| Index: tools/relocation_packer/src/elf_file.cc
|
| diff --git a/tools/relocation_packer/src/elf_file.cc b/tools/relocation_packer/src/elf_file.cc
|
| index 35268c37a02dac4414ad9fbbe1e1ca7c0895cd26..1a76efabd3af39554ab38a000613c8932060e2bf 100644
|
| --- a/tools/relocation_packer/src/elf_file.cc
|
| +++ b/tools/relocation_packer/src/elf_file.cc
|
| @@ -2,11 +2,36 @@
|
| // Use of this source code is governed by a BSD-style license that can be
|
| // found in the LICENSE file.
|
|
|
| +// Implementation notes:
|
| +//
|
| +// We need to remove a piece from the ELF shared library. However, we also
|
| +// want to ensure that code and data loads at the same addresses as before
|
| +// packing, so that tools like breakpad can still match up addresses found
|
| +// in any crash dumps with data extracted from the pre-packed version of
|
| +// the shared library.
|
| +//
|
| +// Arranging this means that we have to split one of the LOAD segments into
|
| +// two. Unfortunately, the program headers are located at the very start
|
| +// of the shared library file, so expanding the program header section
|
| +// would cause a lot of consequent changes to files offsets that we don't
|
| +// really want to have to handle.
|
| +//
|
| +// Luckily, though, there is a segment that is always present and always
|
| +// unused on Android; the GNU_STACK segment. What we do is to steal that
|
| +// and repurpose it to be one of the split LOAD segments. We then have to
|
| +// sort LOAD segments by offset to keep the crazy linker happy.
|
| +//
|
| +// All of this takes place in SplitProgramHeadersForHole(), used on packing,
|
| +// and is unraveled on unpacking in CoalesceProgramHeadersForHole(). See
|
| +// commentary on those functions for an example of this segment stealing
|
| +// in action.
|
| +
|
| #include "elf_file.h"
|
|
|
| #include <stdlib.h>
|
| #include <sys/types.h>
|
| #include <unistd.h>
|
| +#include <algorithm>
|
| #include <string>
|
| #include <vector>
|
|
|
| @@ -75,18 +100,20 @@ void VerboseLogProgramHeader(size_t program_header_index,
|
| case PT_LOAD: type = "LOAD"; break;
|
| case PT_DYNAMIC: type = "DYNAMIC"; break;
|
| case PT_INTERP: type = "INTERP"; break;
|
| - case PT_NOTE: type = "NOTE"; break;
|
| - case PT_SHLIB: type = "SHLIB"; break;
|
| case PT_PHDR: type = "PHDR"; break;
|
| - case PT_TLS: type = "TLS"; break;
|
| + case PT_GNU_RELRO: type = "GNU_RELRO"; break;
|
| + case PT_GNU_STACK: type = "GNU_STACK"; break;
|
| + case PT_ARM_EXIDX: type = "EXIDX"; break;
|
| default: type = "(OTHER)"; break;
|
| }
|
| - VLOG(1) << "phdr " << program_header_index << " : " << type;
|
| + VLOG(1) << "phdr[" << program_header_index << "] : " << type;
|
| VLOG(1) << " p_offset = " << program_header->p_offset;
|
| VLOG(1) << " p_vaddr = " << program_header->p_vaddr;
|
| VLOG(1) << " p_paddr = " << program_header->p_paddr;
|
| VLOG(1) << " p_filesz = " << program_header->p_filesz;
|
| VLOG(1) << " p_memsz = " << program_header->p_memsz;
|
| + VLOG(1) << " p_flags = " << program_header->p_flags;
|
| + VLOG(1) << " p_align = " << program_header->p_align;
|
| }
|
|
|
| // Verbose ELF section header logging.
|
| @@ -182,13 +209,6 @@ bool ElfFile::Load() {
|
| bool has_rel_relocations = false;
|
| bool has_rela_relocations = false;
|
|
|
| - // Flag set if we encounter any .debug* section. We do not adjust any
|
| - // offsets or addresses of any debug data, so if we find one of these then
|
| - // the resulting output shared object should still run, but might not be
|
| - // usable for debugging, disassembly, and so on. Provides a warning if
|
| - // this occurs.
|
| - bool has_debug_section = false;
|
| -
|
| Elf_Scn* section = NULL;
|
| while ((section = elf_nextscn(elf, section)) != NULL) {
|
| const ELF::Shdr* section_header = ELF::getshdr(section);
|
| @@ -216,11 +236,6 @@ bool ElfFile::Load() {
|
| found_dynamic_section = section;
|
| }
|
|
|
| - // If we find a section named .debug*, set the debug warning flag.
|
| - if (std::string(name).find(".debug") == 0) {
|
| - has_debug_section = true;
|
| - }
|
| -
|
| // Ensure we preserve alignment, repeated later for the data block(s).
|
| CHECK(section_header->sh_addralign <= kPreserveAlignment);
|
|
|
| @@ -258,10 +273,6 @@ bool ElfFile::Load() {
|
| return false;
|
| }
|
|
|
| - if (has_debug_section) {
|
| - LOG(WARNING) << "Found .debug section(s), and ignored them";
|
| - }
|
| -
|
| elf_ = elf;
|
| relocations_section_ = found_relocations_section;
|
| dynamic_section_ = found_dynamic_section;
|
| @@ -286,45 +297,6 @@ void AdjustElfHeaderForHole(ELF::Ehdr* elf_header,
|
| }
|
| }
|
|
|
| -// Helper for ResizeSection(). Adjust all program headers for the hole.
|
| -void AdjustProgramHeadersForHole(ELF::Phdr* elf_program_header,
|
| - size_t program_header_count,
|
| - ELF::Off hole_start,
|
| - ssize_t hole_size) {
|
| - for (size_t i = 0; i < program_header_count; ++i) {
|
| - ELF::Phdr* program_header = &elf_program_header[i];
|
| -
|
| - if (program_header->p_offset > hole_start) {
|
| - // The hole start is past this segment, so adjust offsets and addrs.
|
| - program_header->p_offset += hole_size;
|
| - VLOG(1) << "phdr " << i
|
| - << " p_offset adjusted to "<< program_header->p_offset;
|
| -
|
| - // Only adjust vaddr and paddr if this program header has them.
