OLD | NEW |
1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file | 1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
2 // for details. All rights reserved. Use of this source code is governed by a | 2 // for details. All rights reserved. Use of this source code is governed by a |
3 // BSD-style license that can be found in the LICENSE file. | 3 // BSD-style license that can be found in the LICENSE file. |
4 | 4 |
5 #include "vm/regexp.h" | 5 #include "vm/regexp.h" |
6 | 6 |
| 7 #include "vm/dart_entry.h" |
| 8 #include "vm/regexp_assembler.h" |
7 #include "vm/regexp_ast.h" | 9 #include "vm/regexp_ast.h" |
| 10 #include "vm/unibrow-inl.h" |
8 #include "vm/unicode.h" | 11 #include "vm/unicode.h" |
9 #include "vm/symbols.h" | 12 #include "vm/symbols.h" |
10 | 13 |
11 #define I isolate() | 14 #define I isolate() |
12 #define CI compiler->isolate() | 15 #define CI compiler->isolate() |
13 | 16 |
14 namespace dart { | 17 namespace dart { |
15 | 18 |
| 19 DECLARE_FLAG(bool, trace_irregexp); |
16 | 20 |
17 #define DEFINE_ACCEPT(Type) \ | 21 #define DEFINE_ACCEPT(Type) \ |
18 void Type##Node::Accept(NodeVisitor* visitor) { \ | 22 void Type##Node::Accept(NodeVisitor* visitor) { \ |
19 visitor->Visit##Type(this); \ | 23 visitor->Visit##Type(this); \ |
20 } | 24 } |
21 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) | 25 FOR_EACH_NODE_TYPE(DEFINE_ACCEPT) |
22 #undef DEFINE_ACCEPT | 26 #undef DEFINE_ACCEPT |
23 | 27 |
24 | 28 |
25 // Default to generating optimized regexp code. | 29 // Default to generating optimized regexp code. |
(...skipping 12 matching lines...) Expand all Loading... |
38 static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, | 42 static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, |
39 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, | 43 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, |
40 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, | 44 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, |
41 0xFEFF, 0xFF00, 0x10000 }; | 45 0xFEFF, 0xFF00, 0x10000 }; |
42 static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges); | 46 static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges); |
43 static const intptr_t kWordRanges[] = { | 47 static const intptr_t kWordRanges[] = { |
44 '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; | 48 '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; |
45 static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges); | 49 static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges); |
46 static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 }; | 50 static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 }; |
47 static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges); | 51 static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges); |
| 52 static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; |
| 53 static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges); |
48 static const intptr_t kLineTerminatorRanges[] = { | 54 static const intptr_t kLineTerminatorRanges[] = { |
49 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 }; | 55 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 }; |
50 static const intptr_t kLineTerminatorRangeCount = | 56 static const intptr_t kLineTerminatorRangeCount = |
51 ARRAY_SIZE(kLineTerminatorRanges); | 57 ARRAY_SIZE(kLineTerminatorRanges); |
52 | 58 |
53 | 59 |
54 static inline void PrintUtf16(uint16_t c) { | 60 static inline void PrintUtf16(uint16_t c) { |
55 const char* format = (0x20 <= c && c <= 0x7F) ? | 61 const char* format = (0x20 <= c && c <= 0x7F) ? |
56 "%c" : (c <= 0xff) ? "\\x%02x" : "\\u%04x"; | 62 "%c" : (c <= 0xff) ? "\\x%02x" : "\\u%04x"; |
57 OS::Print(format, c); | 63 OS::Print(format, c); |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
98 info->visited = true; | 104 info->visited = true; |
99 } | 105 } |
100 ~VisitMarker() { | 106 ~VisitMarker() { |
101 info_->visited = false; | 107 info_->visited = false; |
102 } | 108 } |
103 private: | 109 private: |
104 NodeInfo* info_; | 110 NodeInfo* info_; |
105 }; | 111 }; |
106 | 112 |
107 | 113 |
| 114 class FrequencyCollator { |
| 115 public: |
| 116 FrequencyCollator() : total_samples_(0) { |
| 117 for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
| 118 frequencies_[i] = CharacterFrequency(i); |
| 119 } |
| 120 } |
| 121 |
| 122 void CountCharacter(intptr_t character) { |
| 123 intptr_t index = (character & RegExpMacroAssembler::kTableMask); |
| 124 frequencies_[index].Increment(); |
| 125 total_samples_++; |
| 126 } |
| 127 |
| 128 // Does not measure in percent, but rather per-128 (the table size from the |
| 129 // regexp macro assembler). |
| 130 intptr_t Frequency(intptr_t in_character) { |
| 131 ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
| 132 if (total_samples_ < 1) return 1; // Division by zero. |
| 133 intptr_t freq_in_per128 = |
| 134 (frequencies_[in_character].counter() * 128) / total_samples_; |
| 135 return freq_in_per128; |
| 136 } |
| 137 |
| 138 private: |
| 139 class CharacterFrequency { |
| 140 public: |
| 141 CharacterFrequency() : counter_(0), character_(-1) { } |
| 142 explicit CharacterFrequency(intptr_t character) |
| 143 : counter_(0), character_(character) { } |
| 144 |
| 145 void Increment() { counter_++; } |
| 146 intptr_t counter() { return counter_; } |
| 147 intptr_t character() { return character_; } |
| 148 |
| 149 private: |
| 150 intptr_t counter_; |
| 151 intptr_t character_; |
| 152 }; |
| 153 |
| 154 |
| 155 private: |
| 156 CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; |
| 157 intptr_t total_samples_; |
| 158 }; |
| 159 |
| 160 |
108 class RegExpCompiler { | 161 class RegExpCompiler { |
109 public: | 162 public: |
110 RegExpCompiler(intptr_t capture_count, bool ignore_case, bool is_ascii); | 163 RegExpCompiler(intptr_t capture_count, |
| 164 bool ignore_case, |
| 165 intptr_t specialization_cid); |
111 | 166 |
112 intptr_t AllocateRegister() { | 167 intptr_t AllocateRegister() { |
113 return next_register_++; | 168 return next_register_++; |
114 } | 169 } |
115 | 170 |
116 RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, | 171 RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler, |
117 RegExpNode* start, | 172 RegExpNode* start, |
118 intptr_t capture_count, | 173 intptr_t capture_count, |
119 const String& pattern); | 174 const String& pattern); |
120 | 175 |
| 176 inline void AddWork(RegExpNode* node) { work_list_->Add(node); } |
| 177 |
121 static const intptr_t kImplementationOffset = 0; | 178 static const intptr_t kImplementationOffset = 0; |
122 static const intptr_t kNumberOfRegistersOffset = 0; | 179 static const intptr_t kNumberOfRegistersOffset = 0; |
123 static const intptr_t kCodeOffset = 1; | 180 static const intptr_t kCodeOffset = 1; |
124 | 181 |
125 RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } | 182 IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; } |
126 EndNode* accept() { return accept_; } | 183 EndNode* accept() { return accept_; } |
127 | 184 |
128 static const intptr_t kMaxRecursion = 100; | 185 static const intptr_t kMaxRecursion = 100; |
129 inline intptr_t recursion_depth() { return recursion_depth_; } | 186 inline intptr_t recursion_depth() { return recursion_depth_; } |
130 inline void IncrementRecursionDepth() { recursion_depth_++; } | 187 inline void IncrementRecursionDepth() { recursion_depth_++; } |
131 inline void DecrementRecursionDepth() { recursion_depth_--; } | 188 inline void DecrementRecursionDepth() { recursion_depth_--; } |
132 | 189 |
133 void SetRegExpTooBig() { reg_exp_too_big_ = true; } | 190 void SetRegExpTooBig() { reg_exp_too_big_ = true; } |
134 | 191 |
135 inline bool ignore_case() { return ignore_case_; } | 192 inline bool ignore_case() { return ignore_case_; } |
136 inline bool ascii() { return ascii_; } | 193 inline bool ascii() const { |
| 194 return (specialization_cid_ == kOneByteStringCid || |
| 195 specialization_cid_ == kExternalOneByteStringCid); |
| 196 } |
| 197 inline intptr_t specialization_cid() { return specialization_cid_; } |
| 198 FrequencyCollator* frequency_collator() { return &frequency_collator_; } |
137 | 199 |
138 intptr_t current_expansion_factor() { return current_expansion_factor_; } | 200 intptr_t current_expansion_factor() { return current_expansion_factor_; } |
139 void set_current_expansion_factor(intptr_t value) { | 201 void set_current_expansion_factor(intptr_t value) { |
140 current_expansion_factor_ = value; | 202 current_expansion_factor_ = value; |
141 } | 203 } |
142 | 204 |
143 Isolate* isolate() const { return isolate_; } | 205 Isolate* isolate() const { return isolate_; } |
144 | 206 |
145 static const intptr_t kNoRegister = -1; | 207 static const intptr_t kNoRegister = -1; |
146 | 208 |
147 private: | 209 private: |
148 EndNode* accept_; | 210 EndNode* accept_; |
149 intptr_t next_register_; | 211 intptr_t next_register_; |
| 212 ZoneGrowableArray<RegExpNode*>* work_list_; |
150 intptr_t recursion_depth_; | 213 intptr_t recursion_depth_; |
151 RegExpMacroAssembler* macro_assembler_; | 214 IRRegExpMacroAssembler* macro_assembler_; |
152 bool ignore_case_; | 215 bool ignore_case_; |
153 bool ascii_; | 216 intptr_t specialization_cid_; |
154 bool reg_exp_too_big_; | 217 bool reg_exp_too_big_; |
155 intptr_t current_expansion_factor_; | 218 intptr_t current_expansion_factor_; |
| 219 FrequencyCollator frequency_collator_; |
156 Isolate* isolate_; | 220 Isolate* isolate_; |
157 }; | 221 }; |
158 | 222 |
159 | 223 |
| 224 class RecursionCheck { |
| 225 public: |
| 226 explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { |
| 227 compiler->IncrementRecursionDepth(); |
| 228 } |
| 229 ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } |
| 230 private: |
| 231 RegExpCompiler* compiler_; |
| 232 }; |
| 233 |
| 234 |
160 // Scoped object to keep track of how much we unroll quantifier loops in the | 235 // Scoped object to keep track of how much we unroll quantifier loops in the |
161 // regexp graph generator. | 236 // regexp graph generator. |
162 class RegExpExpansionLimiter { | 237 class RegExpExpansionLimiter { |
163 public: | 238 public: |
164 static const intptr_t kMaxExpansionFactor = 6; | 239 static const intptr_t kMaxExpansionFactor = 6; |
165 RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor) | 240 RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor) |
166 : compiler_(compiler), | 241 : compiler_(compiler), |
167 saved_expansion_factor_(compiler->current_expansion_factor()), | 242 saved_expansion_factor_(compiler->current_expansion_factor()), |
168 ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { | 243 ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { |
169 ASSERT(factor > 0); | 244 ASSERT(factor > 0); |
(...skipping 534 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
704 // we don't need to check it. | 779 // we don't need to check it. |
705 if (neg_replacement == NULL) return set_replacement(replacement); | 780 if (neg_replacement == NULL) return set_replacement(replacement); |
706 alternatives_->At(0).set_node(neg_replacement); | 781 alternatives_->At(0).set_node(neg_replacement); |
707 return set_replacement(this); | 782 return set_replacement(this); |
708 } | 783 } |
709 | 784 |
710 | 785 |
711 // Code emission --------------------------------------------------------------- | 786 // Code emission --------------------------------------------------------------- |
712 | 787 |
713 | 788 |
714 #define DEFINE_EMIT(Type) \ | 789 void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, |
715 void Type##Node::Emit(RegExpCompiler* compiler, Trace* trace) { \ | 790 Guard* guard, |
716 UNIMPLEMENTED(); \ | 791 Trace* trace) { |
717 } | 792 switch (guard->op()) { |
718 FOR_EACH_NODE_TYPE(DEFINE_EMIT) | 793 case Guard::LT: |
719 DEFINE_EMIT(LoopChoice) | 794 ASSERT(!trace->mentions_reg(guard->reg())); |
720 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, | 795 macro_assembler->IfRegisterGE(guard->reg(), |
721 Trace* trace) { | 796 guard->value(), |
| 797 trace->backtrack()); |
| 798 break; |
| 799 case Guard::GEQ: |
| 800 ASSERT(!trace->mentions_reg(guard->reg())); |
| 801 macro_assembler->IfRegisterLT(guard->reg(), |
| 802 guard->value(), |
| 803 trace->backtrack()); |
| 804 break; |
| 805 } |
| 806 } |
| 807 |
| 808 |
| 809 void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 810 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 811 |
| 812 // Omit flushing the trace. We discard the entire stack frame anyway. |
| 813 |
| 814 if (!label()->IsBound()) { |
| 815 // We are completely independent of the trace, since we ignore it, |
| 816 // so this code can be used as the generic version. |
| 817 assembler->BindBlock(label()); |
| 818 } |
| 819 |
| 820 // Throw away everything on the backtrack stack since the start |
| 821 // of the negative submatch and restore the character position. |
| 822 assembler->ReadCurrentPositionFromRegister(current_position_register_); |
| 823 assembler->ReadStackPointerFromRegister(stack_pointer_register_); |
| 824 if (clear_capture_count_ > 0) { |
| 825 // Clear any captures that might have been performed during the success |
| 826 // of the body of the negative look-ahead. |
| 827 intptr_t clear_capture_end = |
| 828 clear_capture_start_ + clear_capture_count_ - 1; |
| 829 assembler->ClearRegisters(clear_capture_start_, clear_capture_end); |
| 830 } |
| 831 // Now that we have unwound the stack we find at the top of the stack the |
| 832 // backtrack that the BeginSubmatch node got. |
| 833 assembler->Backtrack(); |
| 834 } |
| 835 |
| 836 |
| 837 bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) { |
| 838 ASSERT(*cp_offset == 0); |
| 839 for (DeferredAction* action = actions_; |
| 840 action != NULL; |
| 841 action = action->next()) { |
| 842 if (action->Mentions(reg)) { |
| 843 if (action->action_type() == ActionNode::STORE_POSITION) { |
| 844 *cp_offset = static_cast<DeferredCapture*>(action)->cp_offset(); |
| 845 return true; |
| 846 } else { |
| 847 return false; |
| 848 } |
| 849 } |
| 850 } |
| 851 return false; |
| 852 } |
| 853 |
| 854 |
| 855 // This is called as we come into a loop choice node and some other tricky |
| 856 // nodes. It normalizes the state of the code generator to ensure we can |
| 857 // generate generic code. |
| 858 intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers, |
| 859 Isolate* isolate) { |
| 860 intptr_t max_register = RegExpCompiler::kNoRegister; |
| 861 for (DeferredAction* action = actions_; |
| 862 action != NULL; |
| 863 action = action->next()) { |
| 864 if (action->action_type() == ActionNode::CLEAR_CAPTURES) { |
| 865 Interval range = static_cast<DeferredClearCaptures*>(action)->range(); |
| 866 for (intptr_t i = range.from(); i <= range.to(); i++) |
| 867 affected_registers->Set(i, isolate); |
| 868 if (range.to() > max_register) max_register = range.to(); |
| 869 } else { |
| 870 affected_registers->Set(action->reg(), isolate); |
| 871 if (action->reg() > max_register) max_register = action->reg(); |
| 872 } |
| 873 } |
| 874 return max_register; |
| 875 } |
| 876 |
| 877 |
| 878 bool Trace::DeferredAction::Mentions(intptr_t that) { |
| 879 if (action_type() == ActionNode::CLEAR_CAPTURES) { |
| 880 Interval range = static_cast<DeferredClearCaptures*>(this)->range(); |
| 881 return range.Contains(that); |
| 882 } else { |
| 883 return reg() == that; |
| 884 } |
| 885 } |
| 886 |
| 887 |
| 888 bool Trace::mentions_reg(intptr_t reg) { |
| 889 for (DeferredAction* action = actions_; |
| 890 action != NULL; |
| 891 action = action->next()) { |
| 892 if (action->Mentions(reg)) |
| 893 return true; |
| 894 } |
| 895 return false; |
| 896 } |
| 897 |
| 898 |
| 899 void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, |
| 900 intptr_t max_register, |
| 901 const OutSet& registers_to_pop, |
| 902 const OutSet& registers_to_clear) { |
| 903 for (intptr_t reg = max_register; reg >= 0; reg--) { |
| 904 if (registers_to_pop.Get(reg)) { |
| 905 assembler->PopRegister(reg); |
| 906 } else if (registers_to_clear.Get(reg)) { |
| 907 intptr_t clear_to = reg; |
| 908 while (reg > 0 && registers_to_clear.Get(reg - 1)) { |
| 909 reg--; |
| 910 } |
| 911 assembler->ClearRegisters(reg, clear_to); |
| 912 } |
| 913 } |
| 914 } |
| 915 |
| 916 |
| 917 void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
| 918 intptr_t max_register, |
| 919 const OutSet& affected_registers, |
| 920 OutSet* registers_to_pop, |
| 921 OutSet* registers_to_clear, |
| 922 Isolate* isolate) { |
| 923 // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. |
| 924 const intptr_t push_limit = (assembler->stack_limit_slack() + 1) / 2; |
| 925 |
| 926 // Count pushes performed to force a stack limit check occasionally. |
| 927 intptr_t pushes = 0; |
| 928 |
| 929 for (intptr_t reg = 0; reg <= max_register; reg++) { |
| 930 if (!affected_registers.Get(reg)) { |
| 931 continue; |
| 932 } |
| 933 |
| 934 // The chronologically first deferred action in the trace |
| 935 // is used to infer the action needed to restore a register |
| 936 // to its previous state (or not, if it's safe to ignore it). |
| 937 enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; |
| 938 DeferredActionUndoType undo_action = IGNORE; |
| 939 |
| 940 intptr_t value = 0; |
| 941 bool absolute = false; |
| 942 bool clear = false; |
| 943 intptr_t store_position = -1; |
| 944 // This is a little tricky because we are scanning the actions in reverse |
| 945 // historical order (newest first). |
| 946 for (DeferredAction* action = actions_; |
| 947 action != NULL; |
| 948 action = action->next()) { |
| 949 if (action->Mentions(reg)) { |
