|
OLD | NEW |
---|---|
(Empty) | |
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "net/disk_cache/v3/index_table.h" | |
6 | |
7 #include <algorithm> | |
8 #include <set> | |
9 #include <utility> | |
10 | |
11 #include "base/bits.h" | |
12 #include "net/base/io_buffer.h" | |
13 #include "net/base/net_errors.h" | |
14 #include "net/disk_cache/disk_cache.h" | |
15 | |
16 using base::Time; | |
17 using base::TimeDelta; | |
18 using disk_cache::CellInfo; | |
19 using disk_cache::CellList; | |
20 using disk_cache::IndexCell; | |
21 using disk_cache::IndexIterator; | |
22 | |
23 namespace { | |
24 | |
25 const uint32 kMaxAddress = 1 << 22; | |
26 | |
27 const int kCellHashOffset = 22; | |
28 const int kCellSmallTableHashOffset = 16; | |
29 const int kCellTimestampOffset = 40; | |
30 const int kCellReuseOffset = 60; | |
31 const int kCellGroupOffset = 3; | |
32 const int kCellSumOffset = 6; | |
33 | |
34 const uint64 kCellAddressMask = 0x3FFFFF; | |
35 const uint64 kCellSmallTableAddressMask = 0xFFFF; | |
36 const uint64 kCellHashMask = 0x3FFFF; | |
37 const uint64 kCellSmallTableHashMask = 0xFFFFFF; | |
38 const uint64 kCellTimestampMask = 0xFFFFF; | |
39 const uint64 kCellReuseMask = 0xF; | |
40 const uint8 kCellStateMask = 0x7; | |
41 const uint8 kCellGroupMask = 0x7; | |
42 const uint8 kCellSumMask = 0x3; | |
43 | |
44 const int kHashShift = 14; | |
45 const int kHashSmallTableShift = 8; | |
46 | |
47 // Unfortunately we have to break the abstaction a little here: the file number | |
48 // where entries are stored is outside of the control of this code, and it is | |
49 // usually part of the stored address. However, for small tables we only store | |
50 // 16 bits of the address so the file number is never stored on a cell. We have | |
51 // to infere the file number from the type of entry (normal vs evicted), and | |
52 // the knowledge that given that the table will not keep more than 64k entries, | |
53 // a single file of each type is enough. | |
54 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1; | |
55 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1; | |
56 | |
57 uint32 GetCellAddress(const IndexCell& cell) { | |
58 return cell.first_part & kCellAddressMask; | |
59 } | |
60 | |
61 uint32 GetCellSmallTableAddress(const IndexCell& cell) { | |
62 return cell.first_part & kCellSmallTableAddressMask; | |
63 } | |
64 | |
65 uint32 GetCellHash(const IndexCell& cell) { | |
66 return (cell.first_part >> kCellHashOffset) & kCellHashMask; | |
67 } | |
68 | |
69 uint32 GetCellSmallTableHash(const IndexCell& cell) { | |
70 return (cell.first_part >> kCellSmallTableHashOffset) & | |
71 kCellSmallTableHashMask; | |
72 } | |
73 | |
74 int GetCellTimestamp(const IndexCell& cell) { | |
75 return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask; | |
76 } | |
77 | |
78 int GetCellReuse(const IndexCell& cell) { | |
79 return (cell.first_part >> kCellReuseOffset) & kCellReuseMask; | |
80 } | |
81 | |
82 int GetCellState(const IndexCell& cell) { | |
83 return cell.last_part & kCellStateMask; | |
84 } | |
85 | |
86 int GetCellGroup(const IndexCell& cell) { | |
87 return (cell.last_part >> kCellGroupOffset) & kCellGroupMask; | |
88 } | |
89 | |
90 int GetCellSum(const IndexCell& cell) { | |
91 return (cell.last_part >> kCellSumOffset) & kCellSumMask; | |
92 } | |
93 | |
94 void SetCellAddress(IndexCell* cell, uint32 address) { | |
95 DCHECK_LE(address, static_cast<uint32>(kCellAddressMask)); | |
96 cell->first_part &= ~kCellAddressMask; | |
97 cell->first_part |= address; | |
98 } | |
99 | |
100 void SetCellSmallTableAddress(IndexCell* cell, uint32 address) { | |
101 DCHECK_LE(address, static_cast<uint32>(kCellSmallTableAddressMask)); | |
102 cell->first_part &= ~kCellSmallTableAddressMask; | |
103 cell->first_part |= address; | |
104 } | |
105 | |
106 void SetCellHash(IndexCell* cell, uint32 hash) { | |
107 DCHECK_LE(hash, static_cast<uint32>(kCellHashMask)); | |
108 cell->first_part &= ~(kCellHashMask << kCellHashOffset); | |
109 cell->first_part |= static_cast<int64>(hash) << kCellHashOffset; | |
110 } | |
111 | |
112 void SetCellSmallTableHash(IndexCell* cell, uint32 hash) { | |
113 DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableHashMask)); | |
114 cell->first_part &= ~(kCellSmallTableHashMask << kCellSmallTableHashOffset); | |
115 cell->first_part |= static_cast<int64>(hash) << kCellSmallTableHashOffset; | |
116 } | |
117 | |
118 void SetCellTimestamp(IndexCell* cell, int timestamp) { | |
119 DCHECK_LT(timestamp, 1 << 20); | |
120 DCHECK_GE(timestamp, 0); | |
121 cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset); | |
122 cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset; | |
123 } | |
124 | |
125 void SetCellReuse(IndexCell* cell, int count) { | |
126 DCHECK_LT(count, 16); | |
127 DCHECK_GE(count, 0); | |
128 cell->first_part &= ~(kCellReuseMask << kCellReuseOffset); | |
