_start);
409 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
410 RegExpCompiler* compiler,
411 intptr_t characters_filled_in,
412 bool not_at_start);
413 ZoneGrowableArray<TextElement>* elements() { return elms_; }
414 void MakeCaseIndependent(bool is_ascii);
415 virtual intptr_t GreedyLoopTextLength();
416 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
417 RegExpCompiler* compiler);
418 virtual void FillInBMInfo(intptr_t offset,
419 intptr_t budget,
420 BoyerMooreLookahead* bm,
421 bool not_at_start);
422 void CalculateOffsets();
423 virtual RegExpNode* FilterASCII(intptr_t depth, bool ignore_case);
424
425 private:
426 enum TextEmitPassType {
427 NON_ASCII_MATCH, // Check for characters that can't match.
428 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
429 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
430 CASE_CHARACTER_MATCH, // Case-independent single character check.
431 CHARACTER_CLASS_MATCH // Character class.
432 };
433 static bool SkipPass(intptr_t pass, bool ignore_case);
434 static const intptr_t kFirstRealPass = SIMPLE_CHARACTER_MATCH;
435 static const intptr_t kLastPass = CHARACTER_CLASS_MATCH;
436 void TextEmitPass(RegExpCompiler* compiler,
437 TextEmitPassType pass,
438 bool preloaded,
439 Trace* trace,
440 bool first_element_checked,
441 intptr_t* checked_up_to);
442 intptr_t Length();
443 ZoneGrowableArray<TextElement>* elms_;
444 };
445
446
447 class AssertionNode: public SeqRegExpNode {
448 public:
449 enum AssertionType {
450 AT_END,
451 AT_START,
452 AT_BOUNDARY,
453 AT_NON_BOUNDARY,
454 AFTER_NEWLINE
455 };
456 static AssertionNode* AtEnd(RegExpNode* on_success) {
457 return new(on_success->isolate()) AssertionNode(AT_END, on_success);
458 }
459 static AssertionNode* AtStart(RegExpNode* on_success) {
460 return new(on_success->isolate()) AssertionNode(AT_START, on_success);
461 }
462 static AssertionNode* AtBoundary(RegExpNode* on_success) {
463 return new(on_success->isolate()) AssertionNode(AT_BOUNDARY, on_success);
464 }
465 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
466 return new(on_success->isolate()) AssertionNode(AT_NON_BOUNDARY,
467 on_success);
468 }
469 static AssertionNode* AfterNewline(RegExpNode* on_success) {
470 return new(on_success->isolate()) AssertionNode(AFTER_NEWLINE, on_success);
471 }
472 virtual void Accept(NodeVisitor* visitor);
473 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
474 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
475 bool not_at_start);
476 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
477 RegExpCompiler* compiler,
478 intptr_t filled_in,
479 bool not_at_start);
480 virtual void FillInBMInfo(intptr_t offset,
481 intptr_t budget,
482 BoyerMooreLookahead* bm,
483 bool not_at_start);
484 AssertionType assertion_type() { return assertion_type_; }
485
486 private:
487 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
488 enum IfPrevious { kIsNonWord, kIsWord };
489 void BacktrackIfPrevious(RegExpCompiler* compiler,
490 Trace* trace,
491 IfPrevious backtrack_if_previous);
492 AssertionNode(AssertionType t, RegExpNode* on_success)
493 : SeqRegExpNode(on_success), assertion_type_(t) { }
494 AssertionType assertion_type_;
495 };
496
497
498 class Guard: public ZoneAllocated{
499 public:
500 enum Relation { LT, GEQ };
501 Guard(intptr_t reg, Relation op, intptr_t value)
502 : reg_(reg),
503 op_(op),
504 value_(value) { }
505 intptr_t reg() { return reg_; }
506 Relation op() { return op_; }
507 intptr_t value() { return value_; }
508
509 private:
510 intptr_t reg_;
511 Relation op_;
512 intptr_t value_;
513 };
514
515
516 class GuardedAlternative {
517 public:
518 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
519 void AddGuard(Guard* guard, Isolate* isolate);
520 RegExpNode* node() { return node_; }
521 void set_node(RegExpNode* node) { node_ = node; }
522 ZoneGrowableArray<Guard*>* guards() { return guards_; }
523
524 private:
525 RegExpNode* node_;
526 ZoneGrowableArray<Guard*>* guards_;
527
528 DISALLOW_ALLOCATION();
529 };
530
531
532 // A set of unsigned integers that behaves especially well on small
533 // integers (< 32). May do zone-allocation.
