OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "net/disk_cache/v3/index_table.h" |
| 6 |
| 7 #include <algorithm> |
| 8 #include <set> |
| 9 #include <utility> |
| 10 |
| 11 #include "base/bits.h" |
| 12 #include "net/base/io_buffer.h" |
| 13 #include "net/base/net_errors.h" |
| 14 #include "net/disk_cache/disk_cache.h" |
| 15 |
| 16 using base::Time; |
| 17 using base::TimeDelta; |
| 18 using disk_cache::CellInfo; |
| 19 using disk_cache::CellList; |
| 20 using disk_cache::IndexCell; |
| 21 using disk_cache::IndexIterator; |
| 22 |
| 23 namespace { |
| 24 |
| 25 // The following constants describe the bitfields of an IndexCell so they are |
| 26 // implicitly synchronized with the descrption of IndexCell on file_format_v3.h. |
| 27 const uint64 kCellLocationMask = (1 << 22) - 1; |
| 28 const uint64 kCellIdMask = (1 << 18) - 1; |
| 29 const uint64 kCellTimestampMask = (1 << 20) - 1; |
| 30 const uint64 kCellReuseMask = (1 << 4) - 1; |
| 31 const uint8 kCellStateMask = (1 << 3) - 1; |
| 32 const uint8 kCellGroupMask = (1 << 3) - 1; |
| 33 const uint8 kCellSumMask = (1 << 2) - 1; |
| 34 |
| 35 const uint64 kCellSmallTableLocationMask = (1 << 16) - 1; |
| 36 const uint64 kCellSmallTableIdMask = (1 << 24) - 1; |
| 37 |
| 38 const int kCellIdOffset = 22; |
| 39 const int kCellTimestampOffset = 40; |
| 40 const int kCellReuseOffset = 60; |
| 41 const int kCellGroupOffset = 3; |
| 42 const int kCellSumOffset = 6; |
| 43 |
| 44 const int kCellSmallTableIdOffset = 16; |
| 45 |
| 46 // The number of bits that a hash has to be shifted to grab the part that |
| 47 // defines the cell id. |
| 48 const int kHashShift = 14; |
| 49 const int kSmallTableHashShift = 8; |
| 50 |
| 51 // Unfortunately we have to break the abstaction a little here: the file number |
| 52 // where entries are stored is outside of the control of this code, and it is |
| 53 // usually part of the stored address. However, for small tables we only store |
| 54 // 16 bits of the address so the file number is never stored on a cell. We have |
| 55 // to infere the file number from the type of entry (normal vs evicted), and |
| 56 // the knowledge that given that the table will not keep more than 64k entries, |
| 57 // a single file of each type is enough. |
| 58 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1; |
| 59 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1; |
| 60 const int kMaxLocation = 1 << 22; |
| 61 const int kMinFileNumber = 1 << 16; |
| 62 |
| 63 uint32 GetCellLocation(const IndexCell& cell) { |
| 64 return cell.first_part & kCellLocationMask; |
| 65 } |
| 66 |
| 67 uint32 GetCellSmallTableLocation(const IndexCell& cell) { |
| 68 return cell.first_part & kCellSmallTableLocationMask; |
| 69 } |
| 70 |
| 71 uint32 GetCellId(const IndexCell& cell) { |
| 72 return (cell.first_part >> kCellIdOffset) & kCellIdMask; |
| 73 } |
| 74 |
| 75 uint32 GetCellSmallTableId(const IndexCell& cell) { |
| 76 return (cell.first_part >> kCellSmallTableIdOffset) & |
| 77 kCellSmallTableIdMask; |
| 78 } |
| 79 |
| 80 int GetCellTimestamp(const IndexCell& cell) { |
| 81 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask; |
| 82 } |
| 83 |
| 84 int GetCellReuse(const IndexCell& cell) { |
| 85 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask; |
| 86 } |
| 87 |
| 88 int GetCellState(const IndexCell& cell) { |
| 89 return cell.last_part & kCellStateMask; |
| 90 } |
| 91 |
| 92 int GetCellGroup(const IndexCell& cell) { |
| 93 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask; |
| 94 } |
| 95 |
| 96 int GetCellSum(const IndexCell& cell) { |
| 97 return (cell.last_part >> kCellSumOffset) & kCellSumMask; |
| 98 } |
| 99 |
| 100 void SetCellLocation(IndexCell* cell, uint32 address) { |
| 101 DCHECK_LE(address, static_cast<uint32>(kCellLocationMask)); |
| 102 cell->first_part &= ~kCellLocationMask; |
| 103 cell->first_part |= address; |
| 104 } |
| 105 |
| 106 void SetCellSmallTableLocation(IndexCell* cell, uint32 address) { |
| 107 DCHECK_LE(address, static_cast<uint32>(kCellSmallTableLocationMask)); |
| 108 cell->first_part &= ~kCellSmallTableLocationMask; |
| 109 cell->first_part |= address; |
| 110 } |
| 111 |
| 112 void SetCellId(IndexCell* cell, uint32 hash) { |
| 113 DCHECK_LE(hash, static_cast<uint32>(kCellIdMask)); |
| 114 cell->first_part &= ~(kCellIdMask << kCellIdOffset); |
| 115 cell->first_part |= static_cast<int64>(hash) << kCellIdOffset; |
| 116 } |
| 117 |
| 118 void SetCellSmallTableId(IndexCell* cell, uint32 hash) { |
| 119 DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableIdMask)); |
| 120 cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset); |
| 121 cell->first_part |= static_cast<int64>(hash) << kCellSmallTableIdOffset; |
| 122 } |
| 123 |
| 124 void SetCellTimestamp(IndexCell* cell, int timestamp) { |
| 125 DCHECK_LT(timestamp, 1 << 20); |
| 126 DCHECK_GE(timestamp, 0); |
| 127 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset); |
| 128 cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset; |
| 129 } |
| 130 |
| 131 void SetCellReuse(IndexCell* cell, int count) { |
| 132 DCHECK_LT(count, 16); |
| 133 DCHECK_GE(count, 0); |
| 134 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset); |
| 135 cell->first_part |= static_cast<int64>(count) << kCellReuseOffset; |
| 136 } |