129 cell->first_part |= static_cast<int64>(count) << kCellReuseOffset; | |
130 } | |
131 | |
132 void SetCellState(IndexCell* cell, disk_cache::EntryState state) { | |
133 cell->last_part &= ~kCellStateMask; | |
134 cell->last_part |= state; | |
135 } | |
136 | |
137 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) { | |
138 cell->last_part &= ~(kCellGroupMask << kCellGroupOffset); | |
139 cell->last_part |= group << kCellGroupOffset; | |
140 } | |
141 | |
142 void SetCellSum(IndexCell* cell, int sum) { | |
143 DCHECK_LT(sum, 4); | |
144 DCHECK_GE(sum, 0); | |
145 cell->last_part &= ~(kCellSumMask << kCellSumOffset); | |
146 cell->last_part |= sum << kCellSumOffset; | |
147 } | |
148 | |
149 // This is a very particular way to calculate the sum, so it will not match if | |
150 // compared a gainst a pure 2 bit, modulo 2 sum. | |
151 int CalculateCellSum(const IndexCell& cell) { | |
152 uint32* words = bit_cast<uint32*>(&cell); | |
153 uint8* bytes = bit_cast<uint8*>(&cell); | |
154 uint32 result = words[0] + words[1]; | |
155 result += result >> 16; | |
156 result += (result >> 8) + (bytes[8] & 0x3f); | |
157 result += result >> 4; | |
158 result += result >> 2; | |
159 return result & 3; | |
160 } | |
161 | |
162 bool SanityCheck(const IndexCell& cell) { | |
163 if (GetCellSum(cell) != CalculateCellSum(cell)) | |
164 return false; | |
165 | |
166 if (GetCellState(cell) > disk_cache::ENTRY_USED || | |
167 GetCellGroup(cell) == disk_cache::ENTRY_RESERVED || | |
168 GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) { | |
169 return false; | |
170 } | |
171 | |
172 return true; | |
173 } | |
174 | |
175 bool IsValidAddress(disk_cache::Addr address) { | |
176 if (!address.is_initialized() || | |
177 (address.file_type() != disk_cache::BLOCK_EVICTED && | |
178 address.file_type() != disk_cache::BLOCK_ENTRIES)) { | |
179 return false; | |
180 } | |
181 | |
182 return address.ToIndexEntryAddress() < kMaxAddress; | |
183 } | |
184 | |
185 bool IsNormalState(const IndexCell& cell) { | |
186 disk_cache::EntryState state = | |
187 static_cast<disk_cache::EntryState>(GetCellState(cell)); | |
188 DCHECK_NE(state, disk_cache::ENTRY_FREE); | |
189 return state != disk_cache::ENTRY_DELETED && | |
190 state != disk_cache::ENTRY_FIXING; | |
191 } | |
192 | |
193 inline int GetNextBucket(int min_bucket_id, int max_bucket_id, | |
194 disk_cache::IndexBucket* table, | |
195 disk_cache::IndexBucket** bucket) { | |
196 if (!(*bucket)->next) | |
197 return 0; | |
198 | |
199 int bucket_id = (*bucket)->next / disk_cache::kCellsPerBucket; | |
200 if (bucket_id < min_bucket_id || bucket_id > max_bucket_id) { | |
201 (*bucket)->next = 0; | |
202 return 0; | |
203 } | |
204 *bucket = &table[bucket_id - min_bucket_id]; | |
205 return bucket_id; | |
206 } | |
207 | |
208 // Updates the |iterator| with the current |cell|. This cell may cause all | |
209 // previous cells to be deleted (when a new target timestamp is found), the cell | |
210 // may be added to the list (if it matches the target timestamp), or may it be | |
211 // ignored. | |
212 void UpdateIterator(const disk_cache::EntryCell& cell, | |
213 int limit_time, | |
214 IndexIterator* iterator) { | |
215 int time = cell.GetTimestamp(); | |
216 // Look for not interesting times. | |
217 if (iterator->forward && time <= limit_time) | |
218 return; | |
219 if (!iterator->forward && time >= limit_time) | |
220 return; | |
221 | |
222 if ((iterator->forward && time < iterator->timestamp) || | |
223 (!iterator->forward && time > iterator->timestamp)) { | |
224 // This timestamp is better than the one we had. | |
225 iterator->timestamp = time; | |
226 iterator->cells.clear(); | |
227 } | |
228 if (time == iterator->timestamp) { | |
229 CellInfo cell_info = { cell.hash(), cell.GetAddress() }; | |
230 iterator->cells.push_back(cell_info); | |
231 } | |
232 } | |
233 | |
234 void InitIterator(IndexIterator* iterator) { | |
235 iterator->cells.clear(); | |
236 iterator->timestamp = iterator->forward ? kint32max : 0; | |
237 } | |
238 | |
239 } // namespace | |
240 | |
241 namespace disk_cache { | |
242 | |
243 EntryCell::~EntryCell() { | |
244 } | |
245 | |
246 bool EntryCell::IsValid() const { | |
247 return GetCellAddress(cell_) != 0; | |
248 } | |
249 | |
250 Addr EntryCell::GetAddress() const { | |
Randy Smith (Not in Mondays)
2013/11/13 21:14:12
I spent some time wrapping my brain around this fu
Randy Smith (Not in Mondays)
2013/11/13 21:14:12
Another random table format question: How do you g
rvargas (doing something else)
2013/11/14 02:54:19
The issue is that the small table format only supp
rvargas (doing something else)
2013/11/14 02:54:19
That case corresponds for example to storing 800 b
Randy Smith (Not in Mondays)
2013/11/18 20:37:04
It might be, actually. I agree with you that give
rvargas (doing something else)
2013/11/18 23:43:34
Done. I'll cleanup Addr if we are happy here.