534 class OutSet: public ZoneAllocated {
535 public:
536 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
537 OutSet* Extend(unsigned value, Isolate* isolate);
538 bool Get(unsigned value) const;
539 static const unsigned kFirstLimit = 32;
540
541 private:
542 // Destructively set a value in this set. In most cases you want
543 // to use Extend instead to ensure that only one instance exists
544 // that contains the same values.
545 void Set(unsigned value, Isolate* isolate);
546
547 // The successors are a list of sets that contain the same values
548 // as this set and the one more value that is not present in this
549 // set.
550 ZoneGrowableArray<OutSet*>* successors() { return successors_; }
551
552 OutSet(uint32_t first, ZoneGrowableArray<unsigned>* remaining)
553 : first_(first), remaining_(remaining), successors_(NULL) { }
554 uint32_t first_;
555 ZoneGrowableArray<unsigned>* remaining_;
556 ZoneGrowableArray<OutSet*>* successors_;
557 friend class Trace;
558 };
559
560
561 // A mapping from integers, specified as ranges, to a set of integers.
562 // Used for mapping character ranges to choices.
563 class DispatchTable : public ZoneAllocated {
564 public:
565 DispatchTable() { }
566
567 class Entry {
568 public:
569 Entry() : from_(0), to_(0), out_set_(NULL) { }
570 Entry(uint16_t from, uint16_t to, OutSet* out_set)
571 : from_(from), to_(to), out_set_(out_set) { }
572 uint16_t from() { return from_; }
573 uint16_t to() { return to_; }
574 void set_to(uint16_t value) { to_ = value; }
575 void AddValue(intptr_t value, Isolate* isolate) {
576 out_set_ = out_set_->Extend(value, isolate);
577 }
578 OutSet* out_set() { return out_set_; }
579 private:
580 uint16_t from_;
581 uint16_t to_;
582 OutSet* out_set_;
583
584 DISALLOW_ALLOCATION();
585 };
586
587 class Config {
588 public:
589 typedef uint16_t Key;
590 typedef Entry Value;
591 static const uint16_t kNoKey;
592 static const Entry NoValue() { return Value(); }
593 static inline intptr_t Compare(uint16_t a, uint16_t b) {
594 if (a == b)
595 return 0;
596 else if (a < b)
597 return -1;
598 else
599 return 1;
600 }
601
602 private:
603 DISALLOW_ALLOCATION();
604 };
605
606 void AddRange(CharacterRange range, intptr_t value, Zone* zone);
607 OutSet* Get(uint16_t value);
608 void Dump();
609
610 template <typename Callback>
611 void ForEach(Callback* callback) {
612 UNIMPLEMENTED();
613 }
614
615 private:
616 // There can't be a static empty set since it allocates its
617 // successors in a zone and caches them.
618 OutSet* empty() { return &empty_; }
619 OutSet empty_;
620 };
621
622
623 class ChoiceNode: public RegExpNode {
624 public:
625 explicit ChoiceNode(intptr_t expected_size, Isolate* isolate)
626 : RegExpNode(isolate),
627 alternatives_(new(isolate)
628 ZoneGrowableArray<GuardedAlternative>(expected_size)),
629 table_(NULL),
630 not_at_start_(false),
631 being_calculated_(false) { }
632 virtual void Accept(NodeVisitor* visitor);
633 void AddAlternative(GuardedAlternative node) {
634 alternatives()->Add(node);
635 }
636 ZoneGrowableArray<GuardedAlternative>* alternatives() {
637 return alternatives_;
638 }
639 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
640 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
641 bool not_at_start);
642 intptr_t EatsAtLeastHelper(intptr_t still_to_find,
643 intptr_t budget,
644 RegExpNode* ignore_this_node,
645 bool not_at_start);
646 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
647 RegExpCompiler* compiler,
648 intptr_t characters_filled_in,
649 bool not_at_start);
650 virtual void FillInBMInfo(intptr_t offset,
651 intptr_t budget,
652 BoyerMooreLookahead* bm,
653 bool not_at_start);
654
655 bool being_calculated() { return being_calculated_; }
656 bool not_at_start() { return not_at_start_; }
657 void set_not_at_start() { not_at_start_ = true; }
658 void set_being_calculated(bool b) { being_calculated_ = b; }
659 virtual bool try_to_emit_quick_check_for_alternative(intptr_t i) {
660 return true;
661 }
662 virtual RegExpNode* FilterASCII(intptr_t depth, bool ignore_case);
663
664 protected:
665 intptr_t GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
666 ZoneGrowableArray<GuardedAlternative>* alternatives_;
667
668 private:
669 friend class DispatchTableConstructor;
670 friend class Analysis;
671 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
672 Guard* guard,
673 Trace* trace);
674 intptr_t CalculatePreloadCharacters(RegExpCompiler* compiler,
675 intptr_t eats_at_least);
676 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
677 Trace* trace,
678 GuardedAlternative alternative,
679 AlternativeGeneration* alt_gen,
680 intptr_t preload_characters,
681 bool next_expects_preload);
682 DispatchTable* table_;
683 // If true, this node is never checked at the start of the input.