| 137 |
| 138 void SetCellState(IndexCell* cell, disk_cache::EntryState state) { |
| 139 cell->last_part &= ~kCellStateMask; |
| 140 cell->last_part |= state; |
| 141 } |
| 142 |
| 143 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) { |
| 144 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset); |
| 145 cell->last_part |= group << kCellGroupOffset; |
| 146 } |
| 147 |
| 148 void SetCellSum(IndexCell* cell, int sum) { |
| 149 DCHECK_LT(sum, 4); |
| 150 DCHECK_GE(sum, 0); |
| 151 cell->last_part &= ~(kCellSumMask << kCellSumOffset); |
| 152 cell->last_part |= sum << kCellSumOffset; |
| 153 } |
| 154 |
| 155 // This is a very particular way to calculate the sum, so it will not match if |
| 156 // compared a gainst a pure 2 bit, modulo 2 sum. |
| 157 int CalculateCellSum(const IndexCell& cell) { |
| 158 uint32* words = bit_cast<uint32*>(&cell); |
| 159 uint8* bytes = bit_cast<uint8*>(&cell); |
| 160 uint32 result = words[0] + words[1]; |
| 161 result += result >> 16; |
| 162 result += (result >> 8) + (bytes[8] & 0x3f); |
| 163 result += result >> 4; |
| 164 result += result >> 2; |
| 165 return result & 3; |
| 166 } |
| 167 |
| 168 bool SanityCheck(const IndexCell& cell) { |
| 169 if (GetCellSum(cell) != CalculateCellSum(cell)) |
| 170 return false; |
| 171 |
| 172 if (GetCellState(cell) > disk_cache::ENTRY_USED || |
| 173 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED || |
| 174 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) { |
| 175 return false; |
| 176 } |
| 177 |
| 178 return true; |
| 179 } |
| 180 |
| 181 int FileNumberFromLocation(int location) { |
| 182 return location / kMinFileNumber; |
| 183 } |
| 184 |
| 185 int StartBlockFromLocation(int location) { |
| 186 return location % kMinFileNumber; |
| 187 } |
| 188 |
| 189 bool IsValidAddress(disk_cache::Addr address) { |
| 190 if (!address.is_initialized() || |
| 191 (address.file_type() != disk_cache::BLOCK_EVICTED && |
| 192 address.file_type() != disk_cache::BLOCK_ENTRIES)) { |
| 193 return false; |
| 194 } |
| 195 |
| 196 return address.FileNumber() < FileNumberFromLocation(kMaxLocation); |
| 197 } |
| 198 |
| 199 bool IsNormalState(const IndexCell& cell) { |
| 200 disk_cache::EntryState state = |
| 201 static_cast<disk_cache::EntryState>(GetCellState(cell)); |
| 202 DCHECK_NE(state, disk_cache::ENTRY_FREE); |
| 203 return state != disk_cache::ENTRY_DELETED && |
| 204 state != disk_cache::ENTRY_FIXING; |
| 205 } |
| 206 |
| 207 inline int GetNextBucket(int min_bucket_num, int max_bucket_num, |
| 208 disk_cache::IndexBucket* table, |
| 209 disk_cache::IndexBucket** bucket) { |
| 210 if (!(*bucket)->next) |
| 211 return 0; |
| 212 |
| 213 int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket; |
| 214 if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) { |
| 215 // The next bucket must fall within the extra table. Note that this is not |
| 216 // an uncommon path as growing the table may not cleanup the link from the |
| 217 // main table to the extra table, and that cleanup is performed here when |
| 218 // accessing that bucket for the first time. This behavior has to change if |
| 219 // the tables are ever shrinked. |
| 220 (*bucket)->next = 0; |
| 221 return 0; |
| 222 } |
| 223 *bucket = &table[bucket_num - min_bucket_num]; |
| 224 return bucket_num; |
| 225 } |
| 226 |
| 227 // Updates the |iterator| with the current |cell|. This cell may cause all |
| 228 // previous cells to be deleted (when a new target timestamp is found), the cell |
| 229 // may be added to the list (if it matches the target timestamp), or may it be |
| 230 // ignored. |
| 231 void UpdateIterator(const disk_cache::EntryCell& cell, |
| 232 int limit_time, |
| 233 IndexIterator* iterator) { |
| 234 int time = cell.GetTimestamp(); |
| 235 // Look for not interesting times. |
| 236 if (iterator->forward && time <= limit_time) |
| 237 return; |
| 238 if (!iterator->forward && time >= limit_time) |
| 239 return; |
| 240 |
| 241 if ((iterator->forward && time < iterator->timestamp) || |
| 242 (!iterator->forward && time > iterator->timestamp)) { |
| 243 // This timestamp is better than the one we had. |
| 244 iterator->timestamp = time; |
| 245 iterator->cells.clear(); |
| 246 } |
| 247 if (time == iterator->timestamp) { |
| 248 CellInfo cell_info = { cell.hash(), cell.GetAddress() }; |
| 249 iterator->cells.push_back(cell_info); |
| 250 } |
| 251 } |
| 252 |
| 253 void InitIterator(IndexIterator* iterator) { |
| 254 iterator->cells.clear(); |
| 255 iterator->timestamp = iterator->forward ? kint32max : 0; |
| 256 } |
| 257 |
| 258 } // namespace |
| 259 |
| 260 namespace disk_cache { |
| 261 |
| 262 EntryCell::~EntryCell() { |
| 263 } |
| 264 |
| 265 bool EntryCell::IsValid() const { |
| 266 return GetCellLocation(cell_) != 0; |
| 267 } |
| 268 |
| 269 // This code has to map the cell address (up to 22 bits) to a general cache Addr |
| 270 // (up to 24 bits of general addressing). It also set the implied file_number |
| 271 // in the case of small tables. See also the comment by the definition of |
| 272 // kEntriesFile. |
| 273 Addr EntryCell::GetAddress() const { |
| 274 uint32 location = GetLocation(); |
| 275 int file_number = FileNumberFromLocation(location); |
| 276 if (small_table_) { |
| 277 DCHECK_EQ(0, file_number); |
