Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(252)

Side by Side Diff: net/disk_cache/v3/index_table.cc

Issue 53313004: Disk cache v3: The main index table. (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: for(;;) & Co Created 7 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « net/disk_cache/v3/index_table.h ('k') | net/disk_cache/v3/index_table_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Property Changes:
Added: svn:eol-style
+ LF
OLDNEW
(Empty)
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/disk_cache/v3/index_table.h"
6
7 #include <algorithm>
8 #include <set>
9 #include <utility>
10
11 #include "base/bits.h"
12 #include "net/base/io_buffer.h"
13 #include "net/base/net_errors.h"
14 #include "net/disk_cache/disk_cache.h"
15
16 using base::Time;
17 using base::TimeDelta;
18 using disk_cache::CellInfo;
19 using disk_cache::CellList;
20 using disk_cache::IndexCell;
21 using disk_cache::IndexIterator;
22
23 namespace {
24
25 const int kCellHashOffset = 22;
26 const int kCellSmallTableHashOffset = 16;
27 const int kCellTimestampOffset = 40;
28 const int kCellReuseOffset = 60;
29 const int kCellGroupOffset = 3;
30 const int kCellSumOffset = 6;
31
32 const uint64 kCellAddressMask = 0x3FFFFF;
33 const uint64 kCellSmallTableAddressMask = 0xFFFF;
34 const uint64 kCellHashMask = 0x3FFFF;
35 const uint64 kCellSmallTableHashMask = 0xFFFFFF;
36 const uint64 kCellTimestampMask = 0xFFFFF;
37 const uint64 kCellReuseMask = 0xF;
38 const uint8 kCellStateMask = 0x7;
39 const uint8 kCellGroupMask = 0x7;
40 const uint8 kCellSumMask = 0x3;
41
42 const int kHashShift = 14;
43 const int kHashSmallTableShift = 8;
44
45 // Unfortunately we have to break the abstaction a little here: the file number
46 // where entries are stored is outside of the control of this code, and it is
47 // usually part of the stored address. However, for small tables we only store
48 // 16 bits of the address so the file number is never stored on a cell. We have
49 // to infere the file number from the type of entry (normal vs evicted), and
50 // the knowledge that given that the table will not keep more than 64k entries,
51 // a single file of each type is enough.
52 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1;
53 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1;
54 const int kMaxAddress = 1 << 22;
55 const int kMinFileNumber = 1 << 16;
56
57 uint32 GetCellAddress(const IndexCell& cell) {
58 return cell.first_part & kCellAddressMask;
59 }
60
61 uint32 GetCellSmallTableAddress(const IndexCell& cell) {
62 return cell.first_part & kCellSmallTableAddressMask;
63 }
64
65 uint32 GetCellHash(const IndexCell& cell) {
66 return (cell.first_part >> kCellHashOffset) & kCellHashMask;
67 }
68
69 uint32 GetCellSmallTableHash(const IndexCell& cell) {
70 return (cell.first_part >> kCellSmallTableHashOffset) &
71 kCellSmallTableHashMask;
72 }
73
74 int GetCellTimestamp(const IndexCell& cell) {
75 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask;
76 }
77
78 int GetCellReuse(const IndexCell& cell) {
79 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask;
80 }
81
82 int GetCellState(const IndexCell& cell) {
83 return cell.last_part & kCellStateMask;
84 }
85
86 int GetCellGroup(const IndexCell& cell) {
87 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask;
88 }
89
90 int GetCellSum(const IndexCell& cell) {
91 return (cell.last_part >> kCellSumOffset) & kCellSumMask;
92 }
93
94 void SetCellAddress(IndexCell* cell, uint32 address) {
95 DCHECK_LE(address, static_cast<uint32>(kCellAddressMask));
96 cell->first_part &= ~kCellAddressMask;
97 cell->first_part |= address;
98 }
99
100 void SetCellSmallTableAddress(IndexCell* cell, uint32 address) {
101 DCHECK_LE(address, static_cast<uint32>(kCellSmallTableAddressMask));
102 cell->first_part &= ~kCellSmallTableAddressMask;
103 cell->first_part |= address;
104 }
105
106 void SetCellHash(IndexCell* cell, uint32 hash) {
107 DCHECK_LE(hash, static_cast<uint32>(kCellHashMask));
108 cell->first_part &= ~(kCellHashMask << kCellHashOffset);
109 cell->first_part |= static_cast<int64>(hash) << kCellHashOffset;
110 }
111
112 void SetCellSmallTableHash(IndexCell* cell, uint32 hash) {
113 DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableHashMask));
114 cell->first_part &= ~(kCellSmallTableHashMask << kCellSmallTableHashOffset);
115 cell->first_part |= static_cast<int64>(hash) << kCellSmallTableHashOffset;
116 }
117
118 void SetCellTimestamp(IndexCell* cell, int timestamp) {
119 DCHECK_LT(timestamp, 1 << 20);
120 DCHECK_GE(timestamp, 0);
121 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset);
122 cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset;
123 }
124
125 void SetCellReuse(IndexCell* cell, int count) {
126 DCHECK_LT(count, 16);
127 DCHECK_GE(count, 0);
128 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset);
129 cell->first_part |= static_cast<int64>(count) << kCellReuseOffset;
130 }
131
132 void SetCellState(IndexCell* cell, disk_cache::EntryState state) {
133 cell->last_part &= ~kCellStateMask;
134 cell->last_part |= state;
135 }
136
137 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) {
138 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset);
139 cell->last_part |= group << kCellGroupOffset;
140 }
141
142 void SetCellSum(IndexCell* cell, int sum) {
143 DCHECK_LT(sum, 4);
144 DCHECK_GE(sum, 0);
145 cell->last_part &= ~(kCellSumMask << kCellSumOffset);
146 cell->last_part |= sum << kCellSumOffset;
147 }
148
149 // This is a very particular way to calculate the sum, so it will not match if
150 // compared a gainst a pure 2 bit, modulo 2 sum.