|
| - if (program_header->p_vaddr != 0) {
|
| - program_header->p_vaddr += hole_size;
|
| - VLOG(1) << "phdr " << i
|
| - << " p_vaddr adjusted to " << program_header->p_vaddr;
|
| - }
|
| - if (program_header->p_paddr != 0) {
|
| - program_header->p_paddr += hole_size;
|
| - VLOG(1) << "phdr " << i
|
| - << " p_paddr adjusted to " << program_header->p_paddr;
|
| - }
|
| - } else if (program_header->p_offset +
|
| - program_header->p_filesz > hole_start) {
|
| - // The hole start is within this segment, so adjust file and in-memory
|
| - // sizes, but leave offsets and addrs unchanged.
|
| - program_header->p_filesz += hole_size;
|
| - VLOG(1) << "phdr " << i
|
| - << " p_filesz adjusted to " << program_header->p_filesz;
|
| - program_header->p_memsz += hole_size;
|
| - VLOG(1) << "phdr " << i
|
| - << " p_memsz adjusted to " << program_header->p_memsz;
|
| - }
|
| - }
|
| -}
|
| -
|
| // Helper for ResizeSection(). Adjust all section headers for the hole.
|
| void AdjustSectionHeadersForHole(Elf* elf,
|
| ELF::Off hole_start,
|
| @@ -341,20 +313,441 @@ void AdjustSectionHeadersForHole(Elf* elf,
|
| section_header->sh_offset += hole_size;
|
| VLOG(1) << "section " << name
|
| << " sh_offset adjusted to " << section_header->sh_offset;
|
| - // Only adjust section addr if this section has one.
|
| - if (section_header->sh_addr != 0) {
|
| - section_header->sh_addr += hole_size;
|
| - VLOG(1) << "section " << name
|
| - << " sh_addr adjusted to " << section_header->sh_addr;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust the offsets of any program headers
|
| +// that have offsets currently beyond the hole start.
|
| +void AdjustProgramHeaderOffsets(ELF::Phdr* program_headers,
|
| + size_t count,
|
| + ELF::Phdr* ignored_1,
|
| + ELF::Phdr* ignored_2,
|
| + ELF::Off hole_start,
|
| + ssize_t hole_size) {
|
| + for (size_t i = 0; i < count; ++i) {
|
| + ELF::Phdr* program_header = &program_headers[i];
|
| +
|
| + if (program_header == ignored_1 || program_header == ignored_2)
|
| + continue;
|
| +
|
| + if (program_header->p_offset > hole_start) {
|
| + // The hole start is past this segment, so adjust offset.
|
| + program_header->p_offset += hole_size;
|
| + VLOG(1) << "phdr[" << i
|
| + << "] p_offset adjusted to "<< program_header->p_offset;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Find the first loadable segment in the
|
| +// file. We expect it to map from file offset zero.
|
| +ELF::Phdr* FindFirstLoadSegment(ELF::Phdr* program_headers,
|
| + size_t count) {
|
| + ELF::Phdr* first_loadable_segment = NULL;
|
| +
|
| + for (size_t i = 0; i < count; ++i) {
|
| + ELF::Phdr* program_header = &program_headers[i];
|
| +
|
| + if (program_header->p_type == PT_LOAD &&
|
| + program_header->p_offset == 0 &&
|
| + program_header->p_vaddr == 0 &&
|
| + program_header->p_paddr == 0) {
|
| + first_loadable_segment = program_header;
|
| + }
|
| + }
|
| + LOG_IF(FATAL, !first_loadable_segment)
|
| + << "Cannot locate a LOAD segment with address and offset zero";
|
| +
|
| + return first_loadable_segment;
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Find the PT_GNU_STACK segment, and check
|
| +// that it contains what we expect so we can restore it on unpack if needed.
|
| +ELF::Phdr* FindUnusedGnuStackSegment(ELF::Phdr* program_headers,
|
| + size_t count) {
|
| + ELF::Phdr* unused_segment = NULL;
|
| +
|
| + for (size_t i = 0; i < count; ++i) {
|
| + ELF::Phdr* program_header = &program_headers[i];
|
| +
|
| + if (program_header->p_type == PT_GNU_STACK &&
|
| + program_header->p_offset == 0 &&
|
| + program_header->p_vaddr == 0 &&
|
| + program_header->p_paddr == 0 &&
|
| + program_header->p_filesz == 0 &&
|
| + program_header->p_memsz == 0 &&
|
| + program_header->p_flags == (PF_R | PF_W) &&
|
| + program_header->p_align == ELF::kGnuStackSegmentAlignment) {
|
| + unused_segment = program_header;
|
| + }
|
| + }
|
| + LOG_IF(FATAL, !unused_segment)
|
| + << "Cannot locate the expected GNU_STACK segment";
|
| +
|
| + return unused_segment;
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Find the segment that was the first loadable
|
| +// one before we split it into two. This is the one into which we coalesce
|
| +// the split segments on unpacking.
|
| +ELF::Phdr* FindOriginalFirstLoadSegment(ELF::Phdr* program_headers,
|
| + size_t count) {
|
| + const ELF::Phdr* first_loadable_segment =
|
| + FindFirstLoadSegment(program_headers, count);
|
| +
|
| + ELF::Phdr* original_first_loadable_segment = NULL;
|
| +
|
| + for (size_t i = 0; i < count; ++i) {
|
| + ELF::Phdr* program_header = &program_headers[i];
|
| +
|
| + // The original first loadable segment is the one that follows on from
|
| + // the one we wrote on split to be the current first loadable segment.
|
| + if (program_header->p_type == PT_LOAD &&
|
| + program_header->p_offset == first_loadable_segment->p_filesz) {
|
| + original_first_loadable_segment = program_header;
|
| + }
|
| + }
|
| + LOG_IF(FATAL, !original_first_loadable_segment)
|
| + << "Cannot locate the LOAD segment that follows a LOAD at offset zero";
|
| +
|
| + return original_first_loadable_segment;
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Find the segment that contains the hole.