| 278 file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile : |
| 279 kEntriesFile; |
| 280 } |
| 281 DCHECK_NE(0, file_number); |
| 282 FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED : |
| 283 BLOCK_ENTRIES; |
| 284 return Addr(file_type, 1, file_number, StartBlockFromLocation(location)); |
| 285 } |
| 286 |
| 287 EntryState EntryCell::GetState() const { |
| 288 return static_cast<EntryState>(GetCellState(cell_)); |
| 289 } |
| 290 |
| 291 EntryGroup EntryCell::GetGroup() const { |
| 292 return static_cast<EntryGroup>(GetCellGroup(cell_)); |
| 293 } |
| 294 |
| 295 int EntryCell::GetReuse() const { |
| 296 return GetCellReuse(cell_); |
| 297 } |
| 298 |
| 299 int EntryCell::GetTimestamp() const { |
| 300 return GetCellTimestamp(cell_); |
| 301 } |
| 302 |
| 303 void EntryCell::SetState(EntryState state) { |
| 304 SetCellState(&cell_, state); |
| 305 } |
| 306 |
| 307 void EntryCell::SetGroup(EntryGroup group) { |
| 308 SetCellGroup(&cell_, group); |
| 309 } |
| 310 |
| 311 void EntryCell::SetReuse(int count) { |
| 312 SetCellReuse(&cell_, count); |
| 313 } |
| 314 |
| 315 void EntryCell::SetTimestamp(int timestamp) { |
| 316 SetCellTimestamp(&cell_, timestamp); |
| 317 } |
| 318 |
| 319 // Static. |
| 320 EntryCell EntryCell::GetEntryCellForTest(int32 cell_num, |
| 321 uint32 hash, |
| 322 Addr address, |
| 323 IndexCell* cell, |
| 324 bool small_table) { |
| 325 if (cell) { |
| 326 EntryCell entry_cell(cell_num, hash, *cell, small_table); |
| 327 return entry_cell; |
| 328 } |
| 329 |
| 330 return EntryCell(cell_num, hash, address, small_table); |
| 331 } |
| 332 |
| 333 void EntryCell::SerializaForTest(IndexCell* destination) { |
| 334 FixSum(); |
| 335 Serialize(destination); |
| 336 } |
| 337 |
| 338 EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) { |
| 339 cell_.Clear(); |
| 340 } |
| 341 |
| 342 EntryCell::EntryCell(int32 cell_num, |
| 343 uint32 hash, |
| 344 Addr address, |
| 345 bool small_table) |
| 346 : cell_num_(cell_num), |
| 347 hash_(hash), |
| 348 small_table_(small_table) { |
| 349 DCHECK(IsValidAddress(address) || !address.value()); |
| 350 |
| 351 cell_.Clear(); |
| 352 SetCellState(&cell_, ENTRY_NEW); |
| 353 SetCellGroup(&cell_, ENTRY_NO_USE); |
| 354 if (small_table) { |
| 355 DCHECK(address.FileNumber() == kEntriesFile || |
| 356 address.FileNumber() == kEvictedEntriesFile); |
| 357 SetCellSmallTableLocation(&cell_, address.start_block()); |
| 358 SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift); |
| 359 } else { |
| 360 uint32 location = address.FileNumber() << 16 | address.start_block(); |
| 361 SetCellLocation(&cell_, location); |
| 362 SetCellId(&cell_, hash >> kHashShift); |
| 363 } |
| 364 } |
| 365 |
| 366 EntryCell::EntryCell(int32 cell_num, |
| 367 uint32 hash, |
| 368 const IndexCell& cell, |
| 369 bool small_table) |
| 370 : cell_num_(cell_num), |
| 371 hash_(hash), |
| 372 cell_(cell), |
| 373 small_table_(small_table) { |
| 374 } |
| 375 |
| 376 void EntryCell::FixSum() { |
| 377 SetCellSum(&cell_, CalculateCellSum(cell_)); |
| 378 } |
| 379 |
| 380 uint32 EntryCell::GetLocation() const { |
| 381 if (small_table_) |
| 382 return GetCellSmallTableLocation(cell_); |
| 383 |
| 384 return GetCellLocation(cell_); |
| 385 } |
| 386 |
| 387 uint32 EntryCell::RecomputeHash() { |
| 388 if (small_table_) { |
| 389 hash_ &= (1 << kSmallTableHashShift) - 1; |
| 390 hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift; |
| 391 return hash_; |
| 392 } |
| 393 |
| 394 hash_ &= (1 << kHashShift) - 1; |
| 395 hash_ |= GetCellId(cell_) << kHashShift; |
| 396 return hash_; |
| 397 } |
| 398 |
| 399 void EntryCell::Serialize(IndexCell* destination) const { |
| 400 *destination = cell_; |
| 401 } |
| 402 |
| 403 EntrySet::EntrySet() : evicted_count(0), current(0) { |
| 404 } |
| 405 |
| 406 EntrySet::~EntrySet() { |
| 407 } |
| 408 |
| 409 IndexIterator::IndexIterator() { |
| 410 } |
| 411 |
| 412 IndexIterator::~IndexIterator() { |
| 413 } |
| 414 |
| 415 IndexTableInitData::IndexTableInitData() { |
| 416 } |
| 417 |
| 418 IndexTableInitData::~IndexTableInitData() { |
| 419 } |
| 420 |
| 421 // ----------------------------------------------------------------------- |
| 422 |
| 423 IndexTable::IndexTable(IndexTableBackend* backend) |
| 424 : backend_(backend), |
| 425 header_(NULL), |
| 426 main_table_(NULL), |
| 427 extra_table_(NULL), |
| 428 modified_(false), |
| 429 small_table_(false) { |
| 430 } |
| 431 |
| 432 IndexTable::~IndexTable() { |
| 433 } |
| 434 |
| 435 // For a general description of the index tables see: |
| 436 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/
disk-cache-v3#TOC-Index |
| 437 // |
| 438 // The index is split between two tables: the main_table_ and the extra_table_. |
| 439 // The main table can grow only by doubling its number of cells, while the |
| 440 // extra table can grow slowly, because it only contain cells that overflow |
| 441 // from the main table. In order to locate a given cell, part of the hash is |
| 442 // used directly as an index into the main table; once that bucket is located, |
| 443 // all cells with that partial hash (i.e., belonging to that bucket) are |
| 444 // inspected, and if present, the next bucket (located on the extra table) is |
| 445 // then located. For more information on bucket chaining see: |