151 int CalculateCellSum(const IndexCell& cell) {
152 uint32* words = bit_cast<uint32*>(&cell);
153 uint8* bytes = bit_cast<uint8*>(&cell);
154 uint32 result = words[0] + words[1];
155 result += result >> 16;
156 result += (result >> 8) + (bytes[8] & 0x3f);
157 result += result >> 4;
158 result += result >> 2;
159 return result & 3;
160 }
161
162 bool SanityCheck(const IndexCell& cell) {
163 if (GetCellSum(cell) != CalculateCellSum(cell))
164 return false;
165
166 if (GetCellState(cell) > disk_cache::ENTRY_USED ||
167 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED ||
168 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) {
169 return false;
170 }
171
172 return true;
173 }
174
175 int FileNumberFromAddress(int index_address) {
176 return index_address / kMinFileNumber;
177 }
178
179 int StartBlockFromAddress(int index_address) {
180 return index_address % kMinFileNumber;
181 }
182
183 bool IsValidAddress(disk_cache::Addr address) {
184 if (!address.is_initialized() ||
185 (address.file_type() != disk_cache::BLOCK_EVICTED &&
186 address.file_type() != disk_cache::BLOCK_ENTRIES)) {
187 return false;
188 }
189
190 return address.FileNumber() < FileNumberFromAddress(kMaxAddress);
191 }
192
193 bool IsNormalState(const IndexCell& cell) {
194 disk_cache::EntryState state =
195 static_cast<disk_cache::EntryState>(GetCellState(cell));
196 DCHECK_NE(state, disk_cache::ENTRY_FREE);
197 return state != disk_cache::ENTRY_DELETED &&
198 state != disk_cache::ENTRY_FIXING;
199 }
200
201 inline int GetNextBucket(int min_bucket_id, int max_bucket_id,
202 disk_cache::IndexBucket* table,
203 disk_cache::IndexBucket** bucket) {
204 if (!(*bucket)->next)
205 return 0;
206
207 int bucket_id = (*bucket)->next / disk_cache::kCellsPerBucket;
208 if (bucket_id < min_bucket_id || bucket_id > max_bucket_id) {
209 (*bucket)->next = 0;
210 return 0;
211 }
212 *bucket = &table[bucket_id - min_bucket_id];
213 return bucket_id;
214 }
215
216 // Updates the |iterator| with the current |cell|. This cell may cause all
217 // previous cells to be deleted (when a new target timestamp is found), the cell
218 // may be added to the list (if it matches the target timestamp), or may it be
219 // ignored.
220 void UpdateIterator(const disk_cache::EntryCell& cell,
221 int limit_time,
222 IndexIterator* iterator) {
223 int time = cell.GetTimestamp();
224 // Look for not interesting times.
225 if (iterator->forward && time <= limit_time)
226 return;
227 if (!iterator->forward && time >= limit_time)
228 return;
229
230 if ((iterator->forward && time < iterator->timestamp) ||
231 (!iterator->forward && time > iterator->timestamp)) {
232 // This timestamp is better than the one we had.
233 iterator->timestamp = time;
234 iterator->cells.clear();
235 }
236 if (time == iterator->timestamp) {
237 CellInfo cell_info = { cell.hash(), cell.GetAddress() };
238 iterator->cells.push_back(cell_info);
239 }
240 }
241
242 void InitIterator(IndexIterator* iterator) {
243 iterator->cells.clear();
244 iterator->timestamp = iterator->forward ? kint32max : 0;
245 }
246
247 } // namespace
248
249 namespace disk_cache {
250
251 EntryCell::~EntryCell() {
252 }
253
254 bool EntryCell::IsValid() const {
255 return GetCellAddress(cell_) != 0;
256 }
257
258 // This code has to map the cell address (up to 22 bits) to a general cache Addr
259 // (up to 24 bits of general addressing). It also set the implied file_number
260 // in the case of small tables. See also the comment by the definition of
261 // kEntriesFile.