684 // Allows a new trace to start with at_start() set to false.
685 bool not_at_start_;
686 bool being_calculated_;
687 };
688
689
690 class NegativeLookaheadChoiceNode: public ChoiceNode {
691 public:
692 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
693 GuardedAlternative then_do_this,
694 Isolate* isolate)
695 : ChoiceNode(2, isolate) {
696 AddAlternative(this_must_fail);
697 AddAlternative(then_do_this);
698 }
699 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
700 bool not_at_start);
701 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
702 RegExpCompiler* compiler,
703 intptr_t characters_filled_in,
704 bool not_at_start);
705 virtual void FillInBMInfo(intptr_t offset,
706 intptr_t budget,
707 BoyerMooreLookahead* bm,
708 bool not_at_start) {
709 (*alternatives_)[1].node()->FillInBMInfo(
710 offset, budget - 1, bm, not_at_start);
711 if (offset == 0) set_bm_info(not_at_start, bm);
712 }
713 // For a negative lookahead we don't emit the quick check for the
714 // alternative that is expected to fail. This is because quick check code
715 // starts by loading enough characters for the alternative that takes fewest
716 // characters, but on a negative lookahead the negative branch did not take
717 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
718 virtual bool try_to_emit_quick_check_for_alternative(intptr_t i) {
719 return i != 0;
720 }
721 virtual RegExpNode* FilterASCII(intptr_t depth, bool ignore_case);
722 };
723
724
725 class LoopChoiceNode: public ChoiceNode {
726 public:
727 explicit LoopChoiceNode(bool body_can_be_zero_length, Isolate* isolate)
728 : ChoiceNode(2, isolate),
729 loop_node_(NULL),
730 continue_node_(NULL),
731 body_can_be_zero_length_(body_can_be_zero_length) { }
732 void AddLoopAlternative(GuardedAlternative alt);
733 void AddContinueAlternative(GuardedAlternative alt);
734 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
735 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
736 bool not_at_start);
737 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
738 RegExpCompiler* compiler,
739 intptr_t characters_filled_in,
740 bool not_at_start);
741 virtual void FillInBMInfo(intptr_t offset,
742 intptr_t budget,
743 BoyerMooreLookahead* bm,
744 bool not_at_start);
745 RegExpNode* loop_node() { return loop_node_; }
746 RegExpNode* continue_node() { return continue_node_; }
747 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
748 virtual void Accept(NodeVisitor* visitor);
749 virtual RegExpNode* FilterASCII(intptr_t depth, bool ignore_case);
750
751 private:
752 // AddAlternative is made private for loop nodes because alternatives
753 // should not be added freely, we need to keep track of which node
754 // goes back to the node itself.
755 void AddAlternative(GuardedAlternative node) {
756 ChoiceNode::AddAlternative(node);
757 }
758
759 RegExpNode* loop_node_;
760 RegExpNode* continue_node_;
761 bool body_can_be_zero_length_;
762 };
763
764
765 // A simple closed interval.
