| Index: src/utils/SkThreadPool.h
|
| diff --git a/src/utils/SkThreadPool.h b/src/utils/SkThreadPool.h
|
| deleted file mode 100644
|
| index c99c5c4188a5b636f8213ce655f5138fb28f79a0..0000000000000000000000000000000000000000
|
| --- a/src/utils/SkThreadPool.h
|
| +++ /dev/null
|
| @@ -1,221 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#ifndef SkThreadPool_DEFINED
|
| -#define SkThreadPool_DEFINED
|
| -
|
| -#include "SkCondVar.h"
|
| -#include "SkRunnable.h"
|
| -#include "SkTDArray.h"
|
| -#include "SkTInternalLList.h"
|
| -#include "SkThreadUtils.h"
|
| -#include "SkTypes.h"
|
| -
|
| -#if defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID)
|
| -# include <unistd.h>
|
| -#endif
|
| -
|
| -// Returns the number of cores on this machine.
|
| -static inline int num_cores() {
|
| -#if defined(SK_BUILD_FOR_WIN32)
|
| - SYSTEM_INFO sysinfo;
|
| - GetSystemInfo(&sysinfo);
|
| - return sysinfo.dwNumberOfProcessors;
|
| -#elif defined(SK_BUILD_FOR_UNIX) || defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_ANDROID)
|
| - return (int) sysconf(_SC_NPROCESSORS_ONLN);
|
| -#else
|
| - return 1;
|
| -#endif
|
| -}
|
| -
|
| -template <typename T>
|
| -class SkTThreadPool {
|
| -public:
|
| - /**
|
| - * Create a threadpool with count threads, or one thread per core if kThreadPerCore.
|
| - */
|
| - static const int kThreadPerCore = -1;
|
| - explicit SkTThreadPool(int count);
|
| - ~SkTThreadPool();
|
| -
|
| - /**
|
| - * Queues up an SkRunnable to run when a thread is available, or synchronously if count is 0.
|
| - * Does not take ownership. NULL is a safe no-op. If T is not void, the runnable will be passed
|
| - * a reference to a T on the thread's local stack.
|
| - */
|
| - void add(SkTRunnable<T>*);
|
| -
|
| - /**
|
| - * Same as add, but adds the runnable as the very next to run rather than enqueueing it.
|
| - */
|
| - void addNext(SkTRunnable<T>*);
|
| -
|
| - /**
|
| - * Block until all added SkRunnables have completed. Once called, calling add() is undefined.
|
| - */
|
| - void wait();
|
| -
|
| - private:
|
| - struct LinkedRunnable {
|
| - SkTRunnable<T>* fRunnable; // Unowned.
|
| - SK_DECLARE_INTERNAL_LLIST_INTERFACE(LinkedRunnable);
|
| - };
|
| -
|
| - enum State {
|
| - kRunning_State, // Normal case. We've been constructed and no one has called wait().
|
| - kWaiting_State, // wait has been called, but there still might be work to do or being done.
|
| - kHalting_State, // There's no work to do and no thread is busy. All threads can shut down.
|
| - };
|
| -
|
| - void addSomewhere(SkTRunnable<T>* r,
|
| - void (SkTInternalLList<LinkedRunnable>::*)(LinkedRunnable*));
|
| -
|
| - SkTInternalLList<LinkedRunnable> fQueue;
|
| - SkCondVar fReady;
|
| - SkTDArray<SkThread*> fThreads;
|
| - State fState;
|
| - int fBusyThreads;
|
| -
|
| - static void Loop(void*); // Static because we pass in this.
|
| -};
|
| -
|
| -template <typename T>
|
| -SkTThreadPool<T>::SkTThreadPool(int count) : fState(kRunning_State), fBusyThreads(0) {
|
| - if (count < 0) {
|
| - count = num_cores();
|
| - }
|
| - // Create count threads, all running SkTThreadPool::Loop.