| 950 switch (action->action_type()) { |
| 951 case ActionNode::SET_REGISTER: { |
| 952 Trace::DeferredSetRegister* psr = |
| 953 static_cast<Trace::DeferredSetRegister*>(action); |
| 954 if (!absolute) { |
| 955 value += psr->value(); |
| 956 absolute = true; |
| 957 } |
| 958 // SET_REGISTER is currently only used for newly introduced loop |
| 959 // counters. They can have a significant previous value if they |
| 960 // occour in a loop. TODO(lrn): Propagate this information, so |
| 961 // we can set undo_action to IGNORE if we know there is no value to |
| 962 // restore. |
| 963 undo_action = RESTORE; |
| 964 ASSERT(store_position == -1); |
| 965 ASSERT(!clear); |
| 966 break; |
| 967 } |
| 968 case ActionNode::INCREMENT_REGISTER: |
| 969 if (!absolute) { |
| 970 value++; |
| 971 } |
| 972 ASSERT(store_position == -1); |
| 973 ASSERT(!clear); |
| 974 undo_action = RESTORE; |
| 975 break; |
| 976 case ActionNode::STORE_POSITION: { |
| 977 Trace::DeferredCapture* pc = |
| 978 static_cast<Trace::DeferredCapture*>(action); |
| 979 if (!clear && store_position == -1) { |
| 980 store_position = pc->cp_offset(); |
| 981 } |
| 982 |
| 983 // For captures we know that stores and clears alternate. |
| 984 // Other register, are never cleared, and if the occur |
| 985 // inside a loop, they might be assigned more than once. |
| 986 if (reg <= 1) { |
| 987 // Registers zero and one, aka "capture zero", is |
| 988 // always set correctly if we succeed. There is no |
| 989 // need to undo a setting on backtrack, because we |
| 990 // will set it again or fail. |
| 991 undo_action = IGNORE; |
| 992 } else { |
| 993 undo_action = pc->is_capture() ? CLEAR : RESTORE; |
| 994 } |
| 995 ASSERT(!absolute); |
| 996 ASSERT(value == 0); |
| 997 break; |
| 998 } |
| 999 case ActionNode::CLEAR_CAPTURES: { |
| 1000 // Since we're scanning in reverse order, if we've already |
| 1001 // set the position we have to ignore historically earlier |
| 1002 // clearing operations. |
| 1003 if (store_position == -1) { |
| 1004 clear = true; |
| 1005 } |
| 1006 undo_action = RESTORE; |
| 1007 ASSERT(!absolute); |
| 1008 ASSERT(value == 0); |
| 1009 break; |
| 1010 } |
| 1011 default: |
| 1012 UNREACHABLE(); |
| 1013 break; |
| 1014 } |
| 1015 } |
| 1016 } |
| 1017 // Prepare for the undo-action (e.g., push if it's going to be popped). |
| 1018 if (undo_action == RESTORE) { |
| 1019 pushes++; |
| 1020 RegExpMacroAssembler::StackCheckFlag stack_check = |
| 1021 RegExpMacroAssembler::kNoStackLimitCheck; |
| 1022 if (pushes == push_limit) { |
| 1023 stack_check = RegExpMacroAssembler::kCheckStackLimit; |
| 1024 pushes = 0; |
| 1025 } |
| 1026 |
| 1027 assembler->PushRegister(reg, stack_check); |
| 1028 registers_to_pop->Set(reg, isolate); |
| 1029 } else if (undo_action == CLEAR) { |
| 1030 registers_to_clear->Set(reg, isolate); |
| 1031 } |
| 1032 // Perform the chronologically last action (or accumulated increment) |
| 1033 // for the register. |
| 1034 if (store_position != -1) { |
| 1035 assembler->WriteCurrentPositionToRegister(reg, store_position); |
| 1036 } else if (clear) { |
| 1037 assembler->ClearRegisters(reg, reg); |
| 1038 } else if (absolute) { |
| 1039 assembler->SetRegister(reg, value); |
| 1040 } else if (value != 0) { |
| 1041 assembler->AdvanceRegister(reg, value); |
| 1042 } |
| 1043 } |
| 1044 } |
| 1045 |
| 1046 |
| 1047 void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
| 1048 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1049 |
| 1050 ASSERT(!is_trivial()); |
| 1051 |
| 1052 if (actions_ == NULL && backtrack() == NULL) { |
| 1053 // Here we just have some deferred cp advances to fix and we are back to |
| 1054 // a normal situation. We may also have to forget some information gained |
| 1055 // through a quick check that was already performed. |
| 1056 if (cp_offset_ != 0) assembler->AdvanceCurrentPosition(cp_offset_); |
| 1057 // Create a new trivial state and generate the node with that. |
| 1058 Trace new_state; |
| 1059 successor->Emit(compiler, &new_state); |
| 1060 return; |
| 1061 } |
| 1062 |
| 1063 // Generate deferred actions here along with code to undo them again. |
| 1064 OutSet affected_registers; |
| 1065 |
| 1066 if (backtrack() != NULL) { |
| 1067 // Here we have a concrete backtrack location. These are set up by choice |
| 1068 // nodes and so they indicate that we have a deferred save of the current |
| 1069 // position which we may need to emit here. |
| 1070 assembler->PushCurrentPosition(); |
| 1071 } |
| 1072 |
| 1073 intptr_t max_register = FindAffectedRegisters(&affected_registers, CI); |
| 1074 OutSet registers_to_pop; |
| 1075 OutSet registers_to_clear; |
| 1076 PerformDeferredActions(assembler, |
| 1077 max_register, |
| 1078 affected_registers, |
| 1079 ®isters_to_pop, |
| 1080 ®isters_to_clear, |
| 1081 CI); |
| 1082 if (cp_offset_ != 0) { |
| 1083 assembler->AdvanceCurrentPosition(cp_offset_); |
| 1084 } |
| 1085 |
| 1086 // Create a new trivial state and generate the node with that. |
| 1087 BlockLabel undo; |
| 1088 assembler->PushBacktrack(&undo); |
| 1089 Trace new_state; |
| 1090 successor->Emit(compiler, &new_state); |
| 1091 |
| 1092 // On backtrack we need to restore state. |
| 1093 assembler->BindBlock(&undo); |
| 1094 RestoreAffectedRegisters(assembler, |
| 1095 max_register, |
| 1096 registers_to_pop, |
| 1097 registers_to_clear); |
| 1098 if (backtrack() == NULL) { |
| 1099 assembler->Backtrack(); |
| 1100 } else { |
| 1101 assembler->PopCurrentPosition(); |
| 1102 assembler->Jump(backtrack()); |
| 1103 } |
| 1104 } |
| 1105 |
| 1106 |
| 1107 void Trace::InvalidateCurrentCharacter() { |
| 1108 characters_preloaded_ = 0; |
| 1109 } |
| 1110 |
| 1111 |
| 1112 void Trace::AdvanceCurrentPositionInTrace(intptr_t by, |
| 1113 RegExpCompiler* compiler) { |
| 1114 ASSERT(by > 0); |
| 1115 // We don't have an instruction for shifting the current character register |
| 1116 // down or for using a shifted value for anything so lets just forget that |
| 1117 // we preloaded any characters into it. |
| 1118 characters_preloaded_ = 0; |
| 1119 // Adjust the offsets of the quick check performed information. This |
| 1120 // information is used to find out what we already determined about the |
| 1121 // characters by means of mask and compare. |
| 1122 quick_check_performed_.Advance(by, compiler->ascii()); |
| 1123 cp_offset_ += by; |
| 1124 if (cp_offset_ > RegExpMacroAssembler::kMaxCPOffset) { |
| 1125 compiler->SetRegExpTooBig(); |
| 1126 cp_offset_ = 0; |
| 1127 } |
| 1128 bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0), |
| 1129 bound_checked_up_to_ - by); |
| 1130 } |
| 1131 |
| 1132 |
| 1133 void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1134 if (!trace->is_trivial()) { |
| 1135 trace->Flush(compiler, this); |
| 1136 return; |
| 1137 } |
| 1138 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1139 if (!label()->IsBound()) { |
| 1140 assembler->BindBlock(label()); |
| 1141 } |
| 1142 switch (action_) { |
| 1143 case ACCEPT: |
| 1144 assembler->Succeed(); |
| 1145 return; |
| 1146 case BACKTRACK: |
| 1147 assembler->Jump(trace->backtrack()); |
| 1148 return; |
| 1149 case NEGATIVE_SUBMATCH_SUCCESS: |
| 1150 // This case is handled in a different virtual method. |
| 1151 UNREACHABLE(); |
| 1152 } |
722 UNIMPLEMENTED(); | 1153 UNIMPLEMENTED(); |
723 } | 1154 } |
724 #undef DEFINE_EMIT | 1155 |
725 | 1156 |
726 | 1157 bool QuickCheckDetails::Rationalize(bool asc) { |
727 #define DEFINE_BMINFO(Type) \ | 1158 bool found_useful_op = false; |
728 void Type##Node::FillInBMInfo(intptr_t initial_offset, \ | 1159 uint32_t char_mask; |
729 intptr_t budget, \ | 1160 if (asc) { |
730 BoyerMooreLookahead* bm, \ | 1161 char_mask = Symbols::kMaxOneCharCodeSymbol; |
731 bool not_at_start) { \ | 1162 } else { |
732 UNIMPLEMENTED(); \ | 1163 char_mask = Utf16::kMaxCodeUnit; |
733 } | 1164 } |
734 FOR_EACH_NODE_TYPE(DEFINE_BMINFO) | 1165 mask_ = 0; |
735 DEFINE_BMINFO(LoopChoice) | 1166 value_ = 0; |
736 #undef DEFINE_BMINFO | 1167 intptr_t char_shift = 0; |
| 1168 for (intptr_t i = 0; i < characters_; i++) { |
| 1169 Position* pos = &positions_[i]; |
| 1170 if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) { |
| 1171 found_useful_op = true; |
| 1172 } |
| 1173 mask_ |= (pos->mask & char_mask) << char_shift; |
| 1174 value_ |= (pos->value & char_mask) << char_shift; |
| 1175 char_shift += asc ? 8 : 16; |
| 1176 } |
| 1177 return found_useful_op; |
| 1178 } |
| 1179 |
| 1180 |
| 1181 bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
| 1182 Trace* trace, |
| 1183 bool preload_has_checked_bounds, |
| 1184 BlockLabel* on_possible_success, |
| 1185 QuickCheckDetails* details, |
| 1186 bool fall_through_on_failure) { |
| 1187 if (details->characters() == 0) return false; |
| 1188 GetQuickCheckDetails( |
| 1189 details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); |
| 1190 if (details->cannot_match()) return false; |
| 1191 if (!details->Rationalize(compiler->ascii())) return false; |
| 1192 ASSERT(details->characters() == 1 || |
| 1193 compiler->macro_assembler()->CanReadUnaligned()); |
| 1194 uint32_t mask = details->mask(); |
| 1195 uint32_t value = details->value(); |
| 1196 |
| 1197 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1198 |
| 1199 if (trace->characters_preloaded() != details->characters()) { |
| 1200 assembler->LoadCurrentCharacter(trace->cp_offset(), |
| 1201 trace->backtrack(), |
| 1202 !preload_has_checked_bounds, |
| 1203 details->characters()); |
| 1204 } |
| 1205 |
| 1206 |
| 1207 bool need_mask = true; |
| 1208 |
| 1209 if (details->characters() == 1) { |
| 1210 // If number of characters preloaded is 1 then we used a byte or 16 bit |
| 1211 // load so the value is already masked down. |
| 1212 uint32_t char_mask; |
| 1213 if (compiler->ascii()) { |
| 1214 char_mask = Symbols::kMaxOneCharCodeSymbol; |
| 1215 } else { |
| 1216 char_mask = Utf16::kMaxCodeUnit; |
| 1217 } |
| 1218 if ((mask & char_mask) == char_mask) need_mask = false; |
| 1219 mask &= char_mask; |
| 1220 } else { |
| 1221 // For 2-character preloads in ASCII mode or 1-character preloads in |
| 1222 // TWO_BYTE mode we also use a 16 bit load with zero extend. |
| 1223 if (details->characters() == 2 && compiler->ascii()) { |
| 1224 if ((mask & 0xffff) == 0xffff) need_mask = false; |
| 1225 } else if (details->characters() == 1 && !compiler->ascii()) { |
| 1226 if ((mask & 0xffff) == 0xffff) need_mask = false; |
| 1227 } else { |
| 1228 if (mask == 0xffffffff) need_mask = false; |
| 1229 } |
| 1230 } |
| 1231 |
| 1232 if (fall_through_on_failure) { |
| 1233 if (need_mask) { |
| 1234 assembler->CheckCharacterAfterAnd(value, mask, on_possible_success); |
| 1235 } else { |
| 1236 assembler->CheckCharacter(value, on_possible_success); |
| 1237 } |
| 1238 } else { |
| 1239 if (need_mask) { |
| 1240 assembler->CheckNotCharacterAfterAnd(value, mask, trace->backtrack()); |
| 1241 } else { |
| 1242 assembler->CheckNotCharacter(value, trace->backtrack()); |
| 1243 } |
| 1244 } |
| 1245 return true; |
| 1246 } |
| 1247 |
| 1248 |
| 1249 // Emit the code to check for a ^ in multiline mode (1-character lookbehind |
| 1250 // that matches newline or the start of input). |
| 1251 static void EmitHat(RegExpCompiler* compiler, |
| 1252 RegExpNode* on_success, |
| 1253 Trace* trace) { |
| 1254 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1255 // We will be loading the previous character into the current character |
| 1256 // register. |
| 1257 Trace new_trace(*trace); |
| 1258 new_trace.InvalidateCurrentCharacter(); |
| 1259 |
| 1260 BlockLabel ok; |
| 1261 if (new_trace.cp_offset() == 0) { |
| 1262 // The start of input counts as a newline in this context, so skip to |
| 1263 // ok if we are at the start. |
| 1264 assembler->CheckAtStart(&ok); |
| 1265 } |
| 1266 // We already checked that we are not at the start of input so it must be |
| 1267 // OK to load the previous character. |
| 1268 assembler->LoadCurrentCharacter(new_trace.cp_offset() -1, |
| 1269 new_trace.backtrack(), |
| 1270 false); |
| 1271 if (!assembler->CheckSpecialCharacterClass('n', |
| 1272 new_trace.backtrack())) { |
| 1273 // Newline means \n, \r, 0x2028 or 0x2029. |
| 1274 if (!compiler->ascii()) { |
| 1275 assembler->CheckCharacterAfterAnd(0x2028, 0xfffe, &ok); |
| 1276 } |
| 1277 assembler->CheckCharacter('\n', &ok); |
| 1278 assembler->CheckNotCharacter('\r', new_trace.backtrack()); |
| 1279 } |
| 1280 assembler->BindBlock(&ok); |
| 1281 on_success->Emit(compiler, &new_trace); |
| 1282 } |
| 1283 |
| 1284 |
| 1285 void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1286 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1287 switch (assertion_type_) { |
| 1288 case AT_END: { |
| 1289 BlockLabel ok; |
| 1290 assembler->CheckPosition(trace->cp_offset(), &ok); |
| 1291 assembler->Jump(trace->backtrack()); |
| 1292 assembler->BindBlock(&ok); |
| 1293 break; |
| 1294 } |
| 1295 case AT_START: { |
| 1296 if (trace->at_start() == Trace::FALSE_VALUE) { |
| 1297 assembler->Jump(trace->backtrack()); |
| 1298 return; |
| 1299 } |
| 1300 if (trace->at_start() == Trace::UNKNOWN) { |
| 1301 assembler->CheckNotAtStart(trace->backtrack()); |
| 1302 Trace at_start_trace = *trace; |
| 1303 at_start_trace.set_at_start(true); |
| 1304 on_success()->Emit(compiler, &at_start_trace); |
| 1305 return; |
| 1306 } |
| 1307 } |
| 1308 break; |
| 1309 case AFTER_NEWLINE: |
| 1310 EmitHat(compiler, on_success(), trace); |
| 1311 return; |
| 1312 case AT_BOUNDARY: |
| 1313 case AT_NON_BOUNDARY: { |
| 1314 EmitBoundaryCheck(compiler, trace); |
| 1315 return; |
| 1316 } |
| 1317 } |
| 1318 on_success()->Emit(compiler, trace); |
| 1319 } |
| 1320 |
| 1321 |
| 1322 RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
| 1323 Trace* trace) { |
| 1324 // If we are generating a greedy loop then don't stop and don't reuse code. |
| 1325 if (trace->stop_node() != NULL) { |
| 1326 return CONTINUE; |
| 1327 } |
| 1328 |
| 1329 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| 1330 if (trace->is_trivial()) { |
| 1331 if (label_.IsBound()) { |
| 1332 // We are being asked to generate a generic version, but that's already |
| 1333 // been done so just go to it. |
| 1334 macro_assembler->Jump(&label_); |
| 1335 return DONE; |
| 1336 } |
| 1337 if (compiler->recursion_depth() >= RegExpCompiler::kMaxRecursion) { |
| 1338 // To avoid too deep recursion we push the node to the work queue and just |
| 1339 // generate a goto here. |
| 1340 compiler->AddWork(this); |
| 1341 macro_assembler->Jump(&label_); |
| 1342 return DONE; |
| 1343 } |
| 1344 // Generate generic version of the node and bind the label for later use. |
| 1345 macro_assembler->BindBlock(&label_); |
| 1346 return CONTINUE; |
| 1347 } |
| 1348 |
| 1349 // We are being asked to make a non-generic version. Keep track of how many |
| 1350 // non-generic versions we generate so as not to overdo it. |
| 1351 trace_count_++; |
| 1352 if (kRegexpOptimization && |
| 1353 trace_count_ < kMaxCopiesCodeGenerated && |
| 1354 compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { |
| 1355 return CONTINUE; |
| 1356 } |
| 1357 |
| 1358 // If we get here code has been generated for this node too many times or |
| 1359 // recursion is too deep. Time to switch to a generic version. The code for |
| 1360 // generic versions above can handle deep recursion properly. |
| 1361 trace->Flush(compiler, this); |
| 1362 return DONE; |
| 1363 } |
| 1364 |
| 1365 |
| 1366 // This generates the code to match a text node. A text node can contain |
| 1367 // straight character sequences (possibly to be matched in a case-independent |
| 1368 // way) and character classes. For efficiency we do not do this in a single |
| 1369 // pass from left to right. Instead we pass over the text node several times, |
| 1370 // emitting code for some character positions every time. See the comment on |
| 1371 // TextEmitPass for details. |
| 1372 void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1373 LimitResult limit_result = LimitVersions(compiler, trace); |
| 1374 if (limit_result == DONE) return; |
| 1375 ASSERT(limit_result == CONTINUE); |
| 1376 |
| 1377 if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { |
| 1378 compiler->SetRegExpTooBig(); |
| 1379 return; |
| 1380 } |
| 1381 |
| 1382 if (compiler->ascii()) { |
| 1383 intptr_t dummy = 0; |
| 1384 TextEmitPass(compiler, NON_ASCII_MATCH, false, trace, false, &dummy); |
| 1385 } |
| 1386 |
| 1387 bool first_elt_done = false; |
| 1388 intptr_t bound_checked_to = trace->cp_offset() - 1; |
| 1389 bound_checked_to += trace->bound_checked_up_to(); |
| 1390 |
| 1391 // If a character is preloaded into the current character register then |
| 1392 // check that now. |
| 1393 if (trace->characters_preloaded() == 1) { |
| 1394 for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
| 1395 if (!SkipPass(pass, compiler->ignore_case())) { |
| 1396 TextEmitPass(compiler, |
| 1397 static_cast<TextEmitPassType>(pass), |
| 1398 true, |
| 1399 trace, |
| 1400 false, |
| 1401 &bound_checked_to); |
| 1402 } |
| 1403 } |
| 1404 first_elt_done = true; |
| 1405 } |
| 1406 |
| 1407 for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
| 1408 if (!SkipPass(pass, compiler->ignore_case())) { |
| 1409 TextEmitPass(compiler, |
| 1410 static_cast<TextEmitPassType>(pass), |
| 1411 false, |
| 1412 trace, |
| 1413 first_elt_done, |
| 1414 &bound_checked_to); |
| 1415 } |
| 1416 } |
| 1417 |
| 1418 Trace successor_trace(*trace); |
| 1419 successor_trace.set_at_start(false); |
| 1420 successor_trace.AdvanceCurrentPositionInTrace(Length(), compiler); |
| 1421 RecursionCheck rc(compiler); |
| 1422 on_success()->Emit(compiler, &successor_trace); |