766 class Interval {
767 public:
768 Interval() : from_(kNone), to_(kNone) { }
769 Interval(intptr_t from, intptr_t to) : from_(from), to_(to) { }
770
771 Interval Union(Interval that) {
772 if (that.from_ == kNone)
773 return *this;
774 else if (from_ == kNone)
775 return that;
776 else
777 return Interval(Utils::Minimum(from_, that.from_),
778 Utils::Maximum(to_, that.to_));
779 }
780 bool Contains(intptr_t value) const {
781 return (from_ <= value) && (value <= to_);
782 }
783 bool is_empty() const { return from_ == kNone; }
784 intptr_t from() const { return from_; }
785 intptr_t to() const { return to_; }
786 static Interval Empty() { return Interval(); }
787 static const intptr_t kNone = -1;
788
789 private:
790 intptr_t from_;
791 intptr_t to_;
792
793 DISALLOW_ALLOCATION();
794 };
795
796
797 class ActionNode: public SeqRegExpNode {
798 public:
799 enum ActionType {
800 SET_REGISTER,
801 INCREMENT_REGISTER,
802 STORE_POSITION,
803 BEGIN_SUBMATCH,
804 POSITIVE_SUBMATCH_SUCCESS,
805 EMPTY_MATCH_CHECK,
806 CLEAR_CAPTURES
807 };
808 static ActionNode* SetRegister(intptr_t reg, intptr_t val,
809 RegExpNode* on_success);
810 static ActionNode* IncrementRegister(intptr_t reg, RegExpNode* on_success);
811 static ActionNode* StorePosition(intptr_t reg,
812 bool is_capture,
813 RegExpNode* on_success);
814 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
815 static ActionNode* BeginSubmatch(intptr_t stack_pointer_reg,
816 intptr_t position_reg,
817 RegExpNode* on_success);
818 static ActionNode* PositiveSubmatchSuccess(intptr_t stack_pointer_reg,
819 intptr_t restore_reg,
820 intptr_t clear_capture_count,
821 intptr_t clear_capture_from,
822 RegExpNode* on_success);
823 static ActionNode* EmptyMatchCheck(intptr_t start_register,
824 intptr_t repetition_register,
825 intptr_t repetition_limit,
826 RegExpNode* on_success);
827 virtual void Accept(NodeVisitor* visitor);
828 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
829 virtual intptr_t EatsAtLeast(intptr_t still_to_find, intptr_t budget,
830 bool not_at_start);
831 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
832 RegExpCompiler* compiler,
833 intptr_t filled_in,
834 bool not_at_start) {
835 return on_success()->GetQuickCheckDetails(
836 details, compiler, filled_in, not_at_start);
837 }
838 virtual void FillInBMInfo(intptr_t offset,
839 intptr_t budget,
840 BoyerMooreLookahead* bm,
841 bool not_at_start);
842 ActionType action_type() { return action_type_; }
843 // TODO(erikcorry): We should allow some action nodes in greedy loops.
844 virtual intptr_t GreedyLoopTextLength() {
845 return kNodeIsTooComplexForGreedyLoops;
846 }
847
848 private:
849 union {
850 struct {
851 intptr_t reg;
852 intptr_t value;
853 } u_store_register;
854 struct {
855 intptr_t reg;
856 } u_increment_register;
857 struct {
858 intptr_t reg;
859 bool is_capture;
860 } u_position_register;
861 struct {
862 intptr_t stack_pointer_register;
863 intptr_t current_position_register;
864 intptr_t clear_register_count;
865 intptr_t clear_register_from;
866 } u_submatch;
867 struct {
868 intptr_t start_register;
869 intptr_t repetition_register;
870 intptr_t repetition_limit;
871 } u_empty_match_check;
872 struct {
873 intptr_t range_from;
874 intptr_t range_to;
875 } u_clear_captures;
876 } data_;
877 ActionNode(ActionType action_type, RegExpNode* on_success)
878 : SeqRegExpNode(on_success),
879 action_type_(action_type) { }
880 ActionType action_type_;
881 friend class DotPrinter;
882 };
883
884
885 class EndNode: public RegExpNode {
886 public:
887 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
888 explicit EndNode(Action action, Isolate* isolate)
889 : RegExpNode(isolate), action_(action) { }
890 virtual void Accept(NodeVisitor* visitor);
891 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
892 virtual intptr_t EatsAtLeast(intptr_t still_to_find,
893 intptr_t recursion_depth,
894 bool not_at_start) { return 0; }
895 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
896 RegExpCompiler* compiler,
897 intptr_t characters_filled_in,
898 bool not_at_start) {
899 // Returning 0 from EatsAtLeast should ensure we never get here.
900 UNREACHABLE();
901 }
902 virtual void FillInBMInfo(intptr_t offset,
903 intptr_t budget,
904 BoyerMooreLookahead* bm,
905 bool not_at_start);
906
907 private:
908 Action action_;
909 };
910
911
912 class NegativeSubmatchSuccess: public EndNode {
913 public:
914 NegativeSubmatchSuccess(intptr_t stack_pointer_reg,
915 intptr_t position_reg,
916 intptr_t clear_capture_count,
917 intptr_t clear_capture_start,
918 Isolate* isolate)
919 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, isolate),
920 stack_pointer_register_(stack_pointer_reg),
921 current_position_register_(position_reg),
922 clear_capture_count_(clear_capture_count),
923 clear_capture_start_(clear_capture_start) { }
924 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
925
926 private:
927 intptr_t stack_pointer_register_;
928 intptr_t current_position_register_;
929 intptr_t clear_capture_count_;
930 intptr_t clear_capture_start_;
931 };
932
933
934 // Details of a quick mask-compare check that can look ahead in the
935 // input stream.