| 446 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/
disk-cache-v3#TOC-Buckets |
| 447 // |
| 448 // There are two cases when increasing the size: |
| 449 // - Doubling the size of the main table |
| 450 // - Adding more entries to the extra table |
| 451 // |
| 452 // For example, consider a 64k main table with 8k cells on the extra table (for |
| 453 // a total of 72k cells). Init can be called to add another 8k cells at the end |
| 454 // (grow to 80k cells). When the size of the extra table approaches 64k, Init |
| 455 // can be called to double the main table (to 128k) and go back to a small extra |
| 456 // table. |
| 457 void IndexTable::Init(IndexTableInitData* params) { |
| 458 bool growing = header_ != NULL; |
| 459 scoped_ptr<IndexBucket[]> old_extra_table; |
| 460 header_ = ¶ms->index_bitmap->header; |
| 461 |
| 462 if (params->main_table) { |
| 463 if (main_table_) { |
| 464 // This is doubling the size of main table. |
| 465 DCHECK_EQ(base::bits::Log2Floor(header_->table_len), |
| 466 base::bits::Log2Floor(backup_header_->table_len) + 1); |
| 467 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket; |
| 468 DCHECK_GE(extra_size, 0); |
| 469 |
| 470 // Doubling the size implies deleting the extra table and moving as many |
| 471 // cells as we can to the main table, so we first copy the old one. This |
| 472 // is not required when just growing the extra table because we don't |
| 473 // move any cell in that case. |
| 474 old_extra_table.reset(new IndexBucket[extra_size]); |
| 475 memcpy(old_extra_table.get(), extra_table_, |
| 476 extra_size * sizeof(IndexBucket)); |
| 477 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket)); |
| 478 } |
| 479 main_table_ = params->main_table; |
| 480 } |
| 481 DCHECK(main_table_); |
| 482 extra_table_ = params->extra_table; |
| 483 |
| 484 // extra_bits_ is really measured against table-size specific values. |
| 485 const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table. |
| 486 const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table. |
| 487 |
| 488 extra_bits_ = base::bits::Log2Floor(header_->table_len) - |
| 489 base::bits::Log2Floor(kBaseTableLen); |
| 490 DCHECK_GE(extra_bits_, 0); |
| 491 DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits); |
| 492 |
| 493 // Note that following the previous code the constants could be derived as |
| 494 // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) - |
| 495 // base::bits::Log2Floor(kBaseTableLen); |
| 496 // = 22 - base::bits::Log2Floor(1024) = 22 - 10; |
| 497 // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10. |
| 498 |
| 499 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1; |
| 500 small_table_ = extra_bits_ < kMaxExtraBitsSmallTable; |
| 501 if (!small_table_) |
| 502 extra_bits_ -= kMaxExtraBitsSmallTable; |
| 503 |
| 504 // table_len keeps the max number of cells stored by the index. We need a |
| 505 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words. |
| 506 int num_words = (header_->table_len + 31) / 32; |
| 507 |
| 508 if (old_extra_table) { |
| 509 // All the cells from the extra table are moving to the new tables so before |
| 510 // creating the bitmaps, clear the part of the bitmap referring to the extra |
| 511 // table. |
| 512 int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32; |
| 513 DCHECK_GT(num_words, old_main_table_bit_words); |
| 514 memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0, |
| 515 (num_words - old_main_table_bit_words) * sizeof(int32)); |
| 516 |
| 517 DCHECK(growing); |
| 518 int old_num_words = (backup_header_.get()->table_len + 31) / 32; |
| 519 DCHECK_GT(old_num_words, old_main_table_bit_words); |
| 520 memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0, |
| 521 (old_num_words - old_main_table_bit_words) * sizeof(int32)); |
| 522 } |
| 523 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len, |
| 524 num_words)); |
| 525 |
| 526 if (growing) { |
| 527 int old_num_words = (backup_header_.get()->table_len + 31) / 32; |
| 528 DCHECK_GE(num_words, old_num_words); |
| 529 scoped_ptr<uint32[]> storage(new uint32[num_words]); |
| 530 memcpy(storage.get(), backup_bitmap_storage_.get(), |
| 531 old_num_words * sizeof(int32)); |
| 532 memset(storage.get() + old_num_words, 0, |
| 533 (num_words - old_num_words) * sizeof(int32)); |
| 534 |
| 535 backup_bitmap_storage_.swap(storage); |
| 536 backup_header_->table_len = header_->table_len; |
| 537 } else { |
| 538 backup_bitmap_storage_.reset(params->backup_bitmap.release()); |
| 539 backup_header_.reset(params->backup_header.release()); |
| 540 } |
| 541 |
| 542 num_words = (backup_header_->table_len + 31) / 32; |
| 543 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(), |
| 544 backup_header_->table_len, num_words)); |
| 545 if (old_extra_table) |
| 546 MoveCells(old_extra_table.get()); |
| 547 |
| 548 if (small_table_) |
| 549 DCHECK(header_->flags & SMALL_CACHE); |
| 550 |
| 551 // All tables and backups are needed for operation. |
| 552 DCHECK(main_table_); |
| 553 DCHECK(extra_table_); |
| 554 DCHECK(bitmap_.get()); |
| 555 } |
| 556 |
| 557 void IndexTable::Shutdown() { |
| 558 header_ = NULL; |
| 559 main_table_ = NULL; |
| 560 extra_table_ = NULL; |
| 561 bitmap_.reset(); |