|
| +Elf_Scn* FindSectionContainingHole(Elf* elf,
|
| + ELF::Off hole_start,
|
| + ssize_t hole_size) {
|
| + Elf_Scn* section = NULL;
|
| + Elf_Scn* last_unholed_section = NULL;
|
| +
|
| + while ((section = elf_nextscn(elf, section)) != NULL) {
|
| + const ELF::Shdr* section_header = ELF::getshdr(section);
|
| +
|
| + // Because we get here after section headers have been adjusted for the
|
| + // hole, we need to 'undo' that adjustment to give a view of the original
|
| + // sections layout.
|
| + ELF::Off offset = section_header->sh_offset;
|
| + if (section_header->sh_offset >= hole_start) {
|
| + offset -= hole_size;
|
| + }
|
| +
|
| + if (offset <= hole_start) {
|
| + last_unholed_section = section;
|
| + }
|
| + }
|
| + LOG_IF(FATAL, !last_unholed_section)
|
| + << "Cannot identify the section before the one containing the hole";
|
| +
|
| + // The section containing the hole is the one after the last one found
|
| + // by the loop above.
|
| + Elf_Scn* holed_section = elf_nextscn(elf, last_unholed_section);
|
| + LOG_IF(FATAL, !holed_section)
|
| + << "Cannot identify the section containing the hole";
|
| +
|
| + return holed_section;
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Find the last section contained in a segment.
|
| +Elf_Scn* FindLastSectionInSegment(Elf* elf,
|
| + ELF::Phdr* program_header,
|
| + ELF::Off hole_start,
|
| + ssize_t hole_size) {
|
| + const ELF::Off segment_end =
|
| + program_header->p_offset + program_header->p_filesz;
|
| +
|
| + Elf_Scn* section = NULL;
|
| + Elf_Scn* last_section = NULL;
|
| +
|
| + while ((section = elf_nextscn(elf, section)) != NULL) {
|
| + const ELF::Shdr* section_header = ELF::getshdr(section);
|
| +
|
| + // As above, 'undo' any section offset adjustment to give a view of the
|
| + // original sections layout.
|
| + ELF::Off offset = section_header->sh_offset;
|
| + if (section_header->sh_offset >= hole_start) {
|
| + offset -= hole_size;
|
| + }
|
| +
|
| + if (offset < segment_end) {
|
| + last_section = section;
|
| + }
|
| + }
|
| + LOG_IF(FATAL, !last_section)
|
| + << "Cannot identify the last section in the given segment";
|
| +
|
| + return last_section;
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Order loadable segments by their offsets.
|
| +// The crazy linker contains assumptions about loadable segment ordering,
|
| +// and it is better if we do not break them.
|
| +void SortOrderSensitiveProgramHeaders(ELF::Phdr* program_headers,
|
| + size_t count) {
|
| + std::vector<ELF::Phdr*> orderable;
|
| +
|
| + // Collect together orderable program headers. These are all the LOAD
|
| + // segments, and any GNU_STACK that may be present (removed on packing,
|
| + // but replaced on unpacking).
|
| + for (size_t i = 0; i < count; ++i) {
|
| + ELF::Phdr* program_header = &program_headers[i];
|
| +
|
| + if (program_header->p_type == PT_LOAD ||
|
| + program_header->p_type == PT_GNU_STACK) {
|
| + orderable.push_back(program_header);
|
| + }
|
| + }
|
| +
|
| + // Order these program headers so that any PT_GNU_STACK is last, and
|
| + // the LOAD segments that precede it appear in offset order. Uses
|
| + // insertion sort.
|
| + for (size_t i = 1; i < orderable.size(); ++i) {
|
| + for (size_t j = i; j > 0; --j) {
|
| + ELF::Phdr* first = orderable[j - 1];
|
| + ELF::Phdr* second = orderable[j];
|
| +
|
| + if (!(first->p_type == PT_GNU_STACK ||
|
| + first->p_offset > second->p_offset)) {
|
| + break;
|
| }
|
| + std::swap(*first, *second);
|
| }
|
| }
|
| }
|
|
|
| +// Helper for ResizeSection(). The GNU_STACK program header is unused in
|
| +// Android, so we can repurpose it here. Before packing, the program header
|
| +// table contains something like:
|
| +//
|
| +// Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
|
| +// LOAD 0x000000 0x00000000 0x00000000 0x1efc818 0x1efc818 R E 0x1000
|
| +// LOAD 0x1efd008 0x01efe008 0x01efe008 0x17ec3c 0x1a0324 RW 0x1000
|
| +// DYNAMIC 0x205ec50 0x0205fc50 0x0205fc50 0x00108 0x00108 RW 0x4
|
| +// GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0
|
| +//
|
| +// The hole in the file is in the first of these. In order to preserve all
|
| +// load addresses, what we do is to turn the GNU_STACK into a new LOAD entry
|
| +// that maps segments up to where we created the hole, adjust the first LOAD
|
| +// entry so that it maps segments after that, adjust any other program
|
| +// headers whose offset is after the hole start, and finally order the LOAD
|
| +// segments by offset, to give:
|
| +//
|
| +// Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
|
| +// LOAD 0x000000 0x00000000 0x00000000 0x14ea4 0x212ea4 R E 0x1000
|
| +// LOAD 0x014ea4 0x00212ea4 0x00212ea4 0x1cea164 0x1cea164 R E 0x1000
|
| +// DYNAMIC 0x1e60c50 0x0205fc50 0x0205fc50 0x00108 0x00108 RW 0x4
|
| +// LOAD 0x1cff008 0x01efe008 0x01efe008 0x17ec3c 0x1a0324 RW 0x1000
|
| +//
|
| +// We work out the split points by finding the .rel.dyn or .rela.dyn section
|
| +// that contains the hole, and by finding the last section in a given segment.
|
| +//
|
| +// To unpack, we reverse the above to leave the file as it was originally.
|
| +void SplitProgramHeadersForHole(Elf* elf,
|
| + ELF::Off hole_start,
|
| + ssize_t hole_size) {
|
| + CHECK(hole_size < 0);
|
| + const ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
| + CHECK(elf_header);
|
| +
|
| + ELF::Phdr* elf_program_header = ELF::getphdr(elf);
|
| + CHECK(elf_program_header);
|
| +
|
| + const size_t program_header_count = elf_header->e_phnum;
|
| +
|
| + // Locate the segment that we can overwrite to form the new LOAD entry,
|
| + // and the segment that we are going to split into two parts.