936 class QuickCheckDetails {
937 public:
938 QuickCheckDetails()
939 : characters_(0),
940 mask_(0),
941 value_(0),
942 cannot_match_(false) { }
943 explicit QuickCheckDetails(intptr_t characters)
944 : characters_(characters),
945 mask_(0),
946 value_(0),
947 cannot_match_(false) { }
948 bool Rationalize(bool ascii);
949 // Merge in the information from another branch of an alternation.
950 void Merge(QuickCheckDetails* other, intptr_t from_index);
951 // Advance the current position by some amount.
952 void Advance(intptr_t by, bool ascii);
953 void Clear();
954 bool cannot_match() { return cannot_match_; }
955 void set_cannot_match() { cannot_match_ = true; }
956 struct Position {
957 Position() : mask(0), value(0), determines_perfectly(false) { }
958 uint16_t mask;
959 uint16_t value;
960 bool determines_perfectly;
961 };
962 intptr_t characters() { return characters_; }
963 void set_characters(intptr_t characters) { characters_ = characters; }
964 Position* positions(intptr_t index) {
965 ASSERT(index >= 0);
966 ASSERT(index < characters_);
967 return positions_ + index;
968 }
969 uint32_t mask() { return mask_; }
970 uint32_t value() { return value_; }
971
972 private:
973 // How many characters do we have quick check information from. This is
974 // the same for all branches of a choice node.
975 intptr_t characters_;
976 Position positions_[4];
977 // These values are the condensate of the above array after Rationalize().
978 uint32_t mask_;
979 uint32_t value_;
980 // If set to true, there is no way this quick check can match at all.
981 // E.g., if it requires to be at the start of the input, and isn't.
982 bool cannot_match_;
983
984 DISALLOW_ALLOCATION();
985 };
986
987
988 // Improve the speed that we scan for an initial point where a non-anchored
989 // regexp can match by using a Boyer-Moore-like table. This is done by
990 // identifying non-greedy non-capturing loops in the nodes that eat any
991 // character one at a time. For example in the middle of the regexp
992 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
993 // inserted at the start of any non-anchored regexp.
994 //
995 // When we have found such a loop we look ahead in the nodes to find the set of
996 // characters that can come at given distances. For example for the regexp
997 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
998 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
999 // the lookahead info where the set of characters is reasonably constrained. In
1000 // our example this is from index 1 to 2 (0 is not constrained). We can now
1001 // look 3 characters ahead and if we don't find one of [f, o] (the union of
1002 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1003 //
1004 // For Unicode input strings we do the same, but modulo 128.
1005 //
1006 // We also look at the first string fed to the regexp and use that to get a hint
1007 // of the character frequencies in the inputs. This affects the assessment of
1008 // whether the set of characters is 'reasonably constrained'.
1009 //
1010 // We also have another lookahead mechanism (called quick check in the code),
1011 // which uses a wide load of multiple characters followed by a mask and compare
1012 // to determine whether a match is possible at this point.
1013 enum ContainedInLattice {
1014 kNotYet = 0,
1015 kLatticeIn = 1,
1016 kLatticeOut = 2,
1017 kLatticeUnknown = 3 // Can also mean both in and out.
1018 };
1019
1020
1021 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1022 return static_cast<ContainedInLattice>(a | b);
1023 }
1024
1025
1026 ContainedInLattice AddRange(ContainedInLattice a,
1027 const int* ranges,
1028 intptr_t ranges_size,
1029 Interval new_range);
1030
1031
1032 class BoyerMoorePositionInfo : public ZoneAllocated {
1033 public:
1034 explicit BoyerMoorePositionInfo(Isolate* isolate)
1035 : map_(new(isolate) ZoneGrowableArray<bool>(kMapSize)),
1036 map_count_(0),
1037 w_(kNotYet),
1038 s_(kNotYet),
1039 d_(kNotYet),
1040 surrogate_(kNotYet) {
1041 for (intptr_t i = 0; i < kMapSize; i++) {
1042 map_->Add(false);
1043 }
1044 }
1045
1046 bool& at(intptr_t i) { return (*map_)[i]; }
1047
1048 static const intptr_t kMapSize = 128;
1049 static const intptr_t kMask = kMapSize - 1;
1050
1051 intptr_t map_count() const { return map_count_; }
1052
1053 void Set(intptr_t character);
1054 void SetInterval(const Interval& interval);
1055 void SetAll();
1056 bool is_non_word() { return w_ == kLatticeOut; }
1057 bool is_word() { return w_ == kLatticeIn; }
1058
1059 private:
1060 ZoneGrowableArray<bool>* map_;
1061 intptr_t map_count_; // Number of set bits in the map.