Randy Smith (Not in Mondays)
2013/11/25 19:48:07
Thanks! Yes, this looks much better. Go ahead an
rvargas (doing something else)
2013/11/26 19:54:40
Done.
| |
251 uint32 address_value = GetAddressValue(); | |
252 if (small_table_) { | |
253 if (GetGroup() == ENTRY_EVICTED) | |
254 return Addr(BLOCK_EVICTED, 1, kEvictedEntriesFile, address_value); | |
255 | |
256 return Addr(BLOCK_ENTRIES, 1, kEntriesFile, address_value); | |
257 } | |
258 | |
259 if (GetGroup() == ENTRY_EVICTED) | |
260 return Addr::FromEvictedAddress(address_value); | |
261 else | |
262 return Addr::FromEntryAddress(address_value); | |
Randy Smith (Not in Mondays)
2013/11/13 21:14:12
For both these calls, it feels like "From*Address"
rvargas (doing something else)
2013/11/14 02:54:19
The name follows what is available on addr.h :( I
Randy Smith (Not in Mondays)
2013/11/18 20:37:04
Maybe a comment inside the "if (small_table_)" con
| |
263 } | |
264 | |
265 EntryState EntryCell::GetState() const { | |
266 return static_cast<EntryState>(cell_.last_part & kCellStateMask); | |
267 } | |
268 | |
269 EntryGroup EntryCell::GetGroup() const { | |
270 return static_cast<EntryGroup>((cell_.last_part >> kCellGroupOffset) & | |
271 kCellGroupMask); | |
272 } | |
273 | |
274 int EntryCell::GetReuse() const { | |
275 return (cell_.first_part >> kCellReuseOffset) & kCellReuseMask; | |
276 } | |
277 | |
278 int EntryCell::GetTimestamp() const { | |
279 return GetCellTimestamp(cell_); | |
280 } | |
281 | |
282 void EntryCell::SetState(EntryState state) { | |
283 SetCellState(&cell_, state); | |
284 } | |
285 | |
286 void EntryCell::SetGroup(EntryGroup group) { | |
287 SetCellGroup(&cell_, group); | |
288 } | |
289 | |
290 void EntryCell::SetReuse(int count) { | |
291 SetCellReuse(&cell_, count); | |
292 } | |
293 | |
294 void EntryCell::SetTimestamp(int timestamp) { | |
295 SetCellTimestamp(&cell_, timestamp); | |
296 } | |
297 | |
298 // Static. | |
299 EntryCell EntryCell::GetEntryCellForTest(int32 cell_id, | |
300 uint32 hash, | |
301 Addr address, | |
302 IndexCell* cell, | |
303 bool small_table) { | |
304 if (cell) { | |
305 EntryCell entry_cell(cell_id, hash, *cell, small_table); | |
306 return entry_cell; | |
307 } | |
308 | |
309 return EntryCell(cell_id, hash, address, small_table); | |
310 } | |
311 | |
312 void EntryCell::SerializaForTest(IndexCell* destination) { | |
313 FixSum(); | |
314 Serialize(destination); | |
315 } | |
316 | |
317 EntryCell::EntryCell() : cell_id_(0), hash_(0), small_table_(false) { | |
318 cell_.Clear(); | |
319 } | |
320 | |
321 EntryCell::EntryCell(int32 cell_id, uint32 hash, Addr address, bool small_table) | |
322 : cell_id_(cell_id), | |
323 hash_(hash), | |
324 small_table_(small_table) { | |
325 DCHECK(IsValidAddress(address) || !address.value()); | |
326 | |
327 cell_.Clear(); | |
328 SetCellState(&cell_, ENTRY_NEW); | |
329 SetCellGroup(&cell_, ENTRY_NO_USE); | |
330 if (small_table) { | |
331 DCHECK(address.FileNumber() == kEntriesFile || | |
332 address.FileNumber() == kEvictedEntriesFile); | |
333 SetCellSmallTableAddress(&cell_, address.start_block()); | |
334 SetCellSmallTableHash(&cell_, hash >> kHashSmallTableShift); | |
335 } else { | |
336 SetCellAddress(&cell_, address.ToIndexEntryAddress()); | |
337 SetCellHash(&cell_, hash >> kHashShift); | |
338 } | |
339 } | |
340 | |
341 EntryCell::EntryCell(int32 cell_id, | |
342 uint32 hash, | |
343 const IndexCell& cell, | |
344 bool small_table) | |
345 : cell_id_(cell_id), | |
346 hash_(hash), | |
347 cell_(cell), | |
348 small_table_(small_table) { | |
349 } | |
350 | |
351 void EntryCell::FixSum() { | |
352 SetCellSum(&cell_, CalculateCellSum(cell_)); | |
353 } | |
354 | |
355 uint32 EntryCell::GetAddressValue() const { | |
356 if (small_table_) | |
357 return GetCellSmallTableAddress(cell_); | |
358 | |
359 return GetCellAddress(cell_); | |
360 } | |
361 | |
362 uint32 EntryCell::RecomputeHash() { | |
363 if (small_table_) { | |
364 hash_ &= (1 << kHashSmallTableShift) - 1; | |
365 hash_ |= GetCellSmallTableHash(cell_) << kHashSmallTableShift; | |
366 return hash_; | |
367 } | |
368 | |
369 hash_ &= (1 << kHashShift) - 1; | |
370 hash_ |= GetCellHash(cell_) << kHashShift; | |
371 return hash_; | |
372 } | |
373 | |
374 void EntryCell::Serialize(IndexCell* destination) const { | |
375 *destination = cell_; | |
376 } | |
377 | |
378 EntrySet::EntrySet() : evicted_count(0), current(0) { | |
379 } | |
380 | |
381 EntrySet::~EntrySet() { | |
382 } | |
383 | |
384 IndexIterator::IndexIterator() { | |
385 } | |
386 | |
387 IndexIterator::~IndexIterator() { | |
388 } | |
389 | |
390 IndexTableInitData::IndexTableInitData() { | |
391 } | |
392 | |
393 IndexTableInitData::~IndexTableInitData() { | |
394 } | |
395 | |
396 // ----------------------------------------------------------------------- | |
397 | |
398 IndexTable::IndexTable(IndexTableBackend* backend) | |
399 : backend_(backend), | |
400 header_(NULL), | |
401 main_table_(NULL), | |
402 extra_table_(NULL), | |
403 modified_(false), | |
404 small_table_(false) { | |
405 } | |
406 | |
407 IndexTable::~IndexTable() { | |
408 } | |