|
| + ELF::Phdr* spliced_header =
|
| + FindUnusedGnuStackSegment(elf_program_header, program_header_count);
|
| + ELF::Phdr* split_header =
|
| + FindFirstLoadSegment(elf_program_header, program_header_count);
|
| +
|
| + VLOG(1) << "phdr[" << split_header - elf_program_header << "] split";
|
| + VLOG(1) << "phdr[" << spliced_header - elf_program_header << "] new LOAD";
|
| +
|
| + // Find the section that contains the hole. We split on the section that
|
| + // follows it.
|
| + Elf_Scn* holed_section =
|
| + FindSectionContainingHole(elf, hole_start, hole_size);
|
| +
|
| + size_t string_index;
|
| + elf_getshdrstrndx(elf, &string_index);
|
| +
|
| + ELF::Shdr* section_header = ELF::getshdr(holed_section);
|
| + std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
| + VLOG(1) << "section " << name << " split after";
|
| +
|
| + // Find the last section in the segment we are splitting.
|
| + Elf_Scn* last_section =
|
| + FindLastSectionInSegment(elf, split_header, hole_start, hole_size);
|
| +
|
| + section_header = ELF::getshdr(last_section);
|
| + name = elf_strptr(elf, string_index, section_header->sh_name);
|
| + VLOG(1) << "section " << name << " split end";
|
| +
|
| + // Split on the section following the holed one, and up to (but not
|
| + // including) the section following the last one in the split segment.
|
| + Elf_Scn* split_section = elf_nextscn(elf, holed_section);
|
| + LOG_IF(FATAL, !split_section)
|
| + << "No section follows the section that contains the hole";
|
| + Elf_Scn* end_section = elf_nextscn(elf, last_section);
|
| + LOG_IF(FATAL, !end_section)
|
| + << "No section follows the last section in the segment being split";
|
| +
|
| + // Split the first portion of split_header into spliced_header. Done
|
| + // by copying the entire split_header into spliced_header, then changing
|
| + // only the fields that set the segment sizes.
|
| + *spliced_header = *split_header;
|
| + const ELF::Shdr* split_section_header = ELF::getshdr(split_section);
|
| + spliced_header->p_filesz = split_section_header->sh_offset;
|
| + spliced_header->p_memsz = split_section_header->sh_addr;
|
| +
|
| + // Now rewrite split_header to remove the part we spliced from it.
|
| + const ELF::Shdr* end_section_header = ELF::getshdr(end_section);
|
| + split_header->p_offset = spliced_header->p_filesz;
|
| +
|
| + CHECK(split_header->p_vaddr == split_header->p_paddr);
|
| + split_header->p_vaddr = spliced_header->p_memsz;
|
| + split_header->p_paddr = split_header->p_vaddr;
|
| +
|
| + CHECK(split_header->p_filesz == split_header->p_memsz);
|
| + split_header->p_filesz =
|
| + end_section_header->sh_offset - spliced_header->p_filesz;
|
| + split_header->p_memsz = split_header->p_filesz;
|
| +
|
| + // Adjust the offsets of all program headers that are not one of the pair
|
| + // we just created by splitting.
|
| + AdjustProgramHeaderOffsets(elf_program_header,
|
| + program_header_count,
|
| + spliced_header,
|
| + split_header,
|
| + hole_start,
|
| + hole_size);
|
| +
|
| + // Finally, order loadable segments by offset/address. The crazy linker
|
| + // contains assumptions about loadable segment ordering.
|
| + SortOrderSensitiveProgramHeaders(elf_program_header,
|
| + program_header_count);
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Undo the work of SplitProgramHeadersForHole().
|
| +void CoalesceProgramHeadersForHole(Elf* elf,
|
| + ELF::Off hole_start,
|
| + ssize_t hole_size) {
|
| + CHECK(hole_size > 0);
|
| + const ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
| + CHECK(elf_header);
|
| +
|
| + ELF::Phdr* elf_program_header = ELF::getphdr(elf);
|
| + CHECK(elf_program_header);
|
| +
|
| + const size_t program_header_count = elf_header->e_phnum;
|
| +
|
| + // Locate the segment that we overwrote to form the new LOAD entry, and
|
| + // the segment that we split into two parts on packing.
|
| + ELF::Phdr* spliced_header =
|
| + FindFirstLoadSegment(elf_program_header, program_header_count);
|
| + ELF::Phdr* split_header =
|
| + FindOriginalFirstLoadSegment(elf_program_header, program_header_count);
|
| +
|
| + VLOG(1) << "phdr[" << spliced_header - elf_program_header << "] stack";
|
| + VLOG(1) << "phdr[" << split_header - elf_program_header << "] coalesce";
|
| +
|
| + // Find the last section in the second segment we are coalescing.
|
| + Elf_Scn* last_section =
|
| + FindLastSectionInSegment(elf, split_header, hole_start, hole_size);
|
| +
|
| + size_t string_index;
|
| + elf_getshdrstrndx(elf, &string_index);
|
| +
|
| + const ELF::Shdr* section_header = ELF::getshdr(last_section);
|
| + std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
| + VLOG(1) << "section " << name << " coalesced";
|
| +
|
| + // Rewrite the coalesced segment into split_header.
|
| + const ELF::Shdr* last_section_header = ELF::getshdr(last_section);
|
| + split_header->p_offset = spliced_header->p_offset;
|
| + split_header->p_vaddr = spliced_header->p_vaddr;
|
| + split_header->p_paddr = split_header->p_vaddr;
|
| + split_header->p_filesz =
|
| + last_section_header->sh_offset + last_section_header->sh_size;
|
| + split_header->p_memsz = split_header->p_filesz;
|
| +
|
| + // Reconstruct the original GNU_STACK segment into spliced_header.
|
| + spliced_header->p_type = PT_GNU_STACK;
|
| + spliced_header->p_offset = 0;
|
| + spliced_header->p_vaddr = 0;
|
| + spliced_header->p_paddr = 0;
|
| + spliced_header->p_filesz = 0;
|
| + spliced_header->p_memsz = 0;
|
| + spliced_header->p_flags = PF_R | PF_W;
|
| + spliced_header->p_align = ELF::kGnuStackSegmentAlignment;
|
| +
|
| + // Adjust the offsets of all program headers that are not one of the pair
|
| + // we just coalesced.