262 Addr EntryCell::GetAddress() const {
263 uint32 address_value = GetAddressValue();
264 int file_number = FileNumberFromAddress(address_value);
265 if (small_table_) {
266 DCHECK_EQ(0, file_number);
267 file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile :
268 kEntriesFile;
269 }
270 DCHECK_NE(0, file_number);
271 FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED :
272 BLOCK_ENTRIES;
273 return Addr(file_type, 1, file_number, StartBlockFromAddress(address_value));
274 }
275
276 EntryState EntryCell::GetState() const {
277 return static_cast<EntryState>(cell_.last_part & kCellStateMask);
278 }
279
280 EntryGroup EntryCell::GetGroup() const {
281 return static_cast<EntryGroup>((cell_.last_part >> kCellGroupOffset) &
282 kCellGroupMask);
283 }
284
285 int EntryCell::GetReuse() const {
286 return (cell_.first_part >> kCellReuseOffset) & kCellReuseMask;
287 }
288
289 int EntryCell::GetTimestamp() const {
290 return GetCellTimestamp(cell_);
291 }
292
293 void EntryCell::SetState(EntryState state) {
294 SetCellState(&cell_, state);
295 }
296
297 void EntryCell::SetGroup(EntryGroup group) {
298 SetCellGroup(&cell_, group);
299 }
300
301 void EntryCell::SetReuse(int count) {
302 SetCellReuse(&cell_, count);
303 }
304
305 void EntryCell::SetTimestamp(int timestamp) {
306 SetCellTimestamp(&cell_, timestamp);
307 }
308
309 // Static.
310 EntryCell EntryCell::GetEntryCellForTest(int32 cell_id,
311 uint32 hash,
312 Addr address,
313 IndexCell* cell,
314 bool small_table) {
315 if (cell) {
316 EntryCell entry_cell(cell_id, hash, *cell, small_table);
317 return entry_cell;
318 }
319
320 return EntryCell(cell_id, hash, address, small_table);
321 }
322
323 void EntryCell::SerializaForTest(IndexCell* destination) {
324 FixSum();
325 Serialize(destination);
326 }
327
328 EntryCell::EntryCell() : cell_id_(0), hash_(0), small_table_(false) {
329 cell_.Clear();
330 }
331
332 EntryCell::EntryCell(int32 cell_id, uint32 hash, Addr address, bool small_table)
333 : cell_id_(cell_id),
334 hash_(hash),
335 small_table_(small_table) {
336 DCHECK(IsValidAddress(address) || !address.value());
337
338 cell_.Clear();
339 SetCellState(&cell_, ENTRY_NEW);
340 SetCellGroup(&cell_, ENTRY_NO_USE);
341 if (small_table) {
342 DCHECK(address.FileNumber() == kEntriesFile ||
343 address.FileNumber() == kEvictedEntriesFile);
344 SetCellSmallTableAddress(&cell_, address.start_block());
345 SetCellSmallTableHash(&cell_, hash >> kHashSmallTableShift);
346 } else {
347 uint32 cell_address = address.FileNumber() << 16 | address.start_block();
348 SetCellAddress(&cell_, cell_address);
349 SetCellHash(&cell_, hash >> kHashShift);
350 }
351 }
352
353 EntryCell::EntryCell(int32 cell_id,
354 uint32 hash,
355 const IndexCell& cell,
356 bool small_table)
357 : cell_id_(cell_id),
358 hash_(hash),
359 cell_(cell),
360 small_table_(small_table) {
361 }
362
363 void EntryCell::FixSum() {
364 SetCellSum(&cell_, CalculateCellSum(cell_));
365 }
366
367 uint32 EntryCell::GetAddressValue() const {
368 if (small_table_)
369 return GetCellSmallTableAddress(cell_);
370
371 return GetCellAddress(cell_);
372 }
373
374 uint32 EntryCell::RecomputeHash() {
375 if (small_table_) {
376 hash_ &= (1 << kHashSmallTableShift) - 1;
377 hash_ |= GetCellSmallTableHash(cell_) << kHashSmallTableShift;
378 return hash_;
379 }
380
381 hash_ &= (1 << kHashShift) - 1;
382 hash_ |= GetCellHash(cell_) << kHashShift;
383 return hash_;
384 }
385
386 void EntryCell::Serialize(IndexCell* destination) const {
387 *destination = cell_;
388 }
389
390 EntrySet::EntrySet() : evicted_count(0), current(0) {
391 }
392
393 EntrySet::~EntrySet() {
394 }
395
396 IndexIterator::IndexIterator() {
397 }
398
399 IndexIterator::~IndexIterator() {
400 }
401
402 IndexTableInitData::IndexTableInitData() {
403 }
404
405 IndexTableInitData::~IndexTableInitData() {
406 }
407
408 // -----------------------------------------------------------------------
409
410 IndexTable::IndexTable(IndexTableBackend* backend)
411 : backend_(backend),
412 header_(NULL),
413 main_table_(NULL),
414 extra_table_(NULL),
415 modified_(false),
416 small_table_(false) {
417 }
418
419 IndexTable::~IndexTable() {
420 }
421
422 // For a general description of the index tables see:
423 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/ disk-cache-v3#TOC-Index
424 //
425 // The index is split between two tables: the main_table_ and the extra_table_.
