| Index: src/mips/code-stubs-mips.cc
|
| diff --git a/src/mips/code-stubs-mips.cc b/src/mips/code-stubs-mips.cc
|
| index a333dcbc29c77d8a6b66c6e570c57611d0a28c65..0c9f0b0f1aaff94a9a0610455146d3e06f8832ea 100644
|
| --- a/src/mips/code-stubs-mips.cc
|
| +++ b/src/mips/code-stubs-mips.cc
|
| @@ -145,108 +145,6 @@ void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm) {
|
| }
|
|
|
|
|
| -// Takes a Smi and converts to an IEEE 64 bit floating point value in two
|
| -// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
|
| -// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
|
| -// scratch register. Destroys the source register. No GC occurs during this
|
| -// stub so you don't have to set up the frame.
|
| -class ConvertToDoubleStub : public PlatformCodeStub {
|
| - public:
|
| - ConvertToDoubleStub(Isolate* isolate,
|
| - Register result_reg_1,
|
| - Register result_reg_2,
|
| - Register source_reg,
|
| - Register scratch_reg)
|
| - : PlatformCodeStub(isolate),
|
| - result1_(result_reg_1),
|
| - result2_(result_reg_2),
|
| - source_(source_reg),
|
| - zeros_(scratch_reg) { }
|
| -
|
| - private:
|
| - Register result1_;
|
| - Register result2_;
|
| - Register source_;
|
| - Register zeros_;
|
| -
|
| - // Minor key encoding in 16 bits.
|
| - class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
| - class OpBits: public BitField<Token::Value, 2, 14> {};
|
| -
|
| - Major MajorKey() const { return ConvertToDouble; }
|
| - uint32_t MinorKey() const {
|
| - // Encode the parameters in a unique 16 bit value.
|
| - return result1_.code() +
|
| - (result2_.code() << 4) +
|
| - (source_.code() << 8) +
|
| - (zeros_.code() << 12);
|
| - }
|
| -
|
| - void Generate(MacroAssembler* masm);
|
| -};
|
| -
|
| -
|
| -void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
|
| - Register exponent, mantissa;
|
| - if (kArchEndian == kLittle) {
|
| - exponent = result1_;
|
| - mantissa = result2_;
|
| - } else {
|
| - exponent = result2_;
|
| - mantissa = result1_;
|
| - }
|
| - Label not_special;
|
| - // Convert from Smi to integer.
|
| - __ sra(source_, source_, kSmiTagSize);
|
| - // Move sign bit from source to destination. This works because the sign bit
|
| - // in the exponent word of the double has the same position and polarity as
|
| - // the 2's complement sign bit in a Smi.
|
| - STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
| - __ And(exponent, source_, Operand(HeapNumber::kSignMask));
|
| - // Subtract from 0 if source was negative.
|
| - __ subu(at, zero_reg, source_);
|
| - __ Movn(source_, at, exponent);
|
| -
|
| - // We have -1, 0 or 1, which we treat specially. Register source_ contains
|
| - // absolute value: it is either equal to 1 (special case of -1 and 1),
|
| - // greater than 1 (not a special case) or less than 1 (special case of 0).
|
| - __ Branch(¬_special, gt, source_, Operand(1));
|
| -
|
| - // For 1 or -1 we need to or in the 0 exponent (biased to 1023).
|
| - const uint32_t exponent_word_for_1 =
|
| - HeapNumber::kExponentBias << HeapNumber::kExponentShift;
|
| - // Safe to use 'at' as dest reg here.
|
| - __ Or(at, exponent, Operand(exponent_word_for_1));
|
| - __ Movn(exponent, at, source_); // Write exp when source not 0.
|
| - // 1, 0 and -1 all have 0 for the second word.
|
| - __ Ret(USE_DELAY_SLOT);
|
| - __ mov(mantissa, zero_reg);
|
| -
|
| - __ bind(¬_special);
|
| - // Count leading zeros.
|
| - // Gets the wrong answer for 0, but we already checked for that case above.