409 | |
410 // For a general description of the index tables see: | |
411 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/ disk-cache-v3#TOC-Index | |
412 // | |
413 // The index is split between two tables: the main_table_ and the extra_table_. | |
414 // The main table can grow only by doubling its number of cells, while the | |
415 // extra table can grow slowly, because it only contain cells that overflow | |
416 // from the main table. In order to locate a given cell, part of the hash is | |
417 // used directly as an index into the main table; once that bucket is located, | |
418 // all cells with that partial hash (i.e., belonging to that bucket) are | |
419 // inspected, and if present, the next bucket (located on the extra table) is | |
420 // then located. For more information on bucket chaining see: | |
421 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/ disk-cache-v3#TOC-Buckets | |
422 // | |
423 // There are two cases when increasing the size: | |
424 // - Doubling the size of the main table | |
425 // - Adding more entries to the extra table | |
426 // | |
427 // For example, consider a 64k main table with 8k cells on the extra table (for | |
428 // a total of 72k cells). Init can be called to add another 8k cells at the end | |
429 // (grow to 80k cells). When the size of the extra table approaches 64k, Init | |
430 // can be called to double the main table (to 128k) and go back to a small extra | |
431 // table. | |
432 void IndexTable::Init(IndexTableInitData* params) { | |
433 bool growing = header_ != NULL; | |
434 scoped_ptr<IndexBucket[]> old_extra_table; | |
435 header_ = ¶ms->index_bitmap->header; | |
436 | |
437 if (params->main_table) { | |
438 if (main_table_) { | |
439 // This is doubling the size of main table. | |
440 DCHECK_EQ(base::bits::Log2Floor(header_->table_len), | |
441 base::bits::Log2Floor(backup_header_->table_len) + 1); | |
442 int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket; | |
443 DCHECK_GE(extra_size, 0); | |
444 | |
445 // Doubling the size implies deleting the extra table and moving as many | |
446 // cells as we can to the main table, so we first copy the old one. This | |
447 // is not required when just growing the extra table because we don't | |
448 // move any cell in that case. | |
449 old_extra_table.reset(new IndexBucket[extra_size]); | |
450 memcpy(old_extra_table.get(), extra_table_, | |
451 extra_size * sizeof(IndexBucket)); | |
452 memset(params->extra_table, 0, extra_size * sizeof(IndexBucket)); | |
453 } | |
454 main_table_ = params->main_table; | |
455 } | |
456 DCHECK(main_table_); | |
457 extra_table_ = params->extra_table; | |
458 | |
459 extra_bits_ = base::bits::Log2Floor(header_->table_len) - | |
460 base::bits::Log2Floor(kBaseTableLen); | |
461 DCHECK_GE(extra_bits_, 0); | |
462 DCHECK_LE(extra_bits_, 11); | |
463 mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1; | |
464 small_table_ = extra_bits_ < kHashShift - kHashSmallTableShift; | |
465 if (!small_table_) | |
466 extra_bits_ -= kHashShift - kHashSmallTableShift; | |
467 | |
468 // table_len keeps the max number of cells stored by the index. We need a | |
469 // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words. | |
470 int num_words = (header_->table_len + 31) / 32; | |
471 | |
472 if (old_extra_table) { | |
473 // All the cells from the extra table are moving to the new tables so before | |
474 // creating the bitmaps, clear the part of the extra table. | |
475 int main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32; | |
476 DCHECK_GT(num_words, main_table_bit_words); | |
477 memset(params->index_bitmap->bitmap + main_table_bit_words, 0, | |
478 (num_words - main_table_bit_words) * sizeof(int32)); | |
479 | |
480 DCHECK(growing); | |
481 int old_num_words = (backup_header_.get()->table_len + 31) / 32; | |
482 DCHECK_GT(old_num_words, main_table_bit_words); | |
483 memset(backup_bitmap_storage_.get() + main_table_bit_words, 0, | |
484 (old_num_words - main_table_bit_words) * sizeof(int32)); | |
485 } | |
486 bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len, | |
487 num_words)); | |
488 | |
489 if (growing) { | |
490 int old_num_words = (backup_header_.get()->table_len + 31) / 32; | |
491 DCHECK_GE(num_words, old_num_words); | |
492 scoped_ptr<uint32[]> storage(new uint32[num_words]); | |
493 memcpy(storage.get(), backup_bitmap_storage_.get(), | |
494 old_num_words * sizeof(int32)); | |
495 memset(storage.get() + old_num_words, 0, | |
496 (num_words - old_num_words) * sizeof(int32)); | |
497 | |
498 backup_bitmap_storage_.swap(storage); | |
499 backup_header_->table_len = header_->table_len; | |
500 } else { | |
501 backup_bitmap_storage_.reset(params->backup_bitmap.release()); | |
502 backup_header_.reset(params->backup_header.release()); | |
503 } | |
504 | |
505 num_words = (backup_header_->table_len + 31) / 32; | |
506 backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(), | |
507 backup_header_->table_len, num_words)); | |
508 if (old_extra_table) | |
509 MoveCells(old_extra_table.get()); | |
510 | |
511 if (small_table_) | |