426 // The main table can grow only by doubling its number of cells, while the
427 // extra table can grow slowly, because it only contain cells that overflow
428 // from the main table. In order to locate a given cell, part of the hash is
429 // used directly as an index into the main table; once that bucket is located,
430 // all cells with that partial hash (i.e., belonging to that bucket) are
431 // inspected, and if present, the next bucket (located on the extra table) is
432 // then located. For more information on bucket chaining see:
433 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/ disk-cache-v3#TOC-Buckets
434 //
435 // There are two cases when increasing the size:
436 // - Doubling the size of the main table
437 // - Adding more entries to the extra table
438 //
439 // For example, consider a 64k main table with 8k cells on the extra table (for
440 // a total of 72k cells). Init can be called to add another 8k cells at the end
441 // (grow to 80k cells). When the size of the extra table approaches 64k, Init
442 // can be called to double the main table (to 128k) and go back to a small extra
443 // table.
444 void IndexTable::Init(IndexTableInitData* params) {
445 bool growing = header_ != NULL;
446 scoped_ptr<IndexBucket[]> old_extra_table;
447 header_ = &params->index_bitmap->header;
448
449 if (params->main_table) {
450 if (main_table_) {
451 // This is doubling the size of main table.
452 DCHECK_EQ(base::bits::Log2Floor(header_->table_len),
453 base::bits::Log2Floor(backup_header_->table_len) + 1);
454 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket;
455 DCHECK_GE(extra_size, 0);
456
457 // Doubling the size implies deleting the extra table and moving as many
458 // cells as we can to the main table, so we first copy the old one. This
459 // is not required when just growing the extra table because we don't
460 // move any cell in that case.
461 old_extra_table.reset(new IndexBucket[extra_size]);
462 memcpy(old_extra_table.get(), extra_table_,
463 extra_size * sizeof(IndexBucket));
464 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket));
465 }
466 main_table_ = params->main_table;
467 }
468 DCHECK(main_table_);
469 extra_table_ = params->extra_table;
470
471 // extra_bits_ is really measured against table-size specific values.
rvargas (doing something else) 2013/12/07 02:13:45 They look the same to me (as in there is no length
rvargas (doing something else) 2013/12/27 19:31:46 This was the answer to making some constants depen
472 const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table.
473 const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table.
474
475 extra_bits_ = base::bits::Log2Floor(header_->table_len) -
476 base::bits::Log2Floor(kBaseTableLen);
477 DCHECK_GE(extra_bits_, 0);
478 DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits);
479 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1;
480 small_table_ = extra_bits_ < kMaxExtraBitsSmallTable;
481 if (!small_table_)
482 extra_bits_ -= kMaxExtraBitsSmallTable;
483
484 // table_len keeps the max number of cells stored by the index. We need a
485 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words.
486 int num_words = (header_->table_len + 31) / 32;
487
488 if (old_extra_table) {
489 // All the cells from the extra table are moving to the new tables so before
490 // creating the bitmaps, clear the part of the bitmap referring to the extra
491 // table.
492 int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32;
493 DCHECK_GT(num_words, old_main_table_bit_words);
494 memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0,
495 (num_words - old_main_table_bit_words) * sizeof(int32));
496
497 DCHECK(growing);
498 int old_num_words = (backup_header_.get()->table_len + 31) / 32;
499 DCHECK_GT(old_num_words, old_main_table_bit_words);
500 memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0,
501 (old_num_words - old_main_table_bit_words) * sizeof(int32));
502 }
503 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len,
504 num_words));
505
506 if (growing) {
507 int old_num_words = (backup_header_.get()->table_len + 31) / 32;
508 DCHECK_GE(num_words, old_num_words);
509 scoped_ptr<uint32[]> storage(new uint32[num_words]);
510 memcpy(storage.get(), backup_bitmap_storage_.get(),
511 old_num_words * sizeof(int32));
512 memset(storage.get() + old_num_words, 0,
513 (num_words - old_num_words) * sizeof(int32));
514
515 backup_bitmap_storage_.swap(storage);
516 backup_header_->table_len = header_->table_len;
517 } else {
518 backup_bitmap_storage_.reset(params->backup_bitmap.release());
519 backup_header_.reset(params->backup_header.release());
520 }
521
522 num_words = (backup_header_->table_len + 31) / 32;
523 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(),
524 backup_header_->table_len, num_words));
525 if (old_extra_table)
526 MoveCells(old_extra_table.get());
527
528 if (small_table_)
529 DCHECK(header_->flags & SMALL_CACHE);
530 }
531
532 void IndexTable::Reset() {
533 header_ = NULL;
534 main_table_ = NULL;
535 extra_table_ = NULL;
536 bitmap_.reset();
537 backup_bitmap_.reset();
538 backup_header_.reset();
539 backup_bitmap_storage_.reset();
540 modified_ = false;
541 }
542
543 // The general method for locating cells is to:
544 // 1. Get the first bucket. This usually means directly indexing the table (as
545 // this method does), or iterating through all possible buckets.