| 1423 } |
| 1424 |
| 1425 |
| 1426 void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1427 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| 1428 if (trace->stop_node() == this) { |
| 1429 intptr_t text_length = |
| 1430 GreedyLoopTextLengthForAlternative(&((*alternatives_)[0])); |
| 1431 ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); |
| 1432 // Update the counter-based backtracking info on the stack. This is an |
| 1433 // optimization for greedy loops (see below). |
| 1434 ASSERT(trace->cp_offset() == text_length); |
| 1435 macro_assembler->AdvanceCurrentPosition(text_length); |
| 1436 macro_assembler->Jump(trace->loop_label()); |
| 1437 return; |
| 1438 } |
| 1439 ASSERT(trace->stop_node() == NULL); |
| 1440 if (!trace->is_trivial()) { |
| 1441 trace->Flush(compiler, this); |
| 1442 return; |
| 1443 } |
| 1444 ChoiceNode::Emit(compiler, trace); |
| 1445 } |
| 1446 |
| 1447 |
| 1448 // This class is used when generating the alternatives in a choice node. It |
| 1449 // records the way the alternative is being code generated. |
| 1450 class AlternativeGeneration { |
| 1451 public: |
| 1452 AlternativeGeneration() |
| 1453 : possible_success(), |
| 1454 expects_preload(false), |
| 1455 after(), |
| 1456 quick_check_details() { } |
| 1457 BlockLabel possible_success; |
| 1458 bool expects_preload; |
| 1459 BlockLabel after; |
| 1460 QuickCheckDetails quick_check_details; |
| 1461 }; |
| 1462 |
| 1463 |
| 1464 // Creates a list of AlternativeGenerations. If the list has a reasonable |
| 1465 // size then it is on the stack, otherwise the excess is on the heap. |
| 1466 class AlternativeGenerationList { |
| 1467 public: |
| 1468 explicit AlternativeGenerationList(intptr_t count) |
| 1469 : alt_gens_(count) { |
| 1470 for (intptr_t i = 0; i < count && i < kAFew; i++) { |
| 1471 alt_gens_.Add(a_few_alt_gens_ + i); |
| 1472 } |
| 1473 for (intptr_t i = kAFew; i < count; i++) { |
| 1474 alt_gens_.Add(new AlternativeGeneration()); |
| 1475 } |
| 1476 } |
| 1477 ~AlternativeGenerationList() { |
| 1478 for (intptr_t i = kAFew; i < alt_gens_.length(); i++) { |
| 1479 delete alt_gens_[i]; |
| 1480 alt_gens_[i] = NULL; |
| 1481 } |
| 1482 } |
| 1483 |
| 1484 AlternativeGeneration* at(intptr_t i) { |
| 1485 return alt_gens_[i]; |
| 1486 } |
| 1487 |
| 1488 private: |
| 1489 static const intptr_t kAFew = 10; |
| 1490 GrowableArray<AlternativeGeneration*> alt_gens_; |
| 1491 AlternativeGeneration a_few_alt_gens_[kAFew]; |
| 1492 }; |
| 1493 |
| 1494 |
| 1495 void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1496 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| 1497 intptr_t choice_count = alternatives_->length(); |
| 1498 |
| 1499 #ifdef DEBUG |
| 1500 for (intptr_t i = 0; i < choice_count - 1; i++) { |
| 1501 GuardedAlternative alternative = alternatives_->At(i); |
| 1502 ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
| 1503 intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
| 1504 for (intptr_t j = 0; j < guard_count; j++) { |
| 1505 ASSERT(!trace->mentions_reg(guards->At(j)->reg())); |
| 1506 } |
| 1507 } |
| 1508 #endif |
| 1509 |
| 1510 LimitResult limit_result = LimitVersions(compiler, trace); |
| 1511 if (limit_result == DONE) return; |
| 1512 ASSERT(limit_result == CONTINUE); |
| 1513 |
| 1514 intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
| 1515 if (trace->flush_budget() == 0 && trace->actions() != NULL) { |
| 1516 trace->Flush(compiler, this); |
| 1517 return; |
| 1518 } |
| 1519 |
| 1520 RecursionCheck rc(compiler); |
| 1521 |
| 1522 Trace* current_trace = trace; |
| 1523 |
| 1524 intptr_t text_length = |
| 1525 GreedyLoopTextLengthForAlternative(&((*alternatives_)[0])); |
| 1526 bool greedy_loop = false; |
| 1527 BlockLabel greedy_loop_label; |
| 1528 Trace counter_backtrack_trace; |
| 1529 counter_backtrack_trace.set_backtrack(&greedy_loop_label); |
| 1530 if (not_at_start()) counter_backtrack_trace.set_at_start(false); |
| 1531 |
| 1532 if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { |
| 1533 // Here we have special handling for greedy loops containing only text nodes |
| 1534 // and other simple nodes. These are handled by pushing the current |
| 1535 // position on the stack and then incrementing the current position each |
| 1536 // time around the switch. On backtrack we decrement the current position |
| 1537 // and check it against the pushed value. This avoids pushing backtrack |
| 1538 // information for each iteration of the loop, which could take up a lot of |
| 1539 // space. |
| 1540 greedy_loop = true; |
| 1541 ASSERT(trace->stop_node() == NULL); |
| 1542 macro_assembler->PushCurrentPosition(); |
| 1543 current_trace = &counter_backtrack_trace; |
| 1544 BlockLabel greedy_match_failed; |
| 1545 Trace greedy_match_trace; |
| 1546 if (not_at_start()) greedy_match_trace.set_at_start(false); |
| 1547 greedy_match_trace.set_backtrack(&greedy_match_failed); |
| 1548 BlockLabel loop_label; |
| 1549 macro_assembler->BindBlock(&loop_label); |
| 1550 greedy_match_trace.set_stop_node(this); |
| 1551 greedy_match_trace.set_loop_label(&loop_label); |
| 1552 alternatives_->At(0).node()->Emit(compiler, &greedy_match_trace); |
| 1553 macro_assembler->BindBlock(&greedy_match_failed); |
| 1554 } |
| 1555 |
| 1556 BlockLabel second_choice; // For use in greedy matches. |
| 1557 macro_assembler->BindBlock(&second_choice); |
| 1558 |
| 1559 intptr_t first_normal_choice = greedy_loop ? 1 : 0; |
| 1560 |
| 1561 bool not_at_start = current_trace->at_start() == Trace::FALSE_VALUE; |
| 1562 const intptr_t kEatsAtLeastNotYetInitialized = -1; |
| 1563 intptr_t eats_at_least = kEatsAtLeastNotYetInitialized; |
| 1564 |
| 1565 bool skip_was_emitted = false; |
| 1566 |
| 1567 if (!greedy_loop && choice_count == 2) { |
| 1568 GuardedAlternative alt1 = alternatives_->At(1); |
| 1569 if (alt1.guards() == NULL || alt1.guards()->length() == 0) { |
| 1570 RegExpNode* eats_anything_node = alt1.node(); |
| 1571 if (eats_anything_node->GetSuccessorOfOmnivorousTextNode(compiler) == |
| 1572 this) { |
| 1573 // At this point we know that we are at a non-greedy loop that will eat |
| 1574 // any character one at a time. Any non-anchored regexp has such a |
| 1575 // loop prepended to it in order to find where it starts. We look for |
| 1576 // a pattern of the form ...abc... where we can look 6 characters ahead |
| 1577 // and step forwards 3 if the character is not one of abc. Abc need |
| 1578 // not be atoms, they can be any reasonably limited character class or |
| 1579 // small alternation. |
| 1580 ASSERT(trace->is_trivial()); // This is the case on LoopChoiceNodes. |
| 1581 BoyerMooreLookahead* lookahead = bm_info(not_at_start); |
| 1582 if (lookahead == NULL) { |
| 1583 eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore, |
| 1584 EatsAtLeast(kMaxLookaheadForBoyerMoore, |
| 1585 kRecursionBudget, |
| 1586 not_at_start)); |
| 1587 if (eats_at_least >= 1) { |
| 1588 BoyerMooreLookahead* bm = |
| 1589 new(I) BoyerMooreLookahead(eats_at_least, compiler, I); |
| 1590 GuardedAlternative alt0 = alternatives_->At(0); |
| 1591 alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, not_at_start); |
| 1592 skip_was_emitted = bm->EmitSkipInstructions(macro_assembler); |
| 1593 } |
| 1594 } else { |
| 1595 skip_was_emitted = lookahead->EmitSkipInstructions(macro_assembler); |
| 1596 } |
| 1597 } |
| 1598 } |
| 1599 } |
| 1600 |
| 1601 if (eats_at_least == kEatsAtLeastNotYetInitialized) { |
| 1602 // Save some time by looking at most one machine word ahead. |
| 1603 eats_at_least = |
| 1604 EatsAtLeast(compiler->ascii() ? 4 : 2, kRecursionBudget, not_at_start); |
| 1605 } |
| 1606 intptr_t preload_characters = |
| 1607 CalculatePreloadCharacters(compiler, eats_at_least); |
| 1608 |
| 1609 bool preload_is_current = !skip_was_emitted && |
| 1610 (current_trace->characters_preloaded() == preload_characters); |
| 1611 bool preload_has_checked_bounds = preload_is_current; |
| 1612 |
| 1613 AlternativeGenerationList alt_gens(choice_count); |
| 1614 |
| 1615 // For now we just call all choices one after the other. The idea ultimately |
| 1616 // is to use the Dispatch table to try only the relevant ones. |
| 1617 for (intptr_t i = first_normal_choice; i < choice_count; i++) { |
| 1618 GuardedAlternative alternative = alternatives_->At(i); |
| 1619 AlternativeGeneration* alt_gen = alt_gens.at(i); |
| 1620 alt_gen->quick_check_details.set_characters(preload_characters); |
| 1621 ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
| 1622 intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
| 1623 Trace new_trace(*current_trace); |
| 1624 new_trace.set_characters_preloaded(preload_is_current ? |
| 1625 preload_characters : |
| 1626 0); |
| 1627 if (preload_has_checked_bounds) { |
| 1628 new_trace.set_bound_checked_up_to(preload_characters); |
| 1629 } |
| 1630 new_trace.quick_check_performed()->Clear(); |
| 1631 if (not_at_start_) new_trace.set_at_start(Trace::FALSE_VALUE); |
| 1632 alt_gen->expects_preload = preload_is_current; |
| 1633 bool generate_full_check_inline = false; |
| 1634 if (kRegexpOptimization && |
| 1635 try_to_emit_quick_check_for_alternative(i) && |
| 1636 alternative.node()->EmitQuickCheck(compiler, |
| 1637 &new_trace, |
| 1638 preload_has_checked_bounds, |
| 1639 &alt_gen->possible_success, |
| 1640 &alt_gen->quick_check_details, |
| 1641 i < choice_count - 1)) { |
| 1642 // Quick check was generated for this choice. |
| 1643 preload_is_current = true; |
| 1644 preload_has_checked_bounds = true; |
| 1645 // On the last choice in the ChoiceNode we generated the quick |
| 1646 // check to fall through on possible success. So now we need to |
| 1647 // generate the full check inline. |
| 1648 if (i == choice_count - 1) { |
| 1649 macro_assembler->BindBlock(&alt_gen->possible_success); |
| 1650 new_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
| 1651 new_trace.set_characters_preloaded(preload_characters); |
| 1652 new_trace.set_bound_checked_up_to(preload_characters); |
| 1653 generate_full_check_inline = true; |
| 1654 } |
| 1655 } else if (alt_gen->quick_check_details.cannot_match()) { |
| 1656 if (i == choice_count - 1 && !greedy_loop) { |
| 1657 macro_assembler->GoTo(trace->backtrack()); |
| 1658 } |
| 1659 continue; |
| 1660 } else { |
| 1661 // No quick check was generated. Put the full code here. |
| 1662 // If this is not the first choice then there could be slow checks from |
| 1663 // previous cases that go here when they fail. There's no reason to |
| 1664 // insist that they preload characters since the slow check we are about |
| 1665 // to generate probably can't use it. |
| 1666 if (i != first_normal_choice) { |
| 1667 alt_gen->expects_preload = false; |
| 1668 new_trace.InvalidateCurrentCharacter(); |
| 1669 } |
| 1670 if (i < choice_count - 1) { |
| 1671 new_trace.set_backtrack(&alt_gen->after); |
| 1672 } |
| 1673 generate_full_check_inline = true; |
| 1674 } |
| 1675 if (generate_full_check_inline) { |
| 1676 if (new_trace.actions() != NULL) { |
| 1677 new_trace.set_flush_budget(new_flush_budget); |
| 1678 } |
| 1679 for (intptr_t j = 0; j < guard_count; j++) { |
| 1680 GenerateGuard(macro_assembler, guards->At(j), &new_trace); |
| 1681 } |
| 1682 alternative.node()->Emit(compiler, &new_trace); |
| 1683 preload_is_current = false; |
| 1684 } |
| 1685 macro_assembler->BindBlock(&alt_gen->after); |
| 1686 } |
| 1687 if (greedy_loop) { |
| 1688 macro_assembler->BindBlock(&greedy_loop_label); |
| 1689 // If we have unwound to the bottom then backtrack. |
| 1690 macro_assembler->CheckGreedyLoop(trace->backtrack()); |
| 1691 // Otherwise try the second priority at an earlier position. |
| 1692 macro_assembler->AdvanceCurrentPosition(-text_length); |
| 1693 macro_assembler->Jump(&second_choice); |
| 1694 } |
| 1695 |
| 1696 // At this point we need to generate slow checks for the alternatives where |
| 1697 // the quick check was inlined. We can recognize these because the associated |
| 1698 // label was bound. |
| 1699 for (intptr_t i = first_normal_choice; i < choice_count - 1; i++) { |
| 1700 AlternativeGeneration* alt_gen = alt_gens.at(i); |
| 1701 Trace new_trace(*current_trace); |
| 1702 // If there are actions to be flushed we have to limit how many times |
| 1703 // they are flushed. Take the budget of the parent trace and distribute |
| 1704 // it fairly amongst the children. |
| 1705 if (new_trace.actions() != NULL) { |
| 1706 new_trace.set_flush_budget(new_flush_budget); |
| 1707 } |
| 1708 EmitOutOfLineContinuation(compiler, |
| 1709 &new_trace, |
| 1710 alternatives_->At(i), |
| 1711 alt_gen, |
| 1712 preload_characters, |
| 1713 alt_gens.at(i + 1)->expects_preload); |
| 1714 } |
| 1715 } |
| 1716 |
| 1717 |
| 1718 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, |
| 1719 Trace* trace, |
| 1720 GuardedAlternative alternative, |
| 1721 AlternativeGeneration* alt_gen, |
| 1722 intptr_t preload_characters, |
| 1723 bool next_expects_preload) { |
| 1724 if (!alt_gen->possible_success.IsLinked()) return; |
| 1725 |
| 1726 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| 1727 macro_assembler->BindBlock(&alt_gen->possible_success); |
| 1728 Trace out_of_line_trace(*trace); |
| 1729 out_of_line_trace.set_characters_preloaded(preload_characters); |
| 1730 out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
| 1731 if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); |
| 1732 ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
| 1733 intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
| 1734 if (next_expects_preload) { |
| 1735 BlockLabel reload_current_char; |
| 1736 out_of_line_trace.set_backtrack(&reload_current_char); |
| 1737 for (intptr_t j = 0; j < guard_count; j++) { |
| 1738 GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
| 1739 } |
| 1740 alternative.node()->Emit(compiler, &out_of_line_trace); |
| 1741 macro_assembler->BindBlock(&reload_current_char); |
| 1742 // Reload the current character, since the next quick check expects that. |
| 1743 // We don't need to check bounds here because we only get into this |
| 1744 // code through a quick check which already did the checked load. |
| 1745 macro_assembler->LoadCurrentCharacter(trace->cp_offset(), |
| 1746 NULL, |
| 1747 false, |
| 1748 preload_characters); |
| 1749 macro_assembler->Jump(&(alt_gen->after)); |
| 1750 } else { |
| 1751 out_of_line_trace.set_backtrack(&(alt_gen->after)); |
| 1752 for (intptr_t j = 0; j < guard_count; j++) { |
| 1753 GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
| 1754 } |
| 1755 alternative.node()->Emit(compiler, &out_of_line_trace); |
| 1756 } |
| 1757 } |
| 1758 |
| 1759 |
| 1760 void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1761 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1762 LimitResult limit_result = LimitVersions(compiler, trace); |
| 1763 if (limit_result == DONE) return; |
| 1764 ASSERT(limit_result == CONTINUE); |
| 1765 |
| 1766 RecursionCheck rc(compiler); |
| 1767 |
| 1768 switch (action_type_) { |
| 1769 case STORE_POSITION: { |
| 1770 Trace::DeferredCapture |
| 1771 new_capture(data_.u_position_register.reg, |
| 1772 data_.u_position_register.is_capture, |
| 1773 trace); |
| 1774 Trace new_trace = *trace; |
| 1775 new_trace.add_action(&new_capture); |
| 1776 on_success()->Emit(compiler, &new_trace); |
| 1777 break; |
| 1778 } |
| 1779 case INCREMENT_REGISTER: { |
| 1780 Trace::DeferredIncrementRegister |
| 1781 new_increment(data_.u_increment_register.reg); |
| 1782 Trace new_trace = *trace; |
| 1783 new_trace.add_action(&new_increment); |
| 1784 on_success()->Emit(compiler, &new_trace); |
| 1785 break; |
| 1786 } |
| 1787 case SET_REGISTER: { |
| 1788 Trace::DeferredSetRegister |
| 1789 new_set(data_.u_store_register.reg, data_.u_store_register.value); |
| 1790 Trace new_trace = *trace; |
| 1791 new_trace.add_action(&new_set); |
| 1792 on_success()->Emit(compiler, &new_trace); |
| 1793 break; |
| 1794 } |
| 1795 case CLEAR_CAPTURES: { |
| 1796 Trace::DeferredClearCaptures |
| 1797 new_capture(Interval(data_.u_clear_captures.range_from, |
| 1798 data_.u_clear_captures.range_to)); |
| 1799 Trace new_trace = *trace; |
| 1800 new_trace.add_action(&new_capture); |
| 1801 on_success()->Emit(compiler, &new_trace); |
| 1802 break; |
| 1803 } |
| 1804 case BEGIN_SUBMATCH: |
| 1805 if (!trace->is_trivial()) { |
| 1806 trace->Flush(compiler, this); |
| 1807 } else { |
| 1808 assembler->WriteCurrentPositionToRegister( |
| 1809 data_.u_submatch.current_position_register, 0); |
| 1810 assembler->WriteStackPointerToRegister( |
| 1811 data_.u_submatch.stack_pointer_register); |
| 1812 on_success()->Emit(compiler, trace); |
| 1813 } |
| 1814 break; |
| 1815 case EMPTY_MATCH_CHECK: { |
| 1816 intptr_t start_pos_reg = data_.u_empty_match_check.start_register; |
| 1817 intptr_t stored_pos = 0; |
| 1818 intptr_t rep_reg = data_.u_empty_match_check.repetition_register; |
| 1819 bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); |
| 1820 bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); |
| 1821 if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { |
| 1822 // If we know we haven't advanced and there is no minimum we |
| 1823 // can just backtrack immediately. |
| 1824 assembler->GoTo(trace->backtrack()); |
| 1825 } else if (know_dist && stored_pos < trace->cp_offset()) { |
| 1826 // If we know we've advanced we can generate the continuation |
| 1827 // immediately. |
| 1828 on_success()->Emit(compiler, trace); |
| 1829 } else if (!trace->is_trivial()) { |
| 1830 trace->Flush(compiler, this); |
| 1831 } else { |
| 1832 BlockLabel skip_empty_check; |
| 1833 // If we have a minimum number of repetitions we check the current |