| 562 backup_bitmap_.reset(); |
| 563 backup_header_.reset(); |
| 564 backup_bitmap_storage_.reset(); |
| 565 modified_ = false; |
| 566 } |
| 567 |
| 568 // The general method for locating cells is to: |
| 569 // 1. Get the first bucket. This usually means directly indexing the table (as |
| 570 // this method does), or iterating through all possible buckets. |
| 571 // 2. Iterate through all the cells in that first bucket. |
| 572 // 3. If there is a linked bucket, locate it directly in the extra table. |
| 573 // 4. Go back to 2, as needed. |
| 574 // |
| 575 // One consequence of this pattern is that we never start looking at buckets in |
| 576 // the extra table, unless we are following a link from the main table. |
| 577 EntrySet IndexTable::LookupEntries(uint32 hash) { |
| 578 EntrySet entries; |
| 579 int bucket_num = static_cast<int>(hash & mask_); |
| 580 IndexBucket* bucket = &main_table_[bucket_num]; |
| 581 do { |
| 582 for (int i = 0; i < kCellsPerBucket; i++) { |
| 583 IndexCell* current_cell = &bucket->cells[i]; |
| 584 if (!GetLocation(*current_cell)) |
| 585 continue; |
| 586 if (!SanityCheck(*current_cell)) { |
| 587 NOTREACHED(); |
| 588 int cell_num = bucket_num * kCellsPerBucket + i; |
| 589 current_cell->Clear(); |
| 590 bitmap_->Set(cell_num, false); |
| 591 backup_bitmap_->Set(cell_num, false); |
| 592 modified_ = true; |
| 593 continue; |
| 594 } |
| 595 int cell_num = bucket_num * kCellsPerBucket + i; |
| 596 if (MisplacedHash(*current_cell, hash)) { |
| 597 HandleMisplacedCell(current_cell, cell_num, hash & mask_); |
| 598 } else if (IsHashMatch(*current_cell, hash)) { |
| 599 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_); |
| 600 CheckState(entry_cell); |
| 601 if (entry_cell.GetState() != ENTRY_DELETED) { |
| 602 entries.cells.push_back(entry_cell); |
| 603 if (entry_cell.GetGroup() == ENTRY_EVICTED) |
| 604 entries.evicted_count++; |
| 605 } |
| 606 } |
| 607 } |
| 608 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 609 &bucket); |
| 610 } while (bucket_num); |
| 611 return entries; |
| 612 } |
| 613 |
| 614 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) { |
| 615 DCHECK(IsValidAddress(address)); |
| 616 DCHECK(address.FileNumber() || address.start_block()); |
| 617 |
| 618 int bucket_num = static_cast<int>(hash & mask_); |
| 619 int cell_num = 0; |
| 620 IndexBucket* bucket = &main_table_[bucket_num]; |
| 621 IndexCell* current_cell = NULL; |
| 622 bool found = false; |
| 623 do { |
| 624 for (int i = 0; i < kCellsPerBucket && !found; i++) { |
| 625 current_cell = &bucket->cells[i]; |
| 626 if (!GetLocation(*current_cell)) { |
| 627 cell_num = bucket_num * kCellsPerBucket + i; |
| 628 found = true; |
| 629 } |
| 630 } |
| 631 if (found) |
| 632 break; |
| 633 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 634 &bucket); |
| 635 } while (bucket_num); |
| 636 |
| 637 if (!found) { |
| 638 bucket_num = NewExtraBucket(); |
| 639 if (bucket_num) { |
| 640 cell_num = bucket_num * kCellsPerBucket; |
| 641 bucket->next = cell_num; |
| 642 bucket = &extra_table_[bucket_num - (mask_ + 1)]; |
| 643 bucket->hash = hash & mask_; |
| 644 found = true; |
| 645 } else { |
| 646 // address 0 is a reserved value, and the caller interprets it as invalid. |
| 647 address.set_value(0); |
| 648 } |
| 649 } |
| 650 |
| 651 EntryCell entry_cell(cell_num, hash, address, small_table_); |
| 652 if (address.file_type() == BLOCK_EVICTED) |
| 653 entry_cell.SetGroup(ENTRY_EVICTED); |
| 654 else |
| 655 entry_cell.SetGroup(ENTRY_NO_USE); |
| 656 Save(&entry_cell); |
| 657 |
| 658 if (found) { |
| 659 bitmap_->Set(cell_num, true); |
| 660 backup_bitmap_->Set(cell_num, true); |
| 661 header()->used_cells++; |
| 662 modified_ = true; |
| 663 } |
| 664 |
| 665 return entry_cell; |
| 666 } |
| 667 |
| 668 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) { |
| 669 return FindEntryCellImpl(hash, address, false); |
| 670 } |
| 671 |
| 672 int IndexTable::CalculateTimestamp(Time time) { |
| 673 TimeDelta delta = time - Time::FromInternalValue(header_->base_time); |
| 674 return std::max(delta.InMinutes(), 0); |
| 675 } |
| 676 |
| 677 base::Time IndexTable::TimeFromTimestamp(int timestamp) { |
| 678 return Time::FromInternalValue(header_->base_time) + |
| 679 TimeDelta::FromMinutes(timestamp); |
| 680 } |
| 681 |
| 682 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) { |
| 683 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE); |
| 684 if (!cell.IsValid()) { |
| 685 NOTREACHED(); |
| 686 return; |
| 687 } |
| 688 |
| 689 EntryState old_state = cell.GetState(); |
| 690 switch (state) { |
| 691 case ENTRY_FREE: |
| 692 DCHECK_EQ(old_state, ENTRY_DELETED); |
| 693 break; |
| 694 case ENTRY_NEW: |
| 695 DCHECK_EQ(old_state, ENTRY_FREE); |
| 696 break; |
| 697 case ENTRY_OPEN: |
| 698 DCHECK_EQ(old_state, ENTRY_USED); |
| 699 break; |
| 700 case ENTRY_MODIFIED: |
| 701 DCHECK_EQ(old_state, ENTRY_OPEN); |
| 702 break; |
| 703 case ENTRY_DELETED: |
| 704 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || |
| 705 old_state == ENTRY_MODIFIED); |
| 706 break; |
| 707 case ENTRY_USED: |
| 708 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || |
| 709 old_state == ENTRY_MODIFIED); |
| 710 break; |
| 711 case ENTRY_FIXING: |
| 712 break; |
| 713 }; |
| 714 |
| 715 modified_ = true; |