546 // 2. Iterate through all the cells in that first bucket.
547 // 3. If there is a linked bucket, locate it directly in the extra table.
548 // 4. Go back to 2, as needed.
549 //
550 // One consequence of this pattern is that we never start looking at buckets in
551 // the extra table, unless we are following a link from the main table.
552 EntrySet IndexTable::LookupEntries(uint32 hash) {
553 EntrySet entries;
554 int bucket_id = static_cast<int>(hash & mask_);
555 IndexBucket* bucket = &main_table_[bucket_id];
556 do {
557 for (int i = 0; i < kCellsPerBucket; i++) {
558 IndexCell* current_cell = &bucket->cells[i];
559 if (!GetAddressValue(*current_cell))
560 continue;
561 if (!SanityCheck(*current_cell)) {
562 NOTREACHED();
563 int cell_id = bucket_id * kCellsPerBucket + i;
564 current_cell->Clear();
565 bitmap_->Set(cell_id, false);
566 backup_bitmap_->Set(cell_id, false);
567 modified_ = true;
568 continue;
569 }
570 int cell_id = bucket_id * kCellsPerBucket + i;
571 if (MisplacedHash(*current_cell, hash)) {
572 HandleMisplacedCell(current_cell, cell_id, hash & mask_);
573 } else if (IsHashMatch(*current_cell, hash)) {
574 EntryCell entry_cell(cell_id, hash, *current_cell, small_table_);
575 CheckState(entry_cell);
576 if (entry_cell.GetState() != ENTRY_DELETED) {
577 entries.cells.push_back(entry_cell);
578 if (entry_cell.GetGroup() == ENTRY_EVICTED)
579 entries.evicted_count++;
580 }
581 }
582 }
583 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
584 &bucket);
585 } while (bucket_id);
586 return entries;
587 }
588
589 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) {
590 DCHECK(IsValidAddress(address));
591 DCHECK(address.FileNumber() || address.start_block());
592
593 int bucket_id = static_cast<int>(hash & mask_);
594 int cell_id = 0;
595 IndexBucket* bucket = &main_table_[bucket_id];
596 IndexCell* current_cell = NULL;
597 bool found = false;
598 do {
599 for (int i = 0; i < kCellsPerBucket && !found; i++) {
600 current_cell = &bucket->cells[i];
601 if (!GetAddressValue(*current_cell)) {
602 cell_id = bucket_id * kCellsPerBucket + i;
603 found = true;
604 }
605 }
606 if (found)
607 break;
608 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
609 &bucket);
610 } while (bucket_id);
611
612 if (!found) {
613 bucket_id = NewExtraBucket();
614 if (bucket_id) {
615 cell_id = bucket_id * kCellsPerBucket;
616 bucket->next = cell_id;
617 bucket = &extra_table_[bucket_id - (mask_ + 1)];
618 bucket->hash = hash & mask_;
619 found = true;
620 } else {
621 // address 0 is a reserved value, and the caller interprets it as invalid.
622 address.set_value(0);
623 }
624 }
625
626 EntryCell entry_cell(cell_id, hash, address, small_table_);
627 if (address.file_type() == BLOCK_EVICTED)
628 entry_cell.SetGroup(ENTRY_EVICTED);
629 else
630 entry_cell.SetGroup(ENTRY_NO_USE);
631 Save(&entry_cell);
632
633 if (found) {
634 bitmap_->Set(cell_id, true);
635 backup_bitmap_->Set(cell_id, true);
636 header()->used_cells++;
637 modified_ = true;
638 }
639
640 return entry_cell;
641 }
642
643 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) {
644 return FindEntryCellImpl(hash, address, false);
645 }
646
647 int IndexTable::CalculateTimestamp(Time time) {
648 TimeDelta delta = time - Time::FromInternalValue(header_->base_time);
649 return std::max(delta.InMinutes(), 0);
650 }
651
652 base::Time IndexTable::TimeFromTimestamp(int timestamp) {
653 return Time::FromInternalValue(header_->base_time) +
654 TimeDelta::FromMinutes(timestamp);
655 }
656
657 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) {
658 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE);
659 if (!cell.IsValid()) {
660 NOTREACHED();
661 return;
662 }
663
664 EntryState old_state = cell.GetState();
665 switch (state) {
666 case ENTRY_FREE:
667 DCHECK_EQ(old_state, ENTRY_DELETED);
668 break;
669 case ENTRY_NEW:
670 DCHECK_EQ(old_state, ENTRY_FREE);
671 break;
672 case ENTRY_OPEN:
673 DCHECK_EQ(old_state, ENTRY_USED);
674 break;
675 case ENTRY_MODIFIED:
676 DCHECK_EQ(old_state, ENTRY_OPEN);
677 break;
678 case ENTRY_DELETED:
679 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
680 old_state == ENTRY_MODIFIED);
681 break;
682 case ENTRY_USED:
683 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
684 old_state == ENTRY_MODIFIED);
685 break;
686 default:
687 break;
Randy Smith (Not in Mondays) 2013/12/05 19:17:48 This pattern doesn't have much virtue over if cond
rvargas (doing something else) 2013/12/07 02:13:45 Yes, I understand your point. But the switch doesn
Randy Smith (Not in Mondays) 2013/12/26 21:45:49 No worries; just a suggestion.