| 1834 // number first and skip the empty check if it's not enough. |
| 1835 if (has_minimum) { |
| 1836 intptr_t limit = data_.u_empty_match_check.repetition_limit; |
| 1837 assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); |
| 1838 } |
| 1839 // If the match is empty we bail out, otherwise we fall through |
| 1840 // to the on-success continuation. |
| 1841 assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, |
| 1842 trace->backtrack()); |
| 1843 assembler->BindBlock(&skip_empty_check); |
| 1844 on_success()->Emit(compiler, trace); |
| 1845 } |
| 1846 break; |
| 1847 } |
| 1848 case POSITIVE_SUBMATCH_SUCCESS: { |
| 1849 if (!trace->is_trivial()) { |
| 1850 trace->Flush(compiler, this); |
| 1851 return; |
| 1852 } |
| 1853 assembler->ReadCurrentPositionFromRegister( |
| 1854 data_.u_submatch.current_position_register); |
| 1855 assembler->ReadStackPointerFromRegister( |
| 1856 data_.u_submatch.stack_pointer_register); |
| 1857 intptr_t clear_register_count = data_.u_submatch.clear_register_count; |
| 1858 if (clear_register_count == 0) { |
| 1859 on_success()->Emit(compiler, trace); |
| 1860 return; |
| 1861 } |
| 1862 intptr_t clear_registers_from = data_.u_submatch.clear_register_from; |
| 1863 BlockLabel clear_registers_backtrack; |
| 1864 Trace new_trace = *trace; |
| 1865 new_trace.set_backtrack(&clear_registers_backtrack); |
| 1866 on_success()->Emit(compiler, &new_trace); |
| 1867 |
| 1868 assembler->BindBlock(&clear_registers_backtrack); |
| 1869 intptr_t clear_registers_to = |
| 1870 clear_registers_from + clear_register_count - 1; |
| 1871 assembler->ClearRegisters(clear_registers_from, clear_registers_to); |
| 1872 |
| 1873 ASSERT(trace->backtrack() == NULL); |
| 1874 assembler->Backtrack(); |
| 1875 return; |
| 1876 } |
| 1877 default: |
| 1878 UNREACHABLE(); |
| 1879 } |
| 1880 } |
| 1881 |
| 1882 |
| 1883 void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
| 1884 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 1885 if (!trace->is_trivial()) { |
| 1886 trace->Flush(compiler, this); |
| 1887 return; |
| 1888 } |
| 1889 |
| 1890 LimitResult limit_result = LimitVersions(compiler, trace); |
| 1891 if (limit_result == DONE) return; |
| 1892 ASSERT(limit_result == CONTINUE); |
| 1893 |
| 1894 RecursionCheck rc(compiler); |
| 1895 |
| 1896 ASSERT(start_reg_ + 1 == end_reg_); |
| 1897 if (compiler->ignore_case()) { |
| 1898 assembler->CheckNotBackReferenceIgnoreCase(start_reg_, |
| 1899 trace->backtrack()); |
| 1900 } else { |
| 1901 assembler->CheckNotBackReference(start_reg_, trace->backtrack()); |
| 1902 } |
| 1903 on_success()->Emit(compiler, trace); |
| 1904 } |
| 1905 |
| 1906 |
| 1907 void ActionNode::FillInBMInfo(intptr_t offset, |
| 1908 intptr_t budget, |
| 1909 BoyerMooreLookahead* bm, |
| 1910 bool not_at_start) { |
| 1911 if (action_type_ == BEGIN_SUBMATCH) { |
| 1912 bm->SetRest(offset); |
| 1913 } else if (action_type_ != POSITIVE_SUBMATCH_SUCCESS) { |
| 1914 on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
| 1915 } |
| 1916 SaveBMInfo(bm, not_at_start, offset); |
| 1917 } |
| 1918 |
| 1919 |
| 1920 void AssertionNode::FillInBMInfo(intptr_t offset, |
| 1921 intptr_t budget, |
| 1922 BoyerMooreLookahead* bm, |
| 1923 bool not_at_start) { |
| 1924 // Match the behaviour of EatsAtLeast on this node. |
| 1925 if (assertion_type() == AT_START && not_at_start) return; |
| 1926 on_success()->FillInBMInfo(offset, budget - 1, bm, not_at_start); |
| 1927 SaveBMInfo(bm, not_at_start, offset); |
| 1928 } |
| 1929 |
| 1930 |
| 1931 void BackReferenceNode::FillInBMInfo(intptr_t offset, |
| 1932 intptr_t budget, |
| 1933 BoyerMooreLookahead* bm, |
| 1934 bool not_at_start) { |
| 1935 // Working out the set of characters that a backreference can match is too |
| 1936 // hard, so we just say that any character can match. |
| 1937 bm->SetRest(offset); |
| 1938 SaveBMInfo(bm, not_at_start, offset); |
| 1939 } |
| 1940 |
| 1941 |
| 1942 // Returns the number of characters in the equivalence class, omitting those |
| 1943 // that cannot occur in the source string because it is ASCII. |
| 1944 static intptr_t GetCaseIndependentLetters(uint16_t character, |
| 1945 bool ascii_subject, |
| 1946 int32_t* letters) { |
| 1947 unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
| 1948 intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters); |
| 1949 // Unibrow returns 0 or 1 for characters where case independence is |
| 1950 // trivial. |
| 1951 if (length == 0) { |
| 1952 letters[0] = character; |
| 1953 length = 1; |
| 1954 } |
| 1955 if (!ascii_subject || character <= Symbols::kMaxOneCharCodeSymbol) { |
| 1956 return length; |
| 1957 } |
| 1958 // The standard requires that non-ASCII characters cannot have ASCII |
| 1959 // character codes in their equivalence class. |
| 1960 return 0; |
| 1961 } |
| 1962 |
| 1963 |
| 1964 void ChoiceNode::FillInBMInfo(intptr_t offset, |
| 1965 intptr_t budget, |
| 1966 BoyerMooreLookahead* bm, |
| 1967 bool not_at_start) { |
| 1968 ZoneGrowableArray<GuardedAlternative>* alts = alternatives(); |
| 1969 budget = (budget - 1) / alts->length(); |
| 1970 for (intptr_t i = 0; i < alts->length(); i++) { |
| 1971 GuardedAlternative& alt = (*alts)[i]; |
| 1972 if (alt.guards() != NULL && alt.guards()->length() != 0) { |
| 1973 bm->SetRest(offset); // Give up trying to fill in info. |
| 1974 SaveBMInfo(bm, not_at_start, offset); |
| 1975 return; |
| 1976 } |
| 1977 alt.node()->FillInBMInfo(offset, budget, bm, not_at_start); |
| 1978 } |
| 1979 SaveBMInfo(bm, not_at_start, offset); |
| 1980 } |
| 1981 |
| 1982 |
| 1983 void EndNode::FillInBMInfo(intptr_t offset, |
| 1984 intptr_t budget, |
| 1985 BoyerMooreLookahead* bm, |
| 1986 bool not_at_start) { |
| 1987 // Returning 0 from EatsAtLeast should ensure we never get here. |
| 1988 UNREACHABLE(); |
| 1989 } |
| 1990 |
| 1991 |
| 1992 void LoopChoiceNode::FillInBMInfo(intptr_t offset, |
| 1993 intptr_t budget, |
| 1994 BoyerMooreLookahead* bm, |
| 1995 bool not_at_start) { |
| 1996 if (body_can_be_zero_length_ || budget <= 0) { |
| 1997 bm->SetRest(offset); |
| 1998 SaveBMInfo(bm, not_at_start, offset); |
| 1999 return; |
| 2000 } |
| 2001 ChoiceNode::FillInBMInfo(offset, budget - 1, bm, not_at_start); |
| 2002 SaveBMInfo(bm, not_at_start, offset); |
| 2003 } |
| 2004 |
| 2005 |
| 2006 void TextNode::FillInBMInfo(intptr_t initial_offset, |
| 2007 intptr_t budget, |
| 2008 BoyerMooreLookahead* bm, |
| 2009 bool not_at_start) { |
| 2010 if (initial_offset >= bm->length()) return; |
| 2011 intptr_t offset = initial_offset; |
| 2012 intptr_t max_char = bm->max_char(); |
| 2013 for (intptr_t i = 0; i < elements()->length(); i++) { |
| 2014 if (offset >= bm->length()) { |
| 2015 if (initial_offset == 0) set_bm_info(not_at_start, bm); |
| 2016 return; |
| 2017 } |
| 2018 TextElement text = elements()->At(i); |
| 2019 if (text.text_type() == TextElement::ATOM) { |
| 2020 RegExpAtom* atom = text.atom(); |
| 2021 for (intptr_t j = 0; j < atom->length(); j++, offset++) { |
| 2022 if (offset >= bm->length()) { |
| 2023 if (initial_offset == 0) set_bm_info(not_at_start, bm); |
| 2024 return; |
| 2025 } |
| 2026 uint16_t character = atom->data()->At(j); |
| 2027 if (bm->compiler()->ignore_case()) { |
| 2028 int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| 2029 intptr_t length = GetCaseIndependentLetters( |
| 2030 character, |
| 2031 bm->max_char() == Symbols::kMaxOneCharCodeSymbol, |
| 2032 chars); |
| 2033 for (intptr_t j = 0; j < length; j++) { |
| 2034 bm->Set(offset, chars[j]); |
| 2035 } |
| 2036 } else { |
| 2037 if (character <= max_char) bm->Set(offset, character); |
| 2038 } |
| 2039 } |
| 2040 } else { |
| 2041 ASSERT(text.text_type() == TextElement::CHAR_CLASS); |
| 2042 RegExpCharacterClass* char_class = text.char_class(); |
| 2043 ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges(); |
| 2044 if (char_class->is_negated()) { |
| 2045 bm->SetAll(offset); |
| 2046 } else { |
| 2047 for (intptr_t k = 0; k < ranges->length(); k++) { |
| 2048 CharacterRange& range = (*ranges)[k]; |
| 2049 if (range.from() > max_char) continue; |
| 2050 intptr_t to = Utils::Minimum(max_char, |
| 2051 static_cast<intptr_t>(range.to())); |
| 2052 bm->SetInterval(offset, Interval(range.from(), to)); |
| 2053 } |
| 2054 } |
| 2055 offset++; |
| 2056 } |
| 2057 } |
| 2058 if (offset >= bm->length()) { |
| 2059 if (initial_offset == 0) set_bm_info(not_at_start, bm); |
| 2060 return; |
| 2061 } |
| 2062 on_success()->FillInBMInfo(offset, |
| 2063 budget - 1, |
| 2064 bm, |
| 2065 true); // Not at start after a text node. |
| 2066 if (initial_offset == 0) set_bm_info(not_at_start, bm); |
| 2067 } |
| 2068 |
| 2069 |
| 2070 // Check for [0-9A-Z_a-z]. |
| 2071 static void EmitWordCheck(RegExpMacroAssembler* assembler, |
| 2072 BlockLabel* word, |
| 2073 BlockLabel* non_word, |
| 2074 bool fall_through_on_word) { |
| 2075 if (assembler->CheckSpecialCharacterClass( |
| 2076 fall_through_on_word ? 'w' : 'W', |
| 2077 fall_through_on_word ? non_word : word)) { |
| 2078 // Optimized implementation available. |
| 2079 return; |
| 2080 } |
| 2081 assembler->CheckCharacterGT('z', non_word); |
| 2082 assembler->CheckCharacterLT('0', non_word); |
| 2083 assembler->CheckCharacterGT('a' - 1, word); |
| 2084 assembler->CheckCharacterLT('9' + 1, word); |
| 2085 assembler->CheckCharacterLT('A', non_word); |
| 2086 assembler->CheckCharacterLT('Z' + 1, word); |
| 2087 if (fall_through_on_word) { |
| 2088 assembler->CheckNotCharacter('_', non_word); |
| 2089 } else { |
| 2090 assembler->CheckCharacter('_', word); |
| 2091 } |
| 2092 } |
737 | 2093 |
738 | 2094 |
739 // Emit the code to handle \b and \B (word-boundary or non-word-boundary). | 2095 // Emit the code to handle \b and \B (word-boundary or non-word-boundary). |
740 void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { | 2096 void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { |
741 UNIMPLEMENTED(); | 2097 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 2098 Trace::TriBool next_is_word_character = Trace::UNKNOWN; |
| 2099 bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); |
| 2100 BoyerMooreLookahead* lookahead = bm_info(not_at_start); |
| 2101 if (lookahead == NULL) { |
| 2102 intptr_t eats_at_least = |
| 2103 Utils::Minimum(kMaxLookaheadForBoyerMoore, |
| 2104 EatsAtLeast(kMaxLookaheadForBoyerMoore, |
| 2105 kRecursionBudget, |
| 2106 not_at_start)); |
| 2107 if (eats_at_least >= 1) { |
| 2108 BoyerMooreLookahead* bm = |
| 2109 new(I) BoyerMooreLookahead(eats_at_least, compiler, I); |
| 2110 FillInBMInfo(0, kRecursionBudget, bm, not_at_start); |
| 2111 if (bm->at(0)->is_non_word()) |
| 2112 next_is_word_character = Trace::FALSE_VALUE; |
| 2113 if (bm->at(0)->is_word()) next_is_word_character = Trace::TRUE_VALUE; |
| 2114 } |
| 2115 } else { |
| 2116 if (lookahead->at(0)->is_non_word()) |
| 2117 next_is_word_character = Trace::FALSE_VALUE; |
| 2118 if (lookahead->at(0)->is_word()) |
| 2119 next_is_word_character = Trace::TRUE_VALUE; |
| 2120 } |
| 2121 bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); |
| 2122 if (next_is_word_character == Trace::UNKNOWN) { |
| 2123 BlockLabel before_non_word; |
| 2124 BlockLabel before_word; |
| 2125 if (trace->characters_preloaded() != 1) { |
| 2126 assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); |
| 2127 } |
| 2128 // Fall through on non-word. |
| 2129 EmitWordCheck(assembler, &before_word, &before_non_word, false); |
| 2130 // Next character is not a word character. |
| 2131 assembler->BindBlock(&before_non_word); |
| 2132 BlockLabel ok; |
| 2133 // Backtrack on \B (non-boundary check) if previous is a word, |
| 2134 // since we know next *is not* a word and this would be a boundary. |
| 2135 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
| 2136 |
| 2137 if (!assembler->IsClosed()) { |
| 2138 assembler->Jump(&ok); |
| 2139 } |
| 2140 |
| 2141 assembler->BindBlock(&before_word); |
| 2142 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
| 2143 assembler->BindBlock(&ok); |
| 2144 } else if (next_is_word_character == Trace::TRUE_VALUE) { |
| 2145 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
| 2146 } else { |
| 2147 ASSERT(next_is_word_character == Trace::FALSE_VALUE); |
| 2148 BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
| 2149 } |
742 } | 2150 } |
743 | 2151 |
744 | 2152 |
745 void AssertionNode::BacktrackIfPrevious( | 2153 void AssertionNode::BacktrackIfPrevious( |
746 RegExpCompiler* compiler, | 2154 RegExpCompiler* compiler, |
747 Trace* trace, | 2155 Trace* trace, |
748 AssertionNode::IfPrevious backtrack_if_previous) { | 2156 AssertionNode::IfPrevious backtrack_if_previous) { |
749 UNIMPLEMENTED(); | 2157 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
750 } | 2158 Trace new_trace(*trace); |
751 | 2159 new_trace.InvalidateCurrentCharacter(); |
752 | 2160 |
| 2161 BlockLabel fall_through, dummy; |
| 2162 |
| 2163 BlockLabel* non_word = backtrack_if_previous == kIsNonWord ? |
| 2164 new_trace.backtrack() : |
| 2165 &fall_through; |
| 2166 BlockLabel* word = backtrack_if_previous == kIsNonWord ? |
| 2167 &fall_through : |
| 2168 new_trace.backtrack(); |
| 2169 |
| 2170 if (new_trace.cp_offset() == 0) { |
| 2171 // The start of input counts as a non-word character, so the question is |
| 2172 // decided if we are at the start. |
| 2173 assembler->CheckAtStart(non_word); |
| 2174 } |
| 2175 // We already checked that we are not at the start of input so it must be |
| 2176 // OK to load the previous character. |
| 2177 assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); |
| 2178 EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); |
| 2179 |
| 2180 assembler->BindBlock(&fall_through); |
| 2181 on_success()->Emit(compiler, &new_trace); |
| 2182 } |
| 2183 |
| 2184 |
| 2185 static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) { |
| 2186 if (quick_check == NULL) return false; |
| 2187 if (offset >= quick_check->characters()) return false; |
| 2188 return quick_check->positions(offset)->determines_perfectly; |
| 2189 } |
| 2190 |
| 2191 |
| 2192 static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) { |
| 2193 if (index > *checked_up_to) { |
| 2194 *checked_up_to = index; |
| 2195 } |
| 2196 } |
| 2197 |
| 2198 |
| 2199 typedef bool EmitCharacterFunction(Isolate* isolate, |
| 2200 RegExpCompiler* compiler, |
| 2201 uint16_t c, |
| 2202 BlockLabel* on_failure, |
| 2203 intptr_t cp_offset, |
| 2204 bool check, |
| 2205 bool preloaded); |
| 2206 |
| 2207 |
| 2208 static inline bool EmitSimpleCharacter(Isolate* isolate, |
| 2209 RegExpCompiler* compiler, |
| 2210 uint16_t c, |
| 2211 BlockLabel* on_failure, |
| 2212 intptr_t cp_offset, |
| 2213 bool check, |
| 2214 bool preloaded) { |
| 2215 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 2216 bool bound_checked = false; |
| 2217 if (!preloaded) { |
| 2218 assembler->LoadCurrentCharacter( |
| 2219 cp_offset, |
| 2220 on_failure, |
| 2221 check); |
| 2222 bound_checked = true; |
| 2223 } |
| 2224 assembler->CheckNotCharacter(c, on_failure); |
| 2225 return bound_checked; |
| 2226 } |
| 2227 |
| 2228 |
| 2229 static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, |
| 2230 bool ascii, |
| 2231 uint16_t c1, |
| 2232 uint16_t c2, |
| 2233 BlockLabel* on_failure) { |
| 2234 uint16_t char_mask; |
| 2235 if (ascii) { |
| 2236 char_mask = Symbols::kMaxOneCharCodeSymbol; |
| 2237 } else { |
| 2238 char_mask = Utf16::kMaxCodeUnit; |
| 2239 } |
| 2240 uint16_t exor = c1 ^ c2; |
| 2241 // Check whether exor has only one bit set. |
| 2242 if (((exor - 1) & exor) == 0) { |
| 2243 // If c1 and c2 differ only by one bit. |
| 2244 // Ecma262UnCanonicalize always gives the highest number last. |
| 2245 ASSERT(c2 > c1); |
| 2246 uint16_t mask = char_mask ^ exor; |
| 2247 macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); |
| 2248 return true; |
| 2249 } |
| 2250 ASSERT(c2 > c1); |
| 2251 uint16_t diff = c2 - c1; |
| 2252 if (((diff - 1) & diff) == 0 && c1 >= diff) { |
| 2253 // If the characters differ by 2^n but don't differ by one bit then |
| 2254 // subtract the difference from the found character, then do the or |
| 2255 // trick. We avoid the theoretical case where negative numbers are |
| 2256 // involved in order to simplify code generation. |
| 2257 uint16_t mask = char_mask ^ diff; |
| 2258 macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, |
| 2259 diff, |
| 2260 mask, |
| 2261 on_failure); |
| 2262 return true; |
| 2263 } |
| 2264 return false; |
| 2265 } |
| 2266 |
| 2267 // Only emits letters (things that have case). Only used for case independent |
| 2268 // matches. |
| 2269 static inline bool EmitAtomLetter(Isolate* isolate, |
| 2270 RegExpCompiler* compiler, |
| 2271 uint16_t c, |
| 2272 BlockLabel* on_failure, |
| 2273 intptr_t cp_offset, |
| 2274 bool check, |
| 2275 bool preloaded) { |
| 2276 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| 2277 bool ascii = compiler->ascii(); |
| 2278 int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| 2279 intptr_t length = GetCaseIndependentLetters(c, ascii, chars); |
| 2280 if (length <= 1) return false; |
| 2281 // We may not need to check against the end of the input string |
| 2282 // if this character lies before a character that matched. |
| 2283 if (!preloaded) { |
| 2284 macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
| 2285 } |
| 2286 BlockLabel ok; |
| 2287 ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); |
| 2288 switch (length) { |
| 2289 case 2: { |
| 2290 if (ShortCutEmitCharacterPair(macro_assembler, |
| 2291 ascii, |
| 2292 chars[0], |
| 2293 chars[1], |
| 2294 on_failure)) { |
| 2295 } else { |