| 716 if (state == ENTRY_DELETED) { |
| 717 bitmap_->Set(cell.cell_num(), false); |
| 718 backup_bitmap_->Set(cell.cell_num(), false); |
| 719 } else if (state == ENTRY_FREE) { |
| 720 cell.Clear(); |
| 721 Write(cell); |
| 722 header()->used_cells--; |
| 723 return; |
| 724 } |
| 725 cell.SetState(state); |
| 726 |
| 727 Save(&cell); |
| 728 } |
| 729 |
| 730 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) { |
| 731 EntryCell cell = FindEntryCell(hash, address); |
| 732 if (!cell.IsValid()) |
| 733 return; |
| 734 |
| 735 int minutes = CalculateTimestamp(current); |
| 736 |
| 737 // Keep about 3 months of headroom. |
| 738 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90; |
| 739 if (minutes > kMaxTimestamp) { |
| 740 // TODO(rvargas): |
| 741 // Update header->old_time and trigger a timer |
| 742 // Rebaseline timestamps and don't update sums |
| 743 // Start a timer (about 2 backups) |
| 744 // fix all ckecksums and trigger another timer |
| 745 // update header->old_time because rebaseline is done. |
| 746 minutes = std::min(minutes, (1 << 20) - 1); |
| 747 } |
| 748 |
| 749 cell.SetTimestamp(minutes); |
| 750 Save(&cell); |
| 751 } |
| 752 |
| 753 void IndexTable::Save(EntryCell* cell) { |
| 754 cell->FixSum(); |
| 755 Write(*cell); |
| 756 } |
| 757 |
| 758 void IndexTable::GetOldest(IndexIterator* no_use, |
| 759 IndexIterator* low_use, |
| 760 IndexIterator* high_use) { |
| 761 no_use->forward = true; |
| 762 low_use->forward = true; |
| 763 high_use->forward = true; |
| 764 InitIterator(no_use); |
| 765 InitIterator(low_use); |
| 766 InitIterator(high_use); |
| 767 |
| 768 WalkTables(-1, no_use, low_use, high_use); |
| 769 } |
| 770 |
| 771 bool IndexTable::GetNextCells(IndexIterator* iterator) { |
| 772 int current_time = iterator->timestamp; |
| 773 InitIterator(iterator); |
| 774 |
| 775 WalkTables(current_time, iterator, iterator, iterator); |
| 776 return !iterator->cells.empty(); |
| 777 } |
| 778 |
| 779 void IndexTable::OnBackupTimer() { |
| 780 if (!modified_) |
| 781 return; |
| 782 |
| 783 int num_words = (header_->table_len + 31) / 32; |
| 784 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_)); |
| 785 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes)); |
| 786 memcpy(buffer->data(), header_, sizeof(*header_)); |
| 787 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(), |
| 788 num_words * 4); |
| 789 backend_->SaveIndex(buffer, num_bytes); |
| 790 modified_ = false; |
| 791 } |
| 792 |
| 793 // ----------------------------------------------------------------------- |
| 794 |
| 795 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address, |
| 796 bool allow_deleted) { |
| 797 int bucket_num = static_cast<int>(hash & mask_); |
| 798 IndexBucket* bucket = &main_table_[bucket_num]; |
| 799 do { |
| 800 for (int i = 0; i < kCellsPerBucket; i++) { |
| 801 IndexCell* current_cell = &bucket->cells[i]; |
| 802 if (!GetLocation(*current_cell)) |
| 803 continue; |
| 804 DCHECK(SanityCheck(*current_cell)); |
| 805 if (IsHashMatch(*current_cell, hash)) { |
| 806 // We have a match. |
| 807 int cell_num = bucket_num * kCellsPerBucket + i; |
| 808 EntryCell entry_cell(cell_num, hash, *current_cell, small_table_); |
| 809 if (entry_cell.GetAddress() != address) |
| 810 continue; |
| 811 |
| 812 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED) |
| 813 continue; |
| 814 |
| 815 return entry_cell; |
| 816 } |
| 817 } |
| 818 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 819 &bucket); |
| 820 } while (bucket_num); |
| 821 return EntryCell(); |
| 822 } |
| 823 |
| 824 void IndexTable::CheckState(const EntryCell& cell) { |
| 825 int current_state = cell.GetState(); |
| 826 if (current_state != ENTRY_FIXING) { |
| 827 bool present = ((current_state & 3) != 0); // Look at the last two bits. |
| 828 if (present != bitmap_->Get(cell.cell_num()) || |
| 829 present != backup_bitmap_->Get(cell.cell_num())) { |
| 830 // There's a mismatch. |
| 831 if (current_state == ENTRY_DELETED) { |
| 832 // We were in the process of deleting this entry. Finish now. |
| 833 backend_->DeleteCell(cell); |
| 834 } else { |
| 835 current_state = ENTRY_FIXING; |
| 836 EntryCell bad_cell(cell); |
| 837 bad_cell.SetState(ENTRY_FIXING); |
| 838 Save(&bad_cell); |
| 839 } |
| 840 } |
| 841 } |
| 842 |
| 843 if (current_state == ENTRY_FIXING) |
| 844 backend_->FixCell(cell); |
| 845 } |
| 846 |
| 847 void IndexTable::Write(const EntryCell& cell) { |
| 848 IndexBucket* bucket = NULL; |
| 849 int bucket_num = cell.cell_num() / kCellsPerBucket; |
| 850 if (bucket_num < static_cast<int32>(mask_ + 1)) { |
| 851 bucket = &main_table_[bucket_num]; |
| 852 } else { |
| 853 DCHECK_LE(bucket_num, header()->max_bucket); |
| 854 bucket = &extra_table_[bucket_num - (mask_ + 1)]; |
| 855 } |
| 856 |
| 857 int cell_number = cell.cell_num() % kCellsPerBucket; |
| 858 if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) { |
| 859 DCHECK_EQ(cell.GetLocation(), |
| 860 GetLocation(bucket->cells[cell_number])); |
| 861 } |
| 862 cell.Serialize(&bucket->cells[cell_number]); |
| 863 } |
| 864 |
| 865 int IndexTable::NewExtraBucket() { |
| 866 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ? |
| 867 kNumExtraBlocks / 4 : kNumExtraBlocks; |
| 868 if (header()->table_len - header()->max_bucket * kCellsPerBucket < |