688 };
689
690 modified_ = true;
691 if (state == ENTRY_DELETED) {
692 bitmap_->Set(cell.cell_id(), false);
693 backup_bitmap_->Set(cell.cell_id(), false);
694 } else if (state == ENTRY_FREE) {
695 cell.Clear();
696 Write(cell);
697 header()->used_cells--;
698 return;
699 }
700 cell.SetState(state);
701
702 Save(&cell);
703 }
704
705 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) {
706 EntryCell cell = FindEntryCell(hash, address);
707 if (!cell.IsValid())
708 return;
709
710 int minutes = CalculateTimestamp(current);
711
712 // Keep about 3 months of headroom.
713 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90;
714 if (minutes > kMaxTimestamp) {
715 // TODO(rvargas):
716 // Update header->old_time and trigger a timer
717 // Rebaseline timestamps and don't update sums
718 // Start a timer (about 2 backups)
719 // fix all ckecksums and trigger another timer
720 // update header->old_time because rebaseline is done.
721 minutes = std::min(minutes, (1 << 20) - 1);
722 }
723
724 cell.SetTimestamp(minutes);
725 Save(&cell);
726 }
727
728 void IndexTable::Save(EntryCell* cell) {
729 cell->FixSum();
730 Write(*cell);
731 }
732
733 void IndexTable::GetOldest(IndexIterator* no_use,
734 IndexIterator* low_use,
735 IndexIterator* high_use) {
736 no_use->forward = true;
737 low_use->forward = true;
738 high_use->forward = true;
739 InitIterator(no_use);
740 InitIterator(low_use);
741 InitIterator(high_use);
742
743 WalkTables(-1, no_use, low_use, high_use);
744 }
745
746 bool IndexTable::GetNextCells(IndexIterator* iterator) {
747 int current_time = iterator->timestamp;
748 InitIterator(iterator);
749
750 WalkTables(current_time, iterator, iterator, iterator);
751 return !iterator->cells.empty();
752 }
753
754 void IndexTable::OnBackupTimer() {
755 if (!modified_)
756 return;
757
758 int num_words = (header_->table_len + 31) / 32;
759 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_));
760 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes));
761 memcpy(buffer->data(), header_, sizeof(*header_));
762 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(),
763 num_words * 4);
764 backend_->SaveIndex(buffer, num_bytes);
765 modified_ = false;
766 }
767
768 // -----------------------------------------------------------------------
769
770 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address,
771 bool allow_deleted) {
772 int bucket_id = static_cast<int>(hash & mask_);
773 IndexBucket* bucket = &main_table_[bucket_id];
774 do {
775 for (int i = 0; i < kCellsPerBucket; i++) {
776 IndexCell* current_cell = &bucket->cells[i];
777 if (!GetAddressValue(*current_cell))
778 continue;
779 DCHECK(SanityCheck(*current_cell));
780 if (IsHashMatch(*current_cell, hash)) {
781 // We have a match.
782 int cell_id = bucket_id * kCellsPerBucket + i;
783 EntryCell entry_cell(cell_id, hash, *current_cell, small_table_);
784 if (entry_cell.GetAddress() != address)
785 continue;
786
787 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED)
788 continue;
789
790 return entry_cell;
791 }
792 }
793 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
794 &bucket);
795 } while (bucket_id);
796 return EntryCell();
797 }
798
799 void IndexTable::CheckState(const EntryCell& cell) {
800 int current_state = cell.GetState();
801 if (current_state != ENTRY_FIXING) {
802 bool present = ((current_state & 3) != 0); // Look at the last two bits.
803 if (present != bitmap_->Get(cell.cell_id()) ||
804 present != backup_bitmap_->Get(cell.cell_id())) {
805 // There's a mismatch.
806 if (current_state == ENTRY_DELETED) {
807 // We were in the process of deleting this entry. Finish now.
808 backend_->DeleteCell(cell);
809 } else {
810 current_state = ENTRY_FIXING;
811 EntryCell bad_cell(cell);
812 bad_cell.SetState(ENTRY_FIXING);
813 Save(&bad_cell);
814 }
815 }
816 }
817
818 if (current_state == ENTRY_FIXING)
819 backend_->FixCell(cell);
820 }
821
822 void IndexTable::Write(const EntryCell& cell) {
823 IndexBucket* bucket = NULL;
824 int bucket_id = cell.cell_id() / kCellsPerBucket;
825 if (bucket_id < static_cast<int32>(mask_ + 1)) {
826 bucket = &main_table_[bucket_id];
827 } else {
828 DCHECK_LE(bucket_id, header()->max_bucket);
829 bucket = &extra_table_[bucket_id - (mask_ + 1)];
830 }
831
832 int cell_number = cell.cell_id() % kCellsPerBucket;
833 if (GetAddressValue(bucket->cells[cell_number]) && cell.GetAddressValue()) {
834 DCHECK_EQ(cell.GetAddressValue(),
835 GetAddressValue(bucket->cells[cell_number]));
836 }
837 cell.Serialize(&bucket->cells[cell_number]);
838 }
839
840 int IndexTable::NewExtraBucket() {
841 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ?