| 2296 macro_assembler->CheckCharacter(chars[0], &ok); |
| 2297 macro_assembler->CheckNotCharacter(chars[1], on_failure); |
| 2298 macro_assembler->BindBlock(&ok); |
| 2299 } |
| 2300 break; |
| 2301 } |
| 2302 case 4: |
| 2303 macro_assembler->CheckCharacter(chars[3], &ok); |
| 2304 // Fall through! |
| 2305 case 3: |
| 2306 macro_assembler->CheckCharacter(chars[0], &ok); |
| 2307 macro_assembler->CheckCharacter(chars[1], &ok); |
| 2308 macro_assembler->CheckNotCharacter(chars[2], on_failure); |
| 2309 macro_assembler->BindBlock(&ok); |
| 2310 break; |
| 2311 default: |
| 2312 UNREACHABLE(); |
| 2313 break; |
| 2314 } |
| 2315 return true; |
| 2316 } |
| 2317 |
| 2318 |
| 2319 // Only emits non-letters (things that don't have case). Only used for case |
| 2320 // independent matches. |
| 2321 static inline bool EmitAtomNonLetter(Isolate* isolate, |
| 2322 RegExpCompiler* compiler, |
| 2323 uint16_t c, |
| 2324 BlockLabel* on_failure, |
| 2325 intptr_t cp_offset, |
| 2326 bool check, |
| 2327 bool preloaded) { |
| 2328 RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
| 2329 bool ascii = compiler->ascii(); |
| 2330 int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| 2331 intptr_t length = GetCaseIndependentLetters(c, ascii, chars); |
| 2332 if (length < 1) { |
| 2333 // This can't match. Must be an ASCII subject and a non-ASCII character. |
| 2334 // We do not need to do anything since the ASCII pass already handled this. |
| 2335 return false; // Bounds not checked. |
| 2336 } |
| 2337 bool checked = false; |
| 2338 // We handle the length > 1 case in a later pass. |
| 2339 if (length == 1) { |
| 2340 if (ascii && c > Symbols::kMaxOneCharCodeSymbol) { |
| 2341 // Can't match - see above. |
| 2342 return false; // Bounds not checked. |
| 2343 } |
| 2344 if (!preloaded) { |
| 2345 macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
| 2346 checked = check; |
| 2347 } |
| 2348 macro_assembler->CheckNotCharacter(c, on_failure); |
| 2349 } |
| 2350 return checked; |
| 2351 } |
| 2352 |
| 2353 |
| 2354 static void EmitBoundaryTest(RegExpMacroAssembler* masm, |
| 2355 intptr_t border, |
| 2356 BlockLabel* fall_through, |
| 2357 BlockLabel* above_or_equal, |
| 2358 BlockLabel* below) { |
| 2359 if (below != fall_through) { |
| 2360 masm->CheckCharacterLT(border, below); |
| 2361 if (above_or_equal != fall_through) masm->Jump(above_or_equal); |
| 2362 } else { |
| 2363 masm->CheckCharacterGT(border - 1, above_or_equal); |
| 2364 } |
| 2365 } |
| 2366 |
| 2367 |
| 2368 static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, |
| 2369 intptr_t first, |
| 2370 intptr_t last, |
| 2371 BlockLabel* fall_through, |
| 2372 BlockLabel* in_range, |
| 2373 BlockLabel* out_of_range) { |
| 2374 if (in_range == fall_through) { |
| 2375 if (first == last) { |
| 2376 masm->CheckNotCharacter(first, out_of_range); |
| 2377 } else { |
| 2378 masm->CheckCharacterNotInRange(first, last, out_of_range); |
| 2379 } |
| 2380 } else { |
| 2381 if (first == last) { |
| 2382 masm->CheckCharacter(first, in_range); |
| 2383 } else { |
| 2384 masm->CheckCharacterInRange(first, last, in_range); |
| 2385 } |
| 2386 if (out_of_range != fall_through) masm->Jump(out_of_range); |
| 2387 } |
| 2388 } |
| 2389 |
| 2390 |
| 2391 static void CutOutRange(RegExpMacroAssembler* masm, |
| 2392 ZoneGrowableArray<int>* ranges, |
| 2393 intptr_t start_index, |
| 2394 intptr_t end_index, |
| 2395 intptr_t cut_index, |
| 2396 BlockLabel* even_label, |
| 2397 BlockLabel* odd_label) { |
| 2398 bool odd = (((cut_index - start_index) & 1) == 1); |
| 2399 BlockLabel* in_range_label = odd ? odd_label : even_label; |
| 2400 BlockLabel dummy; |
| 2401 EmitDoubleBoundaryTest(masm, |
| 2402 ranges->At(cut_index), |
| 2403 ranges->At(cut_index + 1) - 1, |
| 2404 &dummy, |
| 2405 in_range_label, |
| 2406 &dummy); |
| 2407 ASSERT(!dummy.IsLinked()); |
| 2408 // Cut out the single range by rewriting the array. This creates a new |
| 2409 // range that is a merger of the two ranges on either side of the one we |
| 2410 // are cutting out. The oddity of the labels is preserved. |
| 2411 for (intptr_t j = cut_index; j > start_index; j--) { |
| 2412 (*ranges)[j] = ranges->At(j - 1); |
| 2413 } |
| 2414 for (intptr_t j = cut_index + 1; j < end_index; j++) { |
| 2415 (*ranges)[j] = ranges->At(j + 1); |
| 2416 } |
| 2417 } |
| 2418 |
| 2419 |
| 2420 // even_label is for ranges[i] to ranges[i + 1] where i - start_index is even. |
| 2421 // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. |
| 2422 static void EmitUseLookupTable( |
| 2423 RegExpMacroAssembler* masm, |
| 2424 ZoneGrowableArray<int>* ranges, |
| 2425 intptr_t start_index, |
| 2426 intptr_t end_index, |
| 2427 intptr_t min_char, |
| 2428 BlockLabel* fall_through, |
| 2429 BlockLabel* even_label, |
| 2430 BlockLabel* odd_label) { |
| 2431 static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| 2432 static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
| 2433 |
| 2434 intptr_t base = (min_char & ~kMask); |
| 2435 |
| 2436 // Assert that everything is on one kTableSize page. |
| 2437 for (intptr_t i = start_index; i <= end_index; i++) { |
| 2438 ASSERT((ranges->At(i) & ~kMask) == base); |
| 2439 } |
| 2440 ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base); |
| 2441 |
| 2442 char templ[kSize]; |
| 2443 BlockLabel* on_bit_set; |
| 2444 BlockLabel* on_bit_clear; |
| 2445 intptr_t bit; |
| 2446 if (even_label == fall_through) { |
| 2447 on_bit_set = odd_label; |
| 2448 on_bit_clear = even_label; |
| 2449 bit = 1; |
| 2450 } else { |
| 2451 on_bit_set = even_label; |
| 2452 on_bit_clear = odd_label; |
| 2453 bit = 0; |
| 2454 } |
| 2455 for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize; |
| 2456 i++) { |
| 2457 templ[i] = bit; |
| 2458 } |
| 2459 intptr_t j = 0; |
| 2460 bit ^= 1; |
| 2461 for (intptr_t i = start_index; i < end_index; i++) { |
| 2462 for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) { |
| 2463 templ[j] = bit; |
| 2464 } |
| 2465 bit ^= 1; |
| 2466 } |
| 2467 for (intptr_t i = j; i < kSize; i++) { |
| 2468 templ[i] = bit; |
| 2469 } |
| 2470 // TODO(erikcorry): Cache these. |
| 2471 TypedData& ba = TypedData::ZoneHandle( |
| 2472 masm->isolate(), |
| 2473 TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
| 2474 for (intptr_t i = 0; i < kSize; i++) { |
| 2475 ba.SetUint8(i, templ[i]); |
| 2476 } |
| 2477 masm->CheckBitInTable(ba, on_bit_set); |
| 2478 if (on_bit_clear != fall_through) masm->Jump(on_bit_clear); |
| 2479 } |
| 2480 |
| 2481 |
| 2482 // Unicode case. Split the search space into kSize spaces that are handled |
| 2483 // with recursion. |
| 2484 static void SplitSearchSpace(ZoneGrowableArray<int>* ranges, |
| 2485 intptr_t start_index, |
| 2486 intptr_t end_index, |
| 2487 intptr_t* new_start_index, |
| 2488 intptr_t* new_end_index, |
| 2489 intptr_t* border) { |
| 2490 static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| 2491 static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
| 2492 |
| 2493 intptr_t first = ranges->At(start_index); |
| 2494 intptr_t last = ranges->At(end_index) - 1; |
| 2495 |
| 2496 *new_start_index = start_index; |
| 2497 *border = (ranges->At(start_index) & ~kMask) + kSize; |
| 2498 while (*new_start_index < end_index) { |
| 2499 if (ranges->At(*new_start_index) > *border) break; |
| 2500 (*new_start_index)++; |
| 2501 } |
| 2502 // new_start_index is the index of the first edge that is beyond the |
| 2503 // current kSize space. |
| 2504 |
| 2505 // For very large search spaces we do a binary chop search of the non-ASCII |
| 2506 // space instead of just going to the end of the current kSize space. The |
| 2507 // heuristics are complicated a little by the fact that any 128-character |
| 2508 // encoding space can be quickly tested with a table lookup, so we don't |
| 2509 // wish to do binary chop search at a smaller granularity than that. A |
| 2510 // 128-character space can take up a lot of space in the ranges array if, |
| 2511 // for example, we only want to match every second character (eg. the lower |
| 2512 // case characters on some Unicode pages). |
| 2513 intptr_t binary_chop_index = (end_index + start_index) / 2; |
| 2514 // The first test ensures that we get to the code that handles the ASCII |
| 2515 // range with a single not-taken branch, speeding up this important |
| 2516 // character range (even non-ASCII charset-based text has spaces and |
| 2517 // punctuation). |
| 2518 if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // ASCII case. |
| 2519 end_index - start_index > (*new_start_index - start_index) * 2 && |
| 2520 last - first > kSize * 2 && |
| 2521 binary_chop_index > *new_start_index && |
| 2522 ranges->At(binary_chop_index) >= first + 2 * kSize) { |
| 2523 intptr_t scan_forward_for_section_border = binary_chop_index;; |
| 2524 intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1; |
| 2525 |
| 2526 while (scan_forward_for_section_border < end_index) { |
| 2527 if (ranges->At(scan_forward_for_section_border) > new_border) { |
| 2528 *new_start_index = scan_forward_for_section_border; |
| 2529 *border = new_border; |
| 2530 break; |
| 2531 } |
| 2532 scan_forward_for_section_border++; |
| 2533 } |
| 2534 } |
| 2535 |
| 2536 ASSERT(*new_start_index > start_index); |
| 2537 *new_end_index = *new_start_index - 1; |
| 2538 if (ranges->At(*new_end_index) == *border) { |
| 2539 (*new_end_index)--; |
| 2540 } |
| 2541 if (*border >= ranges->At(end_index)) { |
| 2542 *border = ranges->At(end_index); |
| 2543 *new_start_index = end_index; // Won't be used. |
| 2544 *new_end_index = end_index - 1; |
| 2545 } |
| 2546 } |
| 2547 |
| 2548 |
| 2549 // Gets a series of segment boundaries representing a character class. If the |
| 2550 // character is in the range between an even and an odd boundary (counting from |
| 2551 // start_index) then go to even_label, otherwise go to odd_label. We already |
| 2552 // know that the character is in the range of min_char to max_char inclusive. |
| 2553 // Either label can be NULL indicating backtracking. Either label can also be |
| 2554 // equal to the fall_through label. |
| 2555 static void GenerateBranches(RegExpMacroAssembler* masm, |
| 2556 ZoneGrowableArray<int>* ranges, |
| 2557 intptr_t start_index, |
| 2558 intptr_t end_index, |
| 2559 uint16_t min_char, |
| 2560 uint16_t max_char, |
| 2561 BlockLabel* fall_through, |
| 2562 BlockLabel* even_label, |
| 2563 BlockLabel* odd_label) { |
| 2564 intptr_t first = ranges->At(start_index); |
| 2565 intptr_t last = ranges->At(end_index) - 1; |
| 2566 |
| 2567 ASSERT(min_char < first); |
| 2568 |
| 2569 // Just need to test if the character is before or on-or-after |
| 2570 // a particular character. |
| 2571 if (start_index == end_index) { |
| 2572 EmitBoundaryTest(masm, first, fall_through, even_label, odd_label); |
| 2573 return; |
| 2574 } |
| 2575 |
| 2576 // Another almost trivial case: There is one interval in the middle that is |
| 2577 // different from the end intervals. |
| 2578 if (start_index + 1 == end_index) { |
| 2579 EmitDoubleBoundaryTest( |
| 2580 masm, first, last, fall_through, even_label, odd_label); |
| 2581 return; |
| 2582 } |
| 2583 |
| 2584 // It's not worth using table lookup if there are very few intervals in the |
| 2585 // character class. |
| 2586 if (end_index - start_index <= 6) { |
| 2587 // It is faster to test for individual characters, so we look for those |
| 2588 // first, then try arbitrary ranges in the second round. |
| 2589 static intptr_t kNoCutIndex = -1; |
| 2590 intptr_t cut = kNoCutIndex; |
| 2591 for (intptr_t i = start_index; i < end_index; i++) { |
| 2592 if (ranges->At(i) == ranges->At(i + 1) - 1) { |
| 2593 cut = i; |
| 2594 break; |
| 2595 } |
| 2596 } |
| 2597 if (cut == kNoCutIndex) cut = start_index; |
| 2598 CutOutRange( |
| 2599 masm, ranges, start_index, end_index, cut, even_label, odd_label); |
| 2600 ASSERT(end_index - start_index >= 2); |
| 2601 GenerateBranches(masm, |
| 2602 ranges, |
| 2603 start_index + 1, |
| 2604 end_index - 1, |
| 2605 min_char, |
| 2606 max_char, |
| 2607 fall_through, |
| 2608 even_label, |
| 2609 odd_label); |
| 2610 return; |
| 2611 } |
| 2612 |
| 2613 // If there are a lot of intervals in the regexp, then we will use tables to |
| 2614 // determine whether the character is inside or outside the character class. |
| 2615 static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits; |
| 2616 |
| 2617 if ((max_char >> kBits) == (min_char >> kBits)) { |
| 2618 EmitUseLookupTable(masm, |
| 2619 ranges, |
| 2620 start_index, |
| 2621 end_index, |
| 2622 min_char, |
| 2623 fall_through, |
| 2624 even_label, |
| 2625 odd_label); |
| 2626 return; |
| 2627 } |
| 2628 |
| 2629 if ((min_char >> kBits) != (first >> kBits)) { |
| 2630 masm->CheckCharacterLT(first, odd_label); |
| 2631 GenerateBranches(masm, |
| 2632 ranges, |
| 2633 start_index + 1, |
| 2634 end_index, |
| 2635 first, |
| 2636 max_char, |
| 2637 fall_through, |
| 2638 odd_label, |
| 2639 even_label); |
| 2640 return; |
| 2641 } |
| 2642 |
| 2643 intptr_t new_start_index = 0; |
| 2644 intptr_t new_end_index = 0; |
| 2645 intptr_t border = 0; |
| 2646 |
| 2647 SplitSearchSpace(ranges, |
| 2648 start_index, |
| 2649 end_index, |
| 2650 &new_start_index, |
| 2651 &new_end_index, |
| 2652 &border); |
| 2653 |
| 2654 BlockLabel handle_rest; |
| 2655 BlockLabel* above = &handle_rest; |
| 2656 if (border == last + 1) { |
| 2657 // We didn't find any section that started after the limit, so everything |
| 2658 // above the border is one of the terminal labels. |
| 2659 above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; |
| 2660 ASSERT(new_end_index == end_index - 1); |
| 2661 } |
| 2662 |
| 2663 ASSERT(start_index <= new_end_index); |
| 2664 ASSERT(new_start_index <= end_index); |
| 2665 ASSERT(start_index < new_start_index); |
| 2666 ASSERT(new_end_index < end_index); |
| 2667 ASSERT(new_end_index + 1 == new_start_index || |
| 2668 (new_end_index + 2 == new_start_index && |
| 2669 border == ranges->At(new_end_index + 1))); |
| 2670 ASSERT(min_char < border - 1); |
| 2671 ASSERT(border < max_char); |
| 2672 ASSERT(ranges->At(new_end_index) < border); |
| 2673 ASSERT(border < ranges->At(new_start_index) || |
| 2674 (border == ranges->At(new_start_index) && |
| 2675 new_start_index == end_index && |
| 2676 new_end_index == end_index - 1 && |
| 2677 border == last + 1)); |
| 2678 ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1)); |
| 2679 |
| 2680 masm->CheckCharacterGT(border - 1, above); |
| 2681 BlockLabel dummy; |
| 2682 GenerateBranches(masm, |
| 2683 ranges, |
| 2684 start_index, |
| 2685 new_end_index, |
| 2686 min_char, |
| 2687 border - 1, |
| 2688 &dummy, |
| 2689 even_label, |
| 2690 odd_label); |
| 2691 |
| 2692 if (handle_rest.IsLinked()) { |
| 2693 masm->BindBlock(&handle_rest); |
| 2694 bool flip = (new_start_index & 1) != (start_index & 1); |
| 2695 GenerateBranches(masm, |
| 2696 ranges, |
| 2697 new_start_index, |
| 2698 end_index, |
| 2699 border, |
| 2700 max_char, |
| 2701 &dummy, |
| 2702 flip ? odd_label : even_label, |
| 2703 flip ? even_label : odd_label); |
| 2704 } |
| 2705 } |
| 2706 |
| 2707 |
| 2708 static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
| 2709 RegExpCharacterClass* cc, |
| 2710 bool ascii, |
| 2711 BlockLabel* on_failure, |
| 2712 intptr_t cp_offset, |
| 2713 bool check_offset, |
| 2714 bool preloaded, |
| 2715 Isolate* isolate) { |
| 2716 ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
| 2717 if (!CharacterRange::IsCanonical(ranges)) { |
| 2718 CharacterRange::Canonicalize(ranges); |
| 2719 } |
| 2720 |
| 2721 intptr_t max_char; |
| 2722 if (ascii) { |
| 2723 max_char = Symbols::kMaxOneCharCodeSymbol; |
| 2724 } else { |
| 2725 max_char = Utf16::kMaxCodeUnit; |
| 2726 } |
| 2727 |
| 2728 intptr_t range_count = ranges->length(); |
| 2729 |
| 2730 intptr_t last_valid_range = range_count - 1; |
| 2731 while (last_valid_range >= 0) { |
| 2732 CharacterRange& range = (*ranges)[last_valid_range]; |
| 2733 if (range.from() <= max_char) { |
| 2734 break; |
| 2735 } |
| 2736 last_valid_range--; |
| 2737 } |
| 2738 |
| 2739 if (last_valid_range < 0) { |
| 2740 if (!cc->is_negated()) { |
| 2741 macro_assembler->GoTo(on_failure); |
| 2742 } |
| 2743 if (check_offset) { |
| 2744 macro_assembler->CheckPosition(cp_offset, on_failure); |
| 2745 } |
| 2746 return; |
| 2747 } |
| 2748 |
| 2749 if (last_valid_range == 0 && |
| 2750 ranges->At(0).IsEverything(max_char)) { |
| 2751 if (cc->is_negated()) { |
| 2752 macro_assembler->GoTo(on_failure); |
| 2753 } else { |
| 2754 // This is a common case hit by non-anchored expressions. |
| 2755 if (check_offset) { |
| 2756 macro_assembler->CheckPosition(cp_offset, on_failure); |
| 2757 } |
| 2758 } |
| 2759 return; |
| 2760 } |
| 2761 if (last_valid_range == 0 && |
| 2762 !cc->is_negated() && |
| 2763 ranges->At(0).IsEverything(max_char)) { |
| 2764 // This is a common case hit by non-anchored expressions. |
| 2765 if (check_offset) { |
| 2766 macro_assembler->CheckPosition(cp_offset, on_failure); |
| 2767 } |
| 2768 return; |
| 2769 } |
| 2770 |
| 2771 if (!preloaded) { |
| 2772 macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); |
| 2773 } |
| 2774 |
| 2775 if (cc->is_standard() && |
| 2776 macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), |
| 2777 on_failure)) { |
| 2778 return; |
| 2779 } |
| 2780 |
| 2781 |
| 2782 // A new list with ascending entries. Each entry is a code unit |
| 2783 // where there is a boundary between code units that are part of |
| 2784 // the class and code units that are not. Normally we insert an |
| 2785 // entry at zero which goes to the failure label, but if there |
