| Index: Source/platform/transforms/TransformationMatrix.cpp
|
| diff --git a/Source/platform/transforms/TransformationMatrix.cpp b/Source/platform/transforms/TransformationMatrix.cpp
|
| index 3efc3a8d0d4df9535041470519f24d44eeccd3bc..e73988f216eb9ae077d80ba699dc4ca08ba5d4a4 100644
|
| --- a/Source/platform/transforms/TransformationMatrix.cpp
|
| +++ b/Source/platform/transforms/TransformationMatrix.cpp
|
| @@ -42,8 +42,6 @@
|
| #include <emmintrin.h>
|
| #endif
|
|
|
| -using namespace std;
|
| -
|
| namespace blink {
|
|
|
| //
|
| @@ -261,7 +259,7 @@ static void v4MulPointByMatrix(const Vector4 p, const TransformationMatrix::Matr
|
|
|
| static double v3Length(Vector3 a)
|
| {
|
| - return sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2]));
|
| + return std::sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2]));
|
| }
|
|
|
| static void v3Scale(Vector3 v, double desiredLength)
|
| @@ -437,25 +435,25 @@ static bool decompose(const TransformationMatrix::Matrix4& mat, TransformationMa
|
| t = row[0][0] + row[1][1] + row[2][2] + 1.0;
|
|
|
| if (t > 1e-4) {
|
| - s = 0.5 / sqrt(t);
|
| + s = 0.5 / std::sqrt(t);
|
| w = 0.25 / s;
|
| x = (row[2][1] - row[1][2]) * s;
|
| y = (row[0][2] - row[2][0]) * s;
|
| z = (row[1][0] - row[0][1]) * s;
|
| } else if (row[0][0] > row[1][1] && row[0][0] > row[2][2]) {
|
| - s = sqrt (1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S=4*qx
|
| + s = std::sqrt(1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S=4*qx
|
| x = 0.25 * s;
|
| y = (row[0][1] + row[1][0]) / s;
|
| z = (row[0][2] + row[2][0]) / s;
|
| w = (row[2][1] - row[1][2]) / s;
|
| } else if (row[1][1] > row[2][2]) {
|
| - s = sqrt (1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S=4*qy
|
| + s = std::sqrt(1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S=4*qy
|
| x = (row[0][1] + row[1][0]) / s;
|
| y = 0.25 * s;
|
| z = (row[1][2] + row[2][1]) / s;
|
| w = (row[0][2] - row[2][0]) / s;
|
| } else {
|
| - s = sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S=4*qz
|
| + s = std::sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S=4*qz
|
| x = (row[0][2] + row[2][0]) / s;
|
| y = (row[1][2] + row[2][1]) / s;
|
| z = 0.25 * s;
|
| @@ -493,10 +491,10 @@ static void slerp(double qa[4], const double qb[4], double t)
|
|
|
| if (angle + 1.0 > .05) {
|
| if (1.0 - angle >= .05) {
|
| - th = acos (angle);
|
| - invth = 1.0 / sin (th);
|
| - scale = sin (th * (1.0 - t)) * invth;
|
| - invscale = sin (th * t) * invth;
|
| + th = std::acos(angle);
|
| + invth = 1.0 / std::sin(th);
|
| + scale = std::sin(th * (1.0 - t)) * invth;
|
| + invscale = std::sin(th * t) * invth;
|
| } else {
|
| scale = 1.0 - t;
|
| invscale = t;
|
| @@ -506,8 +504,8 @@ static void slerp(double qa[4], const double qb[4], double t)
|
| by = ax;
|
| bz = -aw;
|
| bw = az;
|
| - scale = sin(piDouble * (.5 - t));
|
| - invscale = sin (piDouble * t);
|
| + scale = std::sin(piDouble * (.5 - t));
|
| + invscale = std::sin(piDouble * t);
|
| }
|
|
|
| cx = ax * scale + bx * invscale;
|
| @@ -622,7 +620,7 @@ FloatQuad TransformationMatrix::projectQuad(const FloatQuad& q, bool* clamped) c
|
| static float clampEdgeValue(float f)
|
| {
|
| ASSERT(!std::isnan(f));
|
| - return min<float>(max<float>(f, (-LayoutUnit::max() / 2).toFloat()), (LayoutUnit::max() / 2).toFloat());
|
| + return std::min<float>(std::max<float>(f, (-LayoutUnit::max() / 2).toFloat()), (LayoutUnit::max() / 2).toFloat());
|
| }
|
|
|
| LayoutRect TransformationMatrix::clampedBoundsOfProjectedQuad(const FloatQuad& q) const
|
| @@ -761,7 +759,7 @@ TransformationMatrix& TransformationMatrix::scale3d(double sx, double sy, double
|
| TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double z, double angle)
|
| {
|
| // Normalize the axis of rotation
|
| - double length = sqrt(x * x + y * y + z * z);
|
| + double length = std::sqrt(x * x + y * y + z * z);
|
| if (length == 0) {
|
| // A direction vector that cannot be normalized, such as [0, 0, 0], will cause the rotation to not be applied.
|
| return *this;
|
| @@ -774,8 +772,8 @@ TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double
|
| // Angles are in degrees. Switch to radians.
|
| angle = deg2rad(angle);
|
|
|
| - double sinTheta = sin(angle);
|
| - double cosTheta = cos(angle);
|
| + double sinTheta = std::sin(angle);
|
| + double cosTheta = std::cos(angle);
|
|
|
| TransformationMatrix mat;
|
|
|
| @@ -854,8 +852,8 @@ TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, doubl
|
|
|
| TransformationMatrix mat;
|
|
|
| - double sinTheta = sin(rz);
|
| - double cosTheta = cos(rz);
|
| + double sinTheta = std::sin(rz);
|
| + double cosTheta = std::cos(rz);
|
|
|
| mat.m_matrix[0][0] = cosTheta;
|
| mat.m_matrix[0][1] = sinTheta;
|
| @@ -872,8 +870,8 @@ TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, doubl
|
|
|
| TransformationMatrix rmat(mat);
|
|
|
| - sinTheta = sin(ry);
|
| - cosTheta = cos(ry);
|
| + sinTheta = std::sin(ry);
|
| + cosTheta = std::cos(ry);
|
|
|
| mat.m_matrix[0][0] = cosTheta;
|
| mat.m_matrix[0][1] = 0.0;
|
| @@ -890,8 +888,8 @@ TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, doubl
|
|
|
| rmat.multiply(mat);
|
|
|
| - sinTheta = sin(rx);
|
| - cosTheta = cos(rx);
|
| + sinTheta = std::sin(rx);
|
| + cosTheta = std::cos(rx);
|
|
|
| mat.m_matrix[0][0] = 1.0;
|
| mat.m_matrix[0][1] = 0.0;
|
| @@ -969,8 +967,8 @@ TransformationMatrix& TransformationMatrix::skew(double sx, double sy)
|
| sy = deg2rad(sy);
|
|
|
| TransformationMatrix mat;
|
| - mat.m_matrix[0][1] = tan(sy); // note that the y shear goes in the first row
|
| - mat.m_matrix[1][0] = tan(sx); // and the x shear in the second row
|
| + mat.m_matrix[0][1] = std::tan(sy); // note that the y shear goes in the first row
|
| + mat.m_matrix[1][0] = std::tan(sx); // and the x shear in the second row
|
|
|
| multiply(mat);
|
| return *this;
|
|
|