842 kNumExtraBlocks / 4 : kNumExtraBlocks;
843 if (header()->table_len - header()->max_bucket * kCellsPerBucket <
844 safe_window) {
845 backend_->GrowIndex();
846 }
847
848 if (header()->max_bucket * kCellsPerBucket ==
849 header()->table_len - kCellsPerBucket) {
850 return 0;
851 }
852
853 header()->max_bucket++;
854 return header()->max_bucket;
855 }
856
857 void IndexTable::WalkTables(int limit_time,
858 IndexIterator* no_use,
859 IndexIterator* low_use,
860 IndexIterator* high_use) {
861 header_->num_no_use_entries = 0;
862 header_->num_low_use_entries = 0;
863 header_->num_high_use_entries = 0;
864 header_->num_evicted_entries = 0;
865
866 for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) {
867 int bucket_id = i;
868 IndexBucket* bucket = &main_table_[i];
869 do {
870 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use);
871
872 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
873 &bucket);
874 } while (bucket_id);
875 }
876 header_->num_entries = header_->num_no_use_entries +
877 header_->num_low_use_entries +
878 header_->num_high_use_entries +
879 header_->num_evicted_entries;
880 modified_ = true;
881 }
882
883 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash,
884 int limit_time,
885 IndexIterator* no_use,
886 IndexIterator* low_use,
887 IndexIterator* high_use) {
888 for (int i = 0; i < kCellsPerBucket; i++) {
889 IndexCell& current_cell = bucket->cells[i];
890 if (!GetAddressValue(current_cell))
891 continue;
892 DCHECK(SanityCheck(current_cell));
893 if (!IsNormalState(current_cell))
894 continue;
895
896 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash),
897 current_cell, small_table_);
898 switch (GetCellGroup(current_cell)) {
899 case ENTRY_NO_USE:
900 UpdateIterator(entry_cell, limit_time, no_use);
901 header_->num_no_use_entries++;
902 break;
903 case ENTRY_LOW_USE:
904 UpdateIterator(entry_cell, limit_time, low_use);
905 header_->num_low_use_entries++;
906 break;
907 case ENTRY_HIGH_USE:
908 UpdateIterator(entry_cell, limit_time, high_use);
909 header_->num_high_use_entries++;
910 break;
911 case ENTRY_EVICTED:
912 header_->num_evicted_entries++;
913 break;
914 default:
915 NOTREACHED();
916 }
917 }
918 }
919
920 void IndexTable::MoveCells(IndexBucket* old_extra_table) {
921 int max_hash = (mask_ + 1) / 2;
922 int max_bucket = header()->max_bucket;
923 header()->max_bucket = mask_;
924 int used_cells = header()->used_cells;
925
926 // Consider a large cache: a cell stores the upper 18 bits of the hash
927 // (h >> 14). If the table is say 8 times the original size (growing from 4x),
928 // the bit that we are interested in would be the 3rd bit of the stored value,
929 // in other words 'multiplier' >> 1.
930 uint32 new_bit = (1 << extra_bits_) >> 1;
931
932 scoped_ptr<IndexBucket[]> old_main_table;
933 IndexBucket* source_table = main_table_;
934 bool upgrade_format = !extra_bits_;
935 if (upgrade_format) {
936 // This method should deal with migrating a small table to a big one. Given
937 // that the first thing to do is read the old table, set small_table_ for
938 // the size of the old table. Now, when moving a cell, the result cannot be
939 // placed in the old table or we will end up reading it again and attempting
940 // to move it, so we have to copy the whole table at once.
941 DCHECK(!small_table_);
942 small_table_ = true;
943 old_main_table.reset(new IndexBucket[max_hash]);
944 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket));
945 memset(main_table_, 0, max_hash * sizeof(IndexBucket));
946 source_table = old_main_table.get();
947 }
948
949 for (int i = 0; i < max_hash; i++) {
950 int bucket_id = i;
951 IndexBucket* bucket = &source_table[i];
952 do {
953 for (int j = 0; j < kCellsPerBucket; j++) {
954 IndexCell& current_cell = bucket->cells[j];
955 if (!GetAddressValue(current_cell))
956 continue;
957 DCHECK(SanityCheck(current_cell));
958 if (bucket_id == i) {
959 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) {
960 // Move this cell to the upper half of the table.
961 MoveSingleCell(&current_cell, bucket_id * kCellsPerBucket + j, i,
962 true);
963 }
964 } else {
965 // All cells on extra buckets have to move.