| 2786 // was already one there we fall through for success on that entry. |
| 2787 // Subsequent entries have alternating meaning (success/failure). |
| 2788 ZoneGrowableArray<int>* range_boundaries = |
| 2789 new(isolate) ZoneGrowableArray<int>(last_valid_range); |
| 2790 |
| 2791 bool zeroth_entry_is_failure = !cc->is_negated(); |
| 2792 |
| 2793 for (intptr_t i = 0; i <= last_valid_range; i++) { |
| 2794 CharacterRange& range = (*ranges)[i]; |
| 2795 if (range.from() == 0) { |
| 2796 ASSERT(i == 0); |
| 2797 zeroth_entry_is_failure = !zeroth_entry_is_failure; |
| 2798 } else { |
| 2799 range_boundaries->Add(range.from()); |
| 2800 } |
| 2801 range_boundaries->Add(range.to() + 1); |
| 2802 } |
| 2803 intptr_t end_index = range_boundaries->length() - 1; |
| 2804 if (range_boundaries->At(end_index) > max_char) { |
| 2805 end_index--; |
| 2806 } |
| 2807 |
| 2808 BlockLabel fall_through; |
| 2809 GenerateBranches(macro_assembler, |
| 2810 range_boundaries, |
| 2811 0, // start_index. |
| 2812 end_index, |
| 2813 0, // min_char. |
| 2814 max_char, |
| 2815 &fall_through, |
| 2816 zeroth_entry_is_failure ? &fall_through : on_failure, |
| 2817 zeroth_entry_is_failure ? on_failure : &fall_through); |
| 2818 macro_assembler->BindBlock(&fall_through); |
| 2819 } |
| 2820 |
| 2821 |
753 // We call this repeatedly to generate code for each pass over the text node. | 2822 // We call this repeatedly to generate code for each pass over the text node. |
754 // The passes are in increasing order of difficulty because we hope one | 2823 // The passes are in increasing order of difficulty because we hope one |
755 // of the first passes will fail in which case we are saved the work of the | 2824 // of the first passes will fail in which case we are saved the work of the |
756 // later passes. for example for the case independent regexp /%[asdfghjkl]a/ | 2825 // later passes. for example for the case independent regexp /%[asdfghjkl]a/ |
757 // we will check the '%' in the first pass, the case independent 'a' in the | 2826 // we will check the '%' in the first pass, the case independent 'a' in the |
758 // second pass and the character class in the last pass. | 2827 // second pass and the character class in the last pass. |
759 // | 2828 // |
760 // The passes are done from right to left, so for example to test for /bar/ | 2829 // The passes are done from right to left, so for example to test for /bar/ |
761 // we will first test for an 'r' with offset 2, then an 'a' with offset 1 | 2830 // we will first test for an 'r' with offset 2, then an 'a' with offset 1 |
762 // and then a 'b' with offset 0. This means we can avoid the end-of-input | 2831 // and then a 'b' with offset 0. This means we can avoid the end-of-input |
(...skipping 15 matching lines...) Expand all Loading... |
778 // loading characters, which means we do not need to recheck the bounds | 2847 // loading characters, which means we do not need to recheck the bounds |
779 // up to the limit the quick check already checked. In addition the quick | 2848 // up to the limit the quick check already checked. In addition the quick |
780 // check can have involved a mask and compare operation which may simplify | 2849 // check can have involved a mask and compare operation which may simplify |
781 // or obviate the need for further checks at some character positions. | 2850 // or obviate the need for further checks at some character positions. |
782 void TextNode::TextEmitPass(RegExpCompiler* compiler, | 2851 void TextNode::TextEmitPass(RegExpCompiler* compiler, |
783 TextEmitPassType pass, | 2852 TextEmitPassType pass, |
784 bool preloaded, | 2853 bool preloaded, |
785 Trace* trace, | 2854 Trace* trace, |
786 bool first_element_checked, | 2855 bool first_element_checked, |
787 intptr_t* checked_up_to) { | 2856 intptr_t* checked_up_to) { |
788 UNIMPLEMENTED(); | 2857 RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
| 2858 bool ascii = compiler->ascii(); |
| 2859 BlockLabel* backtrack = trace->backtrack(); |
| 2860 QuickCheckDetails* quick_check = trace->quick_check_performed(); |
| 2861 intptr_t element_count = elms_->length(); |
| 2862 for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) { |
| 2863 TextElement elm = elms_->At(i); |
| 2864 intptr_t cp_offset = trace->cp_offset() + elm.cp_offset(); |
| 2865 if (elm.text_type() == TextElement::ATOM) { |
| 2866 ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
| 2867 for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) { |
| 2868 if (first_element_checked && i == 0 && j == 0) continue; |
| 2869 if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; |
| 2870 EmitCharacterFunction* emit_function = NULL; |
| 2871 switch (pass) { |
| 2872 case NON_ASCII_MATCH: |
| 2873 ASSERT(ascii); |
| 2874 if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) { |
| 2875 assembler->GoTo(backtrack); |
| 2876 return; |
| 2877 } |
| 2878 break; |
| 2879 case NON_LETTER_CHARACTER_MATCH: |
| 2880 emit_function = &EmitAtomNonLetter; |
| 2881 break; |
| 2882 case SIMPLE_CHARACTER_MATCH: |
| 2883 emit_function = &EmitSimpleCharacter; |
| 2884 break; |
| 2885 case CASE_CHARACTER_MATCH: |
| 2886 emit_function = &EmitAtomLetter; |
| 2887 break; |
| 2888 default: |
| 2889 break; |
| 2890 } |
| 2891 if (emit_function != NULL) { |
| 2892 bool bound_checked = emit_function(I, |
| 2893 compiler, |
| 2894 quarks->At(j), |
| 2895 backtrack, |
| 2896 cp_offset + j, |
| 2897 *checked_up_to < cp_offset + j, |
| 2898 preloaded); |
| 2899 if (bound_checked) UpdateBoundsCheck(cp_offset + j, checked_up_to); |
| 2900 } |
| 2901 } |
| 2902 } else { |
| 2903 ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
| 2904 if (pass == CHARACTER_CLASS_MATCH) { |
| 2905 if (first_element_checked && i == 0) continue; |
| 2906 if (DeterminedAlready(quick_check, elm.cp_offset())) continue; |
| 2907 RegExpCharacterClass* cc = elm.char_class(); |
| 2908 EmitCharClass(assembler, |
| 2909 cc, |
| 2910 ascii, |
| 2911 backtrack, |
| 2912 cp_offset, |
| 2913 *checked_up_to < cp_offset, |
| 2914 preloaded, |
| 2915 I); |
| 2916 UpdateBoundsCheck(cp_offset, checked_up_to); |
| 2917 } |
| 2918 } |
| 2919 } |
789 } | 2920 } |
790 | 2921 |
791 | 2922 |
792 intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, | 2923 intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
793 intptr_t eats_at_least) { | 2924 intptr_t eats_at_least) { |
794 UNIMPLEMENTED(); | 2925 intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4), |
795 return NULL; | 2926 eats_at_least); |
| 2927 if (compiler->macro_assembler()->CanReadUnaligned()) { |
| 2928 bool ascii = compiler->ascii(); |
| 2929 if (ascii) { |
| 2930 if (preload_characters > 4) preload_characters = 4; |
| 2931 // We can't preload 3 characters because there is no machine instruction |
| 2932 // to do that. We can't just load 4 because we could be reading |
| 2933 // beyond the end of the string, which could cause a memory fault. |
| 2934 if (preload_characters == 3) preload_characters = 2; |
| 2935 } else { |
| 2936 if (preload_characters > 2) preload_characters = 2; |
| 2937 } |
| 2938 } else { |
| 2939 if (preload_characters > 1) preload_characters = 1; |
| 2940 } |
| 2941 return preload_characters; |
796 } | 2942 } |
797 | 2943 |
798 | 2944 |
799 void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, | |
800 Trace* trace, | |
801 GuardedAlternative alternative, | |
802 AlternativeGeneration* alt_gen, | |
803 intptr_t preload_characters, | |
804 bool next_expects_preload) { | |
805 UNIMPLEMENTED(); | |
806 } | |
807 | |
808 | |
809 intptr_t TextNode::EatsAtLeast(intptr_t still_to_find, | 2945 intptr_t TextNode::EatsAtLeast(intptr_t still_to_find, |
810 intptr_t budget, | 2946 intptr_t budget, |
811 bool not_at_start) { | 2947 bool not_at_start) { |
812 intptr_t answer = Length(); | 2948 intptr_t answer = Length(); |
813 if (answer >= still_to_find) return answer; | 2949 if (answer >= still_to_find) return answer; |
814 if (budget <= 0) return answer; | 2950 if (budget <= 0) return answer; |
815 // We are not at start after this node so we set the last argument to 'true'. | 2951 // We are not at start after this node so we set the last argument to 'true'. |
816 return answer + on_success()->EatsAtLeast(still_to_find - answer, | 2952 return answer + on_success()->EatsAtLeast(still_to_find - answer, |
817 budget - 1, | 2953 budget - 1, |
818 true); | 2954 true); |
(...skipping 71 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
890 intptr_t budget, | 3026 intptr_t budget, |
891 bool not_at_start) { | 3027 bool not_at_start) { |
892 if (budget <= 0) return 0; | 3028 if (budget <= 0) return 0; |
893 // Alternative 0 is the negative lookahead, alternative 1 is what comes | 3029 // Alternative 0 is the negative lookahead, alternative 1 is what comes |
894 // afterwards. | 3030 // afterwards. |
895 RegExpNode* node = alternatives_->At(1).node(); | 3031 RegExpNode* node = alternatives_->At(1).node(); |
896 return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); | 3032 return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
897 } | 3033 } |
898 | 3034 |
899 | 3035 |
| 3036 // Takes the left-most 1-bit and smears it out, setting all bits to its right. |
| 3037 static inline uint32_t SmearBitsRight(uint32_t v) { |
| 3038 v |= v >> 1; |
| 3039 v |= v >> 2; |
| 3040 v |= v >> 4; |
| 3041 v |= v >> 8; |
| 3042 v |= v >> 16; |
| 3043 return v; |
| 3044 } |
| 3045 |
| 3046 |
900 // Here is the meat of GetQuickCheckDetails (see also the comment on the | 3047 // Here is the meat of GetQuickCheckDetails (see also the comment on the |
901 // super-class in the .h file). | 3048 // super-class in the .h file). |
902 // | 3049 // |
903 // We iterate along the text object, building up for each character a | 3050 // We iterate along the text object, building up for each character a |
904 // mask and value that can be used to test for a quick failure to match. | 3051 // mask and value that can be used to test for a quick failure to match. |
905 // The masks and values for the positions will be combined into a single | 3052 // The masks and values for the positions will be combined into a single |
906 // machine word for the current character width in order to be used in | 3053 // machine word for the current character width in order to be used in |
907 // generating a quick check. | 3054 // generating a quick check. |
908 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, | 3055 void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
909 RegExpCompiler* compiler, | 3056 RegExpCompiler* compiler, |
910 intptr_t characters_filled_in, | 3057 intptr_t characters_filled_in, |
911 bool not_at_start) { | 3058 bool not_at_start) { |
912 UNIMPLEMENTED(); | 3059 ASSERT(characters_filled_in < details->characters()); |
| 3060 intptr_t characters = details->characters(); |
| 3061 intptr_t char_mask; |
| 3062 if (compiler->ascii()) { |
| 3063 char_mask = Symbols::kMaxOneCharCodeSymbol; |
| 3064 } else { |
| 3065 char_mask = Utf16::kMaxCodeUnit; |
| 3066 } |
| 3067 for (intptr_t k = 0; k < elms_->length(); k++) { |
| 3068 TextElement elm = elms_->At(k); |
| 3069 if (elm.text_type() == TextElement::ATOM) { |
| 3070 ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
| 3071 for (intptr_t i = 0; i < characters && i < quarks->length(); i++) { |
| 3072 QuickCheckDetails::Position* pos = |
| 3073 details->positions(characters_filled_in); |
| 3074 uint16_t c = quarks->At(i); |
| 3075 if (c > char_mask) { |
| 3076 // If we expect a non-ASCII character from an ASCII string, |
| 3077 // there is no way we can match. Not even case independent |
| 3078 // matching can turn an ASCII character into non-ASCII or |
| 3079 // vice versa. |
| 3080 details->set_cannot_match(); |
| 3081 pos->determines_perfectly = false; |
| 3082 return; |
| 3083 } |
| 3084 if (compiler->ignore_case()) { |
| 3085 int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| 3086 intptr_t length = |
| 3087 GetCaseIndependentLetters(c, compiler->ascii(), chars); |
| 3088 ASSERT(length != 0); // Can only happen if c > char_mask (see above). |
| 3089 if (length == 1) { |
| 3090 // This letter has no case equivalents, so it's nice and simple |
| 3091 // and the mask-compare will determine definitely whether we have |
| 3092 // a match at this character position. |
| 3093 pos->mask = char_mask; |
| 3094 pos->value = c; |
| 3095 pos->determines_perfectly = true; |
| 3096 } else { |
| 3097 uint32_t common_bits = char_mask; |
| 3098 uint32_t bits = chars[0]; |
| 3099 for (intptr_t j = 1; j < length; j++) { |
| 3100 uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); |
| 3101 common_bits ^= differing_bits; |
| 3102 bits &= common_bits; |
| 3103 } |
| 3104 // If length is 2 and common bits has only one zero in it then |
| 3105 // our mask and compare instruction will determine definitely |
| 3106 // whether we have a match at this character position. Otherwise |
| 3107 // it can only be an approximate check. |
| 3108 uint32_t one_zero = (common_bits | ~char_mask); |
| 3109 if (length == 2 && ((~one_zero) & ((~one_zero) - 1)) == 0) { |
| 3110 pos->determines_perfectly = true; |
| 3111 } |
| 3112 pos->mask = common_bits; |
| 3113 pos->value = bits; |
| 3114 } |
| 3115 } else { |
| 3116 // Don't ignore case. Nice simple case where the mask-compare will |
| 3117 // determine definitely whether we have a match at this character |
| 3118 // position. |
| 3119 pos->mask = char_mask; |
| 3120 pos->value = c; |
| 3121 pos->determines_perfectly = true; |
| 3122 } |
| 3123 characters_filled_in++; |
| 3124 ASSERT(characters_filled_in <= details->characters()); |
| 3125 if (characters_filled_in == details->characters()) { |
| 3126 return; |
| 3127 } |
| 3128 } |
| 3129 } else { |
| 3130 QuickCheckDetails::Position* pos = |
| 3131 details->positions(characters_filled_in); |
| 3132 RegExpCharacterClass* tree = elm.char_class(); |
| 3133 ZoneGrowableArray<CharacterRange>* ranges = tree->ranges(); |
| 3134 if (tree->is_negated()) { |
| 3135 // A quick check uses multi-character mask and compare. There is no |
| 3136 // useful way to incorporate a negative char class into this scheme |
| 3137 // so we just conservatively create a mask and value that will always |
| 3138 // succeed. |
| 3139 pos->mask = 0; |
| 3140 pos->value = 0; |
| 3141 } else { |
| 3142 intptr_t first_range = 0; |
| 3143 while (ranges->At(first_range).from() > char_mask) { |
| 3144 first_range++; |
| 3145 if (first_range == ranges->length()) { |
| 3146 details->set_cannot_match(); |
| 3147 pos->determines_perfectly = false; |
| 3148 return; |
| 3149 } |
| 3150 } |
| 3151 CharacterRange range = ranges->At(first_range); |
| 3152 uint16_t from = range.from(); |
| 3153 uint16_t to = range.to(); |
| 3154 if (to > char_mask) { |
| 3155 to = char_mask; |
| 3156 } |
| 3157 uint32_t differing_bits = (from ^ to); |
| 3158 // A mask and compare is only perfect if the differing bits form a |
| 3159 // number like 00011111 with one single block of trailing 1s. |
| 3160 if ((differing_bits & (differing_bits + 1)) == 0 && |
| 3161 from + differing_bits == to) { |
| 3162 pos->determines_perfectly = true; |
| 3163 } |
| 3164 uint32_t common_bits = ~SmearBitsRight(differing_bits); |
| 3165 uint32_t bits = (from & common_bits); |
| 3166 for (intptr_t i = first_range + 1; i < ranges->length(); i++) { |
| 3167 CharacterRange range = ranges->At(i); |
| 3168 uint16_t from = range.from(); |
| 3169 uint16_t to = range.to(); |
| 3170 if (from > char_mask) continue; |
| 3171 if (to > char_mask) to = char_mask; |
| 3172 // Here we are combining more ranges into the mask and compare |
| 3173 // value. With each new range the mask becomes more sparse and |
| 3174 // so the chances of a false positive rise. A character class |
| 3175 // with multiple ranges is assumed never to be equivalent to a |
| 3176 // mask and compare operation. |
| 3177 pos->determines_perfectly = false; |
| 3178 uint32_t new_common_bits = (from ^ to); |
| 3179 new_common_bits = ~SmearBitsRight(new_common_bits); |
| 3180 common_bits &= new_common_bits; |
| 3181 bits &= new_common_bits; |
| 3182 uint32_t differing_bits = (from & common_bits) ^ bits; |
| 3183 common_bits ^= differing_bits; |
| 3184 bits &= common_bits; |
| 3185 } |
| 3186 pos->mask = common_bits; |
| 3187 pos->value = bits; |
| 3188 } |
| 3189 characters_filled_in++; |
| 3190 ASSERT(characters_filled_in <= details->characters()); |
| 3191 if (characters_filled_in == details->characters()) { |
| 3192 return; |
| 3193 } |
| 3194 } |
| 3195 } |
| 3196 ASSERT(characters_filled_in != details->characters()); |
| 3197 if (!details->cannot_match()) { |
| 3198 on_success()-> GetQuickCheckDetails(details, |
| 3199 compiler, |
| 3200 characters_filled_in, |
| 3201 true); |
| 3202 } |
913 } | 3203 } |
914 | 3204 |
915 | 3205 |
916 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, | 3206 void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
917 RegExpCompiler* compiler, | 3207 RegExpCompiler* compiler, |
918 intptr_t characters_filled_in, | 3208 intptr_t characters_filled_in, |
919 bool not_at_start) { | 3209 bool not_at_start) { |
920 UNIMPLEMENTED(); | 3210 if (body_can_be_zero_length_ || info()->visited) return; |
| 3211 VisitMarker marker(info()); |
| 3212 return ChoiceNode::GetQuickCheckDetails(details, |
| 3213 compiler, |
| 3214 characters_filled_in, |
| 3215 not_at_start); |
921 } | 3216 } |
922 | 3217 |
923 | 3218 |
924 intptr_t TextNode::Length() { | 3219 intptr_t TextNode::Length() { |
925 TextElement elm = elms_->Last(); | 3220 TextElement elm = elms_->Last(); |
926 ASSERT(elm.cp_offset() >= 0); | 3221 ASSERT(elm.cp_offset() >= 0); |