1062 ContainedInLattice w_; // The \w character class.
1063 ContainedInLattice s_; // The \s character class.
1064 ContainedInLattice d_; // The \d character class.
1065 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1066 };
1067
1068
1069 class BoyerMooreLookahead : public ZoneAllocated{
1070 public:
1071 BoyerMooreLookahead(intptr_t length, RegExpCompiler* compiler,
1072 Isolate* Isolate);
1073
1074 intptr_t length() { return length_; }
1075 intptr_t max_char() { return max_char_; }
1076 RegExpCompiler* compiler() { return compiler_; }
1077
1078 intptr_t Count(intptr_t map_number) {
1079 return bitmaps_->At(map_number)->map_count();
1080 }
1081
1082 BoyerMoorePositionInfo* at(intptr_t i) { return bitmaps_->At(i); }
1083
1084 void Set(intptr_t map_number, intptr_t character) {
1085 if (character > max_char_) return;
1086 BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
1087 info->Set(character);
1088 }
1089
1090 void SetInterval(intptr_t map_number, const Interval& interval) {
1091 if (interval.from() > max_char_) return;
1092 BoyerMoorePositionInfo* info = bitmaps_->At(map_number);
1093 if (interval.to() > max_char_) {
1094 info->SetInterval(Interval(interval.from(), max_char_));
1095 } else {
1096 info->SetInterval(interval);
1097 }
1098 }
1099
1100 void SetAll(intptr_t map_number) {
1101 bitmaps_->At(map_number)->SetAll();
1102 }
1103
1104 void SetRest(intptr_t from_map) {
1105 for (intptr_t i = from_map; i < length_; i++) SetAll(i);
1106 }
1107 bool EmitSkipInstructions(RegExpMacroAssembler* masm);
1108
1109 private:
1110 // This is the value obtained by EatsAtLeast. If we do not have at least this
1111 // many characters left in the sample string then the match is bound to fail.
1112 // Therefore it is OK to read a character this far ahead of the current match
1113 // point.
1114 intptr_t length_;
1115 RegExpCompiler* compiler_;
1116 // 0x7f for ASCII, 0xffff for UTF-16.
1117 intptr_t max_char_;
1118 ZoneGrowableArray<BoyerMoorePositionInfo*>* bitmaps_;
1119
1120 intptr_t GetSkipTable(intptr_t min_lookahead,
1121 intptr_t max_lookahead,
1122 const TypedData& boolean_skip_table);
1123 bool FindWorthwhileInterval(intptr_t* from, intptr_t* to);
1124 intptr_t FindBestInterval(
1125 intptr_t max_number_of_chars,
1126 intptr_t old_biggest_points,
1127 intptr_t* from, intptr_t* to);
1128 };
1129
1130
1131 // There are many ways to generate code for a node. This class encapsulates
1132 // the current way we should be generating. In other words it encapsulates
1133 // the current state of the code generator. The effect of this is that we
1134 // generate code for paths that the matcher can take through the regular
1135 // expression. A given node in the regexp can be code-generated several times
1136 // as it can be part of several traces. For example for the regexp:
1137 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1138 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1139 // to match foo is generated only once (the traces have a common prefix). The
1140 // code to store the capture is deferred and generated (twice) after the places
1141 // where baz has been matched.
1142 class Trace {
1143 public:
1144 // A value for a property that is either known to be true, know to be false,
1145 // or not known.
1146 enum TriBool {
1147 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1148 };
1149
1150 class DeferredAction {
1151 public:
1152 DeferredAction(ActionNode::ActionType action_type, intptr_t reg)
1153 : action_type_(action_type), reg_(reg), next_(NULL) { }
1154 DeferredAction* next() { return next_; }
1155 bool Mentions(intptr_t reg);
1156 intptr_t reg() { return reg_; }
1157 ActionNode::ActionType action_type() { return action_type_; }
1158 private:
1159 ActionNode::ActionType action_type_;
1160 intptr_t reg_;
1161 DeferredAction* next_;
1162 friend class Trace;
1163
1164 DISALLOW_ALLOCATION();
1165 };
1166
1167 class DeferredCapture : public DeferredAction {
1168 public:
1169 DeferredCapture(intptr_t reg, bool is_capture, Trace* trace)
1170 : DeferredAction(ActionNode::STORE_POSITION, reg),
1171 cp_offset_(trace->cp_offset()),
1172 is_capture_(is_capture) { }
1173 intptr_t cp_offset() { return cp_offset_; }
1174 bool is_capture() { return is_capture_; }
1175 private:
1176 intptr_t cp_offset_;
1177 bool is_capture_;
1178 void set_cp_offset(intptr_t cp_offset) { cp_offset_ = cp_offset; }
1179 };
1180
1181 class DeferredSetRegister : public DeferredAction {
1182 public:
1183 DeferredSetRegister(intptr_t reg, intptr_t value)
1184 : DeferredAction(ActionNode::SET_REGISTER, reg),
1185 value_(value) { }
1186 intptr_t value() { return value_; }
1187 private:
1188 intptr_t value_;
1189 };
1190
1191 class DeferredClearCaptures : public DeferredAction {
1192 public:
1193 explicit DeferredClearCaptures(Interval range)
1194 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1195 range_(range) { }
1196 Interval range() { return range_; }
1197 private:
1198 Interval range_;
1199 };
1200
1201 class DeferredIncrementRegister : public DeferredAction {
1202 public:
1203 explicit DeferredIncrementRegister(intptr_t reg)
1204 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1205 };
1206
1207 Trace()
1208 : cp_offset_(0),
1209 actions_(NULL),
1210 backtrack_(NULL),
1211 stop_node_(NULL),
1212 loop_label_(NULL),
1213 characters_preloaded_(0),
1214 bound_checked_up_to_(0),
1215 flush_budget_(100),
1216 at_start_(UNKNOWN) { }
1217
1218 // End the trace. This involves flushing the deferred actions in the trace
1219 // and pushing a backtrack location onto the backtrack stack. Once this is
1220 // done we can start a new trace or go to one that has already been
1221 // generated.