|
| - for (int i = 0; i < count; i++) {
|
| - SkThread* thread = SkNEW_ARGS(SkThread, (&SkTThreadPool::Loop, this));
|
| - *fThreads.append() = thread;
|
| - thread->start();
|
| - }
|
| -}
|
| -
|
| -template <typename T>
|
| -SkTThreadPool<T>::~SkTThreadPool() {
|
| - if (kRunning_State == fState) {
|
| - this->wait();
|
| - }
|
| -}
|
| -
|
| -namespace SkThreadPoolPrivate {
|
| -
|
| -template <typename T>
|
| -struct ThreadLocal {
|
| - void run(SkTRunnable<T>* r) { r->run(data); }
|
| - T data;
|
| -};
|
| -
|
| -template <>
|
| -struct ThreadLocal<void> {
|
| - void run(SkTRunnable<void>* r) { r->run(); }
|
| -};
|
| -
|
| -} // namespace SkThreadPoolPrivate
|
| -
|
| -template <typename T>
|
| -void SkTThreadPool<T>::addSomewhere(SkTRunnable<T>* r,
|
| - void (SkTInternalLList<LinkedRunnable>::* f)(LinkedRunnable*)) {
|
| - if (r == NULL) {
|
| - return;
|
| - }
|
| -
|
| - if (fThreads.isEmpty()) {
|
| - SkThreadPoolPrivate::ThreadLocal<T> threadLocal;
|
| - threadLocal.run(r);
|
| - return;
|
| - }
|
| -
|
| - LinkedRunnable* linkedRunnable = SkNEW(LinkedRunnable);
|
| - linkedRunnable->fRunnable = r;
|
| - fReady.lock();
|
| - SkASSERT(fState != kHalting_State); // Shouldn't be able to add work when we're halting.
|
| - (fQueue.*f)(linkedRunnable);
|
| - fReady.signal();
|
| - fReady.unlock();
|
| -}
|
| -
|
| -template <typename T>
|
| -void SkTThreadPool<T>::add(SkTRunnable<T>* r) {
|
| - this->addSomewhere(r, &SkTInternalLList<LinkedRunnable>::addToTail);
|
| -}
|
| -
|
| -template <typename T>
|
| -void SkTThreadPool<T>::addNext(SkTRunnable<T>* r) {
|
| - this->addSomewhere(r, &SkTInternalLList<LinkedRunnable>::addToHead);
|
| -}
|
| -
|
| -
|
| -template <typename T>
|
| -void SkTThreadPool<T>::wait() {
|
| - fReady.lock();
|
| - fState = kWaiting_State;
|
| - fReady.broadcast();
|
| - fReady.unlock();
|
| -
|
| - // Wait for all threads to stop.
|
| - for (int i = 0; i < fThreads.count(); i++) {
|
| - fThreads[i]->join();
|
| - SkDELETE(fThreads[i]);
|
| - }
|
| - SkASSERT(fQueue.isEmpty());
|
| -}
|
| -
|
| -template <typename T>
|
| -/*static*/ void SkTThreadPool<T>::Loop(void* arg) {
|
| - // The SkTThreadPool passes itself as arg to each thread as they're created.
|
| - SkTThreadPool<T>* pool = static_cast<SkTThreadPool<T>*>(arg);
|
| - SkThreadPoolPrivate::ThreadLocal<T> threadLocal;
|
| -
|
| - while (true) {
|
| - // We have to be holding the lock to read the queue and to call wait.
|
| - pool->fReady.lock();
|
| - while(pool->fQueue.isEmpty()) {
|
| - // Does the client want to stop and are all the threads ready to stop?
|
| - // If so, we move into the halting state, and whack all the threads so they notice.
|
| - if (kWaiting_State == pool->fState && pool->fBusyThreads == 0) {
|
| - pool->fState = kHalting_State;
|
| - pool->fReady.broadcast();
|
| - }
|
| - // Any time we find ourselves in the halting state, it's quitting time.
|
| - if (kHalting_State == pool->fState) {
|
| - pool->fReady.unlock();
|
| - return;
|
| - }
|
| - // wait yields the lock while waiting, but will have it again when awoken.
|
| - pool->fReady.wait();
|
| - }
|
| - // We've got the lock back here, no matter if we ran wait or not.
|
| -
|
| - // The queue is not empty, so we have something to run. Claim it.
|
| - LinkedRunnable* r = pool->fQueue.head();
|
| -
|
| - pool->fQueue.remove(r);
|
| -
|
| - // Having claimed our SkRunnable, we now give up the lock while we run it.
|
| - // Otherwise, we'd only ever do work on one thread at a time, which rather
|
| - // defeats the point of this code.
|
| - pool->fBusyThreads++;
|
| - pool->fReady.unlock();
|
| -
|
| - // OK, now really do the work.
|
| - threadLocal.run(r->fRunnable);
|
| - SkDELETE(r);
|
| -
|
| - // Let everyone know we're not busy.
|
| - pool->fReady.lock();
|
| - pool->fBusyThreads--;
|
| - pool->fReady.unlock();
|
| - }
|
| -
|
| - SkASSERT(false); // Unreachable. The only exit happens when pool->fState is kHalting_State.
|
| -}
|
| -
|
| -typedef SkTThreadPool<void> SkThreadPool;
|
| -
|
| -#endif
|
|
|