927 return elm.cp_offset() + elm.length(); | 3222 return elm.cp_offset() + elm.length(); |
928 } | 3223 } |
929 | 3224 |
930 | 3225 |
(...skipping 518 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1449 Isolate* isolate) { | 3744 Isolate* isolate) { |
1450 uint16_t bottom = from(); | 3745 uint16_t bottom = from(); |
1451 uint16_t top = to(); | 3746 uint16_t top = to(); |
1452 if (is_ascii && !RangeContainsLatin1Equivalents(*this)) { | 3747 if (is_ascii && !RangeContainsLatin1Equivalents(*this)) { |
1453 if (bottom > Symbols::kMaxOneCharCodeSymbol) return; | 3748 if (bottom > Symbols::kMaxOneCharCodeSymbol) return; |
1454 if (top > Symbols::kMaxOneCharCodeSymbol) { | 3749 if (top > Symbols::kMaxOneCharCodeSymbol) { |
1455 top = Symbols::kMaxOneCharCodeSymbol; | 3750 top = Symbols::kMaxOneCharCodeSymbol; |
1456 } | 3751 } |
1457 } | 3752 } |
1458 | 3753 |
1459 UNIMPLEMENTED(); | 3754 unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
| 3755 unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange; |
| 3756 int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| 3757 if (top == bottom) { |
| 3758 // If this is a singleton we just expand the one character. |
| 3759 intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLIN
T |
| 3760 for (intptr_t i = 0; i < length; i++) { |
| 3761 uint32_t chr = chars[i]; |
| 3762 if (chr != bottom) { |
| 3763 ranges->Add(CharacterRange::Singleton(chars[i])); |
| 3764 } |
| 3765 } |
| 3766 } else { |
| 3767 // If this is a range we expand the characters block by block, |
| 3768 // expanding contiguous subranges (blocks) one at a time. |
| 3769 // The approach is as follows. For a given start character we |
| 3770 // look up the remainder of the block that contains it (represented |
| 3771 // by the end point), for instance we find 'z' if the character |
| 3772 // is 'c'. A block is characterized by the property |
| 3773 // that all characters uncanonicalize in the same way, except that |
| 3774 // each entry in the result is incremented by the distance from the first |
| 3775 // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] and
// NOLINT |
| 3776 // the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. |
| 3777 // Once we've found the end point we look up its uncanonicalization |
| 3778 // and produce a range for each element. For instance for [c-f] |
| 3779 // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only |
| 3780 // add a range if it is not already contained in the input, so [c-f] |
| 3781 // will be skipped but [C-F] will be added. If this range is not |
| 3782 // completely contained in a block we do this for all the blocks |
| 3783 // covered by the range (handling characters that is not in a block |
| 3784 // as a "singleton block"). |
| 3785 int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
| 3786 intptr_t pos = bottom; |
| 3787 while (pos <= top) { |
| 3788 intptr_t length = jsregexp_canonrange.get(pos, '\0', range); |
| 3789 uint16_t block_end; |
| 3790 if (length == 0) { |
| 3791 block_end = pos; |
| 3792 } else { |
| 3793 ASSERT(length == 1); |
| 3794 block_end = range[0]; |
| 3795 } |
| 3796 intptr_t end = (block_end > top) ? top : block_end; |
| 3797 length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT |
| 3798 for (intptr_t i = 0; i < length; i++) { |
| 3799 uint32_t c = range[i]; |
| 3800 uint16_t range_from = c - (block_end - pos); |
| 3801 uint16_t range_to = c - (block_end - end); |
| 3802 if (!(bottom <= range_from && range_to <= top)) { |
| 3803 ranges->Add(CharacterRange(range_from, range_to)); |
| 3804 } |
| 3805 } |
| 3806 pos = end + 1; |
| 3807 } |
| 3808 } |
| 3809 } |
1460 | 3810 |
1461 // unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | 3811 |
1462 // if (top == bottom) { | 3812 // ------------------------------------------------------------------- |
1463 // // If this is a singleton we just expand the one character. | 3813 // Splay tree |
1464 // intptr_t length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', ch
ars); // NOLINT | 3814 |
1465 // for (intptr_t i = 0; i < length; i++) { | 3815 |
1466 // uint32_t chr = chars[i]; | 3816 // Workaround for the fact that ZoneGrowableArray does not have contains(). |
1467 // if (chr != bottom) { | 3817 static bool ArrayContains(ZoneGrowableArray<unsigned>* array, |
1468 // ranges->Add(CharacterRange::Singleton(chars[i]), zone); | 3818 unsigned value) { |
1469 // } | 3819 for (intptr_t i = 0; i < array->length(); i++) { |
1470 // } | 3820 if (array->At(i) == value) { |
1471 // } else { | 3821 return true; |
1472 // // If this is a range we expand the characters block by block, | 3822 } |
1473 // // expanding contiguous subranges (blocks) one at a time. | 3823 } |
1474 // // The approach is as follows. For a given start character we | 3824 return false; |
1475 // // look up the remainder of the block that contains it (represented | 3825 } |
1476 // // by the end point), for instance we find 'z' if the character | 3826 |
1477 // // is 'c'. A block is characterized by the property | 3827 |
1478 // // that all characters uncanonicalize in the same way, except that | 3828 void OutSet::Set(unsigned value, Isolate* isolate) { |
1479 // // each entry in the result is incremented by the distance from the first | 3829 if (value < kFirstLimit) { |
1480 // // element. So a-z is a block because 'a' uncanonicalizes to ['a', 'A'] a
nd // NOLINT | 3830 first_ |= (1 << value); |
1481 // // the k'th letter uncanonicalizes to ['a' + k, 'A' + k]. | 3831 } else { |
1482 // // Once we've found the end point we look up its uncanonicalization | 3832 if (remaining_ == NULL) |
1483 // // and produce a range for each element. For instance for [c-f] | 3833 remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1); |
1484 // // we look up ['z', 'Z'] and produce [c-f] and [C-F]. We then only | 3834 |
1485 // // add a range if it is not already contained in the input, so [c-f] | 3835 bool remaining_contains_value = ArrayContains(remaining_, value); |
1486 // // will be skipped but [C-F] will be added. If this range is not | 3836 if (remaining_->is_empty() || !remaining_contains_value) { |
1487 // // completely contained in a block we do this for all the blocks | 3837 remaining_->Add(value); |
1488 // // covered by the range (handling characters that is not in a block | 3838 } |
1489 // // as a "singleton block"). | 3839 } |
1490 // unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; | 3840 } |
1491 // intptr_t pos = bottom; | 3841 |
1492 // while (pos <= top) { | 3842 |
1493 // intptr_t length = isolate->jsregexp_canonrange()->get(pos, '\0', range); | 3843 bool OutSet::Get(unsigned value) const { |
1494 // uint16_t block_end; | 3844 if (value < kFirstLimit) { |
1495 // if (length == 0) { | 3845 return (first_ & (1 << value)) != 0; |
1496 // block_end = pos; | 3846 } else if (remaining_ == NULL) { |
1497 // } else { | 3847 return false; |
1498 // ASSERT(length == 1); | 3848 } else { |
1499 // block_end = range[0]; | 3849 return ArrayContains(remaining_, value); |
1500 // } | 3850 } |
1501 // intptr_t end = (block_end > top) ? top : block_end; | |
1502 // length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range)
; // NOLINT | |
1503 // for (intptr_t i = 0; i < length; i++) { | |
1504 // uint32_t c = range[i]; | |
1505 // uint16_t range_from = c - (block_end - pos); | |
1506 // uint16_t range_to = c - (block_end - end); | |
1507 // if (!(bottom <= range_from && range_to <= top)) { | |
1508 // ranges->Add(CharacterRange(range_from, range_to)); | |
1509 // } | |
1510 // } | |
1511 // pos = end + 1; | |
1512 // } | |
1513 // } | |
1514 } | 3851 } |
1515 | 3852 |
1516 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, | 3853 void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, |
1517 RegExpCompiler* compiler, | 3854 RegExpCompiler* compiler, |
1518 intptr_t filled_in, | 3855 intptr_t filled_in, |
1519 bool not_at_start) { | 3856 bool not_at_start) { |
1520 if (assertion_type_ == AT_START && not_at_start) { | 3857 if (assertion_type_ == AT_START && not_at_start) { |
1521 details->set_cannot_match(); | 3858 details->set_cannot_match(); |
1522 return; | 3859 return; |
1523 } | 3860 } |
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1557 intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find, | 3894 intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find, |
1558 intptr_t budget, | 3895 intptr_t budget, |
1559 bool not_at_start) { | 3896 bool not_at_start) { |
1560 return EatsAtLeastHelper(still_to_find, | 3897 return EatsAtLeastHelper(still_to_find, |
1561 budget - 1, | 3898 budget - 1, |
1562 loop_node_, | 3899 loop_node_, |
1563 not_at_start); | 3900 not_at_start); |
1564 } | 3901 } |
1565 | 3902 |
1566 | 3903 |
1567 class RecursionCheck { | |
1568 public: | |
1569 explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { | |
1570 compiler->IncrementRecursionDepth(); | |
1571 } | |
1572 ~RecursionCheck() { compiler_->DecrementRecursionDepth(); } | |
1573 private: | |
1574 RegExpCompiler* compiler_; | |
1575 }; | |
1576 | |
1577 | |
1578 DispatchTable* ChoiceNode::GetTable(bool ignore_case) { | |
1579 UNIMPLEMENTED(); | |
1580 return NULL; | |
1581 } | |
1582 | |
1583 | |
1584 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, | 3904 void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
1585 RegExpCompiler* compiler, | 3905 RegExpCompiler* compiler, |
1586 intptr_t characters_filled_in, | 3906 intptr_t characters_filled_in, |
1587 bool not_at_start) { | 3907 bool not_at_start) { |
1588 not_at_start = (not_at_start || not_at_start_); | 3908 not_at_start = (not_at_start || not_at_start_); |
1589 intptr_t choice_count = alternatives_->length(); | 3909 intptr_t choice_count = alternatives_->length(); |
1590 ASSERT(choice_count > 0); | 3910 ASSERT(choice_count > 0); |
1591 alternatives_->At(0).node()->GetQuickCheckDetails(details, | 3911 alternatives_->At(0).node()->GetQuickCheckDetails(details, |
1592 compiler, | 3912 compiler, |
1593 characters_filled_in, | 3913 characters_filled_in, |
(...skipping 102 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1696 RegExpCompiler* compiler, | 4016 RegExpCompiler* compiler, |
1697 intptr_t filled_in, | 4017 intptr_t filled_in, |
1698 bool not_at_start) { | 4018 bool not_at_start) { |
1699 // Alternative 0 is the negative lookahead, alternative 1 is what comes | 4019 // Alternative 0 is the negative lookahead, alternative 1 is what comes |
1700 // afterwards. | 4020 // afterwards. |
1701 RegExpNode* node = alternatives_->At(1).node(); | 4021 RegExpNode* node = alternatives_->At(1).node(); |
1702 return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); | 4022 return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); |
1703 } | 4023 } |
1704 | 4024 |
1705 | 4025 |
| 4026 static RegExpEngine::CompilationResult IrregexpRegExpTooBig() { |
| 4027 return RegExpEngine::CompilationResult("RegExp too big"); |
| 4028 } |
| 4029 |
| 4030 |
1706 // Attempts to compile the regexp using an Irregexp code generator. Returns | 4031 // Attempts to compile the regexp using an Irregexp code generator. Returns |
1707 // a fixed array or a null handle depending on whether it succeeded. | 4032 // a fixed array or a null handle depending on whether it succeeded. |
1708 RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case, | 4033 RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case, |
1709 bool ascii) | 4034 intptr_t specialization_cid) |
1710 : next_register_(2 * (capture_count + 1)), | 4035 : next_register_(2 * (capture_count + 1)), |
| 4036 work_list_(NULL), |
1711 recursion_depth_(0), | 4037 recursion_depth_(0), |
1712 ignore_case_(ignore_case), | 4038 ignore_case_(ignore_case), |
1713 ascii_(ascii), | 4039 specialization_cid_(specialization_cid), |
1714 reg_exp_too_big_(false), | 4040 reg_exp_too_big_(false), |
1715 current_expansion_factor_(1), | 4041 current_expansion_factor_(1), |
1716 isolate_(Isolate::Current()) { | 4042 isolate_(Isolate::Current()) { |
1717 accept_ = new(I) EndNode(EndNode::ACCEPT, I); | 4043 accept_ = new(I) EndNode(EndNode::ACCEPT, I); |
1718 } | 4044 } |
1719 | 4045 |
1720 | 4046 |
1721 RegExpEngine::CompilationResult RegExpCompiler::Assemble( | 4047 RegExpEngine::CompilationResult RegExpCompiler::Assemble( |
1722 RegExpMacroAssembler* macro_assembler, | 4048 IRRegExpMacroAssembler* macro_assembler, |
1723 RegExpNode* start, | 4049 RegExpNode* start, |
1724 intptr_t capture_count, | 4050 intptr_t capture_count, |
1725 const String& pattern) { | 4051 const String& pattern) { |
1726 UNIMPLEMENTED(); | 4052 static const bool use_slow_safe_regexp_compiler = false; |
1727 return RegExpEngine::CompilationResult(""); | 4053 |
| 4054 macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler); |
| 4055 macro_assembler_ = macro_assembler; |
| 4056 |
| 4057 ZoneGrowableArray<RegExpNode*> work_list(0); |
| 4058 work_list_ = &work_list; |
| 4059 BlockLabel fail; |
| 4060 macro_assembler_->PushBacktrack(&fail); |
| 4061 Trace new_trace; |
| 4062 start->Emit(this, &new_trace); |
| 4063 macro_assembler_->BindBlock(&fail); |
| 4064 macro_assembler_->Fail(); |
| 4065 while (!work_list.is_empty()) { |
| 4066 work_list.RemoveLast()->Emit(this, &new_trace); |
| 4067 } |
| 4068 if (reg_exp_too_big_) return IrregexpRegExpTooBig(); |
| 4069 |
| 4070 macro_assembler->FinalizeIndirectGotos(); |
| 4071 |
| 4072 return RegExpEngine::CompilationResult(macro_assembler, |
| 4073 macro_assembler->graph_entry(), |
| 4074 macro_assembler->num_blocks(), |
| 4075 macro_assembler->num_stack_locals()); |
1728 } | 4076 } |
1729 | 4077 |
1730 | 4078 |
1731 RegExpEngine::CompilationResult RegExpEngine::Compile( | 4079 RegExpEngine::CompilationResult RegExpEngine::Compile( |
1732 RegExpCompileData* data, | 4080 RegExpCompileData* data, |
1733 bool ignore_case, | 4081 const ParsedFunction* parsed_function, |
1734 bool is_global, | 4082 ZoneGrowableArray<const ICData*>* ic_data_array) { |
1735 bool is_multiline, | |
1736 const String& pattern, | |
1737 const String& sample_subject, | |
1738 bool is_ascii) { | |
1739 Isolate* isolate = Isolate::Current(); | 4083 Isolate* isolate = Isolate::Current(); |
1740 | 4084 |
1741 RegExpCompiler compiler(data->capture_count, ignore_case, is_ascii); | 4085 const Function& function = parsed_function->function(); |
| 4086 const intptr_t specialization_cid = function.regexp_specialization(); |
| 4087 const bool is_ascii = (specialization_cid == kOneByteStringCid || |
| 4088 specialization_cid == kExternalOneByteStringCid); |
| 4089 JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp()); |
| 4090 const String& pattern = String::Handle(isolate, regexp.pattern()); |
| 4091 const String& sample_subject = |
| 4092 String::Handle(isolate, regexp.sample_subject(specialization_cid)); |
1742 | 4093 |
1743 // TODO(jgruber): Character frequency sampling. | 4094 ASSERT(!regexp.IsNull()); |
| 4095 ASSERT(!pattern.IsNull()); |
| 4096 ASSERT(!sample_subject.IsNull()); |
| 4097 |
| 4098 const bool ignore_case = regexp.is_ignore_case(); |
| 4099 const bool is_global = regexp.is_global(); |
| 4100 |
| 4101 RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid); |
| 4102 |
| 4103 // Sample some characters from the middle of the string. |
| 4104 static const intptr_t kSampleSize = 128; |
| 4105 |
| 4106 intptr_t chars_sampled = 0; |
| 4107 intptr_t half_way = (sample_subject.Length() - kSampleSize) / 2; |
| 4108 for (intptr_t i = Utils::Maximum(static_cast<intptr_t>(0), half_way); |
| 4109 i < sample_subject.Length() && chars_sampled < kSampleSize; |
| 4110 i++, chars_sampled++) { |
| 4111 compiler.frequency_collator()->CountCharacter(sample_subject.CharAt(i)); |
| 4112 } |
1744 | 4113 |
1745 // Wrap the body of the regexp in capture #0. | 4114 // Wrap the body of the regexp in capture #0. |
1746 RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, | 4115 RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, |
1747 0, | 4116 0, |
1748 &compiler, | 4117 &compiler, |
1749 compiler.accept()); | 4118 compiler.accept()); |
1750 | 4119 |
1751 RegExpNode* node = captured_body; | 4120 RegExpNode* node = captured_body; |
1752 bool is_start_anchored = data->tree->IsAnchoredAtStart(); | 4121 bool is_start_anchored = data->tree->IsAnchoredAtStart(); |
| 4122 bool is_end_anchored = data->tree->IsAnchoredAtEnd(); |
| 4123 intptr_t max_length = data->tree->max_match(); |
1753 if (!is_start_anchored) { | 4124 if (!is_start_anchored) { |
1754 // Add a .*? at the beginning, outside the body capture, unless | 4125 // Add a .*? at the beginning, outside the body capture, unless |
1755 // this expression is anchored at the beginning. | 4126 // this expression is anchored at the beginning. |
1756 RegExpNode* loop_node = | 4127 RegExpNode* loop_node = |
1757 RegExpQuantifier::ToNode(0, | 4128 RegExpQuantifier::ToNode(0, |
1758 RegExpTree::kInfinity, | 4129 RegExpTree::kInfinity, |
1759 false, | 4130 false, |
1760 new(isolate) RegExpCharacterClass('*'), | 4131 new(isolate) RegExpCharacterClass('*'), |
1761 &compiler, | 4132 &compiler, |
1762 captured_body, | 4133 captured_body, |
(...skipping 23 matching lines...) Expand all Loading... |
1786 | 4157 |
1787 if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate); | 4158 if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate); |
1788 data->node = node; | 4159 data->node = node; |
1789 Analysis analysis(ignore_case, is_ascii); | 4160 Analysis analysis(ignore_case, is_ascii); |
1790 analysis.EnsureAnalyzed(node); | 4161 analysis.EnsureAnalyzed(node); |
1791 if (analysis.has_failed()) { | 4162 if (analysis.has_failed()) { |
1792 const char* error_message = analysis.error_message(); | 4163 const char* error_message = analysis.error_message(); |