1222 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
1223 intptr_t cp_offset() { return cp_offset_; }
1224 DeferredAction* actions() { return actions_; }
1225 // A trivial trace is one that has no deferred actions or other state that
1226 // affects the assumptions used when generating code. There is no recorded
1227 // backtrack location in a trivial trace, so with a trivial trace we will
1228 // generate code that, on a failure to match, gets the backtrack location
1229 // from the backtrack stack rather than using a direct jump instruction. We
1230 // always start code generation with a trivial trace and non-trivial traces
1231 // are created as we emit code for nodes or add to the list of deferred
1232 // actions in the trace. The location of the code generated for a node using
1233 // a trivial trace is recorded in a label in the node so that gotos can be
1234 // generated to that code.
1235 bool is_trivial() {
1236 return backtrack_ == NULL &&
1237 actions_ == NULL &&
1238 cp_offset_ == 0 &&
1239 characters_preloaded_ == 0 &&
1240 bound_checked_up_to_ == 0 &&
1241 quick_check_performed_.characters() == 0 &&
1242 at_start_ == UNKNOWN;
1243 }
1244 TriBool at_start() { return at_start_; }
1245 void set_at_start(bool at_start) {
1246 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
1247 }
1248 BlockLabel* backtrack() { return backtrack_; }
1249 BlockLabel* loop_label() { return loop_label_; }
1250 RegExpNode* stop_node() { return stop_node_; }
1251 intptr_t characters_preloaded() { return characters_preloaded_; }
1252 intptr_t bound_checked_up_to() { return bound_checked_up_to_; }
1253 intptr_t flush_budget() { return flush_budget_; }
1254 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1255 bool mentions_reg(intptr_t reg);
1256 // Returns true if a deferred position store exists to the specified
1257 // register and stores the offset in the out-parameter. Otherwise
1258 // returns false.
1259 bool GetStoredPosition(intptr_t reg, intptr_t* cp_offset);
1260 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1261 // new traces - the intention is that traces are immutable after creation.