| 869 safe_window) { |
| 870 backend_->GrowIndex(); |
| 871 } |
| 872 |
| 873 if (header()->max_bucket * kCellsPerBucket == |
| 874 header()->table_len - kCellsPerBucket) { |
| 875 return 0; |
| 876 } |
| 877 |
| 878 header()->max_bucket++; |
| 879 return header()->max_bucket; |
| 880 } |
| 881 |
| 882 void IndexTable::WalkTables(int limit_time, |
| 883 IndexIterator* no_use, |
| 884 IndexIterator* low_use, |
| 885 IndexIterator* high_use) { |
| 886 header_->num_no_use_entries = 0; |
| 887 header_->num_low_use_entries = 0; |
| 888 header_->num_high_use_entries = 0; |
| 889 header_->num_evicted_entries = 0; |
| 890 |
| 891 for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) { |
| 892 int bucket_num = i; |
| 893 IndexBucket* bucket = &main_table_[i]; |
| 894 do { |
| 895 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use); |
| 896 |
| 897 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 898 &bucket); |
| 899 } while (bucket_num); |
| 900 } |
| 901 header_->num_entries = header_->num_no_use_entries + |
| 902 header_->num_low_use_entries + |
| 903 header_->num_high_use_entries + |
| 904 header_->num_evicted_entries; |
| 905 modified_ = true; |
| 906 } |
| 907 |
| 908 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash, |
| 909 int limit_time, |
| 910 IndexIterator* no_use, |
| 911 IndexIterator* low_use, |
| 912 IndexIterator* high_use) { |
| 913 for (int i = 0; i < kCellsPerBucket; i++) { |
| 914 IndexCell& current_cell = bucket->cells[i]; |
| 915 if (!GetLocation(current_cell)) |
| 916 continue; |
| 917 DCHECK(SanityCheck(current_cell)); |
| 918 if (!IsNormalState(current_cell)) |
| 919 continue; |
| 920 |
| 921 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash), |
| 922 current_cell, small_table_); |
| 923 switch (GetCellGroup(current_cell)) { |
| 924 case ENTRY_NO_USE: |
| 925 UpdateIterator(entry_cell, limit_time, no_use); |
| 926 header_->num_no_use_entries++; |
| 927 break; |
| 928 case ENTRY_LOW_USE: |
| 929 UpdateIterator(entry_cell, limit_time, low_use); |
| 930 header_->num_low_use_entries++; |
| 931 break; |
| 932 case ENTRY_HIGH_USE: |
| 933 UpdateIterator(entry_cell, limit_time, high_use); |
| 934 header_->num_high_use_entries++; |
| 935 break; |
| 936 case ENTRY_EVICTED: |
| 937 header_->num_evicted_entries++; |
| 938 break; |
| 939 default: |
| 940 NOTREACHED(); |
| 941 } |
| 942 } |
| 943 } |
| 944 |
| 945 // This code is only called from Init() so the internal state of this object is |
| 946 // in flux (this method is performing the last steps of re-initialization). As |
| 947 // such, random methods are not supposed to work at this point, so whatever this |
| 948 // method calls should be relatively well controlled and it may require some |
| 949 // degree of "stable state faking". |
| 950 void IndexTable::MoveCells(IndexBucket* old_extra_table) { |
| 951 int max_hash = (mask_ + 1) / 2; |
| 952 int max_bucket = header()->max_bucket; |
| 953 header()->max_bucket = mask_; |
| 954 int used_cells = header()->used_cells; |
| 955 |
| 956 // Consider a large cache: a cell stores the upper 18 bits of the hash |
| 957 // (h >> 14). If the table is say 8 times the original size (growing from 4x), |
| 958 // the bit that we are interested in would be the 3rd bit of the stored value, |
| 959 // in other words 'multiplier' >> 1. |
| 960 uint32 new_bit = (1 << extra_bits_) >> 1; |
| 961 |
| 962 scoped_ptr<IndexBucket[]> old_main_table; |
| 963 IndexBucket* source_table = main_table_; |
| 964 bool upgrade_format = !extra_bits_; |
| 965 if (upgrade_format) { |
| 966 // This method should deal with migrating a small table to a big one. Given |
| 967 // that the first thing to do is read the old table, set small_table_ for |
| 968 // the size of the old table. Now, when moving a cell, the result cannot be |
| 969 // placed in the old table or we will end up reading it again and attempting |
| 970 // to move it, so we have to copy the whole table at once. |
| 971 DCHECK(!small_table_); |
| 972 small_table_ = true; |
| 973 old_main_table.reset(new IndexBucket[max_hash]); |
| 974 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket)); |
| 975 memset(main_table_, 0, max_hash * sizeof(IndexBucket)); |
| 976 source_table = old_main_table.get(); |
| 977 } |
| 978 |
| 979 for (int i = 0; i < max_hash; i++) { |
| 980 int bucket_num = i; |
| 981 IndexBucket* bucket = &source_table[i]; |
| 982 do { |
| 983 for (int j = 0; j < kCellsPerBucket; j++) { |
| 984 IndexCell& current_cell = bucket->cells[j]; |
| 985 if (!GetLocation(current_cell)) |
| 986 continue; |
| 987 DCHECK(SanityCheck(current_cell)); |
| 988 if (bucket_num == i) { |
| 989 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) { |
| 990 // Move this cell to the upper half of the table. |
| 991 MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i, |
| 992 true); |
| 993 } |
| 994 } else { |
| 995 // All cells on extra buckets have to move. |
| 996 MoveSingleCell(¤t_cell, bucket_num * kCellsPerBucket + j, i, |
| 997 true); |
| 998 } |
| 999 } |
| 1000 |
| 1001 // There is no need to clear the old bucket->next value because if falls |
| 1002 // within the main table so it will be fixed when attempting to follow |
| 1003 // the link. |
| 1004 bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table, |