1793 return CompilationResult(error_message); | 4164 return CompilationResult(error_message); |
1794 } | 4165 } |
1795 | 4166 |
1796 // TODO(jgruber): Assemble native code. | 4167 // Native regexp implementation. |
1797 | 4168 |
1798 return RegExpEngine::CompilationResult(""); | 4169 IRRegExpMacroAssembler* macro_assembler = |
1799 } | 4170 new(isolate) IRRegExpMacroAssembler(specialization_cid, |
1800 | 4171 data->capture_count, |
1801 | 4172 parsed_function, |
| 4173 ic_data_array, |
| 4174 isolate); |
| 4175 |
| 4176 // Inserted here, instead of in Assembler, because it depends on information |
| 4177 // in the AST that isn't replicated in the Node structure. |
| 4178 static const intptr_t kMaxBacksearchLimit = 1024; |
| 4179 if (is_end_anchored && |
| 4180 !is_start_anchored && |
| 4181 max_length < kMaxBacksearchLimit) { |
| 4182 macro_assembler->SetCurrentPositionFromEnd(max_length); |
| 4183 } |
| 4184 |
| 4185 if (is_global) { |
| 4186 macro_assembler->set_global_mode( |
| 4187 (data->tree->min_match() > 0) |
| 4188 ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK |
| 4189 : RegExpMacroAssembler::GLOBAL); |
| 4190 } |
| 4191 |
| 4192 RegExpEngine::CompilationResult result = |
| 4193 compiler.Assemble(macro_assembler, |
| 4194 node, |
| 4195 data->capture_count, |
| 4196 pattern); |
| 4197 |
| 4198 if (FLAG_trace_irregexp) { |
| 4199 macro_assembler->PrintBlocks(); |
| 4200 } |
| 4201 |
| 4202 return result; |
| 4203 } |
| 4204 |
| 4205 |
| 4206 static void CreateSpecializedFunction(Isolate* isolate, |
| 4207 JSRegExp* regexp, |
| 4208 intptr_t specialization_cid, |
| 4209 const Object& owner) { |
| 4210 const intptr_t kParamCount = RegExpMacroAssembler::kParamCount; |
| 4211 |
| 4212 Function& fn = Function::Handle(isolate, |
| 4213 Function::New(String::Handle(isolate, Symbols::New("RegExp")), |
| 4214 RawFunction::kIrregexpFunction, |
| 4215 true, // Static. |
| 4216 false, // Not const. |
| 4217 false, // Not abstract. |
| 4218 false, // Not external. |
| 4219 false, // Not native. |
| 4220 owner, |
| 4221 0)); // Requires a non-negative token position. |
| 4222 |
| 4223 fn.set_num_fixed_parameters(kParamCount); |
| 4224 fn.set_parameter_types( |
| 4225 Array::Handle(isolate, Array::New(kParamCount, Heap::kOld))); |
| 4226 fn.set_parameter_names( |
| 4227 Array::Handle(isolate, Array::New(kParamCount, Heap::kOld))); |
| 4228 fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType())); |
| 4229 fn.SetParameterNameAt(0, Symbols::string_param_()); |
| 4230 fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType())); |
| 4231 fn.SetParameterNameAt(1, Symbols::start_index_param_()); |
| 4232 fn.set_result_type(Type::Handle(isolate, Type::ArrayType())); |
| 4233 |
| 4234 // Cache the result. |
| 4235 regexp->set_function(specialization_cid, fn); |
| 4236 |
| 4237 fn.set_regexp(*regexp); |
| 4238 fn.set_regexp_specialization(specialization_cid); |
| 4239 |
| 4240 // The function is compiled lazily during the first call. |
| 4241 } |
| 4242 |
| 4243 |
| 4244 RawJSRegExp* RegExpEngine::New(Isolate* isolate, |
| 4245 const String& pattern, |
| 4246 bool multi_line, |
| 4247 bool ignore_case) { |
| 4248 JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0)); |
| 4249 |
| 4250 regexp.set_pattern(pattern); |
| 4251 |
| 4252 if (multi_line) regexp.set_is_multi_line(); |
| 4253 if (ignore_case) regexp.set_is_ignore_case(); |
| 4254 |
| 4255 // TODO(jgruber): We might want to use normal string searching algorithms |
| 4256 // for simple patterns. |
| 4257 regexp.set_is_complex(); |
| 4258 regexp.set_is_global(); // All dart regexps are global. |
| 4259 |
| 4260 const Library& lib = Library::Handle(isolate, Library::CoreLibrary()); |
| 4261 const Class& owner = Class::Handle(isolate, |
| 4262 lib.LookupClass(String::Handle(isolate, Symbols::New("RegExp")))); |
| 4263 |
| 4264 CreateSpecializedFunction(isolate, ®exp, kOneByteStringCid, owner); |
| 4265 CreateSpecializedFunction(isolate, ®exp, kTwoByteStringCid, owner); |
| 4266 CreateSpecializedFunction(isolate, ®exp, kExternalOneByteStringCid, owner); |
| 4267 CreateSpecializedFunction(isolate, ®exp, kExternalTwoByteStringCid, owner); |
| 4268 |
| 4269 return regexp.raw(); |
| 4270 } |
| 4271 |
| 4272 |
| 4273 void BoyerMoorePositionInfo::Set(intptr_t character) { |
| 4274 SetInterval(Interval(character, character)); |
| 4275 } |
| 4276 |
| 4277 |
| 4278 ContainedInLattice AddRange(ContainedInLattice containment, |
| 4279 const intptr_t* ranges, |
| 4280 intptr_t ranges_length, |
| 4281 Interval new_range) { |
| 4282 ASSERT((ranges_length & 1) == 1); |
| 4283 ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1); |
| 4284 if (containment == kLatticeUnknown) return containment; |
| 4285 bool inside = false; |
| 4286 intptr_t last = 0; |
| 4287 for (intptr_t i = 0; i < ranges_length; |
| 4288 inside = !inside, last = ranges[i], i++) { |
| 4289 // Consider the range from last to ranges[i]. |
| 4290 // We haven't got to the new range yet. |
| 4291 if (ranges[i] <= new_range.from()) continue; |
| 4292 // New range is wholly inside last-ranges[i]. Note that new_range.to() is |
| 4293 // inclusive, but the values in ranges are not. |
| 4294 if (last <= new_range.from() && new_range.to() < ranges[i]) { |
| 4295 return Combine(containment, inside ? kLatticeIn : kLatticeOut); |
| 4296 } |
| 4297 return kLatticeUnknown; |
| 4298 } |
| 4299 return containment; |
| 4300 } |
| 4301 |
| 4302 |
| 4303 void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { |
| 4304 s_ = AddRange(s_, kSpaceRanges, kSpaceRangeCount, interval); |
| 4305 w_ = AddRange(w_, kWordRanges, kWordRangeCount, interval); |
| 4306 d_ = AddRange(d_, kDigitRanges, kDigitRangeCount, interval); |
| 4307 surrogate_ = |
| 4308 AddRange(surrogate_, kSurrogateRanges, kSurrogateRangeCount, interval); |
| 4309 if (interval.to() - interval.from() >= kMapSize - 1) { |
| 4310 if (map_count_ != kMapSize) { |
| 4311 map_count_ = kMapSize; |
| 4312 for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true; |
| 4313 } |
| 4314 return; |
| 4315 } |
| 4316 for (intptr_t i = interval.from(); i <= interval.to(); i++) { |
| 4317 intptr_t mod_character = (i & kMask); |
| 4318 if (!map_->At(mod_character)) { |
| 4319 map_count_++; |
| 4320 (*map_)[mod_character] = true; |
| 4321 } |
| 4322 if (map_count_ == kMapSize) return; |
| 4323 } |
| 4324 } |
| 4325 |
| 4326 |
| 4327 void BoyerMoorePositionInfo::SetAll() { |
| 4328 s_ = w_ = d_ = kLatticeUnknown; |
| 4329 if (map_count_ != kMapSize) { |
| 4330 map_count_ = kMapSize; |
| 4331 for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true; |
| 4332 } |
| 4333 } |
| 4334 |
| 4335 |
| 4336 BoyerMooreLookahead::BoyerMooreLookahead( |
| 4337 intptr_t length, RegExpCompiler* compiler, Isolate* isolate) |
| 4338 : length_(length), |
| 4339 compiler_(compiler) { |
| 4340 if (compiler->ascii()) { |
| 4341 max_char_ = Symbols::kMaxOneCharCodeSymbol; |
| 4342 } else { |
| 4343 max_char_ = Utf16::kMaxCodeUnit; |
| 4344 } |
| 4345 bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length); |
| 4346 for (intptr_t i = 0; i < length; i++) { |
| 4347 bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate)); |
| 4348 } |
| 4349 } |
| 4350 |
| 4351 |
| 4352 // Take all the characters that will not prevent a successful match if they |
| 4353 // occur in the subject string in the range between min_lookahead and |
| 4354 // max_lookahead (inclusive) measured from the current position. If the |
| 4355 // character at max_lookahead offset is not one of these characters, then we |
| 4356 // can safely skip forwards by the number of characters in the range. |
| 4357 intptr_t BoyerMooreLookahead::GetSkipTable(intptr_t min_lookahead, |
| 4358 intptr_t max_lookahead, |
| 4359 TypedData* boolean_skip_table) { |
| 4360 const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| 4361 |
| 4362 const intptr_t kSkipArrayEntry = 0; |
| 4363 const intptr_t kDontSkipArrayEntry = 1; |
| 4364 |
| 4365 for (intptr_t i = 0; i < kSize; i++) { |
| 4366 boolean_skip_table->SetUint8(i, kSkipArrayEntry); |
| 4367 } |
| 4368 intptr_t skip = max_lookahead + 1 - min_lookahead; |
| 4369 |
| 4370 for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
| 4371 BoyerMoorePositionInfo* map = bitmaps_->At(i); |
| 4372 for (intptr_t j = 0; j < kSize; j++) { |
| 4373 if (map->at(j)) { |
| 4374 boolean_skip_table->SetUint8(j, kDontSkipArrayEntry); |
| 4375 } |
| 4376 } |
| 4377 } |
| 4378 |
| 4379 return skip; |
| 4380 } |
| 4381 |
| 4382 |
| 4383 // Find the longest range of lookahead that has the fewest number of different |
| 4384 // characters that can occur at a given position. Since we are optimizing two |
| 4385 // different parameters at once this is a tradeoff. |
| 4386 bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) { |
| 4387 intptr_t biggest_points = 0; |
| 4388 // If more than 32 characters out of 128 can occur it is unlikely that we can |
| 4389 // be lucky enough to step forwards much of the time. |
| 4390 const intptr_t kMaxMax = 32; |
| 4391 for (intptr_t max_number_of_chars = 4; |
| 4392 max_number_of_chars < kMaxMax; |
| 4393 max_number_of_chars *= 2) { |
| 4394 biggest_points = |
| 4395 FindBestInterval(max_number_of_chars, biggest_points, from, to); |
| 4396 } |
| 4397 if (biggest_points == 0) return false; |
| 4398 return true; |
| 4399 } |
| 4400 |
| 4401 |
| 4402 // Find the highest-points range between 0 and length_ where the character |
| 4403 // information is not too vague. 'Too vague' means that there are more than |
| 4404 // max_number_of_chars that can occur at this position. Calculates the number |
| 4405 // of points as the product of width-of-the-range and |
| 4406 // probability-of-finding-one-of-the-characters, where the probability is |
| 4407 // calculated using the frequency distribution of the sample subject string. |
| 4408 intptr_t BoyerMooreLookahead::FindBestInterval( |
| 4409 intptr_t max_number_of_chars, |
| 4410 intptr_t old_biggest_points, |
| 4411 intptr_t* from, |
| 4412 intptr_t* to) { |
| 4413 intptr_t biggest_points = old_biggest_points; |
| 4414 static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| 4415 for (intptr_t i = 0; i < length_; ) { |
| 4416 while (i < length_ && Count(i) > max_number_of_chars) i++; |
| 4417 if (i == length_) break; |
| 4418 intptr_t remembered_from = i; |
| 4419 bool union_map[kSize]; |
| 4420 for (intptr_t j = 0; j < kSize; j++) union_map[j] = false; |
| 4421 while (i < length_ && Count(i) <= max_number_of_chars) { |
| 4422 BoyerMoorePositionInfo* map = bitmaps_->At(i); |
| 4423 for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j); |
| 4424 i++; |
| 4425 } |
| 4426 intptr_t frequency = 0; |
| 4427 for (intptr_t j = 0; j < kSize; j++) { |
| 4428 if (union_map[j]) { |
| 4429 // Add 1 to the frequency to give a small per-character boost for |
| 4430 // the cases where our sampling is not good enough and many |
| 4431 // characters have a frequency of zero. This means the frequency |
| 4432 // can theoretically be up to 2*kSize though we treat it mostly as |
| 4433 // a fraction of kSize. |
| 4434 frequency += compiler_->frequency_collator()->Frequency(j) + 1; |
| 4435 } |
| 4436 } |
| 4437 // We use the probability of skipping times the distance we are skipping to |
| 4438 // judge the effectiveness of this. Actually we have a cut-off: By |
| 4439 // dividing by 2 we switch off the skipping if the probability of skipping |
| 4440 // is less than 50%. This is because the multibyte mask-and-compare |
| 4441 // skipping in quickcheck is more likely to do well on this case. |
| 4442 bool in_quickcheck_range = ((i - remembered_from < 4) || |
| 4443 (compiler_->ascii() ? remembered_from <= 4 : remembered_from <= 2)); |
| 4444 // Called 'probability' but it is only a rough estimate and can actually |
| 4445 // be outside the 0-kSize range. |
| 4446 intptr_t probability = |
| 4447 (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
| 4448 intptr_t points = (i - remembered_from) * probability; |
| 4449 if (points > biggest_points) { |
| 4450 *from = remembered_from; |
| 4451 *to = i - 1; |
| 4452 biggest_points = points; |
| 4453 } |
| 4454 } |
| 4455 return biggest_points; |
| 4456 } |
| 4457 |
| 4458 |
| 4459 // See comment above on the implementation of GetSkipTable. |
| 4460 bool BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
| 4461 const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
| 4462 |
| 4463 intptr_t min_lookahead = 0; |
| 4464 intptr_t max_lookahead = 0; |
| 4465 |
| 4466 if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return false; |
| 4467 |
| 4468 bool found_single_character = false; |
| 4469 intptr_t single_character = 0; |
| 4470 for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
| 4471 BoyerMoorePositionInfo* map = bitmaps_->At(i); |
| 4472 if (map->map_count() > 1 || |
| 4473 (found_single_character && map->map_count() != 0)) { |
| 4474 found_single_character = false; |
| 4475 break; |
| 4476 } |
| 4477 for (intptr_t j = 0; j < kSize; j++) { |
| 4478 if (map->at(j)) { |
| 4479 found_single_character = true; |
| 4480 single_character = j; |
| 4481 break; |
| 4482 } |
| 4483 } |
| 4484 } |
| 4485 |
| 4486 intptr_t lookahead_width = max_lookahead + 1 - min_lookahead; |
| 4487 |
| 4488 if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { |
| 4489 // The mask-compare can probably handle this better. |
| 4490 return false; |
| 4491 } |
| 4492 |
| 4493 if (found_single_character) { |
| 4494 BlockLabel cont, again; |
| 4495 masm->BindBlock(&again); |
| 4496 masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
| 4497 if (max_char_ > kSize) { |
| 4498 masm->CheckCharacterAfterAnd(single_character, |
| 4499 RegExpMacroAssembler::kTableMask, |
| 4500 &cont); |
| 4501 } else { |
| 4502 masm->CheckCharacter(single_character, &cont); |
| 4503 } |
| 4504 masm->AdvanceCurrentPosition(lookahead_width); |
| 4505 masm->GoTo(&again); |
| 4506 masm->BindBlock(&cont); |
| 4507 return true; |
| 4508 } |
| 4509 |
| 4510 TypedData& boolean_skip_table = TypedData::ZoneHandle( |
| 4511 compiler_->isolate(), |
| 4512 TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
| 4513 intptr_t skip_distance = GetSkipTable( |
| 4514 min_lookahead, max_lookahead, &boolean_skip_table); |
| 4515 ASSERT(skip_distance != 0); |
| 4516 |
| 4517 BlockLabel cont, again; |
| 4518 |
| 4519 masm->BindBlock(&again); |
| 4520 masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
| 4521 masm->CheckBitInTable(boolean_skip_table, &cont); |
| 4522 masm->AdvanceCurrentPosition(skip_distance); |
| 4523 masm->Jump(&again); |
| 4524 masm->BindBlock(&cont); |
| 4525 |
| 4526 return true; |
| 4527 } |
| 4528 |
| 4529 |
1802 // ------------------------------------------------------------------- | 4530 // ------------------------------------------------------------------- |
1803 // Analysis | 4531 // Analysis |
1804 | 4532 |
1805 | 4533 |
1806 void Analysis::EnsureAnalyzed(RegExpNode* that) { | 4534 void Analysis::EnsureAnalyzed(RegExpNode* that) { |
1807 if (that->info()->been_analyzed || that->info()->being_analyzed) | 4535 if (that->info()->been_analyzed || that->info()->being_analyzed) |
1808 return; | 4536 return; |
1809 that->info()->being_analyzed = true; | 4537 that->info()->being_analyzed = true; |
1810 that->Accept(this); | 4538 that->Accept(this); |
1811 that->info()->being_analyzed = false; | 4539 that->info()->being_analyzed = false; |
(...skipping 168 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1980 | 4708 |
1981 | 4709 |
1982 void DotPrinter::PrintAttributes(RegExpNode* that) { | 4710 void DotPrinter::PrintAttributes(RegExpNode* that) { |
1983 OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, " | 4711 OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, " |
1984 "margin=0.1, fontsize=10, label=\"{", that); | 4712 "margin=0.1, fontsize=10, label=\"{", that); |
1985 AttributePrinter printer; | 4713 AttributePrinter printer; |
1986 NodeInfo* info = that->info(); | 4714 NodeInfo* info = that->info(); |
1987 printer.PrintBit("NI", info->follows_newline_interest); | 4715 printer.PrintBit("NI", info->follows_newline_interest); |
1988 printer.PrintBit("WI", info->follows_word_interest); | 4716 printer.PrintBit("WI", info->follows_word_interest); |
1989 printer.PrintBit("SI", info->follows_start_interest); | 4717 printer.PrintBit("SI", info->follows_start_interest); |
1990 Label* label = that->label(); | 4718 BlockLabel* label = that->label(); |
1991 if (label->IsBound()) | 4719 if (label->IsBound()) |
1992 printer.PrintPositive("@", label->Position()); | 4720 printer.PrintPositive("@", label->Position()); |
1993 OS::Print("}\"];\n" | 4721 OS::Print("}\"];\n" |
1994 " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n", | 4722 " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n", |
1995 that, that); | 4723 that, that); |
1996 } | 4724 } |
1997 | 4725 |
1998 | 4726 |
1999 static const bool kPrintDispatchTable = false; | 4727 static const bool kPrintDispatchTable = false; |
2000 void DotPrinter::VisitChoice(ChoiceNode* that) { | 4728 void DotPrinter::VisitChoice(ChoiceNode* that) { |
(...skipping 141 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2142 RegExpNode* node, | 4870 RegExpNode* node, |
2143 bool ignore_case) { | 4871 bool ignore_case) { |
2144 DotPrinter printer(ignore_case); | 4872 DotPrinter printer(ignore_case); |
2145 printer.PrintNode(label, node); | 4873 printer.PrintNode(label, node); |
2146 } | 4874 } |
2147 | 4875 |
2148 | 4876 |
2149 #endif // DEBUG | 4877 #endif // DEBUG |
2150 | 4878 |
2151 } // namespace dart | 4879 } // namespace dart |
OLD | NEW |