512 DCHECK(header_->flags & SMALL_CACHE); | |
513 } | |
514 | |
515 void IndexTable::Reset() { | |
516 header_ = NULL; | |
517 main_table_ = NULL; | |
518 extra_table_ = NULL; | |
519 bitmap_.reset(); | |
520 backup_bitmap_.reset(); | |
521 backup_header_.reset(); | |
522 backup_bitmap_storage_.reset(); | |
523 modified_ = false; | |
524 } | |
525 | |
526 // The general method for locating cells is to: | |
527 // 1. Get the first bucket. This usually means directly indexing the table (as | |
528 // this method does), or iterating through all possible buckets. | |
529 // 2. Iterate through all the cells in that first bucket. | |
530 // 3. If there is a linked bucket, locate it directly in the extra table. | |
531 // 4. Go back to 2, as needed. | |
532 // | |
533 // One consequence of this pattern is that we never start looking at buckets in | |
534 // the extra table, unless we are following a link from the main table. | |
535 EntrySet IndexTable::LookupEntries(uint32 hash) { | |
536 EntrySet entries; | |
537 int bucket_id = static_cast<int>(hash & mask_); | |
538 IndexBucket* bucket = &main_table_[bucket_id]; | |
539 for (;;) { | |
540 for (int i = 0; i < kCellsPerBucket; i++) { | |
541 IndexCell* current_cell = &bucket->cells[i]; | |
542 if (!GetAddressValue(*current_cell)) | |
543 continue; | |
544 if (!SanityCheck(*current_cell)) { | |
545 NOTREACHED(); | |
546 int cell_id = bucket_id * kCellsPerBucket + i; | |
547 current_cell->Clear(); | |
548 bitmap_->Set(cell_id, false); | |
549 backup_bitmap_->Set(cell_id, false); | |
550 modified_ = true; | |
551 continue; | |
552 } | |
553 int cell_id = bucket_id * kCellsPerBucket + i; | |
554 if (MisplacedHash(*current_cell, hash)) { | |
555 HandleMisplacedCell(current_cell, cell_id, hash & mask_); | |
556 } else if (IsHashMatch(*current_cell, hash)) { | |
557 EntryCell entry_cell(cell_id, hash, *current_cell, small_table_); | |
558 CheckState(entry_cell); | |
559 if (entry_cell.GetState() != ENTRY_DELETED) { | |
560 entries.cells.push_back(entry_cell); | |
561 if (entry_cell.GetGroup() == ENTRY_EVICTED) | |
562 entries.evicted_count++; | |
563 } | |
564 } | |
565 } | |
566 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
567 &bucket); | |
568 if (!bucket_id) | |
569 break; | |
570 } | |
571 return entries; | |
572 } | |
573 | |
574 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) { | |
575 DCHECK(IsValidAddress(address)); | |
576 DCHECK(address.ToIndexEntryAddress()); | |
577 | |
578 int bucket_id = static_cast<int>(hash & mask_); | |
579 int cell_id = 0; | |
580 IndexBucket* bucket = &main_table_[bucket_id]; | |
581 IndexCell* current_cell = NULL; | |
582 bool found = false; | |
583 for (; !found;) { | |
584 for (int i = 0; i < kCellsPerBucket && !found; i++) { | |
585 current_cell = &bucket->cells[i]; | |
586 if (!GetAddressValue(*current_cell)) { | |
587 cell_id = bucket_id * kCellsPerBucket + i; | |
588 found = true; | |
589 } | |
590 } | |
591 if (found) | |
592 break; | |
593 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
594 &bucket); | |
595 if (!bucket_id) | |
596 break; | |
597 } | |
598 | |
599 if (!found) { | |
600 bucket_id = NewExtraBucket(); | |
601 if (bucket_id) { | |
602 cell_id = bucket_id * kCellsPerBucket; | |
603 bucket->next = cell_id; | |
604 bucket = &extra_table_[bucket_id - (mask_ + 1)]; | |
605 bucket->hash = hash & mask_; | |
606 found = true; | |
607 } else { | |
608 // address 0 is a reserved value, and the caller interprets it as invalid. | |
609 address.set_value(0); | |
610 } | |
611 } | |
612 | |
613 EntryCell entry_cell(cell_id, hash, address, small_table_); | |
614 if (address.file_type() == BLOCK_EVICTED) | |
615 entry_cell.SetGroup(ENTRY_EVICTED); | |
616 else | |
617 entry_cell.SetGroup(ENTRY_NO_USE); | |
618 Save(&entry_cell); | |
619 | |
620 if (found) { | |
621 bitmap_->Set(cell_id, true); | |
622 backup_bitmap_->Set(cell_id, true); | |
623 header()->used_cells++; | |
624 modified_ = true; | |
625 } | |
626 | |
627 return entry_cell; | |
628 } | |
629 | |
630 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) { | |
631 return FindEntryCellImpl(hash, address, false); | |
632 } | |
633 | |
634 int IndexTable::CalculateTimestamp(Time time) { | |
635 TimeDelta delta = time - Time::FromInternalValue(header_->base_time); | |
636 return std::max(delta.InMinutes(), 0); | |
637 } | |
638 | |
639 base::Time IndexTable::TimeFromTimestamp(int timestamp) { | |
640 return Time::FromInternalValue(header_->base_time) + | |
641 TimeDelta::FromMinutes(timestamp); | |
642 } | |
643 | |
644 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) { | |
645 EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE); | |
646 if (!cell.IsValid()) { | |
647 NOTREACHED(); | |
648 return; | |
649 } | |
650 | |
651 EntryState old_state = cell.GetState(); | |
652 if (state == ENTRY_FREE) { | |
653 DCHECK_EQ(old_state, ENTRY_DELETED); | |
654 } else if (state == ENTRY_NEW) { | |
655 DCHECK_EQ(old_state, ENTRY_FREE); | |
656 } else if (state == ENTRY_OPEN) { | |
657 DCHECK_EQ(old_state, ENTRY_USED); | |
658 } else if (state == ENTRY_MODIFIED) { | |