966 MoveSingleCell(&current_cell, bucket_id * kCellsPerBucket + j, i,
967 true);
968 }
969 }
970
971 bucket_id = GetNextBucket(max_hash, max_bucket, old_extra_table, &bucket);
972 } while (bucket_id);
973 }
974
975 DCHECK_EQ(header()->used_cells, used_cells);
976
977 if (upgrade_format) {
978 small_table_ = false;
979 header()->flags &= ~SMALL_CACHE;
980 }
981 }
982
983 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_id,
984 int main_table_index, bool growing) {
985 uint32 hash = GetFullHash(*current_cell, main_table_index);
986 EntryCell old_cell(cell_id, hash, *current_cell, small_table_);
987
988 // This method may be called when moving entries from a small table to a
989 // normal table. In that case, the caller (MoveCells) has to read the old
990 // table, so it needs small_table_ set to true, but this method needs to
991 // write to the new table so small_table_ has to be set to false, and the
992 // value restored to true before returning.
993 bool upgrade_format = !extra_bits_ && growing;
994 if (upgrade_format)
995 small_table_ = false;
996 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress());
997
998 if (!new_cell.IsValid()) {
999 // We'll deal with this entry later.
1000 if (upgrade_format)
1001 small_table_ = true;
1002 return;
1003 }
1004
1005 new_cell.SetState(old_cell.GetState());
1006 new_cell.SetGroup(old_cell.GetGroup());
1007 new_cell.SetReuse(old_cell.GetReuse());
1008 new_cell.SetTimestamp(old_cell.GetTimestamp());
1009 Save(&new_cell);
1010 modified_ = true;
1011 if (upgrade_format)
1012 small_table_ = true;
1013
1014 if (old_cell.GetState() == ENTRY_DELETED) {
1015 bitmap_->Set(new_cell.cell_id(), false);
1016 backup_bitmap_->Set(new_cell.cell_id(), false);
1017 }
1018
1019 if (!growing || cell_id / kCellsPerBucket == main_table_index) {
1020 // Only delete entries that live on the main table.
1021 if (!upgrade_format) {
1022 old_cell.Clear();
1023 Write(old_cell);
1024 }
1025
1026 if (cell_id != new_cell.cell_id()) {
1027 bitmap_->Set(old_cell.cell_id(), false);
1028 backup_bitmap_->Set(old_cell.cell_id(), false);
1029 }
1030 }
1031 header()->used_cells--;
1032 }
1033
1034 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_id,
1035 int main_table_index) {
1036 // The cell may be misplaced, or a duplicate cell exists with this data.
1037 uint32 hash = GetFullHash(*current_cell, main_table_index);
1038 MoveSingleCell(current_cell, cell_id, main_table_index, false);
1039
1040 // Now look for a duplicate cell.
1041 CheckBucketList(hash & mask_);
1042 }
1043
1044 void IndexTable::CheckBucketList(int bucket_id) {
1045 typedef std::pair<int, EntryGroup> AddressAndGroup;
1046 std::set<AddressAndGroup> entries;
1047 IndexBucket* bucket = &main_table_[bucket_id];
1048 int bucket_hash = bucket_id;
1049 do {
1050 for (int i = 0; i < kCellsPerBucket; i++) {
1051 IndexCell* current_cell = &bucket->cells[i];
1052 if (!GetAddressValue(*current_cell))
1053 continue;
1054 if (!SanityCheck(*current_cell)) {
1055 NOTREACHED();
1056 current_cell->Clear();
1057 continue;
1058 }
1059 int cell_id = bucket_id * kCellsPerBucket + i;
1060 EntryCell cell(cell_id, GetFullHash(*current_cell, bucket_hash),
1061 *current_cell, small_table_);
1062 if (!entries.insert(std::make_pair(cell.GetAddress().value(),
1063 cell.GetGroup())).second) {
1064 current_cell->Clear();
1065 continue;
1066 }
1067 CheckState(cell);
1068 }
1069
1070 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
1071 &bucket);
1072 } while (bucket_id);
1073 }
1074
1075 uint32 IndexTable::GetAddressValue(const IndexCell& cell) {
1076 if (small_table_)
1077 return GetCellSmallTableAddress(cell);
1078
1079 return GetCellAddress(cell);
1080 }
1081
1082 uint32 IndexTable::GetHashValue(const IndexCell& cell) {
1083 if (small_table_)
1084 return GetCellSmallTableHash(cell);
1085
1086 return GetCellHash(cell);
1087 }
1088
1089 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) {
1090 // It is OK for the high order bits of lower_part to overlap with the stored
1091 // part of the hash.
1092 if (small_table_)
1093 return (GetCellSmallTableHash(cell) << kHashSmallTableShift) | lower_part;
1094
1095 return (GetCellHash(cell) << kHashShift) | lower_part;
1096 }
1097
1098 // All the bits stored in the cell should match the provided hash.
1099 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) {
1100 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift;
1101 return GetHashValue(cell) == hash;
1102 }
1103
1104 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) {
1105 if (!extra_bits_)
1106 return false;
1107
1108 uint32 mask = (1 << extra_bits_) - 1;
1109 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift;
1110 return (GetHashValue(cell) & mask) != (hash & mask);
1111 }
1112
1113 } // namespace disk_cache
OLDNEW
« no previous file with comments | « net/disk_cache/v3/index_table.h ('k') | net/disk_cache/v3/index_table_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698