| 1005 &bucket); |
| 1006 } while (bucket_num); |
| 1007 } |
| 1008 |
| 1009 DCHECK_EQ(header()->used_cells, used_cells); |
| 1010 |
| 1011 if (upgrade_format) { |
| 1012 small_table_ = false; |
| 1013 header()->flags &= ~SMALL_CACHE; |
| 1014 } |
| 1015 } |
| 1016 |
| 1017 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num, |
| 1018 int main_table_index, bool growing) { |
| 1019 uint32 hash = GetFullHash(*current_cell, main_table_index); |
| 1020 EntryCell old_cell(cell_num, hash, *current_cell, small_table_); |
| 1021 |
| 1022 // This method may be called when moving entries from a small table to a |
| 1023 // normal table. In that case, the caller (MoveCells) has to read the old |
| 1024 // table, so it needs small_table_ set to true, but this method needs to |
| 1025 // write to the new table so small_table_ has to be set to false, and the |
| 1026 // value restored to true before returning. |
| 1027 bool upgrade_format = !extra_bits_ && growing; |
| 1028 if (upgrade_format) |
| 1029 small_table_ = false; |
| 1030 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress()); |
| 1031 |
| 1032 if (!new_cell.IsValid()) { |
| 1033 // We'll deal with this entry later. |
| 1034 if (upgrade_format) |
| 1035 small_table_ = true; |
| 1036 return; |
| 1037 } |
| 1038 |
| 1039 new_cell.SetState(old_cell.GetState()); |
| 1040 new_cell.SetGroup(old_cell.GetGroup()); |
| 1041 new_cell.SetReuse(old_cell.GetReuse()); |
| 1042 new_cell.SetTimestamp(old_cell.GetTimestamp()); |
| 1043 Save(&new_cell); |
| 1044 modified_ = true; |
| 1045 if (upgrade_format) |
| 1046 small_table_ = true; |
| 1047 |
| 1048 if (old_cell.GetState() == ENTRY_DELETED) { |
| 1049 bitmap_->Set(new_cell.cell_num(), false); |
| 1050 backup_bitmap_->Set(new_cell.cell_num(), false); |
| 1051 } |
| 1052 |
| 1053 if (!growing || cell_num / kCellsPerBucket == main_table_index) { |
| 1054 // Only delete entries that live on the main table. |
| 1055 if (!upgrade_format) { |
| 1056 old_cell.Clear(); |
| 1057 Write(old_cell); |
| 1058 } |
| 1059 |
| 1060 if (cell_num != new_cell.cell_num()) { |
| 1061 bitmap_->Set(old_cell.cell_num(), false); |
| 1062 backup_bitmap_->Set(old_cell.cell_num(), false); |
| 1063 } |
| 1064 } |
| 1065 header()->used_cells--; |
| 1066 } |
| 1067 |
| 1068 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num, |
| 1069 int main_table_index) { |
| 1070 NOTREACHED(); // No unit tests yet. |
| 1071 |
| 1072 // The cell may be misplaced, or a duplicate cell exists with this data. |
| 1073 uint32 hash = GetFullHash(*current_cell, main_table_index); |
| 1074 MoveSingleCell(current_cell, cell_num, main_table_index, false); |
| 1075 |
| 1076 // Now look for a duplicate cell. |
| 1077 CheckBucketList(hash & mask_); |
| 1078 } |
| 1079 |
| 1080 void IndexTable::CheckBucketList(int bucket_num) { |
| 1081 typedef std::pair<int, EntryGroup> AddressAndGroup; |
| 1082 std::set<AddressAndGroup> entries; |
| 1083 IndexBucket* bucket = &main_table_[bucket_num]; |
| 1084 int bucket_hash = bucket_num; |
| 1085 do { |
| 1086 for (int i = 0; i < kCellsPerBucket; i++) { |
| 1087 IndexCell* current_cell = &bucket->cells[i]; |
| 1088 if (!GetLocation(*current_cell)) |
| 1089 continue; |
| 1090 if (!SanityCheck(*current_cell)) { |
| 1091 NOTREACHED(); |
| 1092 current_cell->Clear(); |
| 1093 continue; |
| 1094 } |
| 1095 int cell_num = bucket_num * kCellsPerBucket + i; |
| 1096 EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash), |
| 1097 *current_cell, small_table_); |
| 1098 if (!entries.insert(std::make_pair(cell.GetAddress().value(), |
| 1099 cell.GetGroup())).second) { |
| 1100 current_cell->Clear(); |
| 1101 continue; |
| 1102 } |
| 1103 CheckState(cell); |
| 1104 } |
| 1105 |
| 1106 bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, |
| 1107 &bucket); |
| 1108 } while (bucket_num); |
| 1109 } |
| 1110 |
| 1111 uint32 IndexTable::GetLocation(const IndexCell& cell) { |
| 1112 if (small_table_) |
| 1113 return GetCellSmallTableLocation(cell); |
| 1114 |
| 1115 return GetCellLocation(cell); |
| 1116 } |
| 1117 |
| 1118 uint32 IndexTable::GetHashValue(const IndexCell& cell) { |
| 1119 if (small_table_) |
| 1120 return GetCellSmallTableId(cell); |
| 1121 |
| 1122 return GetCellId(cell); |
| 1123 } |
| 1124 |
| 1125 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) { |
| 1126 // It is OK for the high order bits of lower_part to overlap with the stored |
| 1127 // part of the hash. |
| 1128 if (small_table_) |
| 1129 return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part; |
| 1130 |
| 1131 return (GetCellId(cell) << kHashShift) | lower_part; |
| 1132 } |
| 1133 |
| 1134 // All the bits stored in the cell should match the provided hash. |
| 1135 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) { |
| 1136 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift; |
| 1137 return GetHashValue(cell) == hash; |
| 1138 } |
| 1139 |
| 1140 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) { |
| 1141 if (!extra_bits_) |
| 1142 return false; |
| 1143 |
| 1144 uint32 mask = (1 << extra_bits_) - 1; |
| 1145 hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift; |
| 1146 return (GetHashValue(cell) & mask) != (hash & mask); |
| 1147 } |
| 1148 |
| 1149 } // namespace disk_cache |
OLD | NEW |