|
| + AdjustProgramHeaderOffsets(elf_program_header,
|
| + program_header_count,
|
| + spliced_header,
|
| + split_header,
|
| + hole_start,
|
| + hole_size);
|
| +
|
| + // Finally, order loadable segments by offset/address. The crazy linker
|
| + // contains assumptions about loadable segment ordering.
|
| + SortOrderSensitiveProgramHeaders(elf_program_header,
|
| + program_header_count);
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Rewrite program headers.
|
| +void RewriteProgramHeadersForHole(Elf* elf,
|
| + ELF::Off hole_start,
|
| + ssize_t hole_size) {
|
| + // If hole_size is negative then we are removing a piece of the file, and
|
| + // we want to split program headers so that we keep the same addresses
|
| + // for text and data. If positive, then we are putting that piece of the
|
| + // file back in, so we coalesce the previously split program headers.
|
| + if (hole_size < 0)
|
| + SplitProgramHeadersForHole(elf, hole_start, hole_size);
|
| + else if (hole_size > 0)
|
| + CoalesceProgramHeadersForHole(elf, hole_start, hole_size);
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Locate and return the dynamic section.
|
| +Elf_Scn* GetDynamicSection(Elf* elf) {
|
| + const ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
| + CHECK(elf_header);
|
| +
|
| + const ELF::Phdr* elf_program_header = ELF::getphdr(elf);
|
| + CHECK(elf_program_header);
|
| +
|
| + // Find the program header that describes the dynamic section.
|
| + const ELF::Phdr* dynamic_program_header = NULL;
|
| + for (size_t i = 0; i < elf_header->e_phnum; ++i) {
|
| + const ELF::Phdr* program_header = &elf_program_header[i];
|
| +
|
| + if (program_header->p_type == PT_DYNAMIC) {
|
| + dynamic_program_header = program_header;
|
| + }
|
| + }
|
| + CHECK(dynamic_program_header);
|
| +
|
| + // Now find the section with the same offset as this program header.
|
| + Elf_Scn* dynamic_section = NULL;
|
| + Elf_Scn* section = NULL;
|
| + while ((section = elf_nextscn(elf, section)) != NULL) {
|
| + ELF::Shdr* section_header = ELF::getshdr(section);
|
| +
|
| + if (section_header->sh_offset == dynamic_program_header->p_offset) {
|
| + dynamic_section = section;
|
| + }
|
| + }
|
| + CHECK(dynamic_section != NULL);
|
| +
|
| + return dynamic_section;
|
| +}
|
| +
|
| // Helper for ResizeSection(). Adjust the .dynamic section for the hole.
|
| template <typename Rel>
|
| void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
|
| - bool is_relocations_resize,
|
| ELF::Off hole_start,
|
| ssize_t hole_size) {
|
| Elf_Data* data = GetSectionData(dynamic_section);
|
| @@ -367,30 +760,6 @@ void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
|
| for (size_t i = 0; i < dynamics.size(); ++i) {
|
| ELF::Dyn* dynamic = &dynamics[i];
|
| const ELF::Sword tag = dynamic->d_tag;
|
| - // Any tags that hold offsets are adjustment candidates.
|
| - const bool is_adjustable = (tag == DT_PLTGOT ||
|
| - tag == DT_HASH ||
|
| - tag == DT_STRTAB ||
|
| - tag == DT_SYMTAB ||
|
| - tag == DT_RELA ||
|
| - tag == DT_INIT ||
|
| - tag == DT_FINI ||
|
| - tag == DT_REL ||
|
| - tag == DT_JMPREL ||
|
| - tag == DT_INIT_ARRAY ||
|
| - tag == DT_FINI_ARRAY ||
|
| - tag == DT_ANDROID_REL_OFFSET);
|
| - if (is_adjustable && dynamic->d_un.d_ptr > hole_start) {
|
| - dynamic->d_un.d_ptr += hole_size;
|
| - VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
|
| - << " d_ptr adjusted to " << dynamic->d_un.d_ptr;
|
| - }
|
| -
|
| - // If we are specifically resizing dynamic relocations, we need to make
|
| - // some added adjustments to tags that indicate the counts of relative
|
| - // relocations in the shared object.
|
| - if (!is_relocations_resize)
|
| - continue;
|
|
|
| // DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
|
| // Only one will be present. Adjust by hole size.
|
| @@ -413,7 +782,7 @@ void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
|
| << " d_val adjusted to " << dynamic->d_un.d_val;
|
| }
|
|
|
| - // DT_RELENT and DT_RELAENT don't change, but make sure they are what
|
| + // DT_RELENT and DT_RELAENT do not change, but make sure they are what
|
| // we expect. Only one will be present.
|
| if (tag == DT_RELENT || tag == DT_RELAENT) {
|
| CHECK(dynamic->d_un.d_val == sizeof(Rel));
|
| @@ -425,93 +794,6 @@ void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
|
| RewriteSectionData(data, section_data, bytes);
|
| }
|
|
|
| -// Helper for ResizeSection(). Adjust the .dynsym section for the hole.
|
| -// We need to adjust the values for the symbols represented in it.