659 DCHECK_EQ(old_state, ENTRY_OPEN); | |
660 } else if (state == ENTRY_DELETED) { | |
661 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || | |
662 old_state == ENTRY_MODIFIED); | |
663 } else if (state == ENTRY_USED) { | |
664 DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN || | |
665 old_state == ENTRY_MODIFIED); | |
666 } | |
667 | |
668 modified_ = true; | |
669 if (state == ENTRY_DELETED) { | |
670 bitmap_->Set(cell.cell_id(), false); | |
671 backup_bitmap_->Set(cell.cell_id(), false); | |
672 } else if (state == ENTRY_FREE) { | |
673 cell.Clear(); | |
674 Write(cell); | |
675 header()->used_cells--; | |
676 return; | |
677 } | |
678 cell.SetState(state); | |
679 | |
680 Save(&cell); | |
681 } | |
682 | |
683 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) { | |
684 EntryCell cell = FindEntryCell(hash, address); | |
685 if (!cell.IsValid()) | |
686 return; | |
687 | |
688 int minutes = CalculateTimestamp(current); | |
689 | |
690 // Keep about 3 months of headroom. | |
691 const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90; | |
692 if (minutes > kMaxTimestamp) { | |
693 // TODO(rvargas): | |
694 // Update header->old_time and trigger a timer | |
695 // Rebaseline timestamps and don't update sums | |
696 // Start a timer (about 2 backups) | |
697 // fix all ckecksums and trigger another timer | |
698 // update header->old_time because rebaseline is done. | |
699 minutes = std::min(minutes, (1 << 20) - 1); | |
700 } | |
701 | |
702 cell.SetTimestamp(minutes); | |
703 Save(&cell); | |
704 } | |
705 | |
706 void IndexTable::Save(EntryCell* cell) { | |
707 cell->FixSum(); | |
708 Write(*cell); | |
709 } | |
710 | |
711 void IndexTable::GetOldest(IndexIterator* no_use, | |
712 IndexIterator* low_use, | |
713 IndexIterator* high_use) { | |
714 no_use->forward = true; | |
715 low_use->forward = true; | |
716 high_use->forward = true; | |
717 InitIterator(no_use); | |
718 InitIterator(low_use); | |
719 InitIterator(high_use); | |
720 | |
721 WalkTables(-1, no_use, low_use, high_use); | |
722 } | |
723 | |
724 bool IndexTable::GetNextCells(IndexIterator* iterator) { | |
725 int current_time = iterator->timestamp; | |
726 InitIterator(iterator); | |
727 | |
728 WalkTables(current_time, iterator, iterator, iterator); | |
729 return !iterator->cells.empty(); | |
730 } | |
731 | |
732 void IndexTable::OnBackupTimer() { | |
733 if (!modified_) | |
734 return; | |
735 | |
736 int num_words = (header_->table_len + 31) / 32; | |
737 int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_)); | |
738 scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes)); | |
739 memcpy(buffer->data(), header_, sizeof(*header_)); | |
740 memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(), | |
741 num_words * 4); | |
742 backend_->SaveIndex(buffer, num_bytes); | |
743 modified_ = false; | |
744 } | |
745 | |
746 // ----------------------------------------------------------------------- | |
747 | |
748 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address, | |
749 bool allow_deleted) { | |
750 int bucket_id = static_cast<int>(hash & mask_); | |
751 IndexBucket* bucket = &main_table_[bucket_id]; | |
752 for (;;) { | |
753 for (int i = 0; i < kCellsPerBucket; i++) { | |
754 IndexCell* current_cell = &bucket->cells[i]; | |
755 if (!GetAddressValue(*current_cell)) | |
756 continue; | |
757 DCHECK(SanityCheck(*current_cell)); | |
758 if (IsHashMatch(*current_cell, hash)) { | |
759 // We have a match. | |
760 int cell_id = bucket_id * kCellsPerBucket + i; | |
761 EntryCell entry_cell(cell_id, hash, *current_cell, small_table_); | |
762 if (entry_cell.GetAddress() != address) | |
763 continue; | |
764 | |
765 if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED) | |
766 continue; | |
767 | |
768 return entry_cell; | |
769 } | |
770 } | |
771 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
772 &bucket); | |
773 if (!bucket_id) | |
774 break; | |
775 } | |
776 return EntryCell(); | |
777 } | |
778 | |
779 void IndexTable::CheckState(const EntryCell& cell) { | |
780 int current_state = cell.GetState(); | |
781 if (current_state != ENTRY_FIXING) { | |
782 bool present = ((current_state & 3) != 0); // Look at the last two bits. | |
783 if (present != bitmap_->Get(cell.cell_id()) || | |
784 present != backup_bitmap_->Get(cell.cell_id())) { | |
785 // There's a mismatch. | |
786 if (current_state == ENTRY_DELETED) { | |
787 // We were in the process of deleting this entry. Finish now. | |
788 backend_->DeleteCell(cell); | |
789 } else { | |
790 current_state = ENTRY_FIXING; | |
791 EntryCell bad_cell(cell); | |
792 bad_cell.SetState(ENTRY_FIXING); | |
793 Save(&bad_cell); | |
794 } | |
795 } | |
796 } | |
797 | |
798 if (current_state == ENTRY_FIXING) | |
799 backend_->FixCell(cell); | |
800 } | |
801 | |
802 void IndexTable::Write(const EntryCell& cell) { | |
803 IndexBucket* bucket = NULL; | |
804 int bucket_id = cell.cell_id() / kCellsPerBucket; | |
805 if (bucket_id < static_cast<int32>(mask_ + 1)) { | |
806 bucket = &main_table_[bucket_id]; | |
807 } else { | |
808 DCHECK_LE(bucket_id, header()->max_bucket); | |