|
| - __ Clz(zeros_, source_);
|
| - // Compute exponent and or it into the exponent register.
|
| - // We use mantissa as a scratch register here.
|
| - __ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
|
| - __ subu(mantissa, mantissa, zeros_);
|
| - __ sll(mantissa, mantissa, HeapNumber::kExponentShift);
|
| - __ Or(exponent, exponent, mantissa);
|
| -
|
| - // Shift up the source chopping the top bit off.
|
| - __ Addu(zeros_, zeros_, Operand(1));
|
| - // This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
|
| - __ sllv(source_, source_, zeros_);
|
| - // Compute lower part of fraction (last 12 bits).
|
| - __ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
|
| - // And the top (top 20 bits).
|
| - __ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
|
| -
|
| - __ Ret(USE_DELAY_SLOT);
|
| - __ or_(exponent, exponent, source_);
|
| -}
|
| -
|
| -
|
| void DoubleToIStub::Generate(MacroAssembler* masm) {
|
| Label out_of_range, only_low, negate, done;
|
| Register input_reg = source();
|
| @@ -403,32 +301,32 @@ void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
|
| // We test for the special value that has a different exponent.
|
| STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
| // Test sign, and save for later conditionals.
|
| - __ And(sign_, the_int_, Operand(0x80000000u));
|
| - __ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
|
| + __ And(sign(), the_int(), Operand(0x80000000u));
|
| + __ Branch(&max_negative_int, eq, the_int(), Operand(0x80000000u));
|
|
|
| // Set up the correct exponent in scratch_. All non-Smi int32s have the same.
|
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
|
| uint32_t non_smi_exponent =
|
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
|
| - __ li(scratch_, Operand(non_smi_exponent));
|
| + __ li(scratch(), Operand(non_smi_exponent));
|
| // Set the sign bit in scratch_ if the value was negative.
|
| - __ or_(scratch_, scratch_, sign_);
|
| + __ or_(scratch(), scratch(), sign());
|
| // Subtract from 0 if the value was negative.
|
| - __ subu(at, zero_reg, the_int_);
|
| - __ Movn(the_int_, at, sign_);
|
| + __ subu(at, zero_reg, the_int());
|
| + __ Movn(the_int(), at, sign());
|
| // We should be masking the implict first digit of the mantissa away here,
|
| // but it just ends up combining harmlessly with the last digit of the
|
| // exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
|
| // the most significant 1 to hit the last bit of the 12 bit sign and exponent.
|
| DCHECK(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
|
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
| - __ srl(at, the_int_, shift_distance);
|
| - __ or_(scratch_, scratch_, at);
|
| - __ sw(scratch_, FieldMemOperand(the_heap_number_,
|
| + __ srl(at, the_int(), shift_distance);
|
| + __ or_(scratch(), scratch(), at);
|
| + __ sw(scratch(), FieldMemOperand(the_heap_number(),
|
| HeapNumber::kExponentOffset));
|
| - __ sll(scratch_, the_int_, 32 - shift_distance);
|
| + __ sll(scratch(), the_int(), 32 - shift_distance);
|
| __ Ret(USE_DELAY_SLOT);
|
| - __ sw(scratch_, FieldMemOperand(the_heap_number_,
|
| + __ sw(scratch(), FieldMemOperand(the_heap_number(),
|
| HeapNumber::kMantissaOffset));
|
|
|
| __ bind(&max_negative_int);
|
| @@ -437,13 +335,13 @@ void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
|
| // The actual mantissa bits stored are all 0 because the implicit most
|
| // significant 1 bit is not stored.
|
| non_smi_exponent += 1 << HeapNumber::kExponentShift;
|
| - __ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
|
| - __ sw(scratch_,
|
| - FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
|
| - __ mov(scratch_, zero_reg);
|
| + __ li(scratch(), Operand(HeapNumber::kSignMask | non_smi_exponent));
|
| + __ sw(scratch(),
|
| + FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset));
|
| + __ mov(scratch(), zero_reg);
|
| __ Ret(USE_DELAY_SLOT);
|
| - __ sw(scratch_,
|
| - FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
|
| + __ sw(scratch(),
|
| + FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset));
|
| }
|
|
|
|
|
| @@ -4228,7 +4126,7 @@ void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
|
| // Stop if found the property.