|
| -void AdjustDynSymSectionForHole(Elf_Scn* dynsym_section,
|
| - ELF::Off hole_start,
|
| - ssize_t hole_size) {
|
| - Elf_Data* data = GetSectionData(dynsym_section);
|
| -
|
| - const ELF::Sym* dynsym_base = reinterpret_cast<ELF::Sym*>(data->d_buf);
|
| - std::vector<ELF::Sym> dynsyms
|
| - (dynsym_base,
|
| - dynsym_base + data->d_size / sizeof(dynsyms[0]));
|
| -
|
| - for (size_t i = 0; i < dynsyms.size(); ++i) {
|
| - ELF::Sym* dynsym = &dynsyms[i];
|
| - const int type = static_cast<int>(ELF_ST_TYPE(dynsym->st_info));
|
| - const bool is_adjustable = (type == STT_OBJECT ||
|
| - type == STT_FUNC ||
|
| - type == STT_SECTION ||
|
| - type == STT_FILE ||
|
| - type == STT_COMMON ||
|
| - type == STT_TLS);
|
| - if (is_adjustable && dynsym->st_value > hole_start) {
|
| - dynsym->st_value += hole_size;
|
| - VLOG(1) << "dynsym[" << i << "] type=" << type
|
| - << " st_value adjusted to " << dynsym->st_value;
|
| - }
|
| - }
|
| -
|
| - void* section_data = &dynsyms[0];
|
| - size_t bytes = dynsyms.size() * sizeof(dynsyms[0]);
|
| - RewriteSectionData(data, section_data, bytes);
|
| -}
|
| -
|
| -// Helper for ResizeSection(). Adjust the plt relocations section for the
|
| -// hole. We need to adjust the offset of every relocation inside it that
|
| -// falls beyond the hole start.
|
| -template <typename Rel>
|
| -void AdjustRelPltSectionForHole(Elf_Scn* relplt_section,
|
| - ELF::Off hole_start,
|
| - ssize_t hole_size) {
|
| - Elf_Data* data = GetSectionData(relplt_section);
|
| -
|
| - const Rel* relplt_base = reinterpret_cast<Rel*>(data->d_buf);
|
| - std::vector<Rel> relplts(
|
| - relplt_base,
|
| - relplt_base + data->d_size / sizeof(relplts[0]));
|
| -
|
| - for (size_t i = 0; i < relplts.size(); ++i) {
|
| - Rel* relplt = &relplts[i];
|
| - if (relplt->r_offset > hole_start) {
|
| - relplt->r_offset += hole_size;
|
| - VLOG(1) << "relplt[" << i
|
| - << "] r_offset adjusted to " << relplt->r_offset;
|
| - }
|
| - }
|
| -
|
| - void* section_data = &relplts[0];
|
| - size_t bytes = relplts.size() * sizeof(relplts[0]);
|
| - RewriteSectionData(data, section_data, bytes);
|
| -}
|
| -
|
| -// Helper for ResizeSection(). Adjust the .symtab section for the hole.
|
| -// We want to adjust the value of every symbol in it that falls beyond
|
| -// the hole start.
|
| -void AdjustSymTabSectionForHole(Elf_Scn* symtab_section,
|
| - ELF::Off hole_start,
|
| - ssize_t hole_size) {
|
| - Elf_Data* data = GetSectionData(symtab_section);
|
| -
|
| - const ELF::Sym* symtab_base = reinterpret_cast<ELF::Sym*>(data->d_buf);
|
| - std::vector<ELF::Sym> symtab(
|
| - symtab_base,
|
| - symtab_base + data->d_size / sizeof(symtab[0]));
|
| -
|
| - for (size_t i = 0; i < symtab.size(); ++i) {
|
| - ELF::Sym* sym = &symtab[i];
|
| - if (sym->st_value > hole_start) {
|
| - sym->st_value += hole_size;
|
| - VLOG(1) << "symtab[" << i << "] value adjusted to " << sym->st_value;
|
| - }
|
| - }
|
| -
|
| - void* section_data = &symtab[0];
|
| - size_t bytes = symtab.size() * sizeof(symtab[0]);
|
| - RewriteSectionData(data, section_data, bytes);
|
| -}
|
| -
|
| // Resize a section. If the new size is larger than the current size, open
|
| // up a hole by increasing file offsets that come after the hole. If smaller
|
| // than the current size, remove the hole by decreasing those offsets.
|
| @@ -521,9 +803,7 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
|
| if (section_header->sh_size == new_size)
|
| return;
|
|
|
| - // Note if we are resizing the real dyn relocations. If yes, then we have
|
| - // to massage d_un.d_val in the dynamic section where d_tag is DT_RELSZ or
|
| - // DT_RELASZ and DT_RELCOUNT or DT_RELACOUNT.
|
| + // Note if we are resizing the real dyn relocations.
|
| size_t string_index;
|
| elf_getshdrstrndx(elf, &string_index);
|
| const std::string section_name =
|
| @@ -550,95 +830,25 @@ void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
|
| data->d_size += hole_size;
|
| section_header->sh_size += hole_size;
|
|
|
| - ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
| - ELF::Phdr* elf_program_header = ELF::getphdr(elf);
|
| -
|
| // Add the hole size to all offsets in the ELF file that are after the
|
| // start of the hole. If the hole size is positive we are expanding the
|
| // section to create a new hole; if negative, we are closing up a hole.
|
|
|
| // Start with the main ELF header.
|
| + ELF::Ehdr* elf_header = ELF::getehdr(elf);
|
| AdjustElfHeaderForHole(elf_header, hole_start, hole_size);
|
|
|
| - // Adjust all program headers.
|
| - AdjustProgramHeadersForHole(elf_program_header,
|
| - elf_header->e_phnum,
|
| - hole_start,
|
| - hole_size);
|
| -
|
| // Adjust all section headers.
|
| AdjustSectionHeadersForHole(elf, hole_start, hole_size);
|
|
|
| - // We use the dynamic program header entry to locate the dynamic section.
|
| - const ELF::Phdr* dynamic_program_header = NULL;
|
| + // If resizing the dynamic relocations, rewrite the program headers to
|
| + // either split or coalesce segments, and adjust dynamic entries to match.
|
| + if (is_relocations_resize) {
|
| + RewriteProgramHeadersForHole(elf, hole_start, hole_size);
|
|
|
| - // Find the dynamic program header entry.
|
| - for (size_t i = 0; i < elf_header->e_phnum; ++i) {
|
| - ELF::Phdr* program_header = &elf_program_header[i];
|
| -
|
| - if (program_header->p_type == PT_DYNAMIC) {
|
| - dynamic_program_header = program_header;
|
| - }
|
| + Elf_Scn* dynamic_section = GetDynamicSection(elf);
|
| + AdjustDynamicSectionForHole<Rel>(dynamic_section, hole_start, hole_size);
|
| }
|
| - CHECK(dynamic_program_header);
|
| -
|
| - // Sections requiring special attention, and the packed android
|
| - // relocations offset.