809 bucket = &extra_table_[bucket_id - (mask_ + 1)]; | |
810 } | |
811 | |
812 int cell_number = cell.cell_id() % kCellsPerBucket; | |
813 if (GetAddressValue(bucket->cells[cell_number]) && cell.GetAddressValue()) { | |
814 DCHECK_EQ(cell.GetAddressValue(), | |
815 GetAddressValue(bucket->cells[cell_number])); | |
816 } | |
817 cell.Serialize(&bucket->cells[cell_number]); | |
818 } | |
819 | |
820 int IndexTable::NewExtraBucket() { | |
821 int safe_window = (header()->table_len < kNumExtraBlocks * 2) ? | |
822 kNumExtraBlocks / 4 : kNumExtraBlocks; | |
823 if (header()->table_len - header()->max_bucket * kCellsPerBucket < | |
824 safe_window) { | |
825 backend_->GrowIndex(); | |
826 } | |
827 | |
828 if (header()->max_bucket * kCellsPerBucket == | |
829 header()->table_len - kCellsPerBucket) { | |
830 return 0; | |
831 } | |
832 | |
833 header()->max_bucket++; | |
834 return header()->max_bucket; | |
835 } | |
836 | |
837 void IndexTable::WalkTables(int limit_time, | |
838 IndexIterator* no_use, | |
839 IndexIterator* low_use, | |
840 IndexIterator* high_use) { | |
841 header_->num_no_use_entries = 0; | |
842 header_->num_low_use_entries = 0; | |
843 header_->num_high_use_entries = 0; | |
844 header_->num_evicted_entries = 0; | |
845 | |
846 for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) { | |
847 int bucket_id = i; | |
848 IndexBucket* bucket = &main_table_[i]; | |
849 for (;;) { | |
850 UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use); | |
851 | |
852 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
853 &bucket); | |
854 if (!bucket_id) | |
855 break; | |
856 } | |
857 } | |
858 header_->num_entries = header_->num_no_use_entries + | |
859 header_->num_low_use_entries + | |
860 header_->num_high_use_entries + | |
861 header_->num_evicted_entries; | |
862 modified_ = true; | |
863 } | |
864 | |
865 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash, | |
866 int limit_time, | |
867 IndexIterator* no_use, | |
868 IndexIterator* low_use, | |
869 IndexIterator* high_use) { | |
870 for (int i = 0; i < kCellsPerBucket; i++) { | |
871 IndexCell& current_cell = bucket->cells[i]; | |
872 if (!GetAddressValue(current_cell)) | |
873 continue; | |
874 DCHECK(SanityCheck(current_cell)); | |
875 if (!IsNormalState(current_cell)) | |
876 continue; | |
877 | |
878 EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash), | |
879 current_cell, small_table_); | |
880 switch (GetCellGroup(current_cell)) { | |
881 case ENTRY_NO_USE: | |
882 UpdateIterator(entry_cell, limit_time, no_use); | |
883 header_->num_no_use_entries++; | |
884 break; | |
885 case ENTRY_LOW_USE: | |
886 UpdateIterator(entry_cell, limit_time, low_use); | |
887 header_->num_low_use_entries++; | |
888 break; | |
889 case ENTRY_HIGH_USE: | |
890 UpdateIterator(entry_cell, limit_time, high_use); | |
891 header_->num_high_use_entries++; | |
892 break; | |
893 case ENTRY_EVICTED: | |
894 header_->num_evicted_entries++; | |
895 break; | |
896 default: | |
897 NOTREACHED(); | |
898 } | |
899 } | |
900 } | |
901 | |
902 void IndexTable::MoveCells(IndexBucket* old_extra_table) { | |
903 int max_hash = (mask_ + 1) / 2; | |
904 int max_bucket = header()->max_bucket; | |
905 header()->max_bucket = mask_; | |
906 int used_cells = header()->used_cells; | |
907 | |
908 // Consider a large cache: a cell stores the upper 18 bits of the hash | |
909 // (h >> 14). If the table is say 8 times the original size (growing from 4x), | |
910 // the bit that we are interested in would be the 3rd bit of the stored value, | |
911 // in other words 'multiplier' >> 1. | |
912 uint32 new_bit = (1 << extra_bits_) >> 1; | |
913 | |
914 scoped_ptr<IndexBucket[]> old_main_table; | |
915 IndexBucket* source_table = main_table_; | |
916 bool upgrade_format = !extra_bits_; | |
917 if (upgrade_format) { | |
918 // This method should deal with migrating a small table to a big one. Given | |
919 // that the first thing to do is read the old table, set small_table_ for | |
920 // the size of the old table. Now, when moving a cell, the result cannot be | |
921 // placed in the old table or we will end up reading it again and attempting | |
922 // to move it, so we have to copy the whole table at once. | |
923 DCHECK(!small_table_); | |
924 small_table_ = true; | |
925 old_main_table.reset(new IndexBucket[max_hash]); | |
926 memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket)); | |
927 memset(main_table_, 0, max_hash * sizeof(IndexBucket)); | |
928 source_table = old_main_table.get(); | |
929 } | |
930 | |
931 for (int i = 0; i < max_hash; i++) { | |
932 int bucket_id = i; | |
933 IndexBucket* bucket = &source_table[i]; | |
934 for (;;) { | |
935 for (int j = 0; j < kCellsPerBucket; j++) { | |
936 IndexCell& current_cell = bucket->cells[j]; | |
937 if (!GetAddressValue(current_cell)) | |
938 continue; | |
939 DCHECK(SanityCheck(current_cell)); | |
940 if (bucket_id == i) { | |
941 if (upgrade_format || (GetHashValue(current_cell) & new_bit)) { | |
942 // Move this cell to the upper half of the table. | |
943 MoveSingleCell(¤t_cell, bucket_id * kCellsPerBucket + j, i, | |
944 true); | |
945 } | |