|
| __ Branch(&in_dictionary, eq, entry_key, Operand(key));
|
|
|
| - if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
|
| + if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) {
|
| // Check if the entry name is not a unique name.
|
| __ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
|
| __ lbu(entry_key,
|
| @@ -4241,7 +4139,7 @@ void NameDictionaryLookupStub::Generate(MacroAssembler* masm) {
|
| // If we are doing negative lookup then probing failure should be
|
| // treated as a lookup success. For positive lookup probing failure
|
| // should be treated as lookup failure.
|
| - if (mode_ == POSITIVE_LOOKUP) {
|
| + if (mode() == POSITIVE_LOOKUP) {
|
| __ Ret(USE_DELAY_SLOT);
|
| __ mov(result, zero_reg);
|
| }
|
| @@ -4285,11 +4183,11 @@ void RecordWriteStub::Generate(MacroAssembler* masm) {
|
| __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
|
| __ nop();
|
|
|
| - if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
| - __ RememberedSetHelper(object_,
|
| - address_,
|
| - value_,
|
| - save_fp_regs_mode_,
|
| + if (remembered_set_action() == EMIT_REMEMBERED_SET) {
|
| + __ RememberedSetHelper(object(),
|
| + address(),
|
| + value(),
|
| + save_fp_regs_mode(),
|
| MacroAssembler::kReturnAtEnd);
|
| }
|
| __ Ret();
|
| @@ -4311,7 +4209,7 @@ void RecordWriteStub::Generate(MacroAssembler* masm) {
|
| void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
| regs_.Save(masm);
|
|
|
| - if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
| + if (remembered_set_action() == EMIT_REMEMBERED_SET) {
|
| Label dont_need_remembered_set;
|
|
|
| __ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
|
| @@ -4331,10 +4229,10 @@ void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
| masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
|
| InformIncrementalMarker(masm);
|
| regs_.Restore(masm);
|
| - __ RememberedSetHelper(object_,
|
| - address_,
|
| - value_,
|
| - save_fp_regs_mode_,
|
| + __ RememberedSetHelper(object(),
|
| + address(),
|
| + value(),
|
| + save_fp_regs_mode(),
|
| MacroAssembler::kReturnAtEnd);
|
|
|
| __ bind(&dont_need_remembered_set);
|
| @@ -4349,7 +4247,7 @@ void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
|
|
|
|
| void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
|
| - regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
|
| + regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode());
|
| int argument_count = 3;
|
| __ PrepareCallCFunction(argument_count, regs_.scratch0());
|
| Register address =
|
| @@ -4365,7 +4263,7 @@ void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) {
|
| __ CallCFunction(
|
| ExternalReference::incremental_marking_record_write_function(isolate()),
|
| argument_count);
|
| - regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
|
| + regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode());
|
| }
|
|
|
|
|
| @@ -4393,10 +4291,10 @@ void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
|
|
|
| regs_.Restore(masm);
|
| if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
| - __ RememberedSetHelper(object_,
|
| - address_,
|
| - value_,
|
| - save_fp_regs_mode_,
|
| + __ RememberedSetHelper(object(),
|
| + address(),
|
| + value(),
|
| + save_fp_regs_mode(),
|
| MacroAssembler::kReturnAtEnd);
|
| } else {
|
| __ Ret();
|
| @@ -4437,10 +4335,10 @@ void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
|
|
|
| regs_.Restore(masm);
|
| if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
| - __ RememberedSetHelper(object_,
|
| - address_,
|
| - value_,
|
| - save_fp_regs_mode_,
|
| + __ RememberedSetHelper(object(),
|
| + address(),
|
| + value(),
|
| + save_fp_regs_mode(),
|
| MacroAssembler::kReturnAtEnd);
|
| } else {
|
| __ Ret();
|
|
|