|
| - Elf_Scn* dynamic_section = NULL;
|
| - Elf_Scn* dynsym_section = NULL;
|
| - Elf_Scn* plt_relocations_section = NULL;
|
| - Elf_Scn* symtab_section = NULL;
|
| - ELF::Off android_relocations_offset = 0;
|
| -
|
| - // Find these sections, and the packed android relocations offset.
|
| - section = NULL;
|
| - while ((section = elf_nextscn(elf, section)) != NULL) {
|
| - ELF::Shdr* section_header = ELF::getshdr(section);
|
| - std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
| -
|
| - if (section_header->sh_offset == dynamic_program_header->p_offset) {
|
| - dynamic_section = section;
|
| - }
|
| - if (name == ".dynsym") {
|
| - dynsym_section = section;
|
| - }
|
| - if (name == ".rel.plt" || name == ".rela.plt") {
|
| - plt_relocations_section = section;
|
| - }
|
| - if (name == ".symtab") {
|
| - symtab_section = section;
|
| - }
|
| -
|
| - // Note packed android relocations offset.
|
| - if (name == ".android.rel.dyn" || name == ".android.rela.dyn") {
|
| - android_relocations_offset = section_header->sh_offset;
|
| - }
|
| - }
|
| - CHECK(dynamic_section != NULL);
|
| - CHECK(dynsym_section != NULL);
|
| - CHECK(plt_relocations_section != NULL);
|
| - CHECK(android_relocations_offset != 0);
|
| -
|
| - // Adjust the .dynamic section for the hole. Because we have to edit the
|
| - // current contents of .dynamic we disallow resizing it.
|
| - CHECK(section != dynamic_section);
|
| - AdjustDynamicSectionForHole<Rel>(dynamic_section,
|
| - is_relocations_resize,
|
| - hole_start,
|
| - hole_size);
|
| -
|
| - // Adjust the .dynsym section for the hole.
|
| - AdjustDynSymSectionForHole(dynsym_section, hole_start, hole_size);
|
| -
|
| - // Adjust the plt relocations section for the hole.
|
| - AdjustRelPltSectionForHole<Rel>(plt_relocations_section,
|
| - hole_start,
|
| - hole_size);
|
| -
|
| - // If present, adjust the .symtab section for the hole. If the shared
|
| - // library was stripped then .symtab will be absent.
|
| - if (symtab_section)
|
| - AdjustSymTabSectionForHole(symtab_section, hole_start, hole_size);
|
| }
|
|
|
| // Find the first slot in a dynamics array with the given tag. The array
|
| @@ -691,100 +901,6 @@ void RemoveDynamicEntry(ELF::Sword tag,
|
| CHECK(dynamics->at(dynamics->size() - 1).d_tag == DT_NULL);
|
| }
|
|
|
| -// Adjust a relocation. For a relocation without addend, we find its target
|
| -// in the section and adjust that. For a relocation with addend, the target
|
| -// is the relocation addend, and the section data at the target is zero.
|
| -template <typename Rel>
|
| -void AdjustRelocation(ssize_t index,
|
| - ELF::Addr hole_start,
|
| - ssize_t hole_size,
|
| - Rel* relocation,
|
| - ELF::Off* target);
|
| -
|
| -template <>
|
| -void AdjustRelocation<ELF::Rel>(ssize_t index,
|
| - ELF::Addr hole_start,
|
| - ssize_t hole_size,
|
| - ELF::Rel* relocation,
|
| - ELF::Off* target) {
|
| - // Adjust the target if after the hole start.
|
| - if (*target > hole_start) {
|
| - *target += hole_size;
|
| - VLOG(1) << "relocation[" << index << "] target adjusted to " << *target;
|
| - }
|
| -}
|
| -
|
| -template <>
|
| -void AdjustRelocation<ELF::Rela>(ssize_t index,
|
| - ELF::Addr hole_start,
|
| - ssize_t hole_size,
|
| - ELF::Rela* relocation,
|
| - ELF::Off* target) {
|
| - // The relocation's target is the addend. Adjust if after the hole start.
|
| - if (relocation->r_addend > hole_start) {
|
| - relocation->r_addend += hole_size;
|
| - VLOG(1) << "relocation["
|
| - << index << "] addend adjusted to " << relocation->r_addend;
|
| - }
|
| -}
|
| -
|
| -// For relative relocations without addends, adjust the file data to which
|
| -// they refer. For relative relocations with addends, adjust the addends.
|
| -// This translates data into the area it will occupy after the hole in
|
| -// the dynamic relocations is added or removed.
|
| -template <typename Rel>
|
| -void AdjustRelocationTargets(Elf* elf,
|
| - ELF::Off hole_start,
|
| - ssize_t hole_size,
|
| - std::vector<Rel>* relocations) {
|
| - Elf_Scn* section = NULL;
|
| - while ((section = elf_nextscn(elf, section)) != NULL) {
|
| - const ELF::Shdr* section_header = ELF::getshdr(section);
|
| -
|
| - // Ignore sections that do not appear in a process memory image.
|
| - if (section_header->sh_addr == 0)
|
| - continue;
|
| -
|
| - Elf_Data* data = GetSectionData(section);
|
| -
|
| - // Ignore sections with no effective data.
|
| - if (data->d_buf == NULL)
|
| - continue;
|
| -
|
| - // Identify this section's start and end addresses.
|
| - const ELF::Addr section_start = section_header->sh_addr;
|
| - const ELF::Addr section_end = section_start + section_header->sh_size;
|
| -
|
| - // Create a copy of the section's data.
|
| - uint8_t* area = new uint8_t[data->d_size];
|
| - memcpy(area, data->d_buf, data->d_size);
|
| -
|
| - for (size_t i = 0; i < relocations->size(); ++i) {
|
| - Rel* relocation = &relocations->at(i);
|
| - CHECK(ELF_R_TYPE(relocation->r_info) == ELF::kRelativeRelocationCode);
|
| -
|
| - // See if this relocation points into the current section.
|
| - if (relocation->r_offset >= section_start &&
|
| - relocation->r_offset < section_end) {
|
| - // The relocation's target is what it points to in area.
|
| - // For relocations without addend, this is what we adjust; for
|
| - // relocations with addend, we leave this (it will be zero)
|
| - // and instead adjust the addend.