946 } else { | |
947 // All cells on extra buckets have to move. | |
948 MoveSingleCell(¤t_cell, bucket_id * kCellsPerBucket + j, i, | |
949 true); | |
950 } | |
951 } | |
952 | |
953 bucket_id = GetNextBucket(max_hash, max_bucket, old_extra_table, &bucket); | |
954 if (!bucket_id) | |
955 break; | |
956 } | |
957 } | |
958 | |
959 DCHECK_EQ(header()->used_cells, used_cells); | |
960 | |
961 if (upgrade_format) { | |
962 small_table_ = false; | |
963 header()->flags &= ~SMALL_CACHE; | |
964 } | |
965 } | |
966 | |
967 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_id, | |
968 int main_table_index, bool growing) { | |
969 uint32 hash = GetFullHash(*current_cell, main_table_index); | |
970 EntryCell old_cell(cell_id, hash, *current_cell, small_table_); | |
971 | |
972 bool upgrade_format = !extra_bits_ && growing; | |
973 if (upgrade_format) | |
974 small_table_ = false; | |
975 EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress()); | |
976 | |
977 if (!new_cell.IsValid()) { | |
978 // We'll deal with this entry later. | |
979 if (upgrade_format) | |
980 small_table_ = true; | |
981 return; | |
982 } | |
983 | |
984 new_cell.SetState(old_cell.GetState()); | |
985 new_cell.SetGroup(old_cell.GetGroup()); | |
986 new_cell.SetReuse(old_cell.GetReuse()); | |
987 new_cell.SetTimestamp(old_cell.GetTimestamp()); | |
988 Save(&new_cell); | |
989 modified_ = true; | |
990 if (upgrade_format) | |
991 small_table_ = true; | |
992 | |
993 if (old_cell.GetState() == ENTRY_DELETED) { | |
994 bitmap_->Set(new_cell.cell_id(), false); | |
995 backup_bitmap_->Set(new_cell.cell_id(), false); | |
996 } | |
997 | |
998 if (!growing || cell_id / kCellsPerBucket == main_table_index) { | |
999 // Only delete entries that live on the main table. | |
1000 if (!upgrade_format) { | |
1001 old_cell.Clear(); | |
1002 Write(old_cell); | |
1003 } | |
1004 | |
1005 if (cell_id != new_cell.cell_id()) { | |
1006 bitmap_->Set(old_cell.cell_id(), false); | |
1007 backup_bitmap_->Set(old_cell.cell_id(), false); | |
1008 } | |
1009 } | |
1010 header()->used_cells--; | |
1011 } | |
1012 | |
1013 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_id, | |
1014 int main_table_index) { | |
1015 // The cell may be misplaced, or a duplicate cell exists with this data. | |
1016 uint32 hash = GetFullHash(*current_cell, main_table_index); | |
1017 MoveSingleCell(current_cell, cell_id, main_table_index, false); | |
1018 | |
1019 // Now look for a duplicate cell. | |
1020 CheckBucketList(hash & mask_); | |
1021 } | |
1022 | |
1023 void IndexTable::CheckBucketList(int bucket_id) { | |
1024 typedef std::pair<int, EntryGroup> AddressAndGroup; | |
1025 std::set<AddressAndGroup> entries; | |
1026 IndexBucket* bucket = &main_table_[bucket_id]; | |
1027 int bucket_hash = bucket_id; | |
1028 for (;;) { | |
1029 for (int i = 0; i < kCellsPerBucket; i++) { | |
1030 IndexCell* current_cell = &bucket->cells[i]; | |
1031 if (!GetAddressValue(*current_cell)) | |
1032 continue; | |
1033 if (!SanityCheck(*current_cell)) { | |
1034 NOTREACHED(); | |
1035 current_cell->Clear(); | |
1036 continue; | |
1037 } | |
1038 int cell_id = bucket_id * kCellsPerBucket + i; | |
1039 EntryCell cell(cell_id, GetFullHash(*current_cell, bucket_hash), | |
1040 *current_cell, small_table_); | |
1041 if (!entries.insert(std::make_pair(cell.GetAddress().value(), | |
1042 cell.GetGroup())).second) { | |
1043 current_cell->Clear(); | |
1044 continue; | |
1045 } | |
1046 CheckState(cell); | |
1047 } | |
1048 | |
1049 bucket_id = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_, | |
1050 &bucket); | |
1051 if (!bucket_id) | |
1052 break; | |
1053 } | |
1054 } | |
1055 | |
1056 uint32 IndexTable::GetAddressValue(const IndexCell& cell) { | |
1057 if (small_table_) | |
1058 return GetCellSmallTableAddress(cell); | |
1059 | |
1060 return GetCellAddress(cell); | |
1061 } | |
1062 | |
1063 uint32 IndexTable::GetHashValue(const IndexCell& cell) { | |
1064 if (small_table_) | |
1065 return GetCellSmallTableHash(cell); | |
1066 | |
1067 return GetCellHash(cell); | |
1068 } | |
1069 | |
1070 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) { | |
1071 // It is OK for the high order bits of lower_part to overlap with the stored | |
1072 // part of the hash. | |
1073 if (small_table_) | |
1074 return (GetCellSmallTableHash(cell) << kHashSmallTableShift) | lower_part; | |
1075 | |
1076 return (GetCellHash(cell) << kHashShift) | lower_part; | |
1077 } | |
1078 | |
1079 // All the bits stored in the cell should match the provided hash. | |
1080 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) { | |
1081 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift; | |
1082 return GetHashValue(cell) == hash; | |
1083 } | |
1084 | |
1085 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) { | |
1086 if (!extra_bits_) | |
1087 return false; | |
1088 | |
1089 uint32 mask = (1 << extra_bits_) - 1; | |
1090 hash = small_table_ ? hash >> kHashSmallTableShift : hash >> kHashShift; | |
1091 return (GetHashValue(cell) & mask) != (hash & mask); | |
1092 } | |
1093 | |
1094 } // namespace disk_cache | |
OLD | NEW |