1262 void add_action(DeferredAction* new_action) {
1263 ASSERT(new_action->next_ == NULL);
1264 new_action->next_ = actions_;
1265 actions_ = new_action;
1266 }
1267 void set_backtrack(BlockLabel* backtrack) { backtrack_ = backtrack; }
1268 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
1269 void set_loop_label(BlockLabel* label) { loop_label_ = label; }
1270 void set_characters_preloaded(intptr_t count) {
1271 characters_preloaded_ = count;
1272 }
1273 void set_bound_checked_up_to(intptr_t to) { bound_checked_up_to_ = to; }
1274 void set_flush_budget(intptr_t to) { flush_budget_ = to; }
1275 void set_quick_check_performed(QuickCheckDetails* d) {
1276 quick_check_performed_ = *d;
1277 }
1278 void InvalidateCurrentCharacter();
1279 void AdvanceCurrentPositionInTrace(intptr_t by, RegExpCompiler* compiler);
1280
1281 private:
1282 intptr_t FindAffectedRegisters(OutSet* affected_registers, Isolate* isolate);
1283 void PerformDeferredActions(RegExpMacroAssembler* macro,
1284 intptr_t max_register,
1285 const OutSet& affected_registers,
1286 OutSet* registers_to_pop,
1287 OutSet* registers_to_clear,
1288 Isolate* isolate);
1289 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1290 intptr_t max_register,
1291 const OutSet& registers_to_pop,
1292 const OutSet& registers_to_clear);
1293 intptr_t cp_offset_;
1294 DeferredAction* actions_;
1295 BlockLabel* backtrack_;
1296 RegExpNode* stop_node_;
1297 BlockLabel* loop_label_;
1298 intptr_t characters_preloaded_;
1299 intptr_t bound_checked_up_to_;
1300 QuickCheckDetails quick_check_performed_;
1301 intptr_t flush_budget_;
1302 TriBool at_start_;
1303
1304 DISALLOW_ALLOCATION();
1305 };
1306
1307
1308 class NodeVisitor : public ValueObject {
1309 public:
1310 virtual ~NodeVisitor() { }
1311 #define DECLARE_VISIT(Type) \
1312 virtual void Visit##Type(Type##Node* that) = 0;
1313 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1314 #undef DECLARE_VISIT
1315 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1316 };
1317
1318
1319 // Assertion propagation moves information about assertions such as
1320 // \b to the affected nodes. For instance, in /.\b./ information must
1321 // be propagated to the first '.' that whatever follows needs to know
1322 // if it matched a word or a non-word, and to the second '.' that it
1323 // has to check if it succeeds a word or non-word. In this case the
1324 // result will be something like:
1325 //
1326 // +-------+ +------------+
1327 // | . | | . |
1328 // +-------+ ---> +------------+
1329 // | word? | | check word |
1330 // +-------+ +------------+
1331 class Analysis: public NodeVisitor {
1332 public:
1333 Analysis(bool ignore_case, bool is_ascii)
1334 : ignore_case_(ignore_case),
1335 is_ascii_(is_ascii),
1336 error_message_(NULL) { }
1337 void EnsureAnalyzed(RegExpNode* node);
1338
1339 #define DECLARE_VISIT(Type) \
1340 virtual void Visit##Type(Type##Node* that);
1341 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1342 #undef DECLARE_VISIT
1343 virtual void VisitLoopChoice(LoopChoiceNode* that);
1344
1345 bool has_failed() { return error_message_ != NULL; }
1346 const char* error_message() {
1347 ASSERT(error_message_ != NULL);
1348 return error_message_;
1349 }
1350 void fail(const char* error_message) {
1351 error_message_ = error_message;
1352 }
1353
1354 private:
1355 bool ignore_case_;
1356 bool is_ascii_;
1357 const char* error_message_;
1358
1359 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1360 };
1361
1362
1363 struct RegExpCompileData : public ZoneAllocated {
1364 RegExpCompileData()
1365 : tree(NULL),
1366 node(NULL),
1367 simple(true),
1368 contains_anchor(false),
1369 error(String::Handle(String::null())),
1370 capture_count(0) { }
1371 RegExpTree* tree;
1372 RegExpNode* node;
1373 bool simple;
1374 bool contains_anchor;
1375 String& error;
1376 intptr_t capture_count;
1377 };
1378
1379
1380 class RegExpEngine: public AllStatic {
1381 public:
1382 struct CompilationResult {
1383 explicit CompilationResult(const char* error_message)
1384 : macro_assembler(NULL),
1385 graph_entry(NULL),
1386 num_blocks(-1),
1387 num_stack_locals(-1),
1388 error_message(error_message) {}
1389 CompilationResult(IRRegExpMacroAssembler* macro_assembler,
1390 GraphEntryInstr* graph_entry,
1391 intptr_t num_blocks,
1392 intptr_t num_stack_locals)
1393 : macro_assembler(macro_assembler),
1394 graph_entry(graph_entry),
1395 num_blocks(num_blocks),
1396 num_stack_locals(num_stack_locals),
1397 error_message(NULL) {}
1398
1399 IRRegExpMacroAssembler* macro_assembler;
1400 GraphEntryInstr* graph_entry;
1401 const intptr_t num_blocks;
1402 const intptr_t num_stack_locals;
1403
1404 const char* error_message;
1405 };
1406
1407 static CompilationResult Compile(
1408 RegExpCompileData* input,
1409 const ParsedFunction* parsed_function,
1410 const ZoneGrowableArray<const ICData*>& ic_data_array);
1411
1412 static RawJSRegExp* CreateJSRegExp(Isolate* isolate,
1413 const String& pattern,
1414 bool multi_line,
1415 bool ignore_case);
1416
1417 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1418 };
1419
1420 } // namespace dart
1421
1422 #endif // VM_REGEXP_H_
OLDNEW
« no previous file with comments | « runtime/vm/raw_object_snapshot.cc ('k') | runtime/vm/regexp.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698