|
| - ELF::Addr byte_offset = relocation->r_offset - section_start;
|
| - ELF::Off* target = reinterpret_cast<ELF::Off*>(area + byte_offset);
|
| - AdjustRelocation<Rel>(i, hole_start, hole_size, relocation, target);
|
| - }
|
| - }
|
| -
|
| - // If we altered the data for this section, write it back.
|
| - if (memcmp(area, data->d_buf, data->d_size)) {
|
| - RewriteSectionData(data, area, data->d_size);
|
| - }
|
| - delete [] area;
|
| - }
|
| -}
|
| -
|
| -// Pad relocations with a given number of null relocations.
|
| template <typename Rel>
|
| void PadRelocations(size_t count, std::vector<Rel>* relocations);
|
|
|
| @@ -809,23 +925,6 @@ void PadRelocations<ELF::Rela>(size_t count,
|
| relocations->insert(relocations->end(), padding.begin(), padding.end());
|
| }
|
|
|
| -// Adjust relocations so that the offset that they indicate will be correct
|
| -// after the hole in the dynamic relocations is added or removed (in effect,
|
| -// relocate the relocations).
|
| -template <typename Rel>
|
| -void AdjustRelocations(ELF::Off hole_start,
|
| - ssize_t hole_size,
|
| - std::vector<Rel>* relocations) {
|
| - for (size_t i = 0; i < relocations->size(); ++i) {
|
| - Rel* relocation = &relocations->at(i);
|
| - if (relocation->r_offset > hole_start) {
|
| - relocation->r_offset += hole_size;
|
| - VLOG(1) << "relocation[" << i
|
| - << "] offset adjusted to " << relocation->r_offset;
|
| - }
|
| - }
|
| -}
|
| -
|
| } // namespace
|
|
|
| // Remove relative entries from dynamic relocations and write as packed
|
| @@ -895,12 +994,11 @@ bool ElfFile::PackTypedRelocations(const std::vector<Rel>& relocations,
|
| return false;
|
| }
|
|
|
| - // Unless padding, pre-apply relative relocations to account for the
|
| - // hole, and pre-adjust all relocation offsets accordingly.
|
| + // If not padding fully, apply only enough padding to preserve alignment.
|
| + // Otherwise, pad so that we do not shrink the relocations section at all.
|
| if (!is_padding_relocations_) {
|
| - // Pre-calculate the size of the hole we will close up when we rewrite
|
| - // dynamic relocations. We have to adjust relocation addresses to
|
| - // account for this.
|
| + // Calculate the size of the hole we will close up when we rewrite
|
| + // dynamic relocations.
|
| ELF::Shdr* section_header = ELF::getshdr(relocations_section_);
|
| const ELF::Off hole_start = section_header->sh_offset;
|
| ssize_t hole_size =
|
| @@ -939,14 +1037,6 @@ bool ElfFile::PackTypedRelocations(const std::vector<Rel>& relocations,
|
| // Add null relocations to other_relocations to preserve alignment.
|
| PadRelocations<Rel>(padding, &other_relocations);
|
| LOG(INFO) << "Alignment pad : " << padding << " relocations";
|
| -
|
| - // Apply relocations to all relative data to relocate it into the
|
| - // area it will occupy once the hole in the dynamic relocations is removed.
|
| - AdjustRelocationTargets<Rel>(
|
| - elf_, hole_start, -hole_size, &relative_relocations);
|
| - // Relocate the relocations.
|
| - AdjustRelocations<Rel>(hole_start, -hole_size, &relative_relocations);
|
| - AdjustRelocations<Rel>(hole_start, -hole_size, &other_relocations);
|
| } else {
|
| // If padding, add NONE-type relocations to other_relocations to make it
|
| // the same size as the the original relocations we read in. This makes
|
| @@ -1009,12 +1099,18 @@ bool ElfFile::PackTypedRelocations(const std::vector<Rel>& relocations,
|
| dynamic_base + data->d_size / sizeof(dynamics[0]));
|
| // Use two of the spare slots to describe the packed section.
|
| ELF::Shdr* section_header = ELF::getshdr(android_relocations_section_);
|
| - const ELF::Dyn offset_dyn
|
| - = {DT_ANDROID_REL_OFFSET, {section_header->sh_offset}};
|
| - AddDynamicEntry(offset_dyn, &dynamics);
|
| - const ELF::Dyn size_dyn
|
| - = {DT_ANDROID_REL_SIZE, {section_header->sh_size}};
|
| - AddDynamicEntry(size_dyn, &dynamics);
|
| + {
|
| + ELF::Dyn dyn;
|
| + dyn.d_tag = DT_ANDROID_REL_OFFSET;
|
| + dyn.d_un.d_ptr = section_header->sh_offset;
|
| + AddDynamicEntry(dyn, &dynamics);
|
| + }
|
| + {
|
| + ELF::Dyn dyn;
|
| + dyn.d_tag = DT_ANDROID_REL_SIZE;
|
| + dyn.d_un.d_val = section_header->sh_size;
|
| + AddDynamicEntry(dyn, &dynamics);
|
| + }
|
| const void* dynamics_data = &dynamics[0];
|
| const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
|
| RewriteSectionData(data, dynamics_data, dynamics_bytes);
|
| @@ -1126,14 +1222,6 @@ bool ElfFile::UnpackTypedRelocations(const std::vector<uint8_t>& packed,
|
| // Adjust the hole size for the padding added to preserve alignment.
|
| hole_size -= padding * sizeof(other_relocations[0]);
|
| LOG(INFO) << "Expansion : " << hole_size << " bytes";
|
| -
|
| - // Apply relocations to all relative data to relocate it into the
|
| - // area it will occupy once the hole in dynamic relocations is opened.
|
| - AdjustRelocationTargets<Rel>(
|
| - elf_, hole_start, hole_size, &relative_relocations);
|
| - // Relocate the relocations.
|
| - AdjustRelocations<Rel>(hole_start, hole_size, &relative_relocations);
|
| - AdjustRelocations<Rel>(hole_start, hole_size, &other_relocations);
|
| }
|
|
|
| // Rewrite the current dynamic relocations section to be the